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ABSTRACT

Tumor detection and subtyping remain a signi�cant challenge in

histopathology image analysis. As digital pathology progresses,

the applications of deep learning become essential. Whole Slide

Image (WSI) classi�cation has emerged as a crucial task in digital

pathology, vital for accurate cancer diagnosis and treatment. In

this paper, we introduce an innovative abnormal-guidedMultiple

Foundation Model Fusion (MFMF) framework, aimed at enhanc-

ing WSI classi�cation by integrating multi-level information from

pathology images with Multiple Instance Learning (MIL). Tradi-

tional methods often focus on patch-level features while neglecting

the rich contextual and morphological details at the cell and text

levels, thus failing to fully exploit the multidimensional nature of

WSIs. Our method enhances traditional models by e�ciently inte-

grating patch-level, cell-level, and text-level features using three

foundation models. These are then fused through a novel three-step

cross-attention module that e�ectively leverages cell and text infor-

mation with patch-level features. Furthermore, unlike most studies

that use attention scores to select instances based on the assump-

tion that high scores indicate the presence of a tumor, we design

an abnormality-aware module to naturally identify and detect ab-

normal features (i.e., tumors) as the criteria for selecting important

instances, thereby reducing computational costs and boosting over-

all performance. We validate our approach against leading bench-

marks on the CAMELYON16 and TCGA-Lung datasets, achieving
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superior classi�cation performance. Our study not only tackles

the challenges of sparsity and noise in multi-level features but

also enhances the e�ciency and accuracy of WSI classi�cation by

exploiting abnormal features.
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1 INTRODUCTION

Cancer signi�cantly threatens human health, making tumor detec-

tion and subtyping crucial for e�ective diagnosis and treatment

[5]. Tissue examination by a pathologist remains the gold standard

[25, 27]. With the adoption of digital slide scanning, advances in

deep learning, and increased access to large datasets, computa-

tional pathology has transformed remarkably in recent years [21],

especially in training models on whole slide images (WSIs) from

Hematoxylin and Eosin (H&E)-stained specimens. However, WSIs

can be gigapixel in size, making data collection and annotation

labor-intensive [14]. A popular solution is weakly supervised learn-

ing based on Multiple Instance Learning (MIL) [11], where the WSI

is tokenized into many patch embeddings using a pretrained vision

encoder. These embeddings are then fed into pooling networks,

such as attention networks, for downstream tasks [7, 20].
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Recently, pretrained models have achieved signi�cant success

in bioinformatics [9] and medical image analysis. However, most

existing WSI-based methods focus on extracting patch-level fea-

tures, neglecting the multi-level information intrinsic to pathology

images. Some methods try to utilize cellular microenvironment

information by using smaller patches, such as 16×16 pixel images

[2, 3, 23], but this does not capture true cell-level information,

missing critical features like cell contours and shapes. Moreover, re-

ducing patch size results in losing the ability to learn about cellular

context and background, limiting their e�ectiveness in providing

comprehensive medical and pathological insights. Recent state-of-

the-art (SOTA) multimodal methods, such as image-text models,

o�er additional textual knowledge to enhance analysis. However,

obtaining accurate textual descriptions for pathology images usu-

ally requires manual annotations from experts, which is expensive

and time-consuming.

Foundation models o�er potential solutions to these issues. For

example, foundation models for pathology images generate patch-

level features and convertmedical captions into text features, thereby

enhancing image-text and text-image retrieval tasks [15]. For cell-

level analysis, some �ne-tuning technologies focus on cell segmen-

tation [18]. Additionally, recentmedical image-based large language

models (LLMs) [12, 19] generate textual descriptions, reducing the

need for manual annotations. Therefore, combining patch-level,

cell-level, and text-level features can create a comprehensive rep-

resentation, leveraging each foundation model’s strengths for a

more detailed understanding of pathology images. However, inte-

grating these features introduces challenges, such as information

sparsity in cell-level features and reliability issues in text-level de-

scriptions, which may contain noise. Patch-level features are consid-

ered highly reliable, while cell-level and text-level features, derived

from patches, can lack necessary information or include irrelevant

details. Addressing these discrepancies is crucial to maximize the

e�ectiveness of combined feature models in medical imaging.

A simple strategy is to concatenate embeddings from di�erent

foundation models, but this often leads to suboptimal solutions

due to sparsity in cell-level information and noise in text-level

features. This approach fails to e�ectively integrate the necessary

multi-level information, limiting model performance and diagnostic

accuracy. Additionally, some cross-attention multimodal fusion

methods have limited capabilities because they are designed for

only two modalities [26], making them di�cult to reuse when the

number of modality types exceeds two. Moreover, to our knowledge,

there is little research on scenarios where the con�dence level of

one modality signi�cantly surpasses others.

To address these challenges, we propose an abnormal guided

Multiple Foundation Model Fusion (MFMF) network with MIL

for WSI classi�cation. Our method generates multi-level informa-

tion from WSIs using three foundation models: the CONCH [15]

model for patch-level embeddings, the Segment Any Cell (SAC)

[18] model for cell-level embeddings, and the Quilt-LLaVA [19]

model for text-level embeddings. We introduce a three-step cross-

attention module to integrate cell-level and text-level information

with primary patch-level features. This module �rst fuses cell-level

and text-level embeddings, then combines the merged cell-text fea-

tures with patch-level embeddings. To further enhance predictive

performance, we design an abnormal detection module to gener-

ate abnormality-aware features based on patch-level embeddings

and fuse these with the patch-cell-text features. Extensive exper-

iments on cancer classi�cation and subtyping demonstrate the

e�ectiveness of our framework, showing promising performance

improvements. Overall, our contributions can be summarized as

follows:

• We propose an innovative MFMF framework across pathol-

ogy image, cell, and text-based foundation models, achieving

superior classi�cation performance on both cancer classi�-

cation and subtyping datasets. Comparative analysis with

multiple datasets further demonstrates that our method sur-

passes SOTA techniques.

• To the best of our knowledge, we are the �rst to introduce

an abnormal detection module based on Variational Autoen-

coder (VAE) to naturally select top-: instances, thereby re-

ducing computational costs and enhancing the learning of

patch-level features for abnormal detection. This component

not only boosts performance but also accelerates progress

in tumor classi�cation tasks.

• The proposed method integrates diverse feature types de-

rived exclusively fromWSIswithout requiring any additional

manually curated data, such as micro environment annota-

tions or expert-provided ground truth descriptions. Instead,

annotations are e�ectively replaced by automatically ex-

tracted cell features, and expert descriptions are substituted

with text features.

2 METHODOLOGY

2.1 Multiple Instance Learning

We adopt theMIL approach forWSI classi�cation, as MIL e�ectively

handles large data with only slide-level labels, given that obtaining

instance-level annotations in medical imaging is costly and time-

consuming. Particularly, each WSI is treated as a bag of multiple

instances. A bag is labeled as positive if it contains at least one

positive instance (i.e., tumor cropped patch) and negative otherwise.

Yğ =

{

0, i�
∑

~ğ, Ġ ∈ {0, 1},with 9 = 1 . . .<,

1, otherwise.
(1)

Given a bag of instancesXğ = {xğ,1, . . . , xğ,ģ}, where the instance-

level labels {~ğ,1, . . . , ~ğ,ģ} are unknown, our goal is to predict

Ŷğ ∈ {0, 1} such that the prediction Ŷğ matches the target value

Yğ ∈ {0, 1}, for 8 = 1, . . . , 1. Here, 1 represents the total number of

bags, and< is the number of instances in the 8-th bag. Notably, the

value of< can vary across di�erent bags.

2.2 Autoencoder-based Abnormal Detection

The vanilla Variational Autoencoder (VAE) consists of two primary

components: an encoder, �=2Ēýā , and a decoder, �42Ēýā . The

encoder compresses the input data G into a lower-dimensional latent

space I, and the decoder attempts to reconstruct the original feature

from this latent representation. The VAE is trained by minimizing

the following loss function:

LĒýā = Eħ (İ |Į ) [log ? (G |I)] −  !(@(I |G) | |? (I)). (2)
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Figure 1: Overview of MFMF. (a) Abnormal Detection Module: The process begins by dividing input WSIs into patches and

extracting patch-level embeddings using an image encoder. These embeddings are used to train an abnormal detection module,

generating reconstruction features and calculating reconstruction errors to select the top-: potential patches. (b) MFMF: The

selected patches are further processed to extract cell-level and text-level embeddings. (c) Fusion Module: These embeddings are

integrated using cross-attention mechanisms. Finally, the integrated embedding is passed through a fully connected layer to

predict the slide-level label.

The intrinsic capability of VAE to detect abnormalities aligns

well with the MIL classi�cation described in Eq. 1. Since instance-

level labels are not available, it is only certain that all instances

in a normal bag are normal, whereas a tumor bag contains both

normal and tumor embeddings. To implement the concept of VAE

in tumor classi�cation, the abnormal detection (AD) module is

trained exclusively on WSIs labeled as normal. For cancer subtype

classi�cation, any subtype can be designated as a normal case.

We utilize AD model to generate embeddings that are sensitive

to abnormalities from tiles extracted from WSIs. Intuitively, this

approach focuses on identifying and encoding deviations from typ-

ical histopathological patterns, facilitating a more re�ned analysis

in subsequent processing stages. Further than that, to completely

leverage the power of AD, we introduce the reconstruction error-

based selection module that will be applied before extracting cell

and text-level embeddings (see Figure 1). This module, equipped

with AD, �lters out patches that do not exhibit signi�cant abnormal

features, thus focusing computational resources on top-: promising

candidates for detailed analysis. This strategy helps to reduce both

the data preparation stage and the volume of processed data in train-

ing, streamlining the overall work�ow and enhancing the e�ciency

of the system. The speci�cs of the error-based instance selection

approaches will be thoroughly detailed in the next subsection.

2.3 Multiple Foundation Model Fusion

Feature encoding with foundation models. Given< cropped

patches from the bag Xğ , cell features Fę ∈ R
ģ×Ě1 and patch fea-

tures FĦ ∈ R
ģ×Ě3 are derived from the corresponding encoders,

where SAC [18] and CONCH [15] are employed, respectively. For

text features, we apply Quilt-LLaVA [19] as a caption generation

function �4=ęėĦ (Xğ ) to produce descriptions of the patches. The

prompts in MFMF are designed to elicit responses using three
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speci�c types of queries proposed in the LLaVA structure [13]:

short conversation, detailed description, and complex reasoning.

We use the prompts introduced by Quilt-LLaVA directly and sup-

plement them with relevant medical terms depending on the tumor

or subtype classi�cation tasks. The length of the response is limited

to a maximum of 1024 tokens. These text responses of arbitrary

length are then encoded to obtain �xed-size text-based embeddings,

FĪ ∈ R
ģ×Ě2 . The diverse feature extraction techniques employ in

this phase are summarized in the Appendix section.

Guided abnormal features with VAE. Given a set of training

samples � = {(Xğ ,Yğ )}
Ę , where 1 is the number of bags, the ab-

normal detection component is trained using patch features from

bags Xğ if the corresponding labels Yğ are denoted as normal. For

instance, in tumor classi�cation, the selected bags have Yğ = 0. We

design the loss function of the Abnormal Detection (AD) module

based on the VAE architecture. Thus, the Eq. 2 is updated to com-

bine the Mean Squared Error (MSE) for the reconstruction loss and

the Kullback-Leibler Divergence (KLD) for the regularization loss,

de�ned as follows:

Lĉďā =

1

#

Ċ
∑

ğ=1

| |f
(ğ )
Ħ − �42Ēýā (�=2Ēýā (f

(ğ )
Ħ )) | |

2, (3)

LćĈĀ = −
1

2

Ě
∑

Ġ

(

1 + log(f2Ġ ) − `
2
Ġ − f

2
Ġ

)

, (4)

LĒýā = Lĉďā + LćĈĀ , (5)

with # is the total number of patches that belong to training bags

labeled as normal, 3 is the dimensionality of the latent space, and

` and f are the mean and standard deviation of the latent vari-

able, respectively. The combined loss function, LĒýā , ensures

that the model not only accurately reconstructs the input fea-

tures but also maintains a well-behaved latent space by regular-

izing it to follow a standard normal distribution. During both the

training and testing phases of MFMF, the trained autoencoder is

kept frozen. Each patch’s image feature, fĦ , is processed through

the frozen autoencoder to obtain the reconstructed feature, fĨ ←

�42Ēýā (�=2Ēýā (fĦ )).

Integrating multimodal features. Let the quadruplet (FĦ , Fę ,

FĪ , FĨ ) represent the matrices that contain all the corresponding

features for each modality, which we denote as F for simplicity.

Based on the de�ned MIL classi�cation problem in Section 2.1, to

predict the bag-level label, the MIL models need to aggregate all

instances and then produce a conclusion in the form of: Ŷğ = 6(; (F)),

where ; (·) is the aggregation function and 6(·) is the bag-level

classi�er.

We designed the function ; (·) by cascading three cross-attention

blocks to integrate the information from the quadruplet F. The

cross-attention [22] module can be mathematically expressed as:

�CC4=C8>=(Q,K,V) = B> 5 C<0G (
QKĐ
√

3ġ
)+ , (6)

where
√

3ġ is the dimension of the key vectors, which scales the

dot-product of Q and KĐ .

In the initial attention block, H1 = Attention(FĪ , Fę , Fę ), cell fea-

tures are used as keys (K) and values (V), while text features serve

as queries (Q). This layer integrates information from text descrip-

tions with cell-based embeddings to enhance the representation

of cell features. In the subsequent block, patch features serve as K

and V, and the output from the �rst block is then used as Q, repre-

sented asH2 = Attention(H1, FĦ , FĦ ). Reconstructed patch features,

which capture abnormal information, are used as queries in the

third cross-attention block, while K and V are derived fromH2. This

integration, denoted as H3, ensures that the model leverages both

original and reconstructed features for robust decision-making. We

then average the resultant H3 to obtain a bag representation. One

linear layer, !8=40A (·), is applied to the aggregated features, yield-

ing the logits. The decision classi�er 6(·) is trained using the Binary

Cross-Entropy loss:

Lþÿā = −
1

1

Ę
∑

ğ=1

[

Yğ log(Ŷğ ) + (1 − Yğ ) log(1 − Ŷğ )
]

. (7)

Scaling MFMF with Perceiver IO. The Transformer architec-

ture su�ers from quadratic complexity, leading to ine�cient scaling

in both computational and memory resources. To address this issue,

we utilized Perceiver IO [8], which performs the attention mecha-

nism in the latent space. Thus, the three lightweight Perceiver IO

blocks are applied as the cross-attention mechanism in the function

; (·) to process data � e�ciently.

Scaling MFMF with reconstruction error. Furthermore, we

design a reconstruction error-based approach to scale the data

and decrease the computational costs, as mentioned in Section

2.2. This approach involves selecting instances in a bag based on

the Euclidean distances between the original features FĦ and the

reconstructed features FĨ , using two strategies:

• Maximum selection: We select the top-: instances with the

highest reconstruction error scores to be forwarded to our

MFMF. This strategy focuses on the instances most likely to

contain tumor information or potential false positives.

• MinMax selection: This approach selects the top-: instances

based on both the highest and lowest reconstruction error

scores. By including instances with minimal reconstruction

error, we balance the model’s learning space and prevent

it from becoming overcon�dent, reducing the likelihood of

false negatives.

Given a bag Xğ , the number of instances remaining in the bag af-

ter applying the select function (4;42C (·) is +: ∗<,, where : ∈ (0, 1]

represents the percentage of instances in the bag to be processed.

By doing so, we reduce the number of instances to be processed by

(1 − :) × 100%, making the model more e�cient.

3 EXPERIMENTS

3.1 Implementation Details

3.1.1 Datasets: We evaluate the proposed method on three di�er-

ent histopathological datasets: CAMELYON16 [4], TCGA-LUAD

[1], and TCGA-LUSC [10]. TCGA-LUAD and TCGA-LUSC are com-

bined into a single large dataset, TCGA-Lung, for the cancer subtype

classi�cation task.

In the pre-processing stage, each WSI is cropped into 1024×1024

patches without overlap to form a bag, with magni�cations of 40×

for CAMELYON16 and 20× for TCGA-Lung. We apply Macenko
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color normalization [17] and discard patches with more than 30%

background.

CAMELYON16 consists of 398 WSIs, producing 569,533 patches,

while TCGA-Lung includes 1,042 WSIs, yielding 729,193 patches.

Both datasets are split for 5-fold cross-validation, with CAME-

LYON16 tested on its o�cial test set and TCGA-Lung on the DSMIL

GitHub test set [11]. The training-to-testing ratios are 269:129 for

CAMELYON16 and 828:214 for TCGA-Lung..

3.1.2 Evaluation: All experiments are conducted on a single Nvidia

GTX 4090 GPU with 32GB of RAM and an Intel Core i7 processor.

We report the mean and standard deviation of the 5-fold cross-

validation results for the area under the curve (AUC), accuracy, and

recall scores of eight baselines and our proposed MFMF in the task

of WSI classi�cation on both datasets. We evaluate our method’s

robustness against eight baselines in both unimodal andmultimodal

settings, ensuring fairness by using the same input features for all

methods.

In the unimodal setting, the input to baselines is a set of patch

feature vectors FĦ extracted using the foundation CONCH model.

MFMF utilizes these FĦ as key and value, while using its reconstruc-

tion features FĨ as query, and combines the two features with a

single Perceiver IO block. In the multimodal setting, the inputs are

tuples of image, cell, and text features, denoted as FĦ+Fę+FĪ . To

implement the multimodal mode on eight baseline methods, the im-

age, cell, and text features are concatenated as described in [6]. The

normal class in CAMELYON16 and the LUSC class in TCGA-Lung

are used to train the AD module.

3.2 Results

MFMF demonstrates superior performance in both unimodal and

multimodal settings, as shown in the comparisons in Tables 1-2.

For the unimodal setting on CAMELYON16, MFMF achieves an

AUC of 0.9402, an accuracy of 0.9302, and a recall of 0.9090. These

results demonstrate that MFMF is highly competitive, with excel-

lent performance across all metrics. Signi�cantly, MFMF achieved

the best recall, underscoring its robustness in detecting relevant

features from image data. In the multimodal setting, MFMF out-

performs other methods, achieving an AUC of 0.9746, an accuracy

of 0.9566, and a recall of 0.9429. Speci�cally, MFMF with instance

selection achieves the highest performance. This substantial im-

provement with multimodal inputs highlights the e�ectiveness of

integrating multiple feature types for pathological image analysis.

Our method again demonstrates superior performance for the

unimodal setting on TCGA-Lung, achieving the best results for

accuracy and the second-best recall. This validates its robustness

across di�erent datasets. In the multimodal setting, MFMF main-

tains its superior performance, achieving the best results for AUC,

accuracy, and recall metrics. This further demonstrates the advan-

tage of using multimodal inputs.

Notably, our recall scores consistently surpass those of other

methods, indicating that the abnormal detection module success-

fully guides MFMF to identify positive features. This enhanced

recall is crucial, as false negatives are particularly dangerous in

�elds such as diagnosis and medical imaging, where missing infor-

mation about metastases or other critical abnormalities can have

serious consequences.

4 CONCLUSIONS

In this study, we introduced MFMF, an innovative framework that

integrates multiple foundation models to enhance whole slide im-

age classi�cation performance. This framework distinctively in-

corporates an abnormal-guided Variational Autoencoder, which

signi�cantly boosts classi�cation accuracy by e�ectively integrat-

ing patch-level, cell-level, and text-level features through a cross-

attention mechanism. Extensive experiments are conducted on the

CAMELYON16 and TCGA-Lung datasets to demonstrate the supe-

rior performance of our model over existing SOTA methods, partic-

ularly in multimodal settings. Looking ahead, we plan to establish

a benchmark for multi-class classi�cation to further validate and

re�ne our framework’s capabilities. MFMF represents a signi�cant

and promising step forward in computational pathology.
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Table 1: Classi�cation performance comparison on CAMELYON16. The best result is shown in bold, the second-best result is

underlined, and the third-best result is in italics. "MFMF ∗" represents our methods.
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A APPENDIX

A.1 Experiment Setup

The process of MFMF begins with the extraction of patch-level

embeddings from the input instances Xğ = {xğ,1, . . . , xğ,ģ} using an

image encoder, resulting in feature representations FĦ , with FĦ is a

set that contains< feature vectors fĦ . These embeddings are then

utilized to train an abnormal detection module (VAE) which pro-

duces reconstruction features FĨ . By calculating the reconstruction

errors | |f
(ğ )
Ħ − f

(ğ )
Ĩ | |

2, potential abnormal instances are identi�ed,

and a subset of these instances is selected based on a threshold

: , where | | · | |2 denotes the squared Euclidean norm. The selected

instances undergo further feature extraction, where cell-level and

text-level embeddings are generated using respective encoders.

These embeddings fę and fĪ , along with the re�ned patch-level

and reconstruction features, are integrated using attention mecha-

nisms. Finally, the integrated features are passed through a classi�er

to predict the WSI-level label Ŷğ . The diverse feature extraction

techniques employed in this research are summarized in Table 3.

Table 3: Feature extraction methods.

Embedding Process Dim.

fĦ

Patches of size 1024×1024 pixels were fed into the

image encoder of the CONCH foundation model,

which uses ViT-Base-16 as a backbone.

R
512

fę

SAC �ne-tuned the image encoder, a ViT from

SAM, with a cell segmentation task using LoRA.

We then extracted the features using SAC’s image

encoder, processing them with max pooling to

generate cell features.

R
1280

fĪ

The Quilt-LLaVA foundation model was used to

generate a description for each patch. These de-

scriptions were then input into the text encoder

of the CONCH model.

R
512

fĨ

An image-based embedding extracted by CONCH

was then encoded and decoded by the Abnormal

Detection model (see Section 2.2) to obtain the

512-dimensional reconstructed embedding.

R
512

In terms of the prompts used for the CAMELYON16 and TCGA-

Lung datasets to obtain patch descriptions generated by Quilt-

LLaVA, we employed the following prompts, respectively:

‘Can you describe the main features visible in this histopathology

image? In a few words, what does the histopathology image depict?

Is there a tumor in this pathology image? Are there abnormal,

neoplastic, atypical, or metastatic cells in this pathology image?

Make a diagnosis based on this single patch of histopathology

image.’

‘Can you describe the main features visible in this histopathology

image? In a few words, what does the histopathology image depict?

Is it lung adenocarcinoma or lung squamous cell carcinoma?’

A.2 Classi�cation Results

To emphasize the robustness of our method, we plot bag embed-

dings produced by four di�erent methods on the CAMELYON16

test set under multimodal conditions.

In Figure 2, the clear distinction between ‘Normal’ and ‘Tumor’

categories in the MFMF model’s scatter plot underscores its e�ec-

tiveness in di�erentiating between tissue types. In contrast, the

othermethods showmore categorymixing, suggesting less e�ective

feature integration and classi�cation capabilities.

(a) ABMIL (b) TransMIL

(c) ILRA-MIL (d) MFMF (ours)

Figure 2: t-SNE visualizations of the CAMELYON16 test set

in multimodal mode.

Similarly, in Figure 3, the proposed method continues to out-

perform other methods in distinguishing between two subtypes,

‘LUAD’ and ‘LUSC’, with clear clustering of each category. This

consistent performance across di�erent datasets underscores the

e�ectiveness of the MFMF model in feature integration and classi�-

cation tasks, highlighting its potential for broader applications in

histopathological image analysis.

A.3 Ablation Results

A.3.1 Top-: se�ings: We conduct a grid search experiment to gain

an in-depth understanding of the Maximum and MinMax selection

strategies.

From Figure 4, in CAMELYON16, the best performance for Max-

imum selection is at : = 0.3, while in TCGA-Lung, the best perfor-

mance for both strategies is around : = 0.6. The MinMax selection

strategy demonstrates more stable performance across di�erent

: values compared to Maximum selection. This stability suggests

that including instances with minimal reconstruction error helps

in maintaining a balanced learning space, reducing overcon�dence

in the model. Maximum selection tends to peak at speci�c : values

but shows more variability as : changes. However, although the

MinMax selection strategy generally demonstrates stable perfor-

mance across di�erent : values, there are cases, such as at : = 0.2

in the TCGA-Lung dataset, where its performance is more vari-

able. In contrast, the Maximum selection method performs better

at speci�c : values, particularly on the TCGA-Lung dataset, where

: ∈ {0.2, 0.4, 0.8}. This suggests that whileMinMaxmight be amore

robust choice when the optimal : value is uncertain, the Maximum
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Table 4: Classi�cation performance for di�erent instance selection strategies on CAMELYON16.

Maximum selection MinMax selection

Top-ġ AUC Accuracy Recall Precision AUC Accuracy Recall Precision

ġ = 0.4 0.9648 ± 0.0124 0.9442 ± 0.0158 0.9265 ± 0.0208 0.9570 ± 0.0108 0.9708 ± 0.0109 0.9426 ± 0.0267 0.9249 ± 0.0351 0.9583 ± 0.0173

ġ = 0.3 0.9746 ± 0.0098 0.9566 ± 0.0079 0.9429 ± 0.0104 0.9674 ± 0.0056 0.9702 ± 0.0109 0.9457 ± 0.0245 0.9327 ± 0.0345 0.9604 ± 0.0161

ġ = 0.2 0.9626 ± 0.0165 0.9504 ± 0.0152 0.9363 ± 0.0204 0.9608 ± 0.0103 0.9695 ± 0.0102 0.9442 ± 0.0237 0.9306 ± 0.0338 0.9593 ± 0.0155

ġ = 0.1 0.9613 ± 0.0198 0.9379 ± 0.0129 0.9215 ± 0.0154 0.9491 ± 0.0131 0.9633 ± 0.0108 0.9504 ± 0.0126 0.9355 ± 0.0168 0.9619 ± 0.0087

Table 5: Classi�cation performance for di�erent instance selection strategies on TCGA-Lung.

Maximum selection MinMax selection

Top-ġ AUC Accuracy Recall Precision AUC Accuracy Recall Precision

ġ = 0.8 0.9769 ± 0.0038 0.9299 ± 0.0029 0.9303 ± 0.0028 0.9305 ± 0.0027 0.9744 ± 0.0046 0.9168 ± 0.0075 0.9168 ± 0.0075 0.9177 ± 0.0075

ġ = 0.6 0.9804 ± 0.0035 0.9374 ± 0.0069 0.9377 ± 0.0067 0.9386 ± 0.0056 0.9815 ± 0.0029 0.9355 ± 0.0062 0.9358 ± 0.0058 0.9365 ± 0.0048

ġ = 0.4 0.9769 ± 0.0038 0.9308 ± 0.0019 0.9312 ± 0.0018 0.9314 ± 0.0016 0.9736 ± 0.0018 0.9206 ± 0.0066 0.9209 ± 0.0069 0.9221 ± 0.0069

ġ = 0.2 0.9762 ± 0.0018 0.9280 ± 0.0023 0.9286 ± 0.0022 0.9294 ± 0.0020 0.9639 ± 0.0097 0.9001 ± 0.0179 0.8999 ± 0.0183 0.9008 ± 0.0173

(a) ABMIL (b) TransMIL

(c) ILRA-MIL (d) MFMF (ours)

Figure 3: t-SNE visualizations of the TCGA-Lung test set in

multimodal mode.

method could be more e�ective in certain cases, depending on the

dataset and selected : value. Overall, the worst performance for

both strategies is still comparable to SOTA methods, indicating the

reliability of our approach. The results also suggest that the e�ec-

tiveness of instance selection strategies can be dataset-dependent.

Please refer to Tables 4-5 for the full report.

A.3.2 Abnormal guided component: To highlight the importance of

reconstruction features and the proposed instance selection strate-

gies, we present the classi�cation results of MFMF when these

features are excluded. In this scenario, the input features consist of

the triplet (FĦ , Fę , FĪ ) only.

From the results of Table 6, it is evident that the inclusion of

the AD component improves the overall performance of the MFMF

model across both datasets. For the CAMELYON16 dataset, the

Figure 4: AUC performance for di�erent instance selection

strategies on CAMELYON16 and TCGA-Lung. Results for

other metrics can be found in the Appendix section.

AUC increases from 0.9478 to 0.9746, indicating stronger class dis-

tinction. Additionally, accuracy improves from 0.9395 to 0.9566,

and recall rises from 0.9236 to 0.9429, showing enhanced identi-

�cation of positive samples. In the TCGA-Lung dataset, the AUC

increases slightly from 0.9806 to 0.9815, while accuracy improves

from 0.9271 to 0.9374, and recall from 0.9271 to 0.9377, re�ecting

better true positive identi�cation. These results underscore the AD

component’s role in enhancing the MFMF model’s performance.

Consistent improvements in AUC, accuracy, and recall across both

datasets highlight the e�ectiveness of the AD component in re�n-

ing classi�cation, which is crucial for precise abnormality detection

in medical imaging.

Table 6: Classi�cation performance of MFMF without the

abnormal detection component (no instance selection and

no reconstruction features FĨ ) in multimodal mode.

Dataset AUC Accuracy Recall

CAMELYON 0.9478 ± 0.016 0.9395 ± 0.008 0.9236 ± 0.011

TCGA-Lung 0.9806 ± 0.003 0.9271 ± 0.009 0.9271 ± 0.009
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