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Explainable Learning — The Control-Theoretic Perspective

» Autonomous Vehicle Control
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Explainable Learning — The Control-Theoretic Perspective

» Autonomous Vehicle Control
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Modes of Operation

o How many modes?

> Intelligent Autonomous Systems: < o Local System Identification?
o Simultaneous, real-time learning?




Learning Properties in Cyber-Physical Systems

» Continuous/Dynamic/Adaptive Process /Data
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Learning Properties in Cyber-Physical Systems

» Continuous/Dynamic/Adaptive Process Data

> Interpretation Observe /
= Why and when doesn’t it work? é 3

= Knowledge Representation and Reasoning

> Robustness Grow/ Learn
»  Model uncertainty, overfitting, etc. Compact
» Transfer to real system? / \-/

» Time and Memory Efficiency Knowledge

» Real-time?

* Processing/Communication bandwidth
» Hyperparameter-tuning

» Performance-Complexity Trade-off

= Hierarchical Learning?




Towards Explainable Hierarchical Learning

» Goal: Hierarchically Approximate Optimal Solutions”

Simple Problem J :
p .
a .

Fast Solution
Coarse Approximation M
Complex Problem

Slow to Solve

" function approximation, reinforcement learning, game policies, system identification, clustering/classification




Towards Explainable Hierarchical Learning (II)

» Divide and Conquer: Partition the space and use local models

Highly Complex & Non-linear




Towards Explainable Hierarchical Learning (II)

» Divide and Conquer: Partition the space and use local models

Highly Complex & Non-linear

A

min E
{Si,0:}

D Bixesd (F(X). Ji(X. 92-))]

fi’(X) 92")

Simpler local models

A

ffl(a:), r € Ry

A

fa(x), © € Ry

A

/‘ (/n(2), © € Ry

Structure = Explainability
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Towards Explainable Hierarchical Learning (II)

» Divide and Conquer

» Hierarchically Partition the space and use local models Low
Resolution

High
Resolution
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Towards Explainable Hierarchical Learning (III)

» Problems with Simultaneous Partitioning and Local Learning?

fi(X,0:)

A S B
J(X.0)

min E [d(£(X), /(X,0))] in E
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Towards Explainable Hierarchical Learning (III)

» Problems: <

[ o How many regions?
o Start with few and add as needed?
o Optimal parameters?
 Local minima? Gradients?
* Robustness?

o Simultaneously learn local models?

> Online Deterministic Annealing
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Online Deterministic Annealing

Observations: X1 = {xi},ﬁl, r; € S realizations ofarv. X € S
Codevectors: W= {M’L}f\ilv s & S domain of a r.v. Q €S
defined by: p(pi|lx) =P[Q = p;| X = x]

Dissimilarity: d : § X S — [0, OO)
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Online Deterministic Annealing

Observations: X~ = { xi}i\;p r; € S realizations ofarv. X € S
Codevectors: W= {M’L}f\ilv s & S domain of a r.v. Q €S
defined by: p(pi|lx) =P[Q = p;| X = x]

Dissimilarity: d : § X S — [0, OO)

16




Online Deterministic Annealing

Observations: X~ = {gcz}fil , x; € S realizations ofarv. X € S

Codevectors: W= {M’L}f\ilv s & S domain of a r.v. Q €S
defined by: p(pi|lx) =P[Q = p;| X = x]

Dissimilarity: d : § X S — [0, OO)

Clustering?

min D(X, Q) = E[d (X, Q)] = / () S plpsle) e, ) o
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Online Deterministic Annealing

Adaptive
. L . Robust
Online Deterministic Annealing <)P ? us'
rogressive

min Fp = D — T'H for decreasing values of T.
L

where M =E[-log P(X,Q)] = H(X) — /p(w)Zp(m!w) log p(u;|z) da

Ent
ntropy T



Why Maximum Entropy?

» Jayne’s Maximum Entropy Principle
 Most “Unbiased” estimator: each sub-problem induces “good” initial conditions for the next

» Robustness w.r.t. initial conditions, input perturbations.

» Bifurcation: Progressively grow set of models

"Mavridis et al., Risk Sensitivity and Entropy Regularization in Prototype-based Learning, IEEE MED 2022.
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Online Deterministic Annealing

plylx)

Online Deterministic Annealing

Solvee: min Fp:=D —TH

for decreasing values of T.
7

D(X, Q) : Distortion
H(X,Q) : Entropy

position
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Online Deterministic Annealing

Online Deterministic Annealing

D —-TH

Solve:

min Frp:
n

plylx)

for decreasing values of T.

{D(X, Q) : Distortion

H(X,Q) : Entropy

» Lagrange (Temperature) Coefficient [’

» Controls Performance/Complexity Tradeoff
» Simulates Annealing Optimization (Temperature)
» Stochastic Approximation
* Simultaneous local system identification
» Triggers Bifurcation

I\II‘HH

4

Err.: 0.085

M %

L

i

.

o e

%
at
*

*ie
;

e | &
. N
S *iote
6. Y

o

[ohs.: 0040, T = .0900, K = 001]

[ohs.: 0614, T = .0094, K = oos]

[ohs.: 3201, T = .0012, K = 041]

* Progressively adjust number of regions/codevectors

Mavridis, Baras, Online Deterministic Annealing for Classification and Clustering, IEEE TNNLS 2022.

Mavridis, Baras, Annealing Optimization for Progressive Learning with Stochastic Approximation, IEEE TAC 2022.

position
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Online Deterministic Annealing (II)

Solving the Optimization Problem min Fr:=D —TH

» Lemma. The solution to F'™* (,LL) L= mm{p(wx)} F(ILL)
s.t. > p(uilr) =1, is given by the Gibbs distributions

_d(wj’_‘“i)
p*(pilx) = == TGy Vo € S.
Zje T

» Theorem. The solution to minu F* (ILL) 1S given by

it = B[X|u] = LD D) &

if d :==dy is a Bregman divergence. (sufficient condition)

\

e.g., squared Euclidean distance, KL divergence, ...

centroid form

S
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Online Deterministic Annealing (III)

Solving the Optimization Problem min Fr :=D —TH

» Theorem. The dynamic stochastic process created by the recursive updates

B(n) [ai(n +1)

pln D)= oy i+ 1)

(i) = Dl + (sl = )|
where [the quantities p;(n), o;(n), and p(u;|x,) are recursively updated by:

pi(n+1) = pi(n) + a(n) [p(pilrn) — pi(n)]
oi(n+1) =oi(n)+ an) [znp(pilen) — oi(n)]
) e A, ()
ppilen) = — d(zn,pi(n))
> i pi(n)e T
canverges almost surely to a possibly sample path dependent solution of the op-
timization min, F* (1), as n — oo.

Stochastic Approximation: Gradient-Free ! g}
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Online Deterministic Annealing (IV)

Bifurcation and the number of codevectors g

» Sequentially solve: minFr_:=D —TH

min Frr, := D —ToH , 1; < T4 : Decreasing Temperature
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»
»

>  Performance-Complexity Trade-off




Online Deterministic Annealing (V)

Training Local Models: Two-Timescale Stochastic Approximation

Algorithm 1 Online Deterministic Annealing
Initialize
while Termination Criterion do

Perturb pf < {p* + 6, " — 8}, Vi 1)
repeat pre+1 = pe + (1) [Q(Qt, pe) + My

Observe (z, ¢)

fori=1,...,K do

Si = ]l[c i:C]
Update: A
(u)e= "5
i p r
p(u ‘x) — d¢(m’“i>
Zi p(u)e” =7 S]. SA
i i i i ow
p(p') <= p(u') + By [s'p(i' ) — p(u')]
a(u') <= o(pu') + B [s'ep(p'|z) — o (u')]
i U(M')
p(p')

end for
until Convergence
Keep effective codevectors Partition
Remove idle codevectors
Lower temperature T' < T v

end while




Online Deterministic Annealing (VI)

Training Local Models: Two-Timescale Stochastic Approximation

Algorithm 1 Online Deterministic Annealing
Initialize
while Termination Criterion do

Perturb i «+ {,ui + 6,1t — 5}, Vi
repeat

Observe (z, ¢)

fori=1,...,K do

Si = ]l[c i:C]
Update: A
. dg(z,p1*)
; plp')e” T
p(ul‘x) — ( ) d¢(m’“i>
Zi p(:ui)ei T Sl SA
i i iy (i i ow
p(p') = p(p') + Bi [s'p(1'[x) — p(p')]
a(u') <= o(pu') + B [s'ep(p'|z) — o (u')]
i U(M')
p(u?)

end for
until Convergence
Keep effective codevectors Partition
Remove idle codevectors
Lower temperature T' < T

end while

min
{Si,0:}

Mtr1 = Mt + B(t) [Q(Qta Mt) ™ Mt+1}

(1)

011 = 0 + a(t) [f(et, i) + Mt(-(i)1

Gradient Descent
a(t)

Q-Learning

fi’(X7 HL’)

E [ZH[XGSl]d (Fe.fux, ei))}
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Hierarchical Online Deterministic Annealing

Tree-Structured Hierarchical Learning

» Constructive (Structured Representation)
Provably Consistent

Localization

o Emphasis on regions with high error

Asynchronous/Parallel Computation
Reduced Complexit K1 -
plexity o (MNC(%)%))
1/ilogy Kmaz
k= "

n=0

min E
i,0:}

Z Tixes,)d (f(X), filX, 91))}
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Hierarchical Online Deterministic Annealing

Multi-Resolution Hierarchical Learning Example: Group-convolutional Wavelets

_L’®)

Low
Resolution

Vi1 =V;®W;.

» Constructive (Structured Representation)
v » Provably Consistent

> Localization

o Emphasis on regions with high error

» Asynchronous/Parallel Computation

Fijor (X, 045 ~
i'k( i'k) > Reduced Complexity (kl_lN (Qk;)zd)>
| k(k—1)" ¢
ngh 1/7logy Kmax
Resolution b= .
n=0
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Group-Convolutional Wavelets

el
Wayvelet Transform " Vi
¢ Multi-Resolution Analysis " "W,
* Sparse, Stable, Translation Covariant

Convolution on Groups
(f * 9)(a / )9y~ 2)dA)

where for a Lie Group G: 9 € G = g.f(x) == f(g~ 133)

Locally Group-Invariant Representations 3|9

Repeat
* Build group-covariant representations (wavelets)
* Make them locally invariant (non-linearity + averaging)
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Closed-Loop Hierarchical Learning Architecture

Feedback#3: Optimal Bases Selection

Feedback#2: Learning Nonlinear Mappings

Low 3

Resoluti%q

A J
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Input Wavelet
Decomposition
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o
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Feedback#1: Supervised Learning

@ ({01

Classification

Clustering/ J

Progressively Growing
Hierarchical Knowledge-Based
\ Learning
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A Deep Learning Architecture

i\ \\
j

Deep Convolutional Network \l\\n
\“ !
\\1
- \\l’

——-—nm\w
.uO .:OHO:Q .:Ox_,@

(Mallat et al.) : 1. J. 1 J. l

(Lecun et al.)

Our Approach

(000 0000O0OO
T ]

Scattering Convolutional Network [ L] J

»
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Simulation Results

» Single Resolution. Binary Classification on Mixture of Gaussians.

> Performance-Complexity Trade-off
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(a) Evolution of the algorithm in the data space.
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Simulation Results (II)

» Single Resolution — Tree-Structured. Binary Classification on Mixture of Gaussians.

-

T =.0001, K =013

¥ . .’--‘. T
T =.0100, K = 005
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Simulation Results (III)

» Multiple Resolutions w/ PCA. Binary Classification on Mixture of Gaussians.
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layer with low-resolution layer with high-resolution

features. features.
2000
0.30 Samples

0.25 1500
5020 4 b
S o
[=R
T 015 1000 =
® &

== Train

500

w Test -"b“
- 0

0.00
000 025 050 075 1.00
time (s)

(c) Performance curve.




Simulation Results (IV)

» Single Resolution. 2D Regression with Constant Local Models.

(a) Evolution of the algorithm in the data space (original function on the right).
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Thank youl

Low
Resolution

» Simultaneous Partitioning and Local Learning
= Explainability

= Robustness w.r.t. Init. & Noise Reiﬁi}t‘ion
f(x,0)
min B [d ( £, F(X, 9))}
» Hierarchical Online Deterministic Annealing

=  Multi-Resolution Partitioning
* Online, Adaptive, Gradient-Free
» Simultaneous local model training *

Questions?

Christos Mavridis
mavridis@umd.edu

mavridis@kth.se
https: //mavridischristos.github.io/
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Bregman Divergences

b dy (o) = 6(2) — 6 (1) — 22 (W) (@ — )

* Euclidean distance, KL divergence, .. \

o(x

I3

AL}

dcp (xy )

99(}’) +(Vg,x —y)

L4

} Theorem. Let X : Q2 — S be a random variable defined in the probability space
(Q,F,P) such that E[X] € ri(S), and let a distortion measure d : S x ri(S) —

[0,00), where 1i(S) denotes the relative interior of S. Then

p:=E[X] €argminE [d (X, s)]
seri(S)

is the unique minimizer of B [d (X, s)] in ri(S), if and only if d is a Bregman
=25

divergence for any function ¢ that satisfies the definition.
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Stochastic Approximation

Theorem. Almost surely, the sequence:

Tp+1 = Ty + a(n) [h(xn) + Mn—l—l] , N2> 0

converges to a (possibly sample path dependent) compact, connected, internally
chain transitive, invariant set of the o.d.e:

z(t) =
provided that:
(A1) h:R% — RY is Lipschitz.

h(x(t)), t =0,

(2)

Examples:

(A2) > a(n) =00, and > a?*(n) < oo h(z) = {

(A3) {M,} is a martingale difference sequence N

(A4) {x,} remain bounded a.s.

—VJ(x), SGD
F(x) — z, Fixed-Point Iter.

/

“Borkar, Stochastic approximation:

a dynamical systems viewpoint, Springer, 2009
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Bifurcation and the number of Codevectors

» Theorem. Bifurcation occurs under the following condition

2
Ay, s.t. p(yn) >0 and det [I—Tagb—(yn)C’x ] =0

where Cyy, = E [(z — yn)(@ — yn) T |yn]-
Proof. From variational calculus and the gsecond order condition:

d2
S F (i Hew])lmo 2 0

» . depends on:
* The Bregman divergence

Q e The data space
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