
Is This the Same Code?
A Comprehensive Study of Decompilation
Techniques for WebAssembly Binaries

Wei-Cheng Wu1ω, Yutian Yan2ω, Hallgrimur David Egilsson2, David Park2,
Steven Chan2, Christophe Hauser1, and Weihang Wang2

1 Dartmouth College, Hanover NH 03755, USA
{wei-cheng.wu.gr,christophe.hauser}@dartmouth.edu

2 University of Southern California, Los Angeles CA 90007, USA
{yutianya,egilsson,dpark946,sychan,weihangw}@usc.edu

Abstract. WebAssembly (abbreviated WASM) is a low-level bytecode
language designed for client-side execution in web browsers. As WASM
continues to gain widespread adoption and its security concerns, the need
for decompilation techniques that recover high-level source code from
WASM binaries has grown. However, little research has been done to as-
sess the quality of decompiled code from WASM. This paper aims to fill
this gap by conducting a comprehensive comparative analysis between
decompiled C code from WASM binaries and state-of-the-art native bi-
nary decompilers. To achieve this goal, we presented a novel framework
for empirically evaluating C-based decompilers from various aspects, thus
assessing the proficiency of WASM decompilers in generating readable
and correct code when compared to native binary decompilers. Specif-
ically, we evaluated the decompiled code’s correctness, readability, and
structural similarity with the original code from current WASM decom-
pilers. We validated the proposed metrics’ practicality in decompiler as-
sessment and provided insightful observations regarding the character-
istics and constraints of existing decompiled code. By encouraging im-
provements in these tools, we seek to enhance their use in critical tasks
such as auditing and sandboxing third-party libraries. This, in turn, con-
tributes to bolstering the security and reliability of software systems that
rely on WASM and native binaries.

Keywords: WebAssembly· Decompiler· Reverse Engineering.

1 Introduction

WebAssembly (WASM) is a portable, low-level language designed for near-native
execution on the web [40]. Since it was first introduced by Haas et al. in 2017 [16]
and initially developed for web browsers [43], its application has extended to
diverse areas, including Internet of Things [15,24], mobile devices [37], smart

ω Both authors contributed equally to this research.

2 W. Wu et al.

contracts [28], and its dedicated runtime environments [1,14]. Notably, WASM
is commonly used as a compilation target for popular high-level languages like
C, C++, and Rust [18].

Given the growing adoption of WASM, inspecting third-party binaries for
potential security vulnerabilities has become imperative. However, the low-level
nature of WASM bytecode makes it challenging to audit compared to high-level
code, such as C. Additionally, 28.8% of WASM binaries are minified [18], strip-
ping away variable/function names and making manual inspection cumbersome.
To address these challenges, security experts can leverage decompilers to analyze
high-level code instead of grappling with thousands of lines of minified low-level
WASM code.

Nevertheless, WASM decompilers have received less attention than decom-
pilers designed for native binaries. Over the years, significant progress has been
made in developing powerful native binary decompilers that can accurately gen-
erate decompiled code for C and C++ programs. Recent studies have also fo-
cused on enhancing the readability of decompiled code [8,41].

To this end, we perform a comprehensive study to assess the e!ectiveness of
state-of-the-art WASM decompilers.

We will be approaching from two directions, as there are two di!erent types
of decompilers for WASM: decompilers tailored for readability, and decompilers
focus on correctness, i.e., the decompiled code adheres to the behavior of the
original WASM program. Their performance is compared with o!-the-shelf na-
tive binary decompilers [21,35]. To evaluate these decompilers, we utilize various
widely-used complexity metrics for source code and adopt methodologies pre-
sented in previous studies [25,41,46]. Our study focuses on the following three
aspects:

– Correctness of the decompiled code (Section 3.1);
– Readability of the decompiled code (Section 3.2);
– Structural similarity between the decompiled code and the original code
(Section 3.3).

With our research, we aim to draw attention to the capabilities of WASM
decompilers and the performance of native binary decompilers. By encouraging
improvements in these tools, we seek to enhance their use in essential tasks such
as auditing and sandboxing third-party libraries [32]. This, in turn, contributes
to bolstering the security and reliability of software systems that rely on WASM
and native binaries.

In summary, this paper makes the following contributions:

– First attempt to evaluate WebAssembly decompilers: As far as we
know, we are the first ones to investigate the correctness, readability, and
structural similarity of decompilers for WebAssembly. We have created quan-
tifiable and comprehensive metrics, which can be used as useful tools to eval-
uate the quality of decompiled code. The decompilers are tested on popu-
lar benchmarks, synthesized programs, and real-life scenarios to assess their
adaptability to various inputs.

A Comprehensive Study of WASM Decompilation 3

– Inconsistencies of decompiling WASM vs. native binaries: Our in-
vestigation delved into the underlying reasons for inconsistencies arising when
decompiling WASM vs. native binaries. These observations highlighted several
critical issues, including aggressive compiler optimization, WASM language
features, and platform-specific concerns.

– First analysis framework for decompiled C code: We propose the
first comprehensive analysis framework to empirically measure the quality
of decompiled C code. Our benchmark and analysis framework are publicly
available 3, which can be used for future studies and further advancements in
decompilers and WASM analysis.

The rest of the paper is structured as follows: In Section 2, we present exam-
ples of the decompiled code from current WASM decompilers. In Section 3 and
Section 4, we describe the metrics and mechanisms we used to evaluate the de-
compilers. The results of our evaluation are presented in Section 5. In Section 6,
we discuss the limitations of our study and future work. Finally, we discuss
related work in Section 7 and conclude the paper in Section 8.

2 Motivation

The main goal of this paper is to assess the e!ectiveness of current decompilers
for the WebAssembly (WASM) language and determine their limitations, par-
ticularly in their ability to reconstruct source code from WASM precisely. We
present a motivating example to demonstrate how code readability is enhanced
by introducing a decompiler. The example is taken from the paper [23] and
showcases a stack overflow vulnerability in both C and WASM.

The C source code in Listing 1.1 contains the vulnerable function, which
utilizes the unsafe strcpy function. This is dangerous because strcpy lacks an
input size check and can trigger the bu!er overflow if bar is larger than buf,
which is exactly what Listing 1.1 does.

The C source code is compiled into WASM code using Emscripten [10].
WASM code is binary and not human-readable, so it is converted into WAT
(WebAssembly Text) format. The WAT code is shown in Listing 1.3. The $f1
function (corresponding to the vulnerable function in the source code, func-
tion name striped) calls the $f2 (stpcpy as aforesaid) function. $f2 implements
the similar functionality as the strcpy function in the C standard library4. The
$f2 function has 101 LoC (Lines of Code). Since this function is implemented
in WASM and does not depend on external functions, one cannot confirm its
vulnerability nature without fully understanding it and realizing its similarity
to the stpcpy in the C standard library.

3 https://github.com/spencerwuwu/WASM-decomp_eval
4 The only di!erence between stpcpy and strcpy is the return value. stpcpy returns
a pointer to the terminating \0 character of the target string while strcpy returns
a pointer to the beginning of the string. Both functions are vulnerable to stack
overflow.

https://github.com/spencerwuwu/WASM-decomp_eval

4 W. Wu et al.

1 void vulnerable(char ∗bar) {
2 char buf[8];
3 strcpy(buf, bar); // no bounds

checking
4 }
5
6 int main() {
7 vulnerable("aaaaaaaaaaaaaaaaaa\04");
8 }

Listing 1.1: C program performing
stack overflow (simplified)

1 function f1(a:int) {
2 var b:int = g_a − 16;
3 g_a = b;
4 f2(b + 8, a);
5 g_a = b + 16;
6 }
7
8 function f2(a:int, b:int) {
9 var c:int;

10 if ((a ^ b) & 3) goto B_b;
11 // 27 lines omitted
12 }

Listing 1.2: Decompiled code
(simplified) by wasm-decompile

1 (func $f1 (type 14) (param i32) ;;
function vulnerable

2 (local i32)
3 global.get 0 ;; stack header
4 i32.const 16
5 i32.sub
6 local.tee 1
7 global.set 0
8 local.get 1
9 i32.const 8

10 i32.add ;; parameter buf
11 local.get 0 ;; parameter bar
12 call $f2 ;; call function f2

(stpcpy)
13 ;; 4 lines omitted
14)
15 (func $f2 (type 21) (param i32 i32)
16 (local i32)
17 block
18 block
19 local.get 0
20 ;; 93 lines omitted
21 br_if 0 (;@2;)
22 end
23 end)

Listing 1.3: Wasm program in WAT
(simplified)

1 int sum(int n) {
2 int sum = 0;
3 for (int i = 1; i <= n; i++)
4 sum += i;
5 return sum;
6 }

Listing 1.4: C program performing
summation

1 int f2(int n) {
2 if (n <= 0) {return 0; }
3 return n − 1 ∗ n − 2 >> 1 + n << 1 −

1}

Listing 1.5: Decompiled code
(simplified) by wasm-decompile

We use wasm-decompile [12] to convert the WASM program back into C-
like code (Listing 1.2). The decompiled code has improved readability with 31
LOC (C-like) compared to 101 LOC of WAT. The decreased LoC indicates the
improved readability of the program. However, we also need to point out that
compared to the original program in Listing 1.1, the decompiled program has
increased LoC, and the parameter data type of function f1 is di!erent from
vulnerable (we would explain this in Section 5), which shows the improvement
comparing with the WASM binary and limitations regarding the original code.

Besides readability, WASM decompilers may generate incorrect results, which
breaks the correctness of the decompiled code. To demonstrate this, we tested
a simple C program that contains a sum function (see Listing 1.4). We com-
piled the C program into WASM and retained the exported function symbols.
We then used wasm-decompile to convert the WASM program into C-like code
(Listing 1.5) and found that the decompiled code was incorrect. Specifically, line
3 in the decompiled code, which calculates the sum from 1 to n, returns 2n→ 2
instead of the correct result, n(n+ 1)/2. This could potentially mislead reverse

A Comprehensive Study of WASM Decompilation 5

Fig. 1: Overview of methodology workflow

engineers working with the WASM code, leading them to manually check the
WASM code instead of the decompiled one to ensure its functionality.

The observed di!erences between the original and decompiled code raised
the following intuitive questions that we aim to address in this paper:

– Q1: To what extent can we trust the decompiled code to present the under-
lying program’s functionality accurately? In other words, how do we examine
the correctness of the decompiled code? Ensuring that the decompiled code
faithfully reproduces the original program’s functionality is crucial for reliable
reverse engineering and code analysis.

– Q2: Some examples of decompiled code (e.g., Listing 1.2) could still be too
long to understand for developers. Is there an automated and objective way
to measure the readability of the decompiled code? Quantifying readability
would provide valuable insights into the code’s understandability, maintain-
ability, and ease of debugging.

– Q3: Sometimes, even if a piece of code is initially di”cult to understand,
it may still be comprehensible if we can observe a similar structure in the
original source code. Can we quantify the structural similarity between
the decompiled code and the original source code in addition to assessing
readability? Measuring structural similarity can help determine how closely
the decompiled code resembles the original, aiding in code comprehension and
validation.

Addressing these questions is crucial for advancing the capabilities of decom-
pilers and enhancing the accuracy and usability of decompiled code in various
application domains.

3 Methodology

To answer Q1-Q3 from Section 2, we introduced a series of techniques to com-
prehensively evaluate existing WASM decompilers in terms of the decompiled
output’s correctness, readability, and structural similarity to the original code.

To establish a baseline for comparison, we used the decompiled results ob-
tained from native binary decompilers. We reasoned that these tools have un-
dergone rigorous development and real-world utilization over the years, making
them reliable reference points.

6 W. Wu et al.

To conduct our evaluation, we carefully selected a consistent set of C pro-
grams and compiled them separately into both native binaries and WASM files.
Subsequently, we applied the chosen decompilers to reverse-engineer the exe-
cutable files and obtain the decompiled C code from both sides. We then con-
ducted a function-level comparison between the decompiled outputs from native
binaries and WASM.

For correctness, we further re-compiled the decompiled code into executable
files and executed them to test whether they preserved the same functionality as
the original C code. This step allows us to verify the accuracy of the decompilers
in faithfully reproducing the intended behavior of the original programs.

Regarding readability and structural similarity, we applied various metrics
commonly used in software engineering to evaluate the decompiled code.

An overview workflow of our methodology can be found in Figure 1.

3.1 Correctness

The accuracy of decompilation tools plays a crucial role in software develop-
ment, security, and reverse engineering. A perfectly accurate decompiled program
should be capable of being re-compiled back into executable files and exhibit the
same functionality as the original binary.

However, most state-of-the-art decompilers prioritize enhancing the readabil-
ity of the decompiled code, which often results in C pseudo-code that may not
strictly adhere to correct syntax. Additionally, these tools typically focus on an-
alyzing the semantics per function and may struggle with reasoning about data
structures or global variable access, which are commonly used in C programs.

In short, while readability is a crucial aspect of decompilation, accessing the
correctness of decompiled code presents two main challenges:

C1: Decompilers often produce C-like code that is not directly re-compilable,
emphasizing readability over perfect accuracy in reproducing the original binary.
C2: Decompilers may face di”culties e!ectively handling global variables and
memory pointers, which can lead to discrepancies in the decompiled code.

On the other hand, WASM decompilers inherently incorporate features that
facilitate code re-compilability (e!ectively addressing C1). However, challenges
persist in generating re-executable programs due to the inherent nature of WASM
and its primary use as a library and function within web browsers. Two proper-
ties of WASM introduce divergences in the decompiled code:

– Di!erences in memory management and representation:

WASM employs a stack-based, linear memory model, which contrasts with the
memory management and representation used in traditional native binaries.
This property poses C2 as a challenge for WASM decompilers.

– Usage of embedded environment-specific functions:

During decompilation, certain operations, such as standard C library functions
that access system resources like memory, files, networks, and devices, are

A Comprehensive Study of WASM Decompilation 7

transformed into system-call-like functions that exclusively exist within the
JavaScript environment of the web browser.

The second property of WASM leads to the third challenge for evaluating
the correctness of decompiled WASM:

C3: While decompiledWASM programs are represented as C code, they commonly
cannot be executed directly in a native environment due to the absence of necessary
runtime libraries. Additionally, these decompiled programs faithfully reproduce
operations as if they were intended to be used as library modules within web
browsers. As a result, they lack entry points for direct execution outside the WASM
environment, making it infeasible to execute them in a non-WASM context.

To address the three challenges (C1, C2, and C3) in evaluating the correct-
ness of decompiled WASM code, we leveraged the synthesized code generated
by DecFuzzer [25] and implemented a sandbox environment for the execution of
wasm2c’s decompiled code.

To the best of our knowledge, DecFuzzer is the only publicly available work
that empirically assesses the correctness of native binary decompilers. It gener-
ated code containing only local-variable arithmetic computations into one single
“core function”, ensuring full decompilability for all existing decompilers (C2).
Subsequently, they syntactically restructured the decompiled code to make it re-
compilable (C1). The process concluded with the re-compilation of the code, and
they compared the output of the re-compiled binary with the original binary’s
execution results to verify correctness.

As the synthesized programs generated by DecFuzzer do not utilize any li-
brary functions or global variables, they are suitable for porting to WASM de-
compilers too. We modified them to tackle furtherC2 andC3 for WASM. Specif-
ically, we first transformed the synthesized programs into functionally stand-
alone modules. This step ensures the compiled WASM is self-contained and does
not depend on external runtime libraries and global variables (C2). Next, we im-
plemented a sandbox environment to load and execute the decompiled WASM
code (C3). This essentially makes it possible to execute the decompiled WASM
code in the native binary environment so that we can compare it with the original
binary’s execution results to verify correctness.

We present the detailed implementation in Section 4.1.

3.2 Readability

In our study, we introduced several metrics to quantify the readability and com-
plexity of the decompiled programs automatically. To assess the complexity of
the code, we selected several common algorithms commonly used in software
engineering. This includes Lines of code, Max nesting depth, Cyclomatic com-

plexity, and Halstead complexity measures. Generally, the higher the value of
these metrics, the more complex and harder to read the code is. We briefly
introduce these metrics below:

8 W. Wu et al.

– Lines of code. Lines of code measures the total number of lines in the code,
indicating the code’s size and complexity. In our study, we counted only the
physical lines in the text of the program’s source code, excluding comments
and blanks [34]. Generally, a higher number of lines indicates a more complex
and potentially harder-to-read code.

– Max nesting depth. This metric calculates the maximum depth of nested
structures, such as loops (e.g., for, while) and conditionals (e.g., if), within
the code. A higher value implies deeper nesting, indicating increased complex-
ity and reduced readability [29],.

– Cyclomatic complexity. Cyclomatic complexity measures a program’s
control-flow complexity [27]. It quantifies the number of linearly indepen-
dent paths through the code, representing the number of decision points and
possible execution paths. Higher cyclomatic complexity values suggest more
intricate code structures, making the code more di”cult to comprehend. For
implementation, as we are comparing function-to-function instead of the whole
program, we simply count the number of decision points in the function (such
as an if statement or for statement).

– Halstead complexity measures. The Halstead complexity measures a
program’s data-flow complexity [44]. The original algorithm includes various
metrics such as program vocabulary, program length, volume, di”culty, and
e!ort. These measures assess the overall complexity of the code based on
the number of distinct operators and operands used and their frequency of
occurrence. In our study, we only calculated program e!ort for decompiled
code.

In addition to the above algorithms, we carefully selected a subset of metrics
from previous decompiler works [41,46] that are suitable for our function-to-
function comparison. Specifically, these works aimed to reduce the reliance on
goto statements in the decompiled code, recognizing their potential complex-
ity in comprehension. Other properties, such as the number of cast and dead
assignments, are also evaluated for the presented decompilers.

The full list of metrics used in our research is presented in Table 1. We
prioritize extensibility and scalability in our metric selection, and to achieve
this, we do not include user studies in the scope of our work. By incorporating
these metrics, we aim to comprehensively evaluate the readability and complexity
of the decompiled programs, providing valuable insights for future decompiler
development and analysis.

3.3 Structural Similarity

The Abstract Syntax Tree (AST) is widely used for expressing and analyzing
program structures. In this paper, we propose utilizing the AST to represent
the structure of a program and then compare the AST of the original code with
that of the decompiled code to determine their structural similarity. During the
comparison of ASTs, we only consider the “type” of each node and not their
specific values. For instance, in Figure 2, we solely compare the type of each

A Comprehensive Study of WASM Decompilation 9

Metric Range
Line of Code [0,→)

Max Nesting Depth [0,→)

Cyclomatic Complexity [1,→)

Halstead Complexity Measure [0,→)

of goto, # of variables,

of cast,

of dead assignments

[0,→)

AST Node Quantity Compare [0, 1]
AST Tree Edit Distance [0, 1]

Fig. 2: An example of
AST comparison

Table 1: List of readability and structural
similarity metrics

node (represented by colors) and not the actual content of each node (e.g., “+”,
“*”, “a”, and “b”). The main reason for this design is that we focus only on
the structural di!erences with this metric and leave the numerical evaluation to
correctness section.

We employed two comparison algorithms to measure the similarity: Node
quantity compare (NQC) and Tree edit distance (TED).

Node quantity compare. In NQC, we count the number of nodes with the
same type between two ASTs. The formula to calculate NQCscore is shown in
Equation 1. The score range falls between [0, 1], where a higher score indicates
a higher similarity between the two ASTs regarding shared nodes.

∑ common # of each type of nodes
max{total nodes in one tree} (1)

Take the two ASTs from Figure 2 for example. Among the trees, one Return
node, one green node (operation node), and two red nodes (variable nodes) are
common. The total nodes in Trees A and B are 4 and 6, respectively. Therefore,
the score of NQC between these two trees is NQCscore = 1+1+2

max{4,6} = 0.67.
This score indicates a relatively high level of structural similarity between the
two trees in terms of common nodes.

Tree edit distance. The Tree edit distance (TED) algorithm calculates the
number of steps required to transform one tree into another. Traditionally,
the TED algorithm counts the costs of three operations: insert, delete, and
replace. In our current implementation, we adopt a simplified approach. We
calculate the di!erences in depths for each node, which means we only consider
the insert and delete operations. We do not compare the content of each
node during this process. By focusing solely on the di!erences in depths and
considering only insert and delete operations, our implementation provides a
straightforward and e”cient way to measure the similarity between two trees.

The recursive formula for computing TEDscore is shown in Equation 2. Let
F1 = T1[i..j] be the post-order sub-forest of T1 and let r1 denote its rightmost
root. Also, let R1 be the rightmost tree of F1 (the one rooted at r1). The same
notation holds for T2:

10 W. Wu et al.

TED(→, →) = 0

TED(F1, →) = TED(F1 ↑ r1, →) + costdel

TED(→, F2) = TED(→, F2 ↑ r2) + costins

TED(F1, F2) =

min






TED(F1 ↑ r1, F2) + costdel

TED(F1, F2 ↑ r2) + costins

TED(F1 ↑ r1, F2 ↑ r1) + TED(R1 ↑ r1, R2 ↑ r2)

where costdel = costins = 1 (2)

We also normalize and reverse the distance to TEDscore into values between
[0, 1]. TED(T1, T2) represents the TED distance between trees T1 and T2, while
|T1| and |T2| denote the total number of nodes in each respective tree. The larger
the TEDscore we obtain, the more structurally closer the two trees are.

TEDscore = 1↑ TED(T1, T2)
|T1|+ |T2|

(3)

For the example shown in Figure 2, with Equation 2, The TED distance
between the two trees is 0.199, resulting in a TEDscore of 0.801 (1 - 0.199). This
score indicates a relatively high structural similarity between the two trees.

3.4 Compilers & Decompilers

In our C-to-WASM compilation process, we opted to use Emscripten (emcc) [10],
a comprehensive compiler toolchain for WASM built on LLVM [22]. As emcc uti-
lizes LLVM as its foundation, we chose to employ clang to generate the native
binary to ensure consistency in both compilation and re-compilation. Addition-
ally, we aimed to set the compilation options to be identical to those used within
the emcc implementation.

For the WASM decompilation process, we utilized three widely used WASM
decompilers: wasm2c [13], w2c2 [31], and wasm-decompile [4].

wasm2c is part of the WABTWebAssembly tool set [11]. It converts a WASM
binary file to C source code along with the auxiliary header and supports various
experimental WASM features, such as exceptions and threading, by incorporat-
ing specific command-line options. wasm2c can generate bug-free C programs
that can be compiled and executed, and the behavior of the recompiled program
is expected to adhere to the original program; that is, the correctness of the
program shall hold.

wasm-decompile [4] is also a component of WABT toolset. The reason to in-
clude another tool from the WABT toolset is that wasm-decompile and wasm2c

have very di!erent design goals, and the di!erence is significant enough to in-
clude both decompilers in our study (see Sec. 5). wasm-decompile “is aimed at
users that want to be able to ‘read’ large volumes of WASM code [4].” Decom-
piled code generated by wasm-decompile is not designed to ”be a programming
language,” that is, the functionality of recompilation is currently not provided,
and the execution correctness of the decompiled code is not guaranteed. In con-

A Comprehensive Study of WASM Decompilation 11

clusion, wasm-decompile focuses on the decompiled code’s readability and not
correctness.

w2c2 [31] is a standalone tool that translates WASM modules to portable
C. While it supports basic WebAssembly features, it also includes three experi-
mental WASM features: bulk memory operations, sign-extension operators, and
non-trapping float-to-int conversions.

In the case of native binary decompilation, we employed two open-source
decompilers that were previously evaluated in the DecFuzzer paper: Ghidra [35]
and RetDec [21]. These tools have been widely used and evaluated in various
decompilation tasks, making them suitable candidates for our evaluation.

3.5 Benchmarks

We use the 1,000 CSmith synthesized C programs from DecFuzzer for correct-
ness. In the original work of DecFuzzer, the authors further mutated them to
test decompilers rigorously. We considered 1,000 programs reasonable for our
attempt to examine WASM decompilers, and we did not mutate them further.

For evaluating structural similarity and readability, we employed two widely
used C benchmark suites: PolyBenchC [38] and CHStone [17]. These benchmark
suites contain real-world program implementations that are likely to be used in
the WASM environment, such as scientific visualization, encryption, simulation,
image recognition, etc.

We opted not to include the programs from DecFuzzer for structural sim-
ilarity and readability evaluation for two main reasons. Firstly, we found that
since DecFuzzer’s synthesized programs may contain dead code, some portions
of the code are automatically removed during compiling, even when setting the
compiler optimization level to 0. This results in the decompilers not handling
the exact same program as the original one, making it less reasonable to include
these programs. For the same reason, the evaluation of correctness is limited to
zero compiler optimization for the current implementation.

Secondly, the original synthesized code from DecFuzzer is not designed for
human readers and contains no specific meaning or intended functionality. Con-
sequently, including these programs in the evaluation would not be meaningful
for assessing decompiled code’s structural similarity and readability.

In contrast, PolyBenchC and CHStone are not used in the correctness evalu-
ation due to their inclusion of library calls, which are challenging for both native
and WASM decompilers to handle correctly during runtime. Therefore, we re-
served these benchmark suites to assess the structural similarity and readability
aspects of the decompiled programs.

4 Implementation

The total scripts for compiling benchmarks and generating metrics contain around
5,000 lines of Python and shell scripts.

12 W. Wu et al.

4.1 Correctness

DecFuzzer utilized CSmith [47], a widely recognized C-code synthesizer for com-
piler testing, to generate C code for evaluating decompilers. In its original form,
the generated code operated on global variables and computed a checksum to
verify execution results. DecFuzzer consolidated the synthesized code into a sin-
gle function, func, and operated on local copies of the original global variables.
As func contains no library calls or global variable access, it can be fully com-
piled and decompiled by state-of-the-art decompilers. To generate re-compilable
code, DecFuzzer deployed a simple rewriter to fix the syntax errors in decompiled
code. Finally, the rewritten code was re-compiled and executed to test against
the original binary.

To adapt DecFuzzer for WASM, we wrapped func into an importable module
that can be called and receive output from the main function. This module-based
approach was chosen because the WASM code handles memory di!erently, mak-
ing it challenging to create a complete program that can be executed natively.
Luckily, as a standalone WASM module, the code can be imported and called
within a testing framework simulating a browser environment. This modified
code was then compiled to WASM, decompiled back to C, re-compiled to object
files, and eventually imported and called by our sandbox testing framework.

Besides the above e!orts, we upgraded DecFuzzer’s syntax rewriters to match
the latest compiler and decompiler versions. We also switched from using GCC
to clang, which aligned better with the WASM toolchain and resulted in fewer
errors during preliminary testing. To make the DecFuzzer code compatible with
WASM, we created a Python converter with approximately 300 lines of code.
Additionally, we patched the legacy RLBox [50] code to match the latest WASM
toolchain and integrated it into our evaluation framework for sandbox testing.
Besides, w2c2 is skipped for our correctness evaluation due to the current lack
of support for sandboxing the w2c2 decompiled code.

4.2 Readability & Structural Similarity

For readability and structural similarity, we built the analysis on top of clang
Python API [9] and cppcheck [26]. As clang API relies on the clang’s preproces-
sor, the under-analyzing target must be C syntactically correct. We leveraged
the syntax rewriter of DecFuzzer to try to make the native binary’s decompiled
code re-compilable. Due to the limitation of the preprocessor, it cannot parse
the decompiled code generated by wasm-decompile under optimization level 1 or
2, as the code would break the type system during the analysis progress.

5 Evaluation Results

As introduced in the previous chapters, we evaluated the state-of-the-art WASM
decompilers, w2c2, wasm2c, and wasm-decompile, in three aspects: correctness,
readability of the decompiled code, and structural similarity of the decompiled

A Comprehensive Study of WASM Decompilation 13

code with the source code. Based on decompiler characteristics introduced in
Section 3.4, w2c2 is excluded from the correctness evaluation, and the structural
similarity evaluation of wasm-decompile is limited.

To establish a baseline for comparison, we also included decompilers of native
binaries, namely Ghidra and RetDec. All experiments were performed on an
Intel-i5 machine with four cores, 8GB RAM, and running ArchLinux. To ensure
the validity of the results, we used the latest versions of all software.

For the selected benchmarks, we observed that the compiling and decompiling
processes could be completed within five seconds without significant memory
consumption. Given the swift execution of these processes, we did not measure
and compare the decompilers’ runtime performance. Instead, our focus was solely
on evaluating the quality of the generated code.

In each section of the evaluation, we address the following questions through
the use of proposed metrics:

– Can proposed metrics help evaluate and characterize decompilers?
– How does each decompiler perform in terms of the specific metrics?

5.1 Correctness

Table 2 shows the result of our correctness evaluation. Factors are based on Dec-
Fuzzer, including execution results and the number of decompile or re-compile
failures.

From the table, we can clearly see that wasm2c outperformed native binary
decompilers by achieving a 100% correctness rate. We attribute this success to
the fact that wasm2c adopts a conservative approach when translating WASM
to decompiled code: Performing minimal optimizations. Consequently, when the
execution environment was appropriately set up, the decompiled code faithfully
reproduced the original functionality. This high correctness rate can also be
attributed to the more uncomplicated instruction set in WASM compared to
native binary code. Therefore, it’s relatively simple to translate WASM bytecode
to C code directly, whereas native binary decompilers often face challenges in
handling low-level instructions. Propagating these instructions as functions in
the decompiled code without providing corresponding runtime implementations
often leads to re-compile failures.

Compared to wasm2c, the other three decompilers all su!er from compilation
failure and execution discrepancies. First, as presented to be a decompiler to
improve readability for WASM, wasm-decompile is only able to achieve 649 out
of 1000 program correct. We manually reviewed the semantically incorrect code,
and summarized the reason for failures into two main reason:

– Unfaithful representation of the original WASM workflow In order
to improve readability, wasm-decompile translates WASM’s stack-based in-
structions into SSA formats, which is theoretically more readable for human
than long lines of C code in wasm2c. However, this transformation also intro-
duces errors in the value passing and data flow, which leads to the incorrect
execution of the decompiled code.

14 W. Wu et al.

Bench Success Re-compile Failure Exec. Discrepancy Total

wasm2c 1,000 0 0
wasm-decompile 649 6 345
Ghidra 818 13 169 1,000
RetDec 775 0 225

Table 2: Correctness results. Success implies the numbers achieving same exe-
cution results after successful recompilation.

– False identification of structures and pointers In the synthesized bench-
mark for testing correctness, we introduce no pointer or special data struc-
ture to reduce the complexity of evaluation. However, wasm-decompile falsely
grouped some of the variables as data structures and accessed through pointer
o!sets on stack. This not only results in violation of C syntax that resulted
in failure to compile, but potentially introduce rooms for more error to pre-
serve the original program’s semantic. Moreover, it conversely increases the
di”culty for understanding the decompile code.

We showed a code snippet of the decompile output for wasm-decompile in
Listing 1.6. The first part of the code is how wasm-decompile translates function
epilogue. As all function parameters are stored on stack and then loaded during
function calls, wasm-decompile may falsely group some parameters as one data
structure, while the original program actually only passes integer values. The
latter part of the listing shows how variable type casting is represented with
wasm-decompile. The variable n is a 32-bit integer casting to 8-bit and stored
into q. This kind of operation sequence is conducted through out the decompile
code, making the code not only long and hard to read, but also introducing
correctness errors throughout the long dependency chain.

1 export function func_1():int {
2 var a:int = stack_pointer;
3 var b:int = 16;
4 var c:{ a:int, b:int /∗...∗/ }

= a − b;
5 stack_pointer = c;
6
7 var f:int = −1051244671;
8 c.b = f;
9 var g:int = 1902055121;

10 c.a = g;
11 //
12 var o:int = 24;
13 var p:int = n << o;
14 var q:int = p >> o;
15 //
16 }

Listing 1.6: Code snippet of
decompile code generated by
wasm-decompile

1 export function KeySchedule(a:int_ptr,
/∗...∗/):int {

2 // ...
3 c = b − (g = b / i) ∗ i;
4 if (eqz(c)) {
5 f = Sbox;
6 c = f + ((e = (c = ((a = word + (a

<< 2)) + 1440)[0]:int) / 16)
<< 6) + (c − (e << 4) << 2);

7 e = f + ((d = (e = a[240]) / 16)
<< 6) + (e − (d << 4) << 2);

8 h = (f + ((h = (d = a[120]) / 16)
<< 6))[d − (h << 4)]:int ^

9 (Rcon0 + (g << 2) − 4)[0]:int;
10 g = a[0];
11 goto B_q;
12 }
13 //
14 }

Listing 1.7: Decompiled code by wasm-
decompile with compiler optimization

A Comprehensive Study of WASM Decompilation 15

Metrics Opt Level Original Code
Decompilers

w2c2 wasm2c wasm-decompile Ghidra RetDec

Total
O0 74,473 72,362 23,744 10,376 4,818

Lines of code O1 2,619 24,828 28,332 7,975 11,290 7,487
O2 27,440 30,461 7,771 15,575 9,249
O0 767 576 768 98 21

of goto statements O1 0 738 296 774 175 63
O2 584 257 455 405 131
O0 0 0 627 138 2,872

of type casting O1 39 0 0 382 99 2,520
O2 0 0 642 92 2,958
O0 16,109 19,368 18,804 2,883 519

of variables O1 194 1,496 1,591 619 3,261 760
O2 1,622 1,711 741 4,952 1,110
O0 64 207 7 4 31

Lines of dead code O1 4 143 25 14 4 7
O2 513 140 35 8 8

Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev
O0 1.221 1.534 0.655 0.477 1.455 1.409 1.634 1.798 1.338 1.464

Maximum nesting depth O1 0.952 1.163 1.228 1.558 0.600 0.492 1.041 1.241 1.855 2.010 2.000 1.911
O2 1.766 2.447 1.462 1.514 1.710 2.065 2.097 2.428 1.745 1.813
O0 3.634 3.853 4.924 4.667 6.283 6.139 6.772 8.465 4.683 4.412

Cyclomatic complexity O1 14.329 18.067 5.152 7.295 6.766 8.030 6.710 8.475 7.517 9.430 7.883 8.920
O2 5.883 8.192 7.359 8.530 6.228 8.180 9.255 12.438 9.048 10.252
O0 43.177 31.158 52.026 24.492 26.084 9.363 30.956 30.761 36.106 44.118

Halstead complexity measure O1 3.996 4.144 46.341 54.848 52.563 51.660 30.778 26.185 31.434 26.192 35.865 36.894
O2 55.253 62.667 66.963 63.842 36.559 32.038 30.818 25.237 42.948 42.853

Table 3: Results of readability evaluation

For native-binary decompilers, bothGhidra and RetDec achieved slightly bet-
ter results than wasm-decompile, but still have a significant number of failures.
The main reason for the failures is the decompilers’ capabilities of translating
low-level instructions to high-level C code. For such instructions, the decompilers
often directly translate them to function calls, mimicking the original instruc-
tions. The runtime environment does not support such cases and will either lead
to re-compile failures or be falsely rewritten by the DecFuzzer, leading to incor-
rect execution results. For example, Ghidra places CONCAT as a pseudo function
to translate assembly code instructions such as mov AH, 2. While serving a pur-
pose in the original code, the existing DecFuzzer implementation falsely removed
it from the decompiled code to make the decompiled program re-compilable.

Summary: With the presented approach for evaluating correctness, we highlight
the remarkable 100% accuracy of wasm2c’s decompiled code. The limitation of
wasm-decompile in correctness not only emphasizes the importance of evaluating
decompilers from multiple perspectives but also underscores the challenges in re-
covering WASM’s stack-based instructions into high-level C code. While native
binary decompilers present some failures, it is essential to note that some may
be attributed to the evaluation approach rather than inherent issues with the de-
compilers themselves. More refined evaluation methodologies and techniques can
address and improve these specific cases separately.

5.2 Readability

We conducted a comprehensive evaluation by compiling each C code in Poly-
BenchC and CHStone at optimization levels 0, 1, and 2 to both WASM and

16 W. Wu et al.

(a) Line of Code (b) Maximum Nesting
Depth

(c) Cyclomatic
Complexity

(d) Halstead Complexity
Measure

(e) Node Quantity
Compare

(f) Tree Edit Distance

Fig. 3: Readability and structural similarity results consistent with Tables 3 and
4.

native binaries and subsequently decompiled outputs to compare their di!er-
ences.

The complete evaluation results are in Table 3 and Figure 3. Regarding the
readability metrics, higher values generally indicate more challenging to under-
stand.

First, by comparing the results for Lines of code,Maximum nesting depth, Cy-
clomatic complexity, and Halstead complexity measure, it is evident that WASM
decompilers generated significantly di!erent code compared to others. The de-
compiled WASM code contains more lines of code and variables. Structurally,
it exhibits a “flattened” code with a relatively low maximum nesting depth and
Cyclomatic complexity. However, as the Halstead complexity measure indicates,
the data flows are notably complicated. The low nesting depth also comes from
the fact that WASM’s decompiled code relies heavily on goto statements. This
discrepancy is mainly due to the fundamental di!erences betweenWASM’s stack-
based instruction set and C’s register-based language. The state-of-the-art native
binary decompilers attempt to translate the code to resemble the semantics of
C code closely, while the WASM decompilers lack such design as observed in the
motivation decompiled code (Section 2), all three WASM decompilers primarily
convert WASM’s stack-based instructions into C syntax directly.

Although wasm-decompile is designed to generate readable decompiled code,
it is interesting that the readability metrics do not necessarily support this state-

A Comprehensive Study of WASM Decompilation 17

ment. With optimization level 0, decompiled code generated by wasm-decompile

has a significantly larger number in most metrics evaluated because wasm-

decompile attempts to recover the WASM semantics into readable format faith-
fully. However, as WASM has only a limited number of types, a large portion of
the decompiled code is related to type conversion between variables in support of
the original C programs’ semantics. Faithfully translating these operations could
help to understand small-scale analysis of variable dependency better, but may
not necessarily improve the whole program’s readability. This is highly reflected
in the di!erences in the total LoC and type castings between wasm-decompile

and wasm2c. wasm2c does not specify the casting of variables in code while
preserving the correct semantics as shown in Section 5.1, while wasm-decompile

explicitly shows such program flow and resulted in higher numbers in these two
metrics.

In comparing native binary decompilers, Ghidra generally generated more
compact code and was closer to the original. This is attributed to Ghidra’s con-
tinuous development and successful heuristics in decompiling. In contrast, Ret-
Dec produced more lines of code and variables. This is due to its failures in recov-
ering many native binary instructions into high-level C code and simply migrat-
ing instructions to C functions. E.g., RetDec directly used v8 = asm movsd(v3)
in the decompiled code as the translation of the instruction movsd.

For other metrics, some may not directly reflect the code’s readability but
o!er insights into the characteristics of the generated decompiled code. For in-
stance, Ghidra had excessive type casting. This is due to its strategy for pointers
and data-structure recovery, but it may not essentially a!ect how we interpret
the code.

Interestingly, higher compilation optimization levels have di!erent e!ects on
di!erent decompilers. WASM decompilers tend to produce more compact code
at higher optimization levels, mainly because highly optimized WASM files are
smaller in size, resulting in shorter decompiled code when directly translated.
However, this does not necessarily mean that the decompiled code more closely
resembles the original program nor improve readability. For example, in List-
ing 1.7, we show a code snippet of decompile code generated by wasm-decompile

with optimization level 2. It is observable that although the total lines of code
could be less as operations are shrinking into single lines, but the code is syn-
tactically incorrect and semantically incomprehensible for the complicated value
assignments between operations.

On the contrary, higher optimization levels do not necessarily lead to more
compact code for native binary decompilers. Native compilers use aggressive
algorithms to optimize binary size and performance, while these optimized op-
erations may not be easily translated into C semantics. Decompilers typically
create highly readable code through heuristic approaches. When a binary is
highly optimized, it may not fit within the existing heuristics, resulting in larger
decompiled code with more direct assembly-to-C translations.

18 W. Wu et al.

Summary: The evaluation results unveil substantial di!erences in the decompiled
code generated by WASM decompilers. Notably, the decompiled code exhibits ex-
cessive lines of code, frequent usage of goto statements, and intricate data flows,
all of which negatively impact code readability.
Moreover, these metrics provide valuable insights into other interesting aspects,
such as the influence of compiler optimization levels on each decompiler’s per-
formance. The interplay between these factors can be considered to be a robust
indicator for assessing the quality of decompiled code generated by the decompilers.

5.3 Structural Similarity

The evaluation of structural similarity yields similar observations to the read-
ability metrics. The results of structural similarity can be found in Table 4. As
we have mentioned before, due to parser limitation, wasm-decompile-generated
code can only be analyzed under optimization level 0. The evaluation compared
original and decompiled functions by normalizing the computed Node Quantity

Compare (NQC) and Tree Edit Distance (TED) scores to a range of [0, 1]. Higher
scores indicate greater structural similarity between the functions.

In general, the structural similarity results align with the findings from the
readability evaluation. WASM decompiled code exhibits significant di!erences
compared to native binary decompiled code, and the trend of structural similar-
ity varies with di!erent optimization levels. Higher optimization levels lead to
increased structural similarity for WASM decompilers, while for native binary
decompilers, the opposite trend is observed.

Notably, the structural similarity evaluation revealed insights that are not
evident in the readability evaluation. Specifically, the improvements introduced
by w2c2 are more apparent. We observed several exceptional high scores for w2c2
decompiled code, corresponding to w2c2 ’s outliers in Figure 3e and Figure 3f.
Our manual inspection revealed that these scores are primarily associated with
pure arithmetic functions like mul64To128, which do not contain pointers or data
structures. These functions exhibit minimal structural di!erences between the
compiled WASM and native binary. As a result, w2c2 successfully decompiled
them with high NQC and TED scores that are closer to what native binary
decompilers obtained. In contrast, wasm2c still produced long and complicated
code for these functions.

Table 4: Results of structural similarity evaluation

Metrics Opt Level
Decompilers

w2c2 wasm2c wasm-decompile Ghidra RetDec

Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev
O0 0.170 0.206 0.047 0.022 0.134 0.066 0.573 0.260 0.506 0.310

Node quantity compare O1 0.230 0.195 0.197 0.140 N/A N/A 0.470 0.284 0.378 0.291
O2 0.223 0.201 0.193 0.147 N/A N/A 0.436 0.304 0.357 0.300
O0 0.166 0.169 0.062 0.046 0.149 0.103 0.495 0.236 0.439 0.286

Tree edit distance O1 0.219 0.158 0.184 0.151 N/A N/A 0.403 0.236 0.343 0.257
O2 0.210 0.166 0.191 0.152 N/A N/A 0.377 0.256 0.325 0.267

A Comprehensive Study of WASM Decompilation 19

Summary: Overall, the structural similarity evaluation provides additional in-
sights into the performance of decompilers. Specifically, it highlights the e!ective-
ness of w2c2 in handling certain types of functions that exhibit minimal structural
di!erences between compiled WASM and native binary versions.

6 Discussion and Future Work

In this study, we evaluated and compared state-of-the-art WASM decompilers.
To achieve our goal, we collected and integrated multiple metrics from previous
works and created a comprehensive framework for evaluating decompilers. This
framework assesses correctness, readability, and structural aspects, and includes
a case study. Through our analysis, we gained valuable insights into the perfor-
mance and capabilities of existing decompilers. However, our investigation also
revealed certain limitations and disadvantages that warrant attention in future
research endeavors.

6.1 Correctness

We evaluated the correctness of WASM decompilers that generated compilable
C code. Still, the process was limited by the absence of a substantial portion
of the original features in C programming. It would benefit the community if a
framework were developed to assess the correctness of decompilers for a broader
range of C programs.

Further investigations could also explore the correctness of WASM decom-
pilers for di!erent languages, platforms, or applications, extending the scope of
our findings. Assessing our findings’ generalizability across di!erent WASM com-
pilers and decompilers is crucial to comprehensively understanding correctness
challenges.

6.2 Readability and Structural Similarity

We encountered several challenges when delving further into the readability and
structural similarity. Distinguishing whether an issue lies within the scope of
the “WASM decompiler” or is a broader “WASM” or “decompiler” problem
posed a di”culty. For example, the inherent design of WASM as a stack-based
machine lacks concepts of arrays. Consequently, a straightforward comparison
between the decompiled code and native binaries becomes problematic due to
their structural di!erences. Devising fair evaluation methods to handle such dis-
parities and identifying the appropriate properties for comparison is a compelling
direction.

7 Related Works

General WebAssembly Study. WebAssembly has been used for Crypto min-
ing [20,30], games [5], software libraries [33,19], computer vision [36,49], and

20 W. Wu et al.

encryption [3]. Researchers have analyzed topics including the presence of We-
bAssembly in the wild [3], bugs in WebAssembly [39], and the performance of
WebAssembly.
Reverse Engineering in WebAssembly. wasmdec [45] is an open-source We-
bAssembly decompiler. However, it stopped updating in 2018 and didn’t support
many new features of WebAssembly standards. JEB [42] is a commercial decom-
piler that provides the WebAssembly decompilation function. Brandefelt et al. [7]
implemented a Datalog-based WebAssembly decompiler and found that all gen-
erated programs can be decompiled. More than 97% of decompiled programs
are recompilable, while only 70% of the lowest complexity programs maintained
correctness, and when the complexity increased, this percentage fell below 20%.
Benali et al. [6] investigated the viability of applying machine learning tech-
niques, i.e., Neural Machine Translation (NMT), for decompiling WebAssembly
binaries to C source code.
General Reverse Engineering For native binary decompilers, we also con-
sidered angr [2] and snowman [48] besides the two open-source decompilers
(Ghidra [35] and RetDec [21]) in the study. However, they can only generate
C pseudocode or C programs containing syntax errors; thus, decompiled pro-
grams are not recompilable. Thus, these native decompilers are excluded from
the study. To measure the complexity of decompiled programs, in addition to the
widely-used Cyclomatic complexity metric [27], previous decompiler research by
Khaled et al. [46] highlighted that complicated goto statements in decompiled
C code could be a significant obstacle for developers to understand the con-
trol flow. To improve readability, they attempted to reduce the number of such
statements. Subsequently, a later work by Eric et al. [41] introduced more code
properties, including the number of casts and dead assignments.

8 Conclusion

In this paper, we performed an empirical analysis using a selection of diverse
metrics to evaluate the generated code from WASM decompilers. Our evalua-
tion framework covers multiple perspectives, including correctness, readability,
and structural aspects. By employing these metrics, we have demonstrated their
usability in assessing C-based decompilers and provided valuable insights into
the properties and limitations of current decompiled code. We believe that our
findings and the framework we presented will serve as a useful guide for future
researchers in the field. Our work aims to foster the development of more so-
phisticated decompilers and contribute to the enhancement of both decompiling
and WebAssembly toolchains.

References

1. Akbary, S.: Wasmer (Jan 2023), https://wasmer.io/
2. Angr: Angr (2023), https://angr.io/

https://wasmer.io/
https://angr.io/

A Comprehensive Study of WASM Decompilation 21

3. Attrapadung, N., Hanaoka, G., Mitsunari, S., Sakai, Y., Shimizu, K., Teruya, T.:
E”cient two-level homomorphic encryption in prime-order bilinear groups and a
fast implementation in webassembly. In: Proceedings of the 2018 on Asia Confer-
ence on Computer and Communications Security. pp. 685–697 (2018)

4. Auten, J.: Github - wwwg/wasmdec: WebAssembly to C decompiler. (2023),
https://wwwg.github.io/web-wasmdec/

5. Battagline, R.: Hands-On Game Development with WebAssembly: Learn We-
bAssembly C++ programming by building a retro space game. Packt Publishing
Ltd (2019)

6. Benali, A.: An initial investigation of neural decompilation for webassembly (2022)
7. Brandefelt, L.: Decompilation of webassembly using datalog (2022)
8. Chen, G., Wang, Z., Zhang, R., Zhou, K., Huang, S., Ni, K., Qi, Z., Chen, K.,

Guan, H.: A refined decompiler to generate c code with high readability. In: 2010
17th Working Conference on Reverse Engineering. pp. 150–154. IEEE Computer
Society, Beverly, MA (2010). https://doi.org/10.1109/WCRE.2010.24

9. Clang: Clang Indexing Library Bindings — libclang 15.0.6 documentation (2023),
https://libclang.readthedocs.io/en/latest/#

10. contributors, E.: Emscripten documentation, https://emscripten.org/index.
html

11. developers, W.: The WebAssembly Binary Toolkit (2023), https://github.com/
WebAssembly/wabt

12. developers, W.: Wabt documentation (2023), https://webassembly.github.io/
wabt/doc/wasm-decompile.1.html

13. developers, W.: Wasm2c Documentation (2023), https://webassembly.github.
io/wabt/doc/wasm2c.1.html

14. Gohman, D.: (Feb 2023), https://wasmtime.dev/
15. Gurdeep Singh, R., Scholliers, C.: Warduino: A dynamic webassembly virtual

machine for programming microcontrollers. In: Proceedings of the 16th ACM
SIGPLAN International Conference on Managed Programming Languages and
Runtimes. p. 27–36. MPLR 2019, Association for Computing Machinery, New
York, NY, USA (2019). https://doi.org/10.1145/3357390.3361029, https://doi.
org/10.1145/3357390.3361029

16. Haas, A., Rossberg, A., Schu!, D.L., Titzer, B.L., Holman, M., Gohman,
D., Wagner, L., Zakai, A., Bastien, J.: Bringing the web up to speed
with WebAssembly. In: Proceedings of the 38th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. pp. 185–200.
PLDI 2017, Association for Computing Machinery, New York, NY, USA (Jun
2017). https://doi.org/10.1145/3062341.3062363, https://dl.acm.org/doi/10.
1145/3062341.3062363

17. Hara, Y., Tomiyama, H., Honda, S., Takada, H.: Proposal and Quantitative
Analysis of the CHStone Benchmark Program Suite for Practical C-based
High-level Synthesis. Journal of Information Processing 17, 242–254 (2009).
https://doi.org/10.2197/ipsjjip.17.242, http://www.jstage.jst.go.jp/article/
ipsjjip/17/0/17_0_242/_article

18. Hilbig, A., Lehmann, D., Pradel, M.: An Empirical Study of Real-World
WebAssembly Binaries: Security, Languages, Use Cases. In: Proceedings of
the Web Conference 2021. pp. 2696–2708. ACM, Ljubljana Slovenia (Apr
2021). https://doi.org/10.1145/3442381.3450138, https://dl.acm.org/doi/10.
1145/3442381.3450138

https://wwwg.github.io/web-wasmdec/
https://doi.org/10.1109/WCRE.2010.24
https://libclang.readthedocs.io/en/latest/#
https://emscripten.org/index.html
https://emscripten.org/index.html
https://github.com/WebAssembly/wabt
https://github.com/WebAssembly/wabt
https://webassembly.github.io/wabt/doc/wasm-decompile.1.html
https://webassembly.github.io/wabt/doc/wasm-decompile.1.html
https://webassembly.github.io/wabt/doc/wasm2c.1.html
https://webassembly.github.io/wabt/doc/wasm2c.1.html
https://wasmtime.dev/
https://doi.org/10.1145/3357390.3361029
https://doi.org/10.1145/3357390.3361029
https://doi.org/10.1145/3357390.3361029
https://doi.org/10.1145/3062341.3062363
https://dl.acm.org/doi/10.1145/3062341.3062363
https://dl.acm.org/doi/10.1145/3062341.3062363
https://doi.org/10.2197/ipsjjip.17.242
http://www.jstage.jst.go.jp/article/ipsjjip/17/0/17_0_242/_article
http://www.jstage.jst.go.jp/article/ipsjjip/17/0/17_0_242/_article
https://doi.org/10.1145/3442381.3450138
https://dl.acm.org/doi/10.1145/3442381.3450138
https://dl.acm.org/doi/10.1145/3442381.3450138

22 W. Wu et al.

19. Jeong, H., Jeong, J., Park, S., Kim, K.: Watt: A novel web-based toolkit to gen-
erate webassembly-based libraries and applications. In: 2018 IEEE International
Conference on Consumer Electronics (ICCE). pp. 1–2. IEEE (2018)

20. Konoth, R.K., Vineti, E., Moonsamy, V., Lindorfer, M., Kruegel, C., Bos, H.,
Vigna, G.: Minesweeper: An in-depth look into drive-by cryptocurrency mining and
its defense. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. pp. 1714–1730 (2018)

21. Křoustek, J., Matula, P., Zemek, P.: Retdec: An open-source machine-code decom-
piler. In: July 2018 (2017)

22. Lattner, C., Adve, V.: Llvm: A compilation framework for lifelong program analysis
& transformation. In: International symposium on code generation and optimiza-
tion, 2004. CGO 2004. pp. 75–86. IEEE (2004)

23. Lehmann, D., Kinder, J., Pradel, M.: Everything old is new again: Binary security
of {WebAssembly}. In: 29th USENIX Security Symposium (USENIX Security 20).
pp. 217–234 (2020)

24. Liu, R., Garcia, L., Srivastava, M.: Aerogel: Lightweight access control framework
for webassembly-based bare-metal iot devices. In: 2021 IEEE/ACM Symposium
on Edge Computing (SEC). pp. 94–105. Institute of Electrical and Electronics
Engineers, New York City, NY (2021). https://doi.org/10.1145/3453142.3491282

25. Liu, Z., Wang, S.: How far we have come: Testing decompilation correctness of c
decompilers. In: Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis. pp. 475–487 (2020)

26. Marjamäki, D.: Cppcheck, https://cppcheck.sourceforge.io/
27. McCabe, T.J.: A complexity measure. IEEE Transactions on software Engineering

SE-2(4), 308–320 (1976)
28. McCallum, T.: The future of ewasm (2019), https://hackernoon.com/

diving-into-ethereums-virtual-machine-the-future-of-ewasm-wrk32iy
29. McConnell, S.: Code Complete. Microsoft Press, United States, 2 edn. (2004)
30. Musch, M., Wressnegger, C., Johns, M., Rieck, K.: Thieves in the browser: Web-

based cryptojacking in the wild. In: Proceedings of the 14th International Confer-
ence on Availability, Reliability and Security. pp. 1–10 (2019)

31. Müller, B.: W2c2 (2023), https://github.com/turbolent/w2c2
32. Narayan, S., Disselkoen, C., Garfinkel, T., Froyd, N., Rahm, E., Lerner, S.,

Shacham, H., Stefan, D.: Retrofitting fine grain isolation in the firefox renderer. In:
29th USENIX Security Symposium (USENIX Security 20). pp. 699–716. USENIX
Association, Berkeley, CA (Aug 2020), https://www.usenix.org/conference/
usenixsecurity20/presentation/narayan

33. Narayan, S., Garfinkel, T., Lerner, S., Shacham, H., Stefan, D.: Gobi: Webassembly
as a practical path to library sandboxing. arXiv preprint arXiv:1912.02285 (2019)

34. Nguyen, V., Deeds-Rubin, S., Tan, T., Boehm, B.: A sloc counting standard. In:
Cocomo ii forum. vol. 2007, pp. 1–16. Citeseer (2007)

35. NSA: Ghidra (2023), https://ghidra-sre.org/
36. OpenCV: Opencv: Build opencv.js, https://docs.opencv.org/4.7.0/d4/da1/

tutorial_js_setup.html
37. Pop, V.A.B., Niemi, A., Manea, V., Rusanen, A., Ekberg, J.E.: Towards securely

migrating webassembly enclaves. In: Proceedings of the 15th European Workshop
on Systems Security. p. 43–49. EuroSec ’22, Association for Computing Machinery,
New York, NY, USA (2022). https://doi.org/10.1145/3517208.3523755, https://
doi.org/10.1145/3517208.3523755

38. Pouchet, L.N.: PolyBench/C – Homepage of Louis-Noël Pouchet (2023), https:
//web.cse.ohio-state.edu/~pouchet.2/software/polybench/

https://doi.org/10.1145/3453142.3491282
https://cppcheck.sourceforge.io/
https://hackernoon.com/diving-into-ethereums-virtual-machine-the-future-of-ewasm-wrk32iy
https://hackernoon.com/diving-into-ethereums-virtual-machine-the-future-of-ewasm-wrk32iy
https://github.com/turbolent/w2c2
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://ghidra-sre.org/
https://docs.opencv.org/4.7.0/d4/da1/tutorial_js_setup.html
https://docs.opencv.org/4.7.0/d4/da1/tutorial_js_setup.html
https://doi.org/10.1145/3517208.3523755
https://doi.org/10.1145/3517208.3523755
https://doi.org/10.1145/3517208.3523755
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/

A Comprehensive Study of WASM Decompilation 23

39. Romano, A., Liu, X., Kwon, Y., Wang, W.: An empirical study of bugs in we-
bassembly compilers. In: 2021 36th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE). pp. 42–54. IEEE (2021)

40. Rossberg, A.: Introduction - webassembly 2.0 (draft 2023-03-01) (Mar 2023),
https://webassembly.github.io/spec/core/intro/introduction.html

41. Schulte, E., Ruchti, J., Noonan, M., Ciarletta, D., Loginov, A.: Evolving exact
decompilation. In: Workshop on Binary Analysis Research (BAR) (2018)

42. Software, P.: Webassembly analysis (2023), https://www.pnfsoftware.com/jeb/
manual/webassembly/

43. Wagner, L.: Webassembly consensus and end of browser preview (Feb 2017)
44. Weyuker, E.J.: Evaluating software complexity measures. IEEE transactions on

Software Engineering 14(9), 1357–1365 (1988)
45. Wwwg: Wwwg/wasmdec: Webassembly to c decompiler (2023), https://github.

com/wwwg/wasmdec
46. Yakdan, K., Eschweiler, S., Gerhards-Padilla, E., Smith, M.: No more gotos:

Decompilation using pattern-independent control-flow structuring and semantic-
preserving transformations. In: NDSS. Citeseer (2015)

47. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in c com-
pilers. In: Proceedings of the 32nd ACM SIGPLAN conference on Programming
language design and implementation. pp. 283–294 (2011)

48. Yegord: Yegord/snowman: Snowman decompiler (2023), https://github.com/
yegord/snowman

49. Yuan, A., Dukhan, M.: Supercharging the TensorFlow.js WebAssembly backend
with SIMD and multi-threading (9 2020), https://blog.tensorflow.org/2020/
09/supercharging-tensorflowjs-webassembly.html

50. Zakai, A.: WasmBoxC: Simple, Easy, and Fast VM-less Sandboxing, https://
kripken.github.io/blog/wasm/2020/07/27/wasmboxc.html

https://webassembly.github.io/spec/core/intro/introduction.html
https://www.pnfsoftware.com/jeb/manual/webassembly/
https://www.pnfsoftware.com/jeb/manual/webassembly/
https://github.com/wwwg/wasmdec
https://github.com/wwwg/wasmdec
https://github.com/yegord/snowman
https://github.com/yegord/snowman
https://blog.tensorflow.org/2020/09/supercharging-tensorflowjs-webassembly.html
https://blog.tensorflow.org/2020/09/supercharging-tensorflowjs-webassembly.html
https://kripken.github.io/blog/wasm/2020/07/27/wasmboxc.html
https://kripken.github.io/blog/wasm/2020/07/27/wasmboxc.html

	Is This the Same Code? A Comprehensive Study of Decompilation Techniques for WebAssembly Binaries

