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ABSTRACT

Multiple-input, multiple-output (MIMO) radars can estimate
radial velocities of moving objects, but not their tangential
velocities. In this paper, we propose to exploit multi-bounce
scattering in the environment to form an effective multi-
“look” synthetic aperture and enable estimation of a moving
object’s entire velocity vector — both tangential and radial
velocities. The proposed approach enables instantaneous ve-
locity vector estimation with a single MIMO radar, without
additional sensors or assumptions about the object size. The
only requirement of our approach is the existence of at least
one resolvable multi-bounce path to the object from a static
landmark in the environment. The approach is validated both
in theory and simulation.

Index Terms— Multipath, MIMO radar, velocity mea-
surement, radar imaging.

1. INTRODUCTION

Multiple-input, multiple-output (MIMO) radars enable high
resolution sensing & imaging at low form factors and price
points. Conventional MIMO radar algorithms only model
single-bounce scattering, wherein signals transmitted by the
radar are scattered directly back by objects in the environ-
ment: radar — object — radar. However, such models
only enable estimating the radial velocities of moving ob-
jects, and not tangential velocities. Radial velocity estimates
alone can be misleading when objects move tangentially to
the radar, and can impact the performance of downstream
moving object detection and classification tasks, especially in
time-critical applications like autonomous vehicle navigation.

In this work, we propose to exploit paths that scatter more
than once in the environment (multi-bounce) to estimate the
full velocity vector — both tangential and radial velocities —
of a moving object. The key insight is that the tangential ve-
locity components fall along paths that don’t scatter directly
back to the radar, but to other objects in the environment. An
example scenario is illustrated in Fig. 1, with a MIMO radar
tracking a person walking near a building pillar. While the
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Fig. 1: Velocity vector estimation via multi-bounce.

radial velocity component falls along the single-bounce path:
radar — person — radar, the tangential velocity compo-
nent falls along double-bounce paths: radar — person —
pillar — radar and radar — pillar — person — radar.
Hence, both tangential and radial velocities can be estimated
by jointly processing the single- and double-bounce paths.
The proposed idea can be understood as the velocity vector
analogue of multi-“look” synthetic aperture radar, with differ-
ent multi-bounce paths in the environment providing different
“looks” of a given moving object’s velocity vector.

Prior Work: To the best of our knowledge, the idea of
using multi-bounce for velocity vector estimation is novel
and has not appeared previously. Classical approaches to the
problem involve tracking targets over multiple frames [1, 2];
however these methods require multiple frames to converge
to reliable estimates, and hence can not provide instantaneous
velocity vector estimates in every frame. Other works have
explored complementary ideas for instantaneous velocity vec-
tor estimation with single-bounce models — utilizing multiple
cooperative radars [3, 4, 5, 6, 7], fusing measurements from
a radar and camera [8], or require extended targets spanning
multiple resolution bins [9, 10, 11]. Our proposed approach
enables instantaneous velocity vector estimation with a sin-
gle MIMO radar, without additional sensors or assumptions
about the object size. The only requirement of our approach
is the existence of > 1 angle-resolvable multi-bounce paths
to/from the object due to static landmarks in the environment.
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2. PROBLEM FORMULATION

2.1. System Model

Consider the scenario shown in Fig. 1, with a MIMO radar
tracking a moving object in the presence of another static ob-
ject. We model both objects as point targets with 2D loca-
tion vectors! r., (moving object) and r,, (static object) in the
range-azimuth plane, neglecting the height of objects. Let v,
denote the 2D velocity vector of the moving object.

Let T and R denote the number of transmit and receive
elements on the radar. The radar transmits P FMCW 2 chirps,
of starting frequency f. & duration T_, in a time-orthogonal
fashion across all T antennas. We assume single-bounce re-
turns from the static object have been measured and cancelled
prior to the system’s operation (background subtraction), rea-
sonable since the static object can be monitored over long du-
rations in the absence of the moving object. After background
subtraction, the radar only receives single-bounce and double-
bounce paths from the moving object, as shown in Fig. 1, and
knows the static object’s location r,,. The TR x 1 vector of
received signals at the radar (post-matched filtering), in terms
of FMCW instantaneous frequency w and chirp index p, is
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denotes the speed of light, and we have assumed the radar’s
time-bandwidth product is small enough (narrowband) that
the objects remain in the same location bins across all P
chirps. Variables oy . denote the reflectivities of the single-
bounce (moving)/double-bounce (static) objects, and ® de-
notes the Kronecker product. Variables a, . (6, ..) denote
the T x 1 transmit/R x 1 receive steering vectors for azimuth
angles corresponding to the single/double-bounce object loca-
tions. Reflections from the objects result in phase terms pro-
portional to the single-bounce and double-bounce path dis-
tances, dSB :2||rSB ”z and dsDBB = ||rSB ||2+||rSB7rDB ||2+||rDB Hz
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are the combined scaling for single- and double-bounce due

to the per-element transmit gain o, and the inverse-distance

propagation path loss. The terms fZB and fEB denote the
single-bounce and double-bounce Doppler frequencies,
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The vector n denotes addltlve noise, modeled as zero mean

uncorrelated complex Gaussian with identity covariance.

Irelative to the radar’s location (assumed at origin of coordinate system)
2frequency-modulated continuous wave

2.2. Problem Statement

The radar aims to estimate the moving object’s velocity vector

. from measurements y(w; p), given prior static object lo-
cation estimate *, from background processing. We assume
no prior knowledge of the moving object’s location r,

3. PROPOSED APPROACH

We propose a three-stage procedure to solve the problem for-
mulated in Section 2.2. First, the radar estimates the moving
object’s location r, and Doppler frequency via single-bounce
processing. Next, the radar estimates the Doppler frequency
along the double-bounce path based on prior knowledge of
the static object’s location .. Finally, the estimated single-
bounce and double-bounce Doppler frequencies are used to
estimate the moving object’s velocity vector v,

Stage 1 (Single-Bounce): The radar first computes the
following intermediate function for a hypothetical 2D loca-
tion in the environment r and chirp index p:
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where () denotes the Hermitian operator, W is the number
of instantaneous FMCW frequencies w, and S, (r) = Har%
2

A () @an (0:) "y (wi p), (3)

Intuitively, (3) is a matched filter along single-bounce paths
to/from locations r. The moving object’s location r , and
single-bounce Doppler frequency are then estimated via:

Z(r

which can be implemented with low complexity via IFFT?.

Stage 2 (Double-Bounce): Given location estimates of
both objects, T, Ty, the double-bounce Doppler frequency
is estimated via the double-bounce analogue of Stage 1:
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and 6 is the azimuth angle of the location estimate '
Stage 3 (Velocity Estimation): Finally, given estimates
of the single-bounce and double-bounce Doppler frequencies,

f;B and ?E °, the velocity vector v, is estimated as follows:
= T [sB
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inverse fast Fourier transform
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Fig. 2: (a) Key notation used in simulations. (b) Dilution of precision (DoP) is minimum (“best”), with value V2, when

0 = +90°. (c) Tangential velocity resolution is smallest (“best”) when § = +90°, and infinite (“worst”) when 6 = 0°,

where (-)! denotes the pseudo-inverse, and f, and r ® de-
note the unit vectors along the estlmated smgle— and double—

Fop—T
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that the pseudo-inverse in (7) can be 1mplemented with low
complexity since the underlying matrix is of size 2 x 2.

4. RESULTS

We present both analytical and simulation results to quantify
the performance of the proposed approach. We begin by the-
oretically quantifying the impact of the system geometry — lo-
cations of the two objects — on the performance of the velocity
vector estimator in (7), assuming perfect estimates Iy, 'y,
~SB  ~DB

and f_, f = from Stages 1 and 2.

Lemma 1. Assuming perfect estimates from Stages 1 and 2,
perfect estimation of the velocity vector v, is possible via (7)
as long as the moving and static objects are not collinear,

Ipy # O, Vo

Proof. Velocity vector v, can be perfectly estimated if the
2 x 2 matrix in (2) has full rank. It is easy to see that this is the
case if the unit vectors satisfy r ;é Ty, which is equivalent
to having non-collinear object locatlons Iy, # arg, Vo O

While Lemma 1 suggests that any two non-collinear ob-
Ject locations r,, r,, suffice to perfectly estimate the veloc-
ity vector v, the practical performance of the proposed ap-
proach depends on the properties of the pseudo-inverse esti-
mate in (7). To quantify the performance of (7) as a function
of the object locations r;, r,,, we adapt the well-known no-
tion of the dilution of precision (DoP) to our system.

Definition 1 ([12]). Consider a linear system'y = Ax +
n, with zero mean uncorrelated noise vector n with identity
covariance. Let X denote the pseudo-inverse solution for x,

+180°.

i.e., X = Aly. The dilution of precision (DoP) is defined as
the square root of the trace of the covariance of X,

DoP = \/Tr {cov(k)] = \/Tr{(ATA)l].

In the context of our system, the matrix A in Definition 1
corresponds to the matrix in (2), assuming perfect estimates
Py, Tpp and f ®in (7) from Stages 1 and 2. To under-
stand the Val'lathIl of the DoP as a function of object locations
Iy, g, we simulate the configuration shown in Fig. 2(a),
with the static object oriented at an angle 6 with respect to
the radar’s line-of-sight, where the moving object is located.
Note that the precise values of the object locations rg, rg,
are not important since the DoP only depends on the unit vec-
tors T, Iy,. Fig. 2(b) shows the variation of the DoP as a
function of angle @, with smaller values of DoP considered
“better” [12]. We observe that the DoP peaks to infinity at
6 = 0° and £180°, corresponding to static object locations
that are collinear with the moving object. On the other hand,
the DoP is minimum (with value v/2) at § = :|:90c> corre-
sponding to perpendicular unit vectors Ty, L rSB , which is
the most favorable geometry for velocity Vector estimation.

To further quantify the performance gains in velocity vec-
tor estimation with our approach, we characterize the veloc-
ity ambiguity function [13]. Recall that all processing steps
in (3)-(6) correspond to spatial and temporal matched filters.
We thus define the velocity ambiguity function as the inten-
sity of the coherent sum of all matched filter outputs:
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where we have assumed known object locations rg, rg.

(p), defined in (3) and (5), correspond to a
SB

. Terms f_(v) = —2( Ty, V)

( ry, + rSB7 v) are Doppler frequencies for a

. . S/DB
Variables ar/
grour;cé—truth velocity Vector Vg
and f(v) =
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Fig. 3: (a) At low SNRs, noise prevents accurate velocity vector estimation. (b) Larger distances Y reduce double-bounce path
power & increase estimation error. (c) Larger reflectivities o, increase double-bounce path power & reduce estimation error.

hypothetical velocity vector v. Intuitively, X(v; VSB) should
peak at v = v, and decay elsewhere, with its half-power
beamwidth denoting the system’s velocity vector resolution.
Fig. 2(c) plots X(v; 0) for three different values of angle
0 € {0°,—150°, —90°} in Fig. 2(a), with unit-reflectivity ob-
jectsat ||rg ]|, =X =2.5mand |r,; —rgll, =Y =2.5m.
The simulation parameters correspond to a commercial auto-
motive millimeter-wave MIMO radar [14]: FMCW starting
frequency f. = 77 GHz, 4 GHz bandwidth with W = 256
instantaneous chirp frequencies, P = 256 chirps of duration
T.=40pus,and T =9, R = 16 elements (arranged linearly).
When 6 = 0°, which corresponds to collinear objects and
hence single-bounce-only processing, the ambiguity func-
tion has a ridge-like shape with infinite tangential velocity
resolution and Doppler-limited radial velocity resolution of
0.19 m/s, thus verifying Lemma 1 and the DoP result from
Fig. 2(b). The tangential velocity resolution is smallest when
6 = —90° (0.31 m/s), and spans the range [0.31, co) m/s for
intermediate values of 6, which is consistent with Fig. 2(b).
Next, we characterize the impact of noise on the end-to-
end performance, quantified via the velocity estimation er-
ror, ||V, — vg.l|l,. Expressing the system model in (1) as
y(w;p) = s(w;p) + n, we define the signal-to-noise ratio
(SNR) as SNR = s 22, 2o, [Is(w; p)|l., assuming the
noise is zero mean with identity covariance. The SNR is thus
a function of the transmit gain «.,, reflectivities o, o,, and
distances X, Y. In the following results, we assume 6 = 90°
with a tangential velocity vector vy, = [vg, 0] T, and back-
ground subtraction of static object single-bounce returns.

In Fig. 3, we plot the mean velocity estimation error (with
error bars showing the standard error of the mean) as a func-
tion of different system parameters, across 500 independent
realizations of noise and tangential velocity v, uniformly dis-
tributed in [—5, 5] m/s. Fig. 3(a) plots the velocity estimation
error as a function of SNR by varying the transmit gain o.,.

We observe a phase transition at an SNR threshold of —20
dB, beyond which the velocity estimation error drops to sub-
resolution values and saturates. The reason for the phase tran-
sition is simple: at low SNRs, noise overwhelms Stages 1 and
2 of the proposed approach, preventing accurate moving ob-
ject location and Doppler estimation. At high SNRs, Doppler
frequency estimation errors (due to finite number of chirps P)
in Stages 1 and 2 are the primary performance bottleneck.

In Figs. 3(b)-(c), we vary the double-bounce path power
by varying the object distance |[r, — r..||, = Y, and static
object reflectivity, o, with the transmit gain o, set to en-
sure —20 dB SNR at Y = 2.5 m. We observe that the errors
exhibit phase transitions, e.g., beyond Y = 3mand o, = 0.7
for P = 256. Increasing distance Y and reducing reflectivity
0, reduces the double-bounce path power, which makes it
challenging to estimate the double-bounce Doppler frequency
in Stage 2 and results in larger estimation errors. The trends
for P = 64 are similar but with larger errors and thresholds,
consistent with the findings in Fig. 3(a).

5. CONCLUDING REMARKS

In this paper, we proposed to exploit double-bounce scatter-
ing from a static object to estimate the entire velocity vector
of a moving object with a MIMO radar. The key insight is
that double-bounce paths carry information about tangential
velocity components, which can be estimated by jointly pro-
cessing the single-bounce and double-bounce paths. In future
work, we will explore extensions to multiple static and mov-
ing objects (both point-like and extended), different multi-
bounce orders (triple-bounce and beyond), multiple radars,
and consider the problem of designing and placing dedicated
reflectors to enable on-car radars to estimate the velocity vec-
tors of other vehicles and pedestrians. We also plan to validate
all results with real-world experimental data.
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