


2. PROBLEM FORMULATION

2.1. System Model

Consider the scenario shown in Fig. 1, with a MIMO radar

tracking a moving object in the presence of another static ob-

ject. We model both objects as point targets with 2D loca-

tion vectors1
r
SB

(moving object) and r
DB

(static object) in the

range-azimuth plane, neglecting the height of objects. Let v
SB

denote the 2D velocity vector of the moving object.

Let T and R denote the number of transmit and receive

elements on the radar. The radar transmits P FMCW 2 chirps,

of starting frequency f
c

& duration T
c
, in a time-orthogonal

fashion across all T antennas. We assume single-bounce re-

turns from the static object have been measured and cancelled

prior to the system’s operation (background subtraction), rea-

sonable since the static object can be monitored over long du-

rations in the absence of the moving object. After background

subtraction, the radar only receives single-bounce and double-

bounce paths from the moving object, as shown in Fig. 1, and

knows the static object’s location r̂
DB

. The TR × 1 vector of

received signals at the radar (post-matched filtering), in terms

of FMCW instantaneous frequency ω and chirp index p, is
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where ã
DB
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RX
(θ

DB
) ⊗ a
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TX
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), c

denotes the speed of light, and we have assumed the radar’s

time-bandwidth product is small enough (narrowband) that

the objects remain in the same location bins across all P

chirps. Variables σ
S/DB

denote the reflectivities of the single-

bounce (moving)/double-bounce (static) objects, and ⊗ de-

notes the Kronecker product. Variables a
T/RX

(θ
S/DB

) denote

the T× 1 transmit/R× 1 receive steering vectors for azimuth

angles corresponding to the single/double-bounce object loca-

tions. Reflections from the objects result in phase terms pro-

portional to the single-bounce and double-bounce path dis-

tances, d
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and d
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are the combined scaling for single- and double-bounce due

to the per-element transmit gain α
TX

and the inverse-distance

propagation path loss. The terms f
SB

D
and f

DB

D
denote the

single-bounce and double-bounce Doppler frequencies,
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proportional to projecting v
SB

onto unit vectors along single-

and double-bounce paths, r̄
SB

=
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=
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.

The vector n denotes additive noise, modeled as zero mean

uncorrelated complex Gaussian with identity covariance.

1relative to the radar’s location (assumed at origin of coordinate system)
2frequency-modulated continuous wave

2.2. Problem Statement

The radar aims to estimate the moving object’s velocity vector

v
SB

from measurements y(ω; p), given prior static object lo-

cation estimate r̂
DB

from background processing. We assume

no prior knowledge of the moving object’s location r
SB

.

3. PROPOSED APPROACH

We propose a three-stage procedure to solve the problem for-

mulated in Section 2.2. First, the radar estimates the moving

object’s location r
SB

and Doppler frequency via single-bounce

processing. Next, the radar estimates the Doppler frequency

along the double-bounce path based on prior knowledge of

the static object’s location r̂
DB

. Finally, the estimated single-

bounce and double-bounce Doppler frequencies are used to

estimate the moving object’s velocity vector v
SB

.

Stage 1 (Single-Bounce): The radar first computes the

following intermediate function for a hypothetical 2D loca-

tion in the environment r and chirp index p:
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where (·)H denotes the Hermitian operator, W is the number

of instantaneous FMCW frequencies ω, and β
SB
(r) =
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2

.

Intuitively, (3) is a matched filter along single-bounce paths

to/from locations r. The moving object’s location r
SB

and

single-bounce Doppler frequency are then estimated via:
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which can be implemented with low complexity via IFFT3.

Stage 2 (Double-Bounce): Given location estimates of

both objects, r̂
SB
, r̂

DB
, the double-bounce Doppler frequency

is estimated via the double-bounce analogue of Stage 1:
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and θ̂
SB

is the azimuth angle of the location estimate r̂
SB

.

Stage 3 (Velocity Estimation): Finally, given estimates

of the single-bounce and double-bounce Doppler frequencies,

f̂
SB

D
and f̂

DB

D
, the velocity vector v
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is estimated as follows:
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3inverse fast Fourier transform
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