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Abstract

We study the fundamental problem of estimating the mean of a d-dimensional distribution
with covariance Σ ≼ σ2Id given n samples. When d = 1, [Cat12] showed an estimator with

error (1 + o(1)) · σ
√

2 log 1
δ

n , with probability 1 − δ, matching the Gaussian error rate. For
d > 1, a natural estimator outputs the center of the minimum enclosing ball of one-dimensional

confidence intervals to achieve a 1−δ confidence radius of
√

2d
d+1 ·σ

(√
d
n +

√
2 log 1

δ

n

)
, incurring

a
√

2d
d+1 -factor loss over the Gaussian rate. When the

√
d
n term dominates by a

√
log 1

δ factor,

[LV22b] showed an improved estimator matching the Gaussian rate. This raises a natural

question: Is the
√

2d
d+1 loss necessary when the

√
2 log 1

δ

n term dominates?

We show that the answer is no – we construct an estimator that improves over the above
naive estimator by a constant factor. We also consider robust estimation, where an adversary
is allowed to corrupt an ε-fraction of samples arbitrarily: in this case, we show that the above

strategy of combining one-dimensional estimates and incurring the
√

2d
d+1 -factor is optimal in

the infinite-sample limit.
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1 Introduction

Mean estimation is perhaps the simplest statistical estimation problem: given samples x1, . . . , xn ∼
D for some d-dimensional probability distribution D, estimate the mean µ of D. If x is Gaussian
with covariance Σ ⪯ σ2Id, then the empirical mean is the optimal estimator. It satisfies

∥µ̂− µ∥ ≤ σ

√d

n
+

√
2 log 1

δ

n

 (1)

with probability 1− δ. Even if x is not Gaussian, for any fixed (D, d, δ), as n→ ∞ the central limit
theorem shows that the empirical mean achieves the Gaussian rate (1). But when the distribution,
dimension, or failure probability can vary with n, more sophisticated estimators are needed to get
good rates. If the distribution has outliers—large, rare events—the empirical mean can perform
very badly.

In one dimension, the Median-of-Means estimate [NY83, JVV86, AMS96] is the classic way
to get subgaussian rates with minimal assumptions on the distribution. For any 1-dimensional

distribution D of variance σ2, the median (over Θ(log 1
δ ) batches) of means (of Θ

(
n

log 1
δ

)
samples

per batch) satisfies

|µ̂− µ| ≤ O

σ ·

√
log 1

δ

n


with 1 − δ probability, i.e., it achieves the Gaussian rate (1) up to constant factors. But such
constants are important in statistical estimation: statistics texts, for example [MB10, Was04,
WMS14, CB21], discuss asymptotic relative efficiency of the mean over the median (and asymptotic
optimality of maximum-likelihood estimators in general) as an important consideration in choosing

an estimator—in this case, the asymptotic efficiency of the mean results in a
√

2
π factor smaller

error bound in the Gaussian case, leading to ≈ 36% lower sample complexity. As a result, many
practitioners use the mean, and then are vulnerable to outliers. It is therefore important to have
estimators that are as efficient as possible, while still working without strong assumptions on the
data distribution.

To address this, [Cat12] developed a 1-dimensional mean estimator that is tight up to 1 + o(1)
factors: for n≫ log 1

δ , it gives error

|µ̂− µ| ≤ (1 + o(1)) · σ

√
2 log 1

δ

n
,

matching the Gaussian rate (1). Catoni’s estimator requires knowledge of the variance σ2; this
requirement was removed by [LV22a], at a cost of a larger o(1) term. Even the Median-of-Means-

style O(σ ·
√

log 1
δ/n)) guarantee is information-theoretically impossible if n ≪ log 1

δ [DLLO16].

It is open whether the Catoni-style (1 + o(1)) guarantee can be achieved when n = Θ(log 1
δ ). We

henceforth assume n≫ log 1
δ .

High-dimensional mean estimation. In dimension d > 1, naively applying a 1-dimensional

estimator to the coordinates independently leads to the suboptimal rate O

(
σ ·
√

d log d
δ

n

)
. Over

the past few years, a number of works in statistics and theoretical computer science have developed
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better estimators [LM17, Hop20, CFB19], matching the Gaussian rate (1) up to constant factors.
But as with d = 1, we can ask: what constant factors are achievable, and in particular, can the
Gaussian rate (1) be matched up to (1 + o(1))?

There are two terms in (1), and so we will refer to two different constants: the optimal constant

cd on
√

d
n whenever d≫ log 1

δ and the first term dominates, and the optimal constant cδ on

√
2 log 1

δ
n

when log 1
δ ≫ d and the second term dominates. There is also a third regime—when d ≂ log 1

δ—but
this regime is quite complicated to analyze. Even in the Gaussian case, the error bound (1) does
not give the tight constant in this regime. For this paper we ignore the intermediate regime.

One can get a natural upper bound on these constants by lifting 1-dimensional estimators to d
dimensions. [CG18] used a “PAC-Bayes” argument to show that if the Catoni estimator is applied
to every direction u, then every estimate µ̂u of ⟨µ, u⟩ has error bounded by the Gaussian rate (1).
The set of possible d-dimensional means µ that satisfy all these 1d constraints has diameter twice
this error rate. One can then output the center µ̂ of the minimum enclosing ball of this set. Jung’s
theorem [Jun01] states that this loses just a constant factor: any set of diameter 2 is enclosed in a

ball of radius JUNGd :=
√

2d
d+1 ≤

√
2. Therefore

∥µ̂− µ∥ ≤ JUNGd · (1 + o(1))σ

√d

n
+

√
2 log 1

δ

n

 (2)

and so both cd and cδ are at most JUNGd ≤
√
2. For very large dimension one can do better:

[LV22b] showed for d ≫ log2 1
δ that the Gaussian rate (1) can be matched precisely, so cd = 1 for

such large d.

Our contributions: heavy-tailed estimation. Our main result gives an algorithm with a
strictly better constant factor than in (2) when log 1

δ ≫ d and d ≥ 2—that is, we show that cδ is
strictly smaller than JUNGd for all d ≥ 2.

Theorem 1.1. There exists constants τ, C > 0 such that the following holds. Let d ≥ 2, and
suppose n ≥ C log 1

δ ≥ C2d. There is an algorithm that takes n samples from a distribution over
Rd with covariance Σ ⪯ σ2I, as well as σ2 and δ, and outputs an estimate µ̂ of the mean µ that
achieves

∥µ̂− µ∥ ≤ (1− τ) · JUNGd · σ

√
2 log 1

δ

n

with 1− δ probability.

In particular, the limiting constant as d→ ∞ is
√
2− τ for some τ > 0.

Our contributions: robust estimation. A related problem, also extensively studied in theo-
retical computer science over the past decade, is robust mean estimation [DK23]. In robust mean
estimation, the data is initially drawn from a covariance Σ ⪯ I distribution, but an adversary can
corrupt an arbitrary ε fraction of the data points. In this model, estimation error remains even in
the population limit as n→ ∞. In one dimension, the optimal error bound is

(1 +O(ε))
√
2ε.

As with heavy-tailed estimation, one can lift the 1d estimator to higher dimensions: apply
the one-dimensional estimator in every direction, take the intersection of their confidence intervals

2



to get a set of candidate means, and output the center of the minimum enclosing ball. And as

with heavy-tailed estimation, this loses a factor JUNGd =
√

2d
d+1 . But, unlike with heavy-tailed

estimation, this is tight:

Theorem 1.2. For every d ≥ 1 and ε ≤ 1
2 , every algorithm for robust estimation of d-dimensional

distributions with covariance Σ ⪯ σ2I has error rate

E[∥µ̂− µ∥] ≥ JUNGd · (1 +O(ε)) ·
√
2σ2ε

on some input distribution, in the population limit.

As discussed above, this is matched by the (somewhat folklore) algorithm of estimating all 1d
projections and taking the center of the minimum enclosing ball of feasible means:

Theorem 1.3 (Folklore + Jung’s theorem). For every d ≥ 1 and ε ≤ 1
3 , there is an algorithm for

robust estimation of d-dimensional distributions of covariance Σ ⪯ σ2I with error rate

E[∥µ̂− µ∥] ≤ JUNGd · (1 +O(ε)) ·
√
2σ2ε

in the population limit.

We provide the full proof of Theorem 1.2 in Appendix C and Theorem 1.3 in Appendix D.

Summary. The mean estimation error bound has three terms, corresponding to the dependence
on dimension d, on failure probability δ, and on robustness ε. Lee and Valiant [LV22b] showed that
the d-dependent term does not lose a constant factor relative to the Gaussian rate, for sufficiently
large d. We show that the ε-dependent term loses exactly the constant JUNGd that arises when
lifting 1-dimensional estimates to d-dimensional estimates, while the δ-dependent term is better
than JUNGd times the Gaussian rate, for all d ̸= 1. For the latter result, we construct a novel
high-dimensional mean estimator which goes beyond lifting a one-dimensional estimator.

1.1 Related Work

Heavy-tailed and Robust Estimation. Both settings been extensively studied by the statistics
and theoretical computer science communities; see for example, a recent survey [LM19] and book
[DK23]. For heavy-tailed estimation, several works have established asymptotic bounds matching
the Gaussian rate for a variety of estimation tasks, including mean estimation [LM17, CG18],
covariance estimation [AZ23, MZ18], and regression [LM14]. Similarly, robust estimation has
been studied in a variety of settings, including mean estimation [DKK+19, DKK+17], covari-
ance estimation [CDGW19], list-decodable estimation [DKS17, DKK20], and regression [DKS19].
[DKP20, HLZ20] study rigorous connections between robust and heavy-tailed estimation.

Despite the large body of work on both these models, the algorithms proposed have so far seen
limited adoption in practice. One reason for this is suboptimal constants. Samples can be precious,
and statistics texts often report “asymptotic relative efficiency” of various estimators (similar in
spirit to the constant factors we study here). Since the empirical mean has optimal asymptotic
efficiency, in some texts practitioners are taught to use the mean over the median (despite the
robustness the median provides) if the data “looks” Gaussian via eyeballing [MB10], since using
the median would require collecting ≈ 50% more samples. In one dimension, this is unprincipled
and error prone; in high dimensions, it is not even a viable strategy.

3



Towards optimal constants. To overcome the above issues and promote adoption, there has
been a flurry of recent work attempting to achieve sharp rates (including constants) for a va-
riety of statistical estimation [LV22a, LV22b, Min23, Min22, Cat12, CG18, DLLO16, GLP23b,
GLP23a, GLPV23] and testing [GP22, DMVW23, Kip23] tasks. Of these, for heavy-tailed estima-
tion, Catoni [Cat12] showed an estimator matching the Gaussian rate in dimension d = 1 when
the variance σ2 is known. This was followed by work that achieved the same rate even when σ2 is
unknown [LV22a].

For d > 1, a natural estimator outputs the center of the minimum enclosing ball of the intersec-
tion of one-dimensional confidence intervals. For covariance Σ ≼ σ2Id, [CG18] showed a PAC-Bayes

argument that implies a
√

2d
d+1 · σ

(√
d
n +

√
2 log 1

δ
n

)
rate for this estimator, incurring a

√
2d
d+1 fac-

tor over the Gaussian rate. When the
√

d
n term dominates by a

√
log 1

δ factor, [LV22b] showed an

estimator with an improved rate of σ
√

d
n , matching the Gaussian rate in this regime. This work

shows that the
√

2d
d+1 factor can be improved upon even when the

√
2 log 1

δ
n term dominates.

2 Proof Overview

2.1 Heavy-Tailed Estimator

High-level goal. In one dimension, the optimal error rate for (1−δ)-probability mean estimation

is σ

√
2 log 1

δ
n , which we will call OPT1. In d dimensions, one can apply the one-dimensional bound in

every direction (with either a union bound, or more efficiently with PAC-Bayes [CG18]) to identify a
set of candidate means of diameter 2OPT1+O(σ

√
d/n); suppose log 1

δ ≫ d, so the high-probability
term 2OPT1 dominates. Then, Jung’s theorem states that the minimum enclosing ball of this set

has radius at most
√

2d
d+1 ·OPT1 = JUNGd ·OPT1. In Theorem 1.1 we show that a better constant

factor is possible.
Our key technical result is a mean estimation algorithm for two dimensions, with error (1 −

τ) · JUNG2 · OPT1 = (1 − τ) 2√
3
· OPT1 for a constant τ > 0. Given this result, we can lift it

to higher dimensions using a generalization of Jung’s theorem [Hen92]: for a dimension-d set S,
if every dimension-k projection has length 2rk, then S is enclosed in a ball of radius rk · JUNGd

JUNGk
.

So our (1 − τ) improvement for d = 2 yields a (1 − τ) improvement for all d, and in particular
asymptotic error (1− τ)

√
2 ·OPT1 rather than

√
2 ·OPT1 for d→ ∞.

Variant of Catoni’s estimator for d = 1. To understand our d = 2 estimator, it’s helpful to
understand how to get the optimal constant for d = 1. In Appendix A we give a simple, 2-page
self-contained analysis of a variant of Catoni’s estimator [Cat12].

Define T = σ
√

n
2 log 1

δ

, and consider a ψ function satisfying

− log

(
1− x+

x2

2

)
≤ ψ(x) ≤ log

(
1 + x+

x2

2

)
(3)

such as ψ(x) = x − x3/6 for |x| ≤
√
2, and ψ(x) = 2

√
2

3 · sign(x) otherwise. We plot this function
below, along with two other functions from [Cat12] satisfying the above bound.
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0
x

0

ψ
(x

)

x− x3

6 , Clipped

Wide Catoni

Narrow Catoni

Figure 1: Some ψ functions satisfying Catoni’s constraints (3)

Suppose we have an initial estimate µ0 that has small big-O error, but with a large constant
factor—say, the median-of-means estimate on an initial sample of ξn points for a small constant ξ.

This will have error Oξ

(
σ

√
log 1

δ
n

)
, which we would like to drive down to OPT1 = σ

√
2 log 1

δ
n . The

final estimate is

µ̂ = µ0 +
1

n

n∑
i=1

Tψ

(
xi − µ0
T

)
(4)

Intuitively, T is the threshold for being an outlier: if |x| ≪ T always, then Bernstein’s inequality
will give that the empirical mean achieves (1+ o(1))OPT1. And indeed, Tψ(x/T ) ≈ x for |x| ≪ T ,
so the estimate (4) is close to the empirical mean in this case. On the other hand, elements
|x| ≫ T will only be sampled o(log 1

δ ) times by Chebyshev’s inequality, so the sample of such
events is completely unreliable for 1 − δ failure probability; the influence of such elements on the
estimator (4) is negligible. The challenge is to handle the cases of |x| = Θ(T ).

The natural approach to show that µ̂ concentrates about µ is to bound its moment generat-
ing function (MGF). The conditions (3) are precisely what are needed: E[exp( nT µ̂)] depends on
E[exp(ψ((x − µ)/T ))], which is controlled by just the mean and variance of x through (3). As we
show in Lemma A.2, this leads to the concentration bound

|µ̂− µ| ≤
(
1 +O

(
log 1

δ

n

))
OPT1

with probability 1− δ.
The estimator (4) we analyze in Appendix A is different from the original Catoni estimator in

that Catoni finds a root of ψ(x−µ
T ), while our variant approximates this root with essentially one

step of Newton’s method. Our analysis does not handle reuse of samples, so it requires the initial
estimate µ0 to use a small initial sample. This makes our analysis simpler than [Cat12], which is
helpful for the extension we need to get the better constant for d = 2.

A better constant for “inlier-light” distributions. The error of the estimate µ̂ is bounded
by the constraints (3). So with a better bound, the estimate would sharpen by a constant factor.
In particular, if we could find a ψ with

− log

(
1− x+ (1− η)

x2

2

)
≤ ψ(x) ≤ log

(
1 + x+ (1− η)

x2

2

)
(5)
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then the variance term which appears in the MGF argument above would have a leading (1 − η)
factor, giving a better constant. Unfortunately, (3) is not achieved by any function ψ for all x
simultaneously: both the upper and lower constraints (3) were x− x3/6±Θ(x4), so for any η > 0
if x is small enough, shifting the constraints closer by Θ(x2) is impossible.

But, for any β > 0, if we restrict attention to x such that |x| > β, the constraints of (3)
do not exactly match, so there exists an η for which (5) is possible for all |x|> β. We have
already discussed one function satisfying tightened constraint: ψ(x) = x − x3/6 for |x|≤

√
2 and

ψ(x) =
(√

2− 2
√
2

6

)
sign(x) otherwise. This is plotted in Figure 1.

As a result of this improved analysis, the Catoni estimate (4) is a constant factor better at
handling the variance caused by x whenever |x| ≳ T .

To formalize this idea, for any constants β, L > 0, we say a distribution is “(β, L)-inlier-light” if
it has at most (1−L)σ2 variance from elements smaller than βT . Catoni gets the tight constant on
the (1− L)σ2 variance from inliers, and a better constant on the remaining at-most-Lσ2 variance.
Thus it gets error (1 − τ)OPT1 error on inlier-light distributions, for some constant τ depending
on β and L.

An alternative to Catoni for outlier-light distributions. On the other hand, if a distribution
is not inlier-light, it can have very few outliers: there’s at most Lσ2 variance remaining to come
from outliers. If we trim at a threshold αT for α > β, then the contribution to the mean from the
trimmed outliers is small: the worst-case is when they are all at the threshold αT , in which case the
contribution is Lσ2

α2T 2 ·αT = L
αOPT1. And for small α, Bernstein’s inequality says that the empirical

mean of the untrimmed inliers will have accuracy (1+O(α))OPT1. As a result, the trimmed mean,
trimmed to αT , achieves (1 + O(α + L/α))OPT1 on distributions that are not (β, L) inlier-light,
for any α > β.

Note also that the property of being inlier-light can be tested with 1 − δ accuracy, since it
involves measuring the variance from bounded entries, as long as L ≳ β. So for L = Θ(β), we
can (1) test for inlier-lightness, and on non-inlier-light distributions (2) trim at α =

√
β to get

(1 +O(
√
β))OPT1 error.

Handling d = 2. Per the above, in one dimension either the Catoni estimate achieves a constant
better than 1, or the trimmed mean achieves constant close to 1. The latter is promising because
the empirical mean, in the subgaussian case where it works, gets error OPT1 independent of the
dimension.

Our d = 2 algorithm is as follows. We test whether the distribution is inlier-light in either
direction e1 or e2; if it is, we run Catoni on every 1d projection in a fine net around the circle,
and take the center of the minimum enclosing ball of the possible means. In general, this gets at
most JUNG2 ·OPT1 error; but the tight instance for Jung is an equilateral triangle, and this error
only happens if Catoni gets error bound OPT1 in three directions approximately 120◦ apart. If
the distribution is inlier-light in some direction ei, then it is also inlier-light (with slight loss in
parameters) in at least one of the triangle directions, so Catoni gets a better error in that direction
and a more accurate estimate overall.

On the other hand, if the distribution is not inlier-light in either the e1 or e2 direction, we
remove any element larger than

√
βT in either direction and take the empirical mean of all other

samples. This gets error (1 + O(
√
β))OPT1, without any dependence on JUNG2.

For small enough constant β and L = Θ(β), either situation will give a constant better than
JUNG2. Finally, as stated before, we can lift our two-dimensional estimate to higher dimensions

6



using a generalization of Jung’s theorem (Theorem E.2, [Hen92]) to obtain a constant better than
JUNGd in d-dimensions.

2.2 Robust Estimation, Lower Bound

Now, we discuss the ideas behind Theorem 1.2, showing that the naive strategy of combining
one-dimensional estimates is optimal for the robust estimation setting.

ε

ε ε
1− 3ε

ε

ε

ε
1− 3ε ε

ε ε

1− 3ε
ε

ε

ε

1− 3ε

Figure 2: For d = 2, the algorithm sees as input the distribution on the left after the adversary
corrupts ε-mass. The three distributions to its right are ones consistent with the input.

We first show the lower bound for ε ≤ 1
d+1 . The hard instance is that the adversary hands over

a distribution that puts ε mass on each vertex of the regular simplex. The true distribution is the
same, but with one of the vertices reflected across the origin. These distributions are all consistent
with the observed distribution – that is, they have total variation at most ε to the distribution
handed to us by the adversary – but have means at vertices of a simplex. A regular simplex is the
setting where Jung’s theorem is tight, and some calculation gives a JUNGd ·

√
2ε lower bound.

When d > 1
ε −1, we instead restrict to a lower-dimensional space of dimension d′ = ⌊1ε −1⌋ and

apply the same bound to get a JUNGd′ lower bound. Since d
′ is large, both JUNGd and JUNGd′

are
√
2−O(ε).

3 Proof Details – Heavy-Tailed Estimator

Here, we provide a detailed description of our heavy-tailed estimator, along with key lemmas in the
proof of our main result, Theorem 1.1. We will focus on our 2-dimensional estimator that achieves
a constant better than JUNG2; as stated earlier, we can “lift” it to high-dimensions to obtain a
constant better than JUNGd in d dimensions. We begin with the formal definition of “inlier-light”
and “outlier-light” distributions.

3.1 “Inlier-Light” and “Outlier-Light” Distributions

Definition 3.1 ((β, L)-Inlier-Light Distribution). A distribution x over R with variance at most
σ2 is “(β, L)-inlier-light” if:

E
[
(x− µ)21|x−µ|≤βT

]
< (1− L)σ2

for T = σ
√

n
2 log 2

δ

.

That is, a distribution is (β, L)-inlier-light if at most (1−L) fraction of its variance comes from
“inlier” points, points within βT of µ. We define outlier-light analogously:

7



Definition 3.2 ((β, L)-Outlier-Light Distribution). A distribution x over R with variance at most
σ2 is “(β, L)-outlier-light” if:

E
[
(x− µ)21|x−µ|≥βT

]
< Lσ2

for T = σ
√

n
2 log 2

δ

.

A distribution x over Rd is (β, L)-outlier-light if ⟨x,w⟩ is (β, L)-outlier-light for all unit vectors
w.

3.2 Estimator for One-Dimensional Inlier-Light Distributions

We first show that a variant of Catoni’s Estimator for one-dimensional distributions, when computed

using an appropriate ψ function, achieves a rate strictly better than σ

√
2 log 1

δ
n , the Gaussian rate,

when the distribution is inlier-light. CatoniEstimatorLocal takes an initial estimate µ0 of the

mean µ as input, such that |µ0−µ|≤ O

(
σ

√
log 1

δ
n

)
, typically computed using the median-of-means

estimator [Dar83].

Algorithm 1 CatoniEstimatorLocal

Input parameters:

• Failure probability δ, One-dimensional iid samples x1, . . . , xn, Initial estimate µ0, ψ function,
Scaling parameter T .

1. Compute

r(µ0) =
T

n

n∑
i=1

ψ

(
xi − µ0
T

)

2. Return mean estimate µ̂ = r(µ0) + µ0

We will suppose that our ψ function satisfies the following.

Assumption 3.3. ψ satisfies that for all x,

− log

(
1− x+

x2

2

)
≤ ψ(x) ≤ log

(
1 + x+

x2

2

)
Additionally, for constants 0 < β, η < 1, for all |x|≥ β

2 ,

− log

(
1− x+ (1− η)

x2

2

)
≤ ψ(x) ≤ log

(
1 + x+ (1− η)

x2

2

)
Recall that the “x − x3

6 , Clipped” function from Figure 1 satisfies that there exists an η such
that the above is satisfied for every β. We show that for (β, L)-inlier-distributions, CatoniEsti-

matorLocal improves upon the Gaussian rate by a ≈
(
1− ηL

4

)
-factor when using a ψ function

satisfying the above, given an initial estimate µ0 of the mean.
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Lemma 3.4 (Improved Rate for One-Dimensional Inlier-Light Distributions). For every constant
0 < β,L < 1, C1 > 1 there exists constant C2 > 1 such that the following holds. Suppose ψ satisfies

Assumption 3.3, n > C2 log
1
δ , and we have an initial estimate µ0 with |µ0 − µ|≤ C1σ

√
log 1

δ
n . We

let T = σ
√

n
2 log 2

δ

.

Given n one-dimensional iid samples x1, . . . , xn with mean µ and variance at most σ2, if xi is
(β, L)-inlier-light, then, with probability 1−δ, the output µ̂ of Algorithm CatoniEstimatorLocal
satisfies

|µ̂− µ| ≤
(
1− ηL

4
+ C2

log 1
δ

n

)
· σ ·

√
2 log 2

δ

n

3.3 Testing Inlier-Light vs. Outlier-Light

Our strategy will be to first test whether our two-dimensional samples come from a distribution
that is inlier-light, or outlier-light, and use an appropriate estimator accordingly. Our tester (Al-
gorithm 2DInlierOutlierLightTesting, described in Appendix B.2) takes in n samples along
with initial estimates µe10 , µ

e2
0 of the mean in directions e1, e2 respectively, and either identifies a

direction ej in which the distribution is inlier-light, or certifies that the distribution is outlier-light
in every direction. Formally,

Lemma 3.5 (Two-dimensional Inlier-Light vs. Outlier-Light Test). For every constant β < 1
8 ,

L > 8β, and C1 > 1, there exists constant C2 > 1 such that the following holds. Suppose n >

C2 log
1
δ and suppose our initial estimates µ

ej
0 satisfy |µej0 − ⟨ej , µ⟩|≤ C1σ

√
log 1

δ
n for j ∈ {1, 2}. We

let T = σ
√

n
2 log 4

δ

.

Given n two-dimensional iid samples x1, . . . , xn with mean µ and covariance Σ ≼ σ2I2, with
probability 1− δ, Algorithm 2DInlierOutlierLightTester satisfies the following.

• If the output is ej, ⟨ej , xi⟩ is (β, L)-inlier-light

• If the output is ⊥, xi is (16β, 16L)-outlier-light. (That is, ⟨xi, w⟩ is (16β, 16L)-outlier-light
for all unit vectors w.)

3.4 Catoni-Based Estimator for Two-Dimensional Inlier-Light Distributions

We recall the standard definition of a ρ-net of vectors over R2:

Assumption 3.6. U is a ρ-net of O(1/ρ) unit vectors such that for every v ∈ S1, there exists a
vector u ∈ U with ∥v − u∥≤ ρ.

If our distribution over R2 is determined to be inlier-light in some direction ej , we will make
use of the following 2-dimensional estimator.

9



Algorithm 2 2DInlierLightEstimator

Input parameters:

• Failure probability δ, Two-dimensional iid samples x1, . . . , xn, ψ function, Scaling parameter
T , Inlier-Outlier-Ligtness parameters β, L, Approximation parameters 0 < ξ, τ < 1, Set of
unit vectors U , Initial estimates µu0 for u ∈ U .

1. For every u ∈ U , run Algorithm 1DInlierOutlierTester with samples ⟨u, x1⟩, . . . , ⟨u, xn⟩,
Failure probability δ

4|U | , initial estimate µu0 , and Lightness parameters β/32, L/32. If the

output is “INLIER-LIGHT”, let αu = 1−Θ(τ). Otherwise, let αu = 1 + ξ.

2. For every u ∈ U , run Algorithm CatoniEstimatorLocal with samples ⟨u, x1⟩, . . . , ⟨u, xn⟩,
initial estimate µu0 , and failure probability δ

4|U | and let the mean estimate obtained be µ̂u.

3. For each u ∈ U , define set Su =

{
w : |⟨u,w⟩ − µ̂u|≤ αu · σ

√
2 log 2

δ
n

}
. Let S be the convex set

given by S := ∩u∈USu.

4. Consider the minimum enclosing ball of set S and return its center as the mean estimate µ̂.

2DInlierLightEstimator takes in a ρ-net U , in addition to the iid samples x1, . . . , xn ∈ R2

and failure probability δ. For each net vector u ∈ U , it tests whether the distribution of the ⟨u, xi⟩ is
inlier-light, computes an estimate of the mean in direction u using our 1-d estimator for inlier-light
distributions, and assigns a confidence interval accordingly. The final estimate µ̂ is the center of
the minimum enclosing ball of the points that satisfy all |U | confidence intervals. We show:

Lemma 3.7 (Two-Dimensional Estimator for Inlier-Light Distributions). For every constant 0 <
β < 1/32, L > 32β, and C > 1, there exist constants ξ, τ < 1 such that the following holds. Suppose

n > Oξ

(
log 1

δ

)
, and we have that |µu0 − ⟨u, µ⟩|≤ Cσ

√
log 1

δ
n for all u ∈ U . Suppose further that ψ

satisfies Assumption 3.3 for parameter β/8 and that U satisfies Assumption 3.6 for ρ = δΘ(ξ). Let
T = σ

√
n

2 log 2
δ

.

Given n two-dimensional iid samples x1, . . . , xn with mean µ and covariance Σ ≼ σ2I2 such that
⟨ek, xi⟩ is (β, L)-inlier-light, with probability 1− δ, Algorithm 2DInlierLightEstimator returns
a mean estimate µ̂ with

∥µ̂− µ∥≤ (1− τ) · JUNG2 · σ

√
2 log 2

δ

n
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3.5 Trimmed-Mean-Based Estimator for Two-Dimensional Outlier-Light Dis-
tributions

Algorithm 3 2DOutlierLightEstimator

Input parameters:

• Failure probability δ, Two-dimensional samples x1, . . . , xn, Initial estimates µe10 , µ
e2
0 , Scaling

parameter T , Approximation parameters 0 < β, ξ < 1.

1. Consider the subset of samples X ′ obtained by throwing out any sample xi with |⟨ej , xi⟩ −
µ
ej
0 |> √

βT for either e1 or e2. Return estimate µ̂ = 1
n

∑
i∈X′ xi.

For outlier-light distributions, 2DOutlierLightEstimator computes a simple trimmed-mean
estimate, throwing out any point more than

√
βT away from the initial mean estimate in the e1, e2

directions.

Lemma 3.8 (Two-Dimensional Estimator for Outlier-Light Distributions). Define T = σ
√

n
2 log 2

δ

.

For any constant β < 1, let x1, . . . , xn be iid samples from a two-dimensional (β,O(β))-outlier-
light distribution with mean µ and covariance Σ ≼ σ2I2. Then, the output of Algorithm 2DOut-

lierLightEstimator when given as input initial estimates µj0 satisfying |µj0−⟨ej , µ⟩|≤ O

(
σ

√
log 1

δ
n

)
outputs estimate µ̂ satisfying with probability 1− δ,

∥µ̂− µ∥≤
(
1 +O

(√
β
))

·OPT1

3.6 Final Two-Dimensional Estimator

Finally, we put together the previous parts to obtain our final Algorithm 2DHeavyTailedEsti-
mator.
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Algorithm 4 2DHeavyTailedEstimator

Input parameters:

• Failure probability δ, Two-dimensional samples x1, . . . , xn, ψ function, Scaling parameter T ,
Inlier-Outlier-Lightness parameters β, L, Approximation parameters 0 < ξ, τ < 1, set of unit
vectors U

1. Using Θ(ξ)n samples, compute Median-of-Means estimates µ
ej
0 of the one-dimensional samples

⟨ej , xi⟩ with failure probability δ
4(|U |+2) for each j ∈ {1, 2}.

2. Using Θ(ξ)n samples, compute Median-of-Means estimates µu0 of the one-dimensional samples
⟨u, xi⟩ with failure probability δ

4(|U |+2) for each u ∈ U .

3. Let the set of the remaining (1 − Θ(ξ))n samples be X ′. Run Algorithm 2DInlierOut-
lierLightTester using failure probability δ/4, the samples in X ′ and initial estimates
µe10 , µ

e2
0 .

4. If the output of 2DInlierOutlierLightTester is some ej , run 2DInlierLightEstima-
tor using failure probability δ/8, the samples in X ′, and the initial estimates µu0 , and output
its mean estimate µ̂.

5. If instead the output of 2DInlierOutlierLightTester is ⊥, run 2DOutlierLightEsti-
mator using failure probability δ/4, the samples in X ′ and initial estimates µe10 , µ

e2
0 . Return

its output µ̂.

Theorem 3.9 (Final Two-Dimensional Estimator). For any sufficiently small constant τ > 0,
there exist constants 0 < ξ, β, L < 1 such that the following holds. Suppose n > Oξ(log

1
δ ) and

T = σ
√

n
2 log 2

δ

. Suppose the set U is a ρ-net, satisfying Assumption 3.6 for ρ = δΘ(ξ).

Given n two-dimensional samples x1, . . . , xn with mean µ and covariance Σ ≼ σ2I2, with prob-
ability 1− δ, Algorithm 2DHeavyTailedEstimator returns an estimate µ̂ with

∥µ̂− µ∥≤ (1− τ) · JUNG2 · σ

√
2 log 2

δ

n

Proof. First note that by classical results on Median-of-Means [Dar83] and a union bound, for every
vector v ∈ U ∪ {e1, e2}, we have with probability 1 − δ/4,

|µv0 − ⟨v, µ⟩| ≤ O

σ
√

log 1
δ

n


since n > Oξ(log

1
δ ). For the remaining proof, we condition on the above. Now, by a union bound,

there exist constants 0 < β,L < 1, such that by Lemmas 3.5, 3.7 and 3.8, the following events
happen with probability 1 − 3δ/4.

• If the output of Algorithm 2DInlierOutlierLightTester is ej , ⟨ej , xi⟩ is (β, L)-inlier-
light. On the other hand, if the output is ⊥, xi is (8β, 8L)-outlier-light.

12



• If ⟨ej , xi⟩ is (β, L)-inlier-light, Algorithm 2DInlierLightEstimator returns µ̂ with

∥µ̂− µ∥ ≤ (1− 2τ +Θ(ξ)) · JUNG2 · σ

√
2 log 2

δ

n

≤ (1− τ) · JUNG2 · σ

√
2 log 2

δ

n

• If xi is (8β, 8L)-outlier-light, for L = O(β), Algorithm 2DOutlierLightEstimator returns
µ̂ with

∥µ̂− µ∥≤
(
1 +O

(√
β
))

· σ

√
2 log 1

δ

n

So, with probability 1 − δ in total, for β small enough, Algorithm 2DHeavyTailedEstimator
returns estimate µ̂ with

∥µ̂− µ∥≤ (1− τ) · JUNG2 · σ

√
2 log 2

δ

n

4 Open Questions

Our work suggests a number of exciting avenues for future research. Some of these are:

• What is the sharp rate for heavy tailed estimation when log 1
δ ≫ d? Our work establishes

that it is not achieved by the naive strategy of aggregating one-dimensional estimates. Is it
possible to achieve the Gaussian rate?

• Our upper and lower bounds are statistical—what about polynomial-time estimation? What
are the sharp constants achievable, and is there a computational-statistical tradeoff? In
particular, for large d no estimator achieving even the JUNGd ≈

√
2 factor loss is known—

current polynomial-time estimators [Hop20, CFB19] rely on the median-of-means framework,
which loses constants even in one dimension.

• What are the sharp rates for other estimation problems under heavy-tailed noise? For in-
stance, covariance estimation or regression?
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[NY83] Arkadij Semenovič Nemirovsky and David Borisovich Yudin. Problem complexity and
method efficiency in optimization. Applied Mathematics, Vol.3 No.10A, 1983.

[Was04] Larry Wasserman. All of statistics: a concise course in statistical inference, volume 26.
Springer, 2004.

[WMS14] Dennis Wackerly, William Mendenhall, and Richard L Scheaffer. Mathematical statis-
tics with applications. Cengage Learning, 2014.

A Vanilla One-Dimensional Catoni Estimator

We first describe a variant of Catoni’s one-dimensional estimator [Cat12] for bounded variance
distributions.

Assumption A.1. ψ satisfies that for all x,

− log

(
1− x+

x2

2

)
≤ ψ(x) ≤ log

(
1 + x+

x2

2

)
Lemma A.2. For every constant C1 > 1 there exists constant C2 > 1 such that the following holds.
Suppose ψ satisfies Assumption A.1, n > C2 log

1
δ , and we have an initial estimate µ0 with |µ0−µ|≤

C1σ

√
log 1

δ
n . We let T = σ

√
n

2 log 2
δ

. Given n one-dimensional iid samples x1, . . . , xn with mean µ

and variance at most σ2, with probability 1−δ, the output µ̂ of Algorithm CatoniEstimatorLocal
satisfies

|µ̂− µ| ≤
(
1 + C2

log 1
δ

n

)
· σ ·

√
2 log 2

δ

n
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Algorithm 1 CatoniEstimatorLocal

Input parameters:

• Failure probability δ, One-dimensional iid samples x1, . . . , xn, Initial estimate µ0, ψ function,
Scaling parameter T .

1. Compute

r(µ0) =
T

n

n∑
i=1

ψ

(
xi − µ0
T

)

2. Return mean estimate µ̂ = r(µ0) + µ0

Proof. By Assumption A.1, we have

E
[
exp

(n
T
r(µ0)

)]
=

n∏
i=1

E
[
exp

(
ψ

(
xi − µ0
T

))]

≤
n∏

i=1

E
[(

1 +
xi − µ0
T

+
(xi − µ0)

2

2T 2

)]
=

(
1 +

µ− µ0
T

+
1

2T 2
·
[
σ2 + (µ− µ0)

2
])n

≤ exp
(n
T
(µ− µ0) +

n

2T 2
·
[
σ2 + (µ− µ0)

2
])

So, by Markov’s inequality, for T = σ
√

n
2 log 2

δ

, we have

Pr

r(µ0) ≥ (µ− µ0) + σ ·

√
2 log 2

δ

n

(
1 + C2

log 1
δ

n

)
≤ exp

 n

2T 2
·
[
σ2 + (µ− µ0)

2
]
− n

T
· σ ·

√
2 log 2

δ

n

(
1 + C2

log 1
δ

n

)
≤ exp

(
− log

2

δ

)
= δ/2

since |µ− µ0|≤ C1σ

√
log 1

δ
n , for C2 ≥ Ω(C2

1 ).
Similarly, for the lower tail, the MGF is given by

E
[
exp

(
−n

T
r(θ0)

)]
≤

n∏
i=1

E
[(

1− xi − µ0
T

+
(xi − µ0)

2

2T 2

)]
≤ exp

(
−n

T
(µ− µ0) +

n

2T 2

[
σ2 + (µ− µ0)

2
])
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So, by Markov’s inequality, for T = σ ·
√

n
2 log 2

δ

, we have

Pr

r(µ0) ≤ (µ− µ0)− σ ·

√
2 log 2

δ

n

(
1 + C2

log 1
δ

n

) ≤ δ/2

Then, taking a union bound gives the claim.

Algorithm 5 CatoniEstimator

Input parameters:

• Failure probability δ, One-dimensional iid samples x1, . . . , xn, ψ function, Scaling parameter
T , Approximation parameter 0 < ξ < 1.

1. Use the first Θ(ξn) samples to compute the Median-of-Means estimate µ0 with failure prob-
ability δ/2.

2. Return the result µ̂ of Algorithm CatoniEstimatorLocal using initial estimate µ0, and
the remaining (1−Θ(ξ))n samples, and failure probability δ/2.

Theorem A.3. For every constant ξ > 0, suppose n > Oξ(log
1
δ ), ψ satisfies Assumption A.1, and

consider T = σ
√

n
2 log 4

δ

. Given n one-dimensional iid samples x1, . . . , xn with mean µ and variance

at most σ2, with probability 1− δ, the output µ̂ of Algorithm CatoniEstimator satisfies

|µ̂− µ| ≤ (1 + ξ) · σ ·

√
2 log 4

δ

n

Proof. First, by classical results on Median-of-Means [Dar83], µ0 satisfies with probability 1− δ/2,

|µ0 − µ|≤ Cσ

√
log 1

δ

nξ

for some constant C > 0. Then, invoking Lemma 1 using the remaining (1 − Θ(ξ))n samples and
failure probability δ/2 gives the claim.

B Improved Heavy-Tailed Estimator

We will make use of the following notions of “(β, L)-inlier-light” and “(β, L)-outlier-light” distri-
butions throughout this section.

Definition 3.1 ((β, L)-Inlier-Light Distribution). A distribution x over R with variance at most
σ2 is “(β, L)-inlier-light” if:

E
[
(x− µ)21|x−µ|≤βT

]
< (1− L)σ2

for T = σ
√

n
2 log 2

δ

.
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Definition 3.2 ((β, L)-Outlier-Light Distribution). A distribution x over R with variance at most
σ2 is “(β, L)-outlier-light” if:

E
[
(x− µ)21|x−µ|≥βT

]
< Lσ2

for T = σ
√

n
2 log 2

δ

.

A distribution x over Rd is (β, L)-outlier-light if ⟨x,w⟩ is (β, L)-outlier-light for all unit vectors
w.

B.1 Improved One-Dimensional Catoni-Based Estimator when Inlier-Light

The following assumption on ψ functions is stronger than the Catoni requirement, and allows for
a more accurate estimate when a distribution is (β, L)-inlier-light.

Assumption 3.3. ψ satisfies that for all x,

− log

(
1− x+

x2

2

)
≤ ψ(x) ≤ log

(
1 + x+

x2

2

)
Additionally, for constants 0 < β, η < 1, for all |x|≥ β

2 ,

− log

(
1− x+ (1− η)

x2

2

)
≤ ψ(x) ≤ log

(
1 + x+ (1− η)

x2

2

)
There exist ψ functions such that for every β > 0, there exists η > 0 such that Assumption 3.3

is satisfied. One such function is ψ(x) = x− x3/6 for |x| ≤ 1 and ψ(x) = 5
6sign(x) for |x| > 1. For

|x| ≲ 1, there is Θ(x4) flexibility in the choice of ψ(x).

Lemma 3.4 (Improved Rate for One-Dimensional Inlier-Light Distributions). For every constant
0 < β,L < 1, C1 > 1 there exists constant C2 > 1 such that the following holds. Suppose ψ satisfies

Assumption 3.3, n > C2 log
1
δ , and we have an initial estimate µ0 with |µ0 − µ|≤ C1σ

√
log 1

δ
n . We

let T = σ
√

n
2 log 2

δ

.

Given n one-dimensional iid samples x1, . . . , xn with mean µ and variance at most σ2, if xi is
(β, L)-inlier-light, then, with probability 1−δ, the output µ̂ of Algorithm CatoniEstimatorLocal
satisfies

|µ̂− µ| ≤
(
1− ηL

4
+ C2

log 1
δ

n

)
· σ ·

√
2 log 2

δ

n

Proof. By Assumption 3.3, we have

E
[
exp

(n
T
r(µ0)

)]
=

n∏
i=1

E
[
exp

(
ψ

(
xi − µ0
T

))]

=
n∏

i=1

(
E
[
exp

(
ψ

(
xi − µ0
T

))
1|xi−µ0|≤βT/2

]
+ E

[
exp

(
ψ

(
xi − µ0
T

))
1|xi−µ0|>βT/2

])

≤
n∏

i=1

(
1 + E

[
xi − µ0
T

]
+

1

2T 2

(
E
[
(xi − µ0)

2
1|xi−µ0|≤βT/2

]
+ (1− η)E

[
(xi − µ0)

2
1|xi−µ0|>βT/2

]))
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Now, since xi is (β, L)-inlier-light, so that E
[
(xi − µ)21|xi−µ|≤βT

]
< (1− L)σ2, we have

E
[
(xi − µ)21|xi−µ0|≤βT/2

]
≤ E

[
(xi − µ)21|xi−µ|≤βT

]
≤ (1− L)σ2

since |µ− µ0|≤ O

(
σ

√
log 1

δ
n

)
≤ βT/2. So,

E
[
(xi − µ0)

2
1|xi−µ0|≤βT/2

]
+ (1− η)E

[
(xi − µ0)

2
1|xi−µ0|>βT/2

]
≤ (µ− µ0)

2 + E
[
(xi − µ)21|xi−µ0|≤βT/2

]
+ (1− η)E

[
(xi − µ)21|xi−µ0|>βT/2

]
− 2η E

[
(xi − µ)(µ− µ0)1|xi−µ0|>βT/2

]
≤
(
1− ηL

2

)
σ2

since n > C2 log
1
δ . So,

E
[
exp

(n
T
r(µ0)

)]
≤

n∏
i=1

(
1 +

µ− µ0
T

+
σ2

2T 2

(
1− ηL

2

))
≤ exp

(
n · µ− µ0

T
+
nσ2

2T 2

(
1− ηL

2

))
Then, by Markov’s inequality, for T = σ

√
n

2 log 2
δ

,

Pr

r(µ0) ≥ (µ− µ0) +

(
1− ηL

4
+
C2 log

1
δ

n

)
· σ ·

√
2 log 2

δ

n


≤ exp

nσ2
2T 2

(
1− ηL

2

)
− n

T
·
(
1− ηL

4
+
C2 log

1
δ

n

)
· σ ·

√
2 log 2

δ

n


≤ exp

(
− log

2

δ

)
= δ/2

since |µ− µ0|≤ C1σ

√
2 log 1

δ
n , for C2 ≥ Ω(C2

1 ).
Similarly, for the lower tail, the MGF is given by

E
[
exp

(
−n

T
r(µ0)

)]
≤ exp

(
−n · µ− µ0

T
+
nσ2

T 2

(
1− ηL

2

))
so that by Markov’s inequality,

Pr

r(µ0) ≤ (µ− µ0)−
(
1− ηL

4

)
· σ ·

√
2 log 2

δ

n

 ≤ δ/2

for T = σ
√

n
2 log 2

δ

.

Taking a union bound gives the claim.
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B.2 Testing Inlier-Light vs. Outlier-Light

Algorithm 6 1DInlierOutlierLightTester

Input parameters:

• Failure Probability δ, One-dimensional iid samples x1, . . . , xn, Scaling parameter T , Inlier-
Outlier-Lightness parameters β, L, Initial estimate µ0.

1. Compute

B =
1

n

n∑
i=1

(xi − µ0)
2
1|xi−µ0|≤2βT

2. If B ≤ (1− 2L)σ2, return “INLIER-LIGHT”. Otherwise return “OUTLIER-LIGHT”.

Lemma B.1. For every constant β < 1/16, L > 16β and C1 > 1, there exists constant C2 > 1

such that the following holds. Suppose n > C2 log
1
δ , and we have that |µ0 − µ|≤ C1σ

√
log 1

δ
n . We

let T = σ
√

n
2 log 2

δ

.

Given n one-dimensional iid samples x1, . . . , xn, with mean µ and variance at most σ2, with
probability 1− δ, we have that

• If Algorithm 1DInlierOutlierLightTester returns “INLIER-LIGHT”, then xi is (β, L)-
inlier-light,

• If Algorithm 1DInlierOutlierLightTester returns “OUTLIER-LIGHT”, then xi is (4β, 4L)-
outlier-light

Proof. First, note that the variance of (xi −µ)21|xi−µ|≤βT is at most (βTσ)2, and it is bounded by

(βT )2. Thus, by Bernstein’s inequality, since T = σ
√

n
2 log 2

δ

and L > 8β, with probability 1− δ,

∣∣∣∣∣ 1n
n∑

i=1

(xi − µ)21|xi−µ|≤βT − E
[
(x− µ)21|x−µ|≤βT

]∣∣∣∣∣ ≤ βTσ

√
2 log 2

δ

n
+ 2(βT )2

log 2
δ

n

= 2βσ2 ≤ Lσ2/4

and ∣∣∣∣∣ 1n
n∑

i=1

(xi − µ)21|xi−µ|≤4βT − E
[
(x− µ)21|x−µ|≤4βT

]∣∣∣∣∣ ≤ 4βTσ

√
2 log 2

δ

n
+ 8(βT )2

log 2
δ

n

= 8βσ2 ≤ Lσ2

We condition on the above. Now, since |µ0 − µ|≤ C1σ

√
log 1

δ
n ≤ βT

2 , we have

(xi − µ0)
2
1|xi−µ|≤βT ≤ (xi − µ0)

2
1|xi−µ0|≤2βT
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So, since |µ− µ0|≤ C1σ

√
log 1

δ
n , we have, by Cauchy-Schwarz,

1

n

n∑
i=1

(xi − µ)21|xi−µ|≤βT

≤ 1

n

n∑
i=1

(xi − µ0)
2
1|xi−µ0|≤2βT + C2

1σ
2 log

1
δ

n
+ 2C1σ

√
log 1

δ

n
·

√√√√ 1

n

n∑
i=1

(xi − µ0)21|xi−µ0|≤2βT

So, if Algorithm 1DInlierOutlierLightTester returns “INLIER-LIGHT” so that 1
n

∑n
i=1(xi−

µ0)
2
1|xi−µ0|≤2βT ≤ (1− 2L)σ2, then,

1

n

n∑
i=1

(xi − µ)21|xi−µ|≤βT ≤
(
1− 3L

2

)
σ2

for C2 large enough. So, in this case

E
[
(x− µ)21|x−µ|≤βT

]
≤ (1− L)σ2

so that xi is (β, L)-inlier-light, as claimed. For the other case, note that

(xi − µ0)
2
1|xi−µ|≤4βT ≥ (xi − µ0)

2
1|xi−µ0|≤2βT

Again, by Cauchy-Schwarz, since |µ− µ0|≤ C1σ

√
log 1

δ
n ,

1

n

n∑
i=1

(xi − µ)21|xi−µ|≤4βT

≥ 1

n

n∑
i=1

(xi − µ0)
2
1|xi−µ0|≤2βT − C2

1σ
2 log

1
δ

n
− 2C1σ

√
log 1

δ

n
·

√√√√ 1

n

n∑
i=1

(xi − µ0)21|xi−µ0|≤2βT

So, when Algorithm 1DInlierOutlierLightTester returns “OUTLIER-LIGHT” so that 1
n

∑n
i=1(xi−

µ0)
2
1|xi−µ0|≤2βT > (1− 2L)σ2,

1

n

n∑
i=1

(xi − µ)21|xi−µ|≤4βT > (1− 3L)σ2

for C2 large enough. So,

E
[
(x− µ)21|x−µ|≤4βT

]
> (1− 4L)σ2

So, since the variance is at most σ2,

E
[
(x− µ)21|x−µ|>4βT

]
≤ 4Lσ2

so that xi is (4β, 4L)-outlier-light, as claimed.
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Lemma B.2. For every constant β < 1/16, L > 16β, and C1 > 1, there exists constant C2 > 1

such that the following holds. Suppose n > C2 log
1
δ , and we have that |µ0 − µ|≤ C1σ

√
log 1

δ
n . We

let T = σ
√

n
2 log 2

δ

.

Given n one-dimensional iid samples x1, . . . , xn with mean µ and variance at most σ2, with
probability 1− δ, we have that

• If xi is (4β, 4L)-inlier-light, then Algorithm 1DInlierOutlierLightTester returns “INLIER-
LIGHT”.

Proof. The proof is similar to the proof of Lemma B.1. First, note that the variance of (xi −
µ)21|xi−µ|≤4βT is at most (4βTσ)2, and it is bounded by (4βT )2. Thus, by Bernstein’s inequality,

since T = σ
√

n
2 log 2

δ

and L > 16β, with probability 1− δ,

∣∣∣∣∣ 1n
n∑

i=1

(xi − µ)21|xi−µ|≤4βT − E
[
(x− µ)21|x−µ|≤4βT

]∣∣∣∣∣ ≤ 4βTσ

√
2 log 2

δ

n
+ 2(4βT )2

log 2
δ

n

≤ 4βσ2 ≤ Lσ2/4

We condition on the above. Now, since |µ0 − µ|≤ C1σ

√
log 1

δ
n ≤ βT

2 , we have

(xi − µ0)
2
1|xi−µ0|≤2βT ≤ (xi − µ0)

2
1|xi−µ|≤4βT

So, since |µ− µ0|≤ C1σ

√
log 1

δ
n , we have, by Cauchy-Schwarz,

1

n

n∑
i=1

(xi − µ0)
2
1|xi−µ|≤4βT

≤ 1

n

n∑
i=1

(xi − µ)21|xi−µ|≤4βT + C2
1σ

2 log
1
δ

n
+ 2C1σ

√
log 1

δ

n
·

√√√√ 1

n

n∑
i=1

(xi − µ)21|xi−µ|≤4βT

So, if xi is (4β, 4L)-inlier-light so that by the above

1

n

n∑
i=1

(xi − µ)21|xi−µ|≤4βT ≤ (1− 3L)σ2

we have
1

n

n∑
i=1

(xi − µ0)
2
1|xi−µ0|≤2βT ≤ (1− 2L)σ2

so that Algorithm 1DInlierOutlierLightTester returns “INLIER-LIGHT” as claimed.
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Algorithm 7 2DInlierOutlierLightTester

Input parameters:

• Two-dimensional iid samples x1, . . . , xn, Scaling parameter T , Inlier-Outlier-Lightness pa-
rameters β, L, Initial estimates µe10 , µ

e2
0 .

1. For each j ∈ {1, 2}, run Algorithm 1DInlierOutlierLightTester using samples
⟨ej , x1⟩, . . . , ⟨ej , xn⟩ and initial estimate µ

ej
0 .

2. If for both j the output is “OUTLER-LIGHT”, return ⊥. Otherwise, return ej such that the
output for run j was “INLIER-LIGHT”.

Lemma B.3. Suppose x is a distribution over R2 with mean µ and covariance Σ ≼ σ2Id such
that ⟨vj , x⟩ is (β, L)-outlier-light for each j ∈ [2]. Suppose also that |⟨v1, v2⟩|≤ 3/4. Then x is
(4β, 4L)-outlier-light.

Proof. For any w ∈ S1, there is some j ∈ {1, 2} with ⟨w, ej⟩ ≥ 1
2 . So,

E
[
⟨w, x− µ⟩21|⟨w,x−µ⟩|>4βT

]
≤ 4E

[
⟨ej , x− µ⟩21|⟨ej ,x−µ⟩|>βT

]
≤ 4Lσ2

as required.

Lemma 3.5 (Two-dimensional Inlier-Light vs. Outlier-Light Test). For every constant β < 1
8 ,

L > 8β, and C1 > 1, there exists constant C2 > 1 such that the following holds. Suppose n >

C2 log
1
δ and suppose our initial estimates µ

ej
0 satisfy |µej0 − ⟨ej , µ⟩|≤ C1σ

√
log 1

δ
n for j ∈ {1, 2}. We

let T = σ
√

n
2 log 4

δ

.

Given n two-dimensional iid samples x1, . . . , xn with mean µ and covariance Σ ≼ σ2I2, with
probability 1− δ, Algorithm 2DInlierOutlierLightTester satisfies the following.

• If the output is ej, ⟨ej , xi⟩ is (β, L)-inlier-light

• If the output is ⊥, xi is (16β, 16L)-outlier-light. (That is, ⟨xi, w⟩ is (16β, 16L)-outlier-light
for all unit vectors w.)

Proof. By Lemma B.1, with probability 1 − 2δ,

• If the output is ej , then ⟨ej , xi⟩ is (β, L)-inlier-light as claimed.

• If the output is⊥, then both ⟨e1, xi⟩ and ⟨e2, xi⟩ are (4β, 4L)-outlier-light. Then, by Lemma B.3,
xi is (16β, 16L)-outlier-light.

Reparameterizing δ gives the claim.

B.3 Properties of Inlier-Lightness

Lemma B.4. Suppose x is a two-dimensional distribution with mean µ and covariance Σ ≼ σ2Id
such that ⟨ei, x⟩ is (β, L)-inlier-light. Consider vectors v1, v2, v3 such that for each j ̸= k, |⟨vj , vk⟩|≤
3
4 . Then, for some j, ⟨vj , x⟩ is (β/8, L/8)-inlier-light.
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Proof. Under the constraints provided, there exists two j ∈ [3] with |⟨vj , ei⟩|≥ 1
2 . Then, there are

two cases

• Var(⟨ei, x⟩) ≤
(
1− L

2

)
σ2. In this case,

Var(⟨vj , x⟩) ≤
3

4
σ2 +

1

2

(
1− L

2

)
σ2

≤
(
1− L

4

)
σ2

so that ⟨vj , x⟩ is (β/4, L/4)-inlier-light.

• Var(⟨ei, x⟩) >
(
1− L

2

)
σ2. In this case, since ⟨ei, x⟩ is (β, L)-inlier-light,

E
[
(⟨ei, x− µ⟩)21|⟨ei,x−µ⟩>βT |

]
≥
(
1− L

2

)
σ2 − E

[
(⟨ei, x− µ⟩)21|⟨ei,x−µ⟩≤βT |

]
≥ L

2
σ2

so that ⟨ei, x⟩ is (β/2, L/2)-outlier-heavy. Then, by (the contrapositive of) Lemma B.3, one
of the two ⟨vj , x⟩ is (β/8, L/8) outlier-heavy, and hence (β/8, L/8)-inlier-light.

B.4 Two-Dimensional Catoni-Based Estimator when Inlier-Light

Algorithm 2 2DInlierLightEstimator

Input parameters:

• Failure probability δ, Two-dimensional iid samples x1, . . . , xn, ψ function, Scaling parameter
T , Inlier-Outlier-Ligtness parameters β, L, Approximation parameters 0 < ξ, τ < 1, Set of
unit vectors U , Initial estimates µu0 for u ∈ U .

1. For every u ∈ U , run Algorithm 1DInlierOutlierLightTester with samples
⟨u, x1⟩, . . . , ⟨u, xn⟩, Failure probability δ

4|U | , initial estimate µu0 , and Lightness parameters

β/32, L/32. If the output is “INLIER-LIGHT”, let αu = 1−Θ(τ). Otherwise, let αu = 1+ ξ.

2. For every u ∈ U , run Algorithm CatoniEstimatorLocal with samples ⟨u, x1⟩, . . . , ⟨u, xn⟩,
initial estimate µu0 , and failure probability δ

4|U | and let the mean estimate obtained be µ̂u.

3. For each u ∈ U , define set Su =

{
w : |⟨u,w⟩ − µ̂u|≤ αu · σ

√
2 log 2

δ
n

}
. Let S be the convex set

given by S := ∩u∈USu.

4. Consider the minimum enclosing ball of set S and return its center as the mean estimate µ̂.

Assumption 3.6. U is a ρ-net of O(1/ρ) unit vectors such that for every v ∈ S1, there exists a
vector u ∈ U with ∥v − u∥≤ ρ.
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This assumption is satisfied by a standard ρ-net in two-dimensions. Then, we have the main
result of this section - that if our distribution is inlier-light in some direction ej , then, Algorithm 2

outputs an estimate that has error smaller than JUNG2 · σ
√

2 log 2
δ

n by a constant factor.

Lemma 3.7 (Two-Dimensional Estimator for Inlier-Light Distributions). For every constant 0 <
β < 1/32, L > 32β, and C > 1, there exist constants ξ, τ < 1 such that the following holds. Suppose

n > Oξ

(
log 1

δ

)
, and we have that |µu0 − ⟨u, µ⟩|≤ Cσ

√
log 1

δ
n for all u ∈ U . Suppose further that ψ

satisfies Assumption 3.3 for parameter β/8 and that U satisfies Assumption 3.6 for ρ = δΘ(ξ). Let
T = σ

√
n

2 log 2
δ

.

Given n two-dimensional iid samples x1, . . . , xn with mean µ and covariance Σ ≼ σ2I2 such that
⟨ek, xi⟩ is (β, L)-inlier-light, with probability 1− δ, Algorithm 2DInlierLightEstimator returns
a mean estimate µ̂ with

∥µ̂− µ∥≤ (1− τ) · JUNG2 · σ

√
2 log 2

δ

n

Proof. First, by Lemma B.2 and a union bound, with probability 1 − δ
4 , for any u ∈ U such that

⟨u, xi⟩ is (β/8, L/8)-inlier-light, Algorithm 1DInlierOutlierLightTester returns “INLIER-
LIGHT”, so that αu = 1−Θ(τ) for all such u.

By Theorem 1 and the union bound, with probability 1 − δ
4 , since |U |= O(1/ρ) = δ−Θ(ξ), we

have that for every u ∈ U ,

|µ̂u − ⟨u, µ⟩| ≤ (1 +O(ξ)) · σ ·

√
2 log 1

ρ + 2 log 2
δ

n

≤ (1 + ξ) · σ ·

√
2 log 2

δ

n

Similarly, for every u such that ⟨u, xi⟩ is (β/8, L/8)-inner-light, by Theorem A.3 and a union bound,
with probability 1− δ

4 ,

|µ̂u − ⟨u, µ⟩| ≤
(
1− ηL

4
+ ξ

)
· σ

√
2 log 2

δ

n

So, for constant ξ sufficiently small, there is a constant τ > 0 with

|µ̂u − ⟨u, µ⟩| ≤ (1−Θ(τ)) · σ

√
2 log 2

δ

n

With probability 1− δ, all the above conditions hold, so that for any u ∈ U that has ⟨u, xi⟩ that is
(β/8, L/8)-inner-light, we have that µ̂u has smaller error than in the general case, and αu captures
this error. We condition on this event.

Then, if R is the circumradius of the set S in Algorithm 2DInlierLightEstimator, its center
µ̂ satisfies for every u ∈ U ,

|⟨u, µ̂− µ⟩|≤ R
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since by definition, the true mean µ lies in S. So,

∥µ̂− µ∥= sup
w:∥w∥=1

⟨w, µ̂− µ⟩ ≤ sup
v∈U∪{ej}

⟨v, µ̂− µ⟩+ ρ∥µ̂− µ∥≤ R+ ρ∥µ̂− µ∥

so that

∥µ̂− µ∥≤ (1 +O(ρ))R = (1 + ξ)R

since ρ = δΘ(ξ) ≤ ξ. So, it suffices to bound R by (1 − Θ(τ)) · JUNG2 · σ
√

2 log 2
δ

n , since for τ a
small enough constant, this would imply

∥µ̂− µ∥≤ (1− τ) · JUNG2 · σ

√
2 log 2

δ

n

as required.
To do this, note that if we consider the set S along with its circumcircle, since S is convex,

there must be a triangle contained in S whose vertices touch the circumcircle. Let v1, v2, v3 be the
unit vectors aligned with the sides of this triangle. There are two cases:

• There exists a pair i ̸= j such that |⟨vi, vj⟩|> 3
4 . In this case, R must be small. In

particular, since the diameter of S is at most 2·(1+ξ)·σ
√

2 log 2
δ

n each side length corresponding
to vi, vj , say ai, aj must be at most this quantity. But by law of cosines, the other side must

have length at most 2√
2
(1+ξ) ·σ

√
2 log 2

δ
n . But for a triangle with sides a, b, c, the circumradius

is equal to abc√
(a+b+c)(b+c−a)(c+a−b)(a+b−c)

, which is monotonic in a, b, c. So, we have

R ≤ 2
√
2√
7

· (1 + ξ) · σ

√
2 log 2

δ

n
≤ (1−Θ(τ)) ·

√
4

3
· σ

√
2 log 2

δ

n
= (1−Θ(τ)) · JUNG2 · σ

√
2 log 2

δ

n

as required.

• For every pair i ̸= j, |⟨vi, vj⟩|≤ 3
4 . Then, since ⟨ek, xi⟩ is (β, L)-inlier-light, by Lemma B.4,

there exists an l ∈ [3] such that vl is (β/8, L/8)-inlier-light. Then, by the above, we have
that αvl = 1 − Θ(τ) so that the side of the triangle corresponding to vl has length at most

(1−Θ(τ)) ·σ
√

2 log 2
δ

n . But this means that R, the circumradius of a triangle with all two side

lengths bounded by (1 + ξ) · σ
√

2 log 2
δ

n , and the third bounded by (1 −Θ(τ)) · σ
√

2 log 2
δ

n has

R ≤ (1−Θ(τ)) · σ

√
2 log 2

δ

n

as required.
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B.5 Two-Dimensional Trimmed Mean Estimator when Outlier-Light

Algorithm 3 2DOutlierLightEstimator

Input parameters:

• Failure probability δ, Two-dimensional samples x1, . . . , xn, Initial estimates µe10 , µ
e2
0 , Scaling

parameter T , Approximation parameters 0 < β, ξ < 1.

1. Consider the subset of samples X ′ obtained by throwing out any sample xi with |⟨ej , xi⟩ −
µ
ej
0 |> √

βT for either e1 or e2. Return estimate µ̂ = 1
n

∑
i∈X′ xi.

Lemma B.5. For any constants β, L < 1, suppose x is a (β, L)-outlier-light distribution with mean
µ and variance at most σ2. Then, for T = σ

√
n

2 log 2
δ

, we have the following.

∣∣∣E [x1|x−µ|≤2
√
βT

]
− µ

∣∣∣ ≲ L√
β
·OPT1

Proof. We have ∣∣∣E [x1|x−µ|≤2
√
βT

]
− µ

∣∣∣ ≤ ∣∣∣E [x1|x−µ|>2
√
βT

]∣∣∣
≤ E

[
|x|1|x−µ|>2

√
βT

]
=

∫ ∞

2
√
βT

Pr [|x− µ|≥ t] dt

Note that Pr [|x− µ|≥ t] ≲ Lσ2

t2
for t > 2

√
βT since x is (β, L)-outlier-light, so that

E
[
(x− µ)21|x−µ|>2

√
βT

]
≤ E

[
(x− µ)21|x−µ|>βT

]
< Lσ2

So,

|E
[
x1|x−µ|≤2

√
βT

]
− µ| ≤

∫ ∞

2
√
βT

Lσ2

t2
dt

≲
Lσ2√
βT

≲
L√
β
· σ

√
2 log 1

δ

n

Lemma B.6. Define T = σ
√

n
2 log 2

δ

. Let x be a one-dimensional distribution supported in [−2
√
βT, 2

√
βT ].

Let w ∈ {0, 1} be jointly distributed with x such that:

• Pr[w = 0] ≤ O
(
log 1

δ
n

)
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Then,

|E[wx]− E[x]|≲ β ·OPT1

Proof. Since w ∈ {0, 1},

|E[wx]− E[x]| = |E[x1w=0]|≤ 2
√
βT ·O

(
log 1

δ

n

)
≲
√
βσ

√
2 log 1

δ

n

Lemma B.7. Define T = σ
√

n
2 log 2

δ

. Let x be a one-dimensional (β, L)-outlier-light distribution

with mean µ and variance at most σ2. Let w ∈ {0, 1} be jointly distributed with x such that:

• Pr[w = 0] ≤ O
(
log 1

δ
n

)
• w = 0 if |x− µ| > 2

√
βT

Then with 1− δ probability, given n independent samples (xi, wi), we have∣∣∣∣∣ 1n
n∑

i=1

wixi − µ

∣∣∣∣∣ ≤
(
1 +O

(√
β +

L√
β

))
·OPT1.

Proof. First, note that

|E [wx]− µ| =
∣∣∣E [wx1|x−µ|≤2

√
βT

]
− µ

∣∣∣
≤
∣∣∣E [wx1|x−µ|≤2

√
βT

]
− E

[
x1|x−µ|≤2

√
βT

]∣∣∣+ ∣∣∣E [x1|x−µ|≤2
√
βT

]
− µ

∣∣∣
≲

(√
β +

L√
β

)
·OPT1

by Lemma B.5 and B.6.
Now since |wx− µ|≤ 2

√
βT , and its variance is at most σ2, by Bernstein’s inequality,∣∣∣∣∣ 1n

n∑
i=1

wixi − E [wx]

∣∣∣∣∣ ≤ σ

√
2 log 1

δ

n
+O

(√
βT · log

1
δ

n

)

≤
(
1 +O(

√
β)
)
· σ

√
2 log 1

δ

n

So, the claim follows.

Lemma 3.8 (Two-Dimensional Estimator for Outlier-Light Distributions). Define T = σ
√

n
2 log 2

δ

.

For any constant β < 1, let x1, . . . , xn be iid samples from a two-dimensional (β,O(β))-outlier-
light distribution with mean µ and covariance Σ ≼ σ2I2. Then, the output of Algorithm 2DOut-

lierLightEstimator when given as input initial estimates µj0 satisfying |µj0−⟨ej , µ⟩|≤ O

(
σ

√
log 1

δ
n

)
outputs estimate µ̂ satisfying with probability 1− δ,

∥µ̂− µ∥≤
(
1 +O

(√
β
))

·OPT1
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Proof. We will let w ∈ {0, 1} be jointly distributed with x such that w = 1 iff x would not be
thrown out in Algorithm 2DOutlierLightEstimator.

• w = 0 if |⟨u, x−µ⟩|> 2
√
βT for any u ∈ S1. Since |µj0−⟨ej , µ⟩|≤ O

(
log 1

δ
n

)
≤

√
βT
4 , and since

any sample with |⟨ej , xi⟩ − µj0|>
√
βT is thrown out, w = 0 for any x with |⟨ej , x⟩ − ⟨ej , µ⟩|>

5
√
βT
4 .

Furthermore, for any u ∈ S1, we have that if |⟨u, x⟩−⟨u, µ⟩|> 2
√
βT , then, for some j ∈ {1, 2},

|⟨ej , x⟩ − ⟨ej , µ⟩|≥
1√
2
|⟨u, x⟩ − ⟨u, µ⟩|>

√
2βT >

5
√
βT

4

so that w = 0 for any such x. So, w satisfies that w = 0 if |⟨u, x− µ⟩|> 2
√
βT .

• Pr[w = 0] ≤ O
(
log 1

δ
n

)
. Since x is (β,O(β))-outlier-light, which means that E [|⟨u, x− µ⟩|≥ βT ] ≲

βσ2 for every u ∈ S1, we have that

Pr
[
|⟨u, x− µ⟩|≥ 2

√
βT
]
≤ Pr [|⟨u, x− µ⟩|≥ βT ] ≲

βσ2

β2T 2
≲

log 1
δ

n

So, since |µej0 − ⟨ej , µ⟩|≤ O
(
log 1

δ
n

)
≤ √

βT , we have

Pr
[
|⟨ej , x− µ

ej
0 ⟩|≥

√
βT
]
≤ Pr

[
|⟨ej , x− µ⟩|≥ 2

√
βT
]
≲

log 1
δ

n

so that Pr[w = 0] ≲
log 1

δ
n .

Now, let U be a ρ-net as in Assumption 3.6, for ρ = δΘ(
√
β). By Lemma B.7 and union bound,

with probability 1 − δ, for every u ∈ U simultaneously, and the estimate µ̂ returned by Algo-
rithm 2DOutlierLightEstimator,

|⟨u, µ̂− µ⟩| ≤
(
1 +O

(√
β
))

· σ

√
2 log 2|U |

δ

n

=
(
1 +O(

√
β)
)
· σ ·

√
2 log 2

δ

n

Then, we have

∥µ̂− µ∥ = sup
v:∥v∥=1

|⟨v, µ̂− µ⟩|

≤ sup
u∈U

|⟨u, µ̂− µ⟩|+ ρ∥µ̂− µ∥

≤
(
1 +O

(√
β
))

· σ

√
2 log 2

δ

n
+ δΘ(

√
β)∥µ̂− µ∥

so that

∥µ̂− µ∥≤
(
1 +O

(√
β
))

· σ

√
2 log 2

δ

n

as claimed.
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B.6 Final Improved Two-Dimensional Estimator

Algorithm 4 2DHeavyTailedEstimator

Input parameters:

• Failure probability δ, Two-dimensional samples x1, . . . , xn, ψ function, Scaling parameter T ,
Inlier-Outlier-Lightness parameters β, L, Approximation parameters 0 < ξ, τ < 1, set of unit
vectors U

1. Using Θ(ξ)n samples, compute Median-of-Means estimates µ
ej
0 of the one-dimensional samples

⟨ej , xi⟩ with failure probability δ
4(|U |+2) for each j ∈ {1, 2}.

2. Using Θ(ξ)n samples, compute Median-of-Means estimates µu0 of the one-dimensional samples
⟨u, xi⟩ with failure probability δ

4(|U |+2) for each u ∈ U .

3. Let the set of the remaining (1 − Θ(ξ))n samples be X ′. Run Algorithm 2DInlierOut-
lierLightTester using failure probability δ/4, the samples in X ′ and initial estimates
µe10 , µ

e2
0 .

4. If the output of 2DInlierOutlierLightTester is some ej , run 2DInlierLightEstima-
tor using failure probability δ/8, the samples in X ′, and the initial estimates µu0 , and output
its mean estimate µ̂.

5. If instead the output of 2DInlierOutlierLightTester is ⊥, run 2DOutlierLightEsti-
mator using failure probability δ/4, the samples in X ′ and initial estimates µe10 , µ

e2
0 . Return

its output µ̂.

Theorem 3.9 (Final Two-Dimensional Estimator). For any sufficiently small constant τ > 0,
there exist constants 0 < ξ, β, L < 1 such that the following holds. Suppose n > Oξ(log

1
δ ) and

T = σ
√

n
2 log 2

δ

. Suppose the set U is a ρ-net, satisfying Assumption 3.6 for ρ = δΘ(ξ).

Given n two-dimensional samples x1, . . . , xn with mean µ and covariance Σ ≼ σ2I2, with prob-
ability 1− δ, Algorithm 2DHeavyTailedEstimator returns an estimate µ̂ with

∥µ̂− µ∥≤ (1− τ) · JUNG2 · σ

√
2 log 2

δ

n

Proof. First note that by classical results on Median-of-Means [Dar83] and a union bound, for every
vector v ∈ U ∪ {e1, e2}, we have with probability 1 − δ/4,

|µv0 − ⟨v, µ⟩| ≤ O

σ
√

log 1
δ

n


since n > Oξ(log

1
δ ). For the remaining proof, we condition on the above. Now, by a union bound,

there exist constants 0 < β,L < 1, such that by Lemmas 3.5, 3.7 and 3.8, the following events
happen with probability 1 − 3δ/4.
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• If the output of Algorithm 2DInlierOutlierLightTester is ej , ⟨ej , xi⟩ is (β, L)-inlier-
light. On the other hand, if the output is ⊥, xi is (8β, 8L)-outlier-light.

• If ⟨ej , xi⟩ is (β, L)-inlier-light, Algorithm 2DInlierLightEstimator returns µ̂ with

∥µ̂− µ∥ ≤ (1− 2τ +Θ(ξ)) · JUNG2 · σ

√
2 log 2

δ

n

≤ (1− τ) · JUNG2 · σ

√
2 log 2

δ

n

• If xi is (8β, 8L)-outlier-light, for L = O(β), Algorithm 2DOutlierLightEstimator returns
µ̂ with

∥µ̂− µ∥≤
(
1 +O

(√
β
))

· σ

√
2 log 1

δ

n

So, with probability 1 − δ in total, for β small enough, Algorithm 2DHeavyTailedEstimator
returns estimate µ̂ with

∥µ̂− µ∥≤ (1− τ) · JUNG2 · σ

√
2 log 2

δ

n

B.7 Improved d-Dimensional Estimator

Notation. For x ∈ Rd and subspace W , we will let x∥W mean the projection of x onto W .

Assumption B.8. V ⊂
(
Sd−1

)2
is a set of size

(
1
ζ

)O(d)
of pairs of vectors (v1, v2) with W the

subspace spanned by vectors in pair j. Let W⊥ be the subspace orthogonal to W . Then, for any
x ∈ Rd, there exists (v1, v2) ∈ V such that for the subspace W spanned by (v1, v2), ∥x∥W⊥∥≤ ζ∥x∥.

Note that for every ζ < 1 and d, there exists a set V satisfying the above assumption. In

particular, if we let Z ⊂ Rd be a ζ-net of size
(
1
ζ

)O(d)
, and then let V ⊂ (Rd)2 be the set of pairs

(z, w) for each z ∈ Z and any vector w orthogonal to z, then V satisfies Assumption B.8.
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Algorithm 8 HighDimensionalHeavyTailedEstimator

Input parameters:

• Failure probability δ, d-dimensional samples x1, . . . , xn, Covariance bound σ2Id.

1. Let β, L, ξ, τ, ζ be sufficiently small universal constants as given by Theorem 1.1 and 3.9. Let

ψ be a function Assumption 3.3. Let T = σ

√
log 2

δ
n . Let U ⊂ R2 satisfy Assumption 3.6 for

ρ = δΘ(ξ), and let V ⊂ (Rd)2 satisfy Assumption B.8.

2. For each pair of vectors (v1, v2) ∈ V , let W be the subspace spanned by them. Let x∥W be
the projection of vector x onto W .

3. For each (v1, v2) ∈ V with associated subspace W , run Algorithm 4 using samples
x1∥W , . . . , xn∥W with failure probability δ/|V |, and approximation parameters ξ,Θ(τ), and
let the output be two-dimensional mean estimate µ̂W .

4. For each (v1, v2) ∈ V with associated subspace W , consider the set S(v1,v2) ={
w : ∥w∥W − µ̂W ∥≤ (1−Θ(τ)) · JUNG2 ·

√
2 log 2

δ
n

}
. Let S be the convex set given by

S := ∩(v1,v2)∈V S(v1,v2).

5. Return the center µ̂ of the minimum enclosing ball of the set S as the mean estimate.

Theorem 1.1. There exists constants τ, C > 0 such that the following holds. Let d ≥ 2, and
suppose n ≥ C log 1

δ ≥ C2d. There is an algorithm that takes n samples from a distribution over
Rd with covariance Σ ⪯ σ2I, as well as σ2 and δ, and outputs an estimate µ̂ of the mean µ that
achieves

∥µ̂− µ∥ ≤ (1− τ) · JUNGd · σ

√
2 log 1

δ

n

with 1− δ probability.

Proof. By Theorem 3.9 and a union bound, with probability 1 − δ,

∥µ̂W − µ∥W ∥ ≤ (1−Θ(τ) + ξ) · JUNG2 · σ

√
2 log 1|V |

δ

n

≤ O


√
d log 1

ζ

n

+ (1−Θ(τ) + ξ) · JUNG2 · σ

√
2 log 1

δ

n

≤ (1−Θ(τ)) · JUNG2 · σ

√
2 log 1

δ

n

since n ≥ C2d. Thus, conditioned on the above, µ when projected onto any subspace W spanned
by (v1, v2) ∈ V , lies in S projected onto W . So, by Theorem E.2, for the center µ̂ of the minimum
enclosing ball of S, and any W spanned by (v1, v2) ∈ V ,

∥(µ̂− µ)∥W ∥≤ (1−Θ(τ)) · JUNGd · σ

√
2 log 1

δ

n
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Then, by Assumption B.8, there exists (v1v2) ∈ V with associated subspace W such that

∥(µ̂− µ)∥W⊥∥≤ ζ∥µ̂− µ∥
So,

∥µ̂− µ∥ = ∥(µ̂− µ)∥W ∥+∥(µ̂− µ)∥W⊥∥
∥(µ̂− µ)∥W ∥+ζ · ∥µ̂− µ∥

so that

∥µ̂− µ∥≤ (1− τ) · JUNGd · σ

√
2 log 2

δ

n

for τ sufficiently small.

C Robust Lower bound

Let v1, . . . , vd+1 be the d+1 vertices of a regular d-dimensional simplex centered at the origin, with
∥vi∥ = 1. Then

∑
vi = 0 and ⟨vi, vj⟩ = −1

d for i ̸= j.
For ε ≤ 1

d+1 , define D
∗ be the distribution that is each vi with probability ε, and 0 with the

remaining probability 1− ε(d+ 1) probability. So D∗ has mean 0 and an isotropic variance of

E
x∼D∗

[⟨v1, x⟩2] = ε · 1 + (dε)
1

d2
=
d+ 1

d
ε.

For each j ∈ [d + 1], let Dj be the same as D∗ except replacing vj with −vj . Then Dj has
mean −2εvj . For every direction u ⊥ vj , Dj has the same variance d+1

d ε as D∗; and the variance
in direction vj is

E
x∼D∗

[⟨vj , x⟩2]− E
x∼D∗

[⟨vj , x⟩]2 =
d+ 1

d
ε− 4ε2 <

d+ 1

d
ε.

Thus each Dj has covariance Σ ⪯ d+1
d εI, and TV (D∗, Dj) = ε for all j.

Informally, this means that robust mean estimation, on input (D∗, σ, ε), needs to output a mean
µ̂ that is good for each Dj ; the best it can do is output 0, which has error 2ε for each i. Thus the
error is

2ε =

√
2d

d+ 1

√
2∥Σ∥ε

This constant,
√

2d
d+1 , is JUNGd. More formally, we start with this lemma:

Lemma C.1. Let v1, . . . , vd+1 ∈ Rd be vertices of a regular simplex centered at the origin. Then
for any vector u ∈ Rd.

E
i∈[d+1]

[∥vi − u∥] ≥ ∥v1∥.

Proof. We can write u in barycentric coordinates, u =
∑
aivi for

∑
ai = 1. Then for any permu-

tation π of [d+ 1], we write uπ :=
∑
aπ(i)vi. By symmetry, this satisfies

E
i∈[d+1]

[∥vi − uπ∥] = E
i∈[d+1]

[∥vi − u∥].

By choosing π to be a uniform permutation,

E
i∈[d+1]

[∥vi − u∥] = E
π

E
i∈[d+1]

[∥vi − uπ∥] ≥ E
i∈[d+1]

[∥vi − E
π
[uπ]∥] = E

i∈[d+1]
[∥vi∥] = ∥v1∥.
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Lemma C.2. For every d ≥ 1 and ε ≤ 1
d+1 , every algorithm for robust estimation of d-dimensional

distributions with covariance Σ ⪯ σ2I has error rate

E[∥µ̂− µ∥] ≥ JUNGd ·
√
2σ2ε

on some input distribution.

Proof. Take the distributions D∗, Dj described above, so σ2 = d+1
d ε. Suppose the true distribution

is Dj for a random j ∈ [d+1], and the adversary perturbs each Dj into D
∗, then gives the adversary

samples from D∗. The algorithm’s output µ̂ is independent of j, and has expected error

E[∥µ̂− µ∥] = E
µ̂,j

[∥µ̂− (−2εvj)∥].

By Lemma C.1, this is at least 2ε. Thus

E[∥µ̂− µ∥] ≥ 2ε =

√
2d

d+ 1

√
2σ2ε = JUNGd

√
2σ2ε.

Finally, we remove the restriction that ε ≤ 1
d+1 by applying the above lemma to (1/ε − 1)-

dimensional space.

Theorem 1.2. For every d ≥ 1 and ε ≤ 1
2 , every algorithm for robust estimation of d-dimensional

distributions with covariance Σ ⪯ σ2I has error rate

E[∥µ̂− µ∥] ≥ JUNGd · (1 +O(ε)) ·
√
2σ2ε

on some input distribution, in the population limit.

Proof. If d ≤ 1
ε − 1, this is the same as Lemma C.2. For d > 1

ε − 1, we instead restrict to a
d′ = ⌊1ε − 1⌋-dimensional space before applying Lemma C.2. Thus

E[∥µ̂− µ∥] ≥ JUNGd′ ·
√
2σ2ε

Now,

JUNGd′ =

√
2d′

d′ + 1
=

√
2

√
1− 1

⌊1/ε⌋ ≥
√
2 · (1− ε) ≥ JUNGd · (1− ε).

D Robust Estimation, Upper Bound

The following result is folklore:

Lemma D.1. If X,Y are real-valued variables with Var(X),Var(Y ) ≤ σ2 and TV (X,Y ) ≤ 2ε,
then

E[X]− E[Y ] ≤ 2
√
2σ2ε√

1− 2ε
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Proof. Couple X and Y so that Pr[X ̸= Y ] ≤ 2ε. Then by Cauchy-Schwarz,

E[X − Y ]2 = E[(X − Y )1X ̸=Y ]

≤ E[(X − Y )2]E[12X ̸=Y ]

≤ (Var(X − Y ) + E[X − Y ]2) · 2ε.

Canceling terms, and using that Var(X − Y ) ≤ 2(Var(X) + Var(Y )) ≤ 4σ2,

(1− 2ε)E[X − Y ]2 ≤ 8σ2ε

giving the result.

Theorem 1.3 (Folklore + Jung’s theorem). For every d ≥ 1 and ε ≤ 1
3 , there is an algorithm for

robust estimation of d-dimensional distributions of covariance Σ ⪯ σ2I with error rate

E[∥µ̂− µ∥] ≤ JUNGd · (1 +O(ε)) ·
√
2σ2ε

in the population limit.

Proof. Given the corrupted input distribution D′, take the set of all possible distributions X with
TV (X,D) ≤ ε and Var(X) ≤ σ2, and look at the corresponding means. Let S denote the set of
these candidate means. We know that the uncorrupted distribution lies in the candidate set, so its
mean lies in S.

For any two distributionsX,Y in the candidate set, we have TV (X,Y ) ≤ TV (X,D)+TV (D,Y ) ≤
2ε. Therefore the same holds for any 1-dimensional projections ⟨v,X⟩; in particular, by Lemma D.1,

∥E[X]− E[Y ]∥ = max
∥v∥=1

E[⟨v,X⟩ − ⟨v, Y ⟩] ≤ 2
√
2σ2ε√

1− 2ε

so S has diameter at most 2
√
2σ2ε√
1−2ε

.

Then Jung’s theorem states that the circumcenter of S has distance at most JUNGd ·
√
2σ2ε√
1−2ε

to

each point in S, and in particular to the true mean. Finally, given that ε ≤ 0.3, 1√
1−2ε

< 1+2ε.

E Geometry Results

Theorem E.1 (Jung’s Theorem [Jun01]). Let K ⊂ Rd be a compact set and let D = maxp,q∈K∥p−
q∥2 be the diameter of K. There exists a closed ball with radius

R ≤ D

√
d

2(d+ 1)

that contains K. The boundary case of equality is obtained by the d-simplex.

Theorem E.2 (Generalized Jung’s Theorem [Hen92]). Let K ⊂ Rd be a compact set, and let Ri

be the maximum circumradius of any i-dimensional projection of K. Then, for any 1 ≤ j ≤ i ≤ d,

Ri ≤
√
i(j + 1)

j(i+ 1)
·Rj
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