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Abstract

We study the fundamental problem of estimating the mean of a d-dimensional distribution
with covariance ¥ < 02I; given n samples. When d = 1, [Cat12] showed an estimator with
2log %

error (1 + 0(1)) - o , with probability 1 — §, matching the Gaussian error rate. For
d > 1, a natural estimator outputs the center of the minimum enclosing ball of one-dimensional

. . . 2log 2\ . .
confidence intervals to achieve a 1 —§ confidence radius of |/ 2% -0 < \/% + 1/ ?) , incurring

2d__
d+1

[LV22h] showed an improved estimator matching the Gaussian rate. This raises a natural

1
question: Is the y/-2% loss necessary when the 4/ 210% term dominates?

a factor loss over the Gaussian rate. When the \/g term dominates by a 1og% factor,

d+1
We show that the answer is mo — we construct an estimator that improves over the above
naive estimator by a constant factor. We also consider robust estimation, where an adversary
is allowed to corrupt an e-fraction of samples arbitrarily: in this case, we show that the above

2d
d+1

strategy of combining one-dimensional estimates and incurring the -factor is optimal in

the infinite-sample limit.
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1 Introduction

Mean estimation is perhaps the simplest statistical estimation problem: given samples x1,...,x, ~
D for some d-dimensional probability distribution D, estimate the mean p of D. If z is Gaussian
with covariance ¥ < 021, then the empirical mean is the optimal estimator. It satisfies

R d 2log &
-l <o (24208 )
n n

with probability 1 —d. Even if x is not Gaussian, for any fixed (D, d,d), as n — oo the central limit
theorem shows that the empirical mean achieves the Gaussian rate (1). But when the distribution,
dimension, or failure probability can vary with n, more sophisticated estimators are needed to get
good rates. If the distribution has outliers—large, rare events—the empirical mean can perform
very badly.

In one dimension, the Median-of-Means estimate | , , ] is the classic way
to get subgaussian rates with minimal assumptions on the distribution. For any 1-dimensional

o ) samples

distribution D of variance o2, the median (over ©(log 1) batches) of means (of © (logi
é

log &
A-u<0|o |25
n

with 1 — § probability, i.e., it achieves the Gaussian rate (1) up to constant factors. But such
constants are important in statistical estimation: statistics texts, for example | , ,

, |, discuss asymptotic relative efficiency of the mean over the median (and asymptotic
optimality of maximum-likelihood estimators in general) as an important consideration in choosing

per batch) satisfies

an estimator—in this case, the asymptotic efficiency of the mean results in a \/% factor smaller
error bound in the Gaussian case, leading to =~ 36% lower sample complexity. As a result, many
practitioners use the mean, and then are vulnerable to outliers. It is therefore important to have
estimators that are as efficient as possible, while still working without strong assumptions on the
data distribution.

To address this, | | developed a 1-dimensional mean estimator that is tight up to 1 + o(1)
factors: for n > log %, it gives error

R 2log +
i —pl < (1+0(1))'U\/T67

matching the Gaussian rate (1). Catoni’s estimator requires knowledge of the variance o?; this
requirement was removed by | |, at a cost of a larger o(1) term. Even the Median-of-Means-

style O(o - y/log 1 /n)) guarantee is information-theoretically impossible if n < log 3 | ]

It is open whether the Catoni-style (1 + o(1)) guarantee can be achieved when n = ©(log 3). We
henceforth assume n > log %.

High-dimensional mean estimation. In dimension d > 1, naively applying a 1-dimensional
dlog%

- . Over

estimator to the coordinates independently leads to the suboptimal rate O ( o -

the past few years, a number of works in statistics and theoretical computer science have developed



better estimators | , ) |, matching the Gaussian rate (1) up to constant factors.
But as with d = 1, we can ask: what constant factors are achievable, and in particular, can the
Gaussian rate (1) be matched up to (1 + o(1))?

There are two terms in (1), and so we will refer to two different constants: the optimal constant

. . 2log +
cq on \/g whenever d > log % and the first term dominates, and the optimal constant cs on 4/ %

when log % > d and the second term dominates. There is also a third regime—when d < log %—but
this regime is quite complicated to analyze. Even in the Gaussian case, the error bound (1) does
not give the tight constant in this regime. For this paper we ignore the intermediate regime.

One can get a natural upper bound on these constants by lifting 1-dimensional estimators to d
dimensions. | ] used a “PAC-Bayes” argument to show that if the Catoni estimator is applied
to every direction u, then every estimate i, of (i, u) has error bounded by the Gaussian rate (1).
The set of possible d-dimensional means p that satisfy all these 1d constraints has diameter twice
this error rate. One can then output the center zi of the minimum enclosing ball of this set. Jung’s

theorem | | states that this loses just a constant factor: any set of diameter 2 is enclosed in a
ball of radius JUNG := 1/ 2% < v/2. Therefore

X d 21og &
|4 —pll < JUNGq-(1+0(1))o \/;—F\/? (2)

and so both ¢4 and ¢s are at most JUNGy < /2. For very large dimension one can do better:
[ | showed for d > log2% that the Gaussian rate (1) can be matched precisely, so ¢q = 1 for
such large d.

Our contributions: heavy-tailed estimation. Our main result gives an algorithm with a
strictly better constant factor than in (2) when log% > d and d > 2—that is, we show that cs is
strictly smaller than JUN Gy for all d > 2.

Theorem 1.1. There exists constants T,C > 0 such that the following holds. Let d > 2, and
suppose n > Clog% > C2%d. There is an algorithm that takes n samples from a distribution over
R? with covariance ¥ < oI, as well as 0 and &, and outputs an estimate 1i of the mean p that

achieves
2log +
A~ ull < (1—7)- JUNGy- oy 28
n

In particular, the limiting constant as d — oo is v/2 — 7 for some 7 > 0.

with 1 — & probability.

Our contributions: robust estimation. A related problem, also extensively studied in theo-
retical computer science over the past decade, is robust mean estimation | |. In robust mean
estimation, the data is initially drawn from a covariance ¥ =< I distribution, but an adversary can
corrupt an arbitrary € fraction of the data points. In this model, estimation error remains even in
the population limit as n — co. In one dimension, the optimal error bound is

(14 0())V/2e.

As with heavy-tailed estimation, one can lift the 1d estimator to higher dimensions: apply
the one-dimensional estimator in every direction, take the intersection of their confidence intervals



to get a set of candidate means, and output the center of the minimum enclosing ball. And as

2d

with heavy-tailed estimation, this loses a factor JUNG4 = \/ 775-

But, unlike with heavy-tailed
estimation, this is tight:

Theorem 1.2. For everyd > 1 and e < %, every algorithm for robust estimation of d-dimensional

distributions with covariance ¥ < oI has error rate
E[l|i — pll] = JUNGg - (1+O(¢)) - V202e
on some input distribution, in the population limit.

As discussed above, this is matched by the (somewhat folklore) algorithm of estimating all 1d
projections and taking the center of the minimum enclosing ball of feasible means:

Theorem 1.3 (Folklore + Jung’s theorem). For every d > 1 and € < %, there is an algorithm for
robust estimation of d-dimensional distributions of covariance ¥ < oI with error rate

Efllz — pll] < JUNGq - (1 + O(¢)) - V202e
i the population limit.

We provide the full proof of Theorem 1.2 in Appendix C and Theorem 1.3 in Appendix D.

Summary. The mean estimation error bound has three terms, corresponding to the dependence
on dimension d, on failure probability ¢, and on robustness e. Lee and Valiant | | showed that
the d-dependent term does not lose a constant factor relative to the Gaussian rate, for sufficiently
large d. We show that the e-dependent term loses exactly the constant JUNG, that arises when
lifting 1-dimensional estimates to d-dimensional estimates, while the d-dependent term is better
than JUNG, times the Gaussian rate, for all d # 1. For the latter result, we construct a novel
high-dimensional mean estimator which goes beyond lifting a one-dimensional estimator.

1.1 Related Work

Heavy-tailed and Robust Estimation. Both settings been extensively studied by the statistics
and theoretical computer science communities; see for example, a recent survey | | and book
[ |. For heavy-tailed estimation, several works have established asymptotic bounds matching
the Gaussian rate for a variety of estimation tasks, including mean estimation | , 1,

covariance estimation | , |, and regression | ]. Similarly, robust estimation has
been studied in a variety of settings, including mean estimation | , |, covari-
ance estimation | |, list-decodable estimation [ , ], and regression | ]

[ , | study rigorous connections between robust and heavy-tailed estimation.

Despite the large body of work on both these models, the algorithms proposed have so far seen
limited adoption in practice. One reason for this is suboptimal constants. Samples can be precious,
and statistics texts often report “asymptotic relative efficiency” of various estimators (similar in
spirit to the constant factors we study here). Since the empirical mean has optimal asymptotic
efficiency, in some texts practitioners are taught to use the mean over the median (despite the
robustness the median provides) if the data “looks” Gaussian via eyeballing | ], since using
the median would require collecting ~ 50% more samples. In one dimension, this is unprincipled
and error prone; in high dimensions, it is not even a viable strategy.



Towards optimal constants. To overcome the above issues and promote adoption, there has
been a flurry of recent work attempting to achieve sharp rates (including constants) for a va-
riety of statistical estimation [ , , , , , , , ,
, | and testing [ , , | tasks. Of these, for heavy-tailed estima-
tion, Catoni | | showed an estimator matching the Gaussian rate in dimension d = 1 when
the variance o is known. This was followed by work that achieved the same rate even when o2 is
unknown | ].
For d > 1, a natural estimator outputs the center of the minimum enclosing ball of the intersec-

tion of one-dimensional confidence intervals. For covariance ¥ < 021y, [ | showed a PAC—BayeS

o /21
argument that implies a 4/ d +1 ([ + o8 6> rate for this estimator, incurring a d +1 fac-

tor over the Gaussian rate. When the \/g term dominates by a Iog% factor, | | showed an

estimator with an improved rate of 0‘\/% , matching the Gaussian rate in this regime. This work

QIOg%
n

term dominates.

shows that the d +1 factor can be improved upon even when the

2 Proof Overview

2.1 Heavy-Tailed Estimator

High-level goal. In one dimension, the optimal error rate for (1 —¢)-probability mean estimation
2log %

iso , which we will call OPTj. In d dimensions, one can apply the one-dimensional bound in
every direction (with either a union bound, or more efficiently with PAC-Bayes | ]) to identify a
set of candidate means of diameter 20 PT +O(o+/d/n); suppose log % >> d, so the high-probability
term 20 PT} dominates Then, Jung’s theorem states that the minimum enclosing ball of this set

has radius at most -OPT) = JUNG4-OPT;. In Theorem 1.1 we show that a better constant

s,
factor is possible.

Our key technical result is a mean estimation algorithm for two dimensions, with error (1 —
7)- JUNGs2 - OPT} = (1 — 7')\[ OPTy for a constant 7 > 0. Given this result, we can lift it

to higher dimensions using a generalization of Jung’s theorem | |: for a dimension-d set S,
if every dimension-k projection has length 2r;, then S is enclosed in a ball of radius ry, - ig%g:
So our (1 — 7) improvement for d = 2 yields a (1 — 7) improvement for all d, and in particular

asymptotic error (1 — 7)v/2 - OPT} rather than /2 - OPT; for d — oo.

Variant of Catoni’s estimator for d = 1. To understand our d = 2 estimator, it’s helpful to
understand how to get the optimal constant for d = 1. In Appendix A we give a simple, 2-page
self-contained analysis of a variant of Catoni’s estimator [ ].

Define T = o /ﬁ, and consider a v function satisfying
o

—log(l—a:—i— 2) w()<log<1+1‘+x22> (3)

such as ¥(r) = z — 23/6 for |z| < V/2, and ¥(z) = f - sign(z) otherwise. We plot this function
below, along with two other functions from [ | s 1sfy1ng the above bound.
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Figure 1: Some % functions satisfying Catoni’s constraints (3)

Suppose we have an initial estimate pg that has small big-O error, but with a large constant
factor—say, the median-of-means estimate on an initial sample of £n points for a small constant &.

1 1
This will have error O¢ <0\/ loi‘s ), which we would like to drive down to OPT} = ¢ 2185 phe

™) .

final estimate is
TIPS U i )
B = Mo n 4= T

Intuitively, T is the threshold for being an outlier: if |z| < T always, then Bernstein’s inequality
will give that the empirical mean achieves (1+ o(1))OPT;. And indeed, T (x/T) =~ x for |z| < T,
so the estimate (4) is close to the empirical mean in this case. On the other hand, elements
|x| > T will only be sampled o(log %) times by Chebyshev’s inequality, so the sample of such
events is completely unreliable for 1 — § failure probability; the influence of such elements on the
estimator (4) is negligible. The challenge is to handle the cases of |z| = ©(T).

The natural approach to show that i concentrates about p is to bound its moment generat-
ing function (MGF). The conditions (3) are precisely what are needed: E[exp(7i)] depends on
Elexp(¢((x — w)/T))], which is controlled by just the mean and variance of x through (3). As we
show in Lemma A.2, this leads to the concentration bound

~ log 3
—p<|1+0 T OPTy
with probability 1 — §.

The estimator (4) we analyze in Appendix A is different from the original Catoni estimator in
that Catoni finds a root of w(%), while our variant approximates this root with essentially one
step of Newton’s method. Our analysis does not handle reuse of samples, so it requires the initial
estimate g to use a small initial sample. This makes our analysis simpler than | ], which is
helpful for the extension we need to get the better constant for d = 2.

A better constant for “inlier-light” distributions. The error of the estimate & is bounded
by the constraints (3). So with a better bound, the estimate would sharpen by a constant factor.
In particular, if we could find a ¢ with

2

“log <1—x+(1—n)”;> < (z) < log <1+x+(1—n)$22> (5)



then the variance term which appears in the MGF argument above would have a leading (1 — n)
factor, giving a better constant. Unfortunately, (3) is not achieved by any function ¢ for all x
simultaneously: both the upper and lower constraints (3) were x — 23/6 & ©(x?), so for any n > 0
if z is small enough, shifting the constraints closer by ©(x?) is impossible.

But, for any 5 > 0, if we restrict attention to x such that |z| > £, the constraints of (3)
do not exactly match, so there exists an n for which (5) is possible for all |z|> 3. We have
already discussed one function satisfying tightened constraint: ¢(z) = x — 23/6 for |z|< /2 and
Y(x) = (\/§ - #) sign(z) otherwise. This is plotted in Figure 1.

As a result of this improved analysis, the Catoni estimate (4) is a constant factor better at
handling the variance caused by = whenever |z| 2> T.

To formalize this idea, for any constants 5, L > 0, we say a distribution is “(3, L)-inlier-light” if
it has at most (1 — L)o? variance from elements smaller than ST. Catoni gets the tight constant on
the (1 — L)o? variance from inliers, and a better constant on the remaining at-most-Lo? variance.

Thus it gets error (1 — 7)OPTy error on inlier-light distributions, for some constant 7 depending
on 8 and L.

An alternative to Catoni for outlier-light distributions. On the other hand, if a distribution
is not inlier-light, it can have very few outliers: there’s at most Lo? variance remaining to come
from outliers. If we trim at a threshold o1 for @ > (3, then the contribution to the mean from the
trimmed outliers is small: the worst-case is when they are all at the threshold /7', in which case the
contribution is 052—‘;22 ol = éOPT 1. And for small o, Bernstein’s inequality says that the empirical
mean of the untrimmed inliers will have accuracy (14 O(a))OPT;. As a result, the trimmed mean,
trimmed to o7, achieves (1 + O(a + L/a))OPT; on distributions that are not (8, L) inlier-light,
for any a > f.

Note also that the property of being inlier-light can be tested with 1 — ¢ accuracy, since it
involves measuring the variance from bounded entries, as long as L 2 5. So for L = (), we
can (1) test for inlier-lightness, and on non-inlier-light distributions (2) trim at a = /B to get
(14 O(+/B))OPT; error.

Handling d = 2. Per the above, in one dimension either the Catoni estimate achieves a constant
better than 1, or the trimmed mean achieves constant close to 1. The latter is promising because
the empirical mean, in the subgaussian case where it works, gets error OPT] independent of the
dimension.

Our d = 2 algorithm is as follows. We test whether the distribution is inlier-light in either
direction e; or eg; if it is, we run Catoni on every 1d projection in a fine net around the circle,
and take the center of the minimum enclosing ball of the possible means. In general, this gets at
most JUN G5 - OPT) error; but the tight instance for Jung is an equilateral triangle, and this error
only happens if Catoni gets error bound OPT in three directions approximately 120° apart. If
the distribution is inlier-light in some direction e;, then it is also inlier-light (with slight loss in
parameters) in at least one of the triangle directions, so Catoni gets a better error in that direction
and a more accurate estimate overall.

On the other hand, if the distribution is not inlier-light in either the e; or eo direction, we
remove any element larger than /BT in either direction and take the empirical mean of all other
samples. This gets error (1 + O(y/B3))OPTy, without any dependence on JUNGs.

For small enough constant 5 and L = ©(f), either situation will give a constant better than
JUNG5. Finally, as stated before, we can lift our two-dimensional estimate to higher dimensions



using a generalization of Jung’s theorem (Theorem E.2, | ]) to obtain a constant better than
JUNG, in d-dimensions.

2.2 Robust Estimation, Lower Bound

Now, we discuss the ideas behind Theorem 1.2, showing that the naive strategy of combining
one-dimensional estimates is optimal for the robust estimation setting.

1—3¢

Figure 2: For d = 2, the algorithm sees as input the distribution on the left after the adversary
corrupts e-mass. The three distributions to its right are ones consistent with the input.

We first show the lower bound for ¢ < ﬁ. The hard instance is that the adversary hands over
a distribution that puts € mass on each vertex of the regular simplex. The true distribution is the
same, but with one of the vertices reflected across the origin. These distributions are all consistent
with the observed distribution — that is, they have total variation at most € to the distribution
handed to us by the adversary — but have means at vertices of a simplex. A regular simplex is the
setting where Jung’s theorem is tight, and some calculation gives a JUNG, - v/2¢ lower bound.
When d > % — 1, we instead restrict to a lower-dimensional space of dimension d’ = L% —1] and
apply the same bound to get a JUNG 4 lower bound. Since d’ is large, both JUNG4 and JUNG 4

are v/2 — O(e).

3 Proof Details — Heavy-Tailed Estimator

Here, we provide a detailed description of our heavy-tailed estimator, along with key lemmas in the
proof of our main result, Theorem 1.1. We will focus on our 2-dimensional estimator that achieves
a constant better than JUNG9; as stated earlier, we can “lift” it to high-dimensions to obtain a
constant better than JUNG, in d dimensions. We begin with the formal definition of “inlier-light”
and “outlier-light” distributions.

3.1 “Inlier-Light” and “Outlier-Light” Distributions

Definition 3.1 ((8, L)-Inlier-Light Distribution). A distribution x over R with variance at most
o2 is 4B, L)-inlier-light” if:

E [(z — p)*Lj—p<pr] < (1= L)o”

_ n
forT =0 Tlog T

That is, a distribution is (8, L)-inlier-light if at most (1 — L) fraction of its variance comes from
“inlier” points, points within 57" of u. We define outlier-light analogously:



Definition 3.2 ((3, L)-Outlier-Light Distribution). A distribution x over R with variance at most
o2 is “(B, L)-outlier-light” if:
E (¢ = )" Lp—pizpr] < Lo
forT =0 21(:;; 7
A distribution x over R? is (B, L)-outlier-light if (x,w) is (B, L)-outlier-light for all unit vectors

3.2 Estimator for One-Dimensional Inlier-Light Distributions

We first show that a variant of Catoni’s Estimator for one-dimensional distributions, when computed

. . . . . /2log % .
using an appropriate ¢ function, achieves a rate strictly better than o 2 (;g ¢ the Gaussian rate,
when the distribution is inlier-light. CATONIESTIMATORLOCAL takes an initial estimate pg of the

log %
n

mean 4 as input, such that |ug—p|< O <0 > , typically computed using the median-of-means

estimator [ ]

Algorithm 1 CATONIESTIMATORLOCAL

Input parameters:

e Failure probability §, One-dimensional iid samples x1, ..., z,, Initial estimate ug, ¥ function,
Scaling parameter T'.

1. Compute

2. Return mean estimate 11 = r(ug) + o

We will suppose that our ¢ function satisfies the following.

Assumption 3.3. 1 satisfies that for all x,
22 72
—log (1—x+2> <(x) <log <1+:1:+2>

” 8
Additionally, for constants 0 < 8,1 <1, for all |x|> 5,

—log <1—a:+(1—77)$22> <(z) < log <1+x+(1—”)$22>

Recall that the “xz — %3, Clipped” function from Figure 1 satisfies that there exists an 7 such
that the above is satisfied for every . We show that for (3, L)-inlier-distributions, CATONIESTI-

MATORLOCAL improves upon the Gaussian rate by a ~ ( — %)—factor when using a 1 function
satisfying the above, given an initial estimate ug of the mean.



Lemma 3.4 (Improved Rate for One-Dimensional Inlier-Light Distributions). For every constant
0<fB,L<1,Ci>1 there exists constant Cy > 1 such that the following holds. Suppose ¥ satisfies

. o ) . log L
Assumption 3.3, n > Cslog %, and we have an initial estimate py with |po — p|< Cho %. We

_ n
letT =0 /210g§'

Given n one-dimensional iid samples x1, ..., x, with mean p and variance at most o2, if x; is
(8, L)-inlier-light, then, with probability 1—0, the output @i of Algorithm CATONIESTIMATORLOCAL

satisfies
L log & 2log 2
‘ﬁ—#|<<1—n+02 gé)'a'\/g(s
4 n n

3.3 Testing Inlier-Light vs. Outlier-Light

Our strategy will be to first test whether our two-dimensional samples come from a distribution
that is inlier-light, or outlier-light, and use an appropriate estimator accordingly. Our tester (Al-
gorithm 2DINLIEROUTLIERLIGHTTESTING, described in Appendix B.2) takes in n samples along
with initial estimates pg', s’ of the mean in directions eq, es respectively, and either identifies a
direction e; in which the distribution is inlier-light, or certifies that the distribution is outlier-light
in every direction. Formally,

Lemma 3.5 (Two-dimensional Inlier-Light vs. Outlier-Light Test). For every constant 8 < %,

L > 83, and C1 > 1, there exists constant Cy > 1 such that the following holds. Suppose n >
. . 1
Cy log% and suppose our initial estimates pg’ satisfy |y — (e, p)|< Cho 10% forj e {1,2}. We

- n
letT =0 /21og§‘

Given n two-dimensional iid samples x1, ..., 2, with mean p and covariance ¥ < o2Io, with
probability 1 — &, Algorithm 2DINLIEROUTLIERLIGHTTESTER satisfies the following.

o If the output is e;, (ej,x;) is (B, L)-inlier-light
o If the output is L, x; is (16/3,16L)-outlier-light. (That is, (z;,w) is (164, 16L)-outlier-light

for all unit vectors w.)

3.4 Catoni-Based Estimator for Two-Dimensional Inlier-Light Distributions

We recall the standard definition of a p-net of vectors over R?:

Assumption 3.6. U is a p-net of O(1/p) unit vectors such that for every v € S!, there exists a
vector w € U with [|[v — ul|< p.

If our distribution over R? is determined to be inlier-light in some direction ej, we will make
use of the following 2-dimensional estimator.



Algorithm 2 2DINLIERLICGHTESTIMATOR

Input parameters:

e Failure probability §, Two-dimensional iid samples x1, ..., ,, ¥ function, Scaling parameter
T, Inlier-Outlier-Ligtness parameters (3, L, Approximation parameters 0 < £,7 < 1, Set of
unit vectors U, Initial estimates puf for u € U.

1. For every u € U, run Algorithm 1DINLIEROUTLIERTESTER with samples (u, z1), ..., (u, ),
Failure probability ﬁ, initial estimate pg, and Lightness parameters (5/32,L/32. If the

output is “INLIER-LIGHT”, let o, = 1 — O(7). Otherwise, let a,, = 1+ &.
2. For every u € U, run Algorithm CATONIESTIMATORLOCAL with samples (u, x1), ..., (u,z,),

initial estimate p, and failure probability ﬁ and let the mean estimate obtained be fiy.

2
3. For each u € U, define set S,, = {w D {u,w) = | < oy - o/ 21055} Let S be the convex set
given by S := NyucySy.

4. Consider the minimum enclosing ball of set S and return its center as the mean estimate f.

2DINLIERLIGHTESTIMATOR takes in a p-net U, in addition to the iid samples z1,...,z, € R?
and failure probability 0. For each net vector u € U, it tests whether the distribution of the (u, z;) is
inlier-light, computes an estimate of the mean in direction u using our 1-d estimator for inlier-light
distributions, and assigns a confidence interval accordingly. The final estimate [z is the center of
the minimum enclosing ball of the points that satisfy all |U| confidence intervals. We show:

Lemma 3.7 (Two-Dimensional Estimator for Inlier-Light Distributions). For every constant 0 <
B <1/32,L > 3283, and C > 1, there exist constants &, 7 < 1 such that the following holds. Suppose

1
n > O¢ (log %), and we have that |pg — (u, )| < Co lo% for all w € U. Suppose further that ¢
satisfies Assumption 3.3 for parameter /8 and that U satisfies Assumption 3.6 for p = 69©) . Let

R n
T=oc /210g%.

Given n two-dimensional iid samples x1, . .., Ty with mean p and covariance 3 < 021y such that
(eg,x;) is (B, L)-inlier-light, with probability 1 — ¢, Algorithm 2DINLIERLIGHTESTIMATOR returns
a mean estimate [i with

2log%

|f—ull<(1—7)- JUNG:-o

n

10



3.5 Trimmed-Mean-Based Estimator for Two-Dimensional Outlier-Light Dis-
tributions

Algorithm 3 2DOUTLIERLIGHTESTIMATOR

Input parameters:

e Failure probability ¢, Two-dimensional samples x1,...,zy, Initial estimates ', p5*, Scaling
parameter T', Approximation parameters 0 < 3,£ < 1.

1. Consider the subset of samples X’ obtained by throwing out any sample z; with |(e;, z;) —
,ugj |> /BT for either e; or ey. Return estimate ji = 1 Y iex Ti-

n

For outlier-light distributions, 2DOUTLIERLIGHTESTIMATOR computes a simple trimmed-mean
estimate, throwing out any point more than /37 away from the initial mean estimate in the eq, es
directions.

Lemma 3.8 (Two-Dimensional Estimator for Outlier-Light Distributions). Define T' = o 21;; 7.
B

For any constant B < 1, let z1,...,z, be iid samples from a two-dimensional (B,0(B))-outlier-
light distribution with mean p and covariance ¥ < 02Iy. Then, the output of Algorithm 2DOUT-

. ) o ) j e j log +
LIERLIGHTESTIMATOR when given as input initial estimates (1, satisfying | —{(ej, p)|< O <U\/ Oi‘s)

outputs estimate [i satisfying with probability 1 — 0,
Iii - ul< (1+0(VB))-oPmy

3.6 Final Two-Dimensional Estimator

Finally, we put together the previous parts to obtain our final Algorithm 2DHEAVYTAILEDESTI-
MATOR.

11



Algorithm 4 2DHEAVYTAILEDESTIMATOR

Input parameters:

e Failure probability ¢, Two-dimensional samples x1, ..., Z,, ¥ function, Scaling parameter T',
Inlier-Outlier-Lightness parameters 3, L, Approximation parameters 0 < &, 7 < 1, set of unit
vectors U

1. Using ©(&)n samples, compute Median-of-Means estimates ,ugj of the one-dimensional samples

(ej, ;) with failure probability W for each j € {1,2}.

2. Using ©(&)n samples, compute Median-of-Means estimates pf of the one-dimensional samples

(u, z;) with failure probability W for each v € U.

3. Let the set of the remaining (1 — ©(§))n samples be X’. Run Algorithm 2DINLIEROUT-
LIERLIGHTTESTER using failure probability /4, the samples in X’ and initial estimates
1oty Ko -

4. If the output of 2DINLIEROUTLIERLIGHTTESTER is some e;, run 2DINLIERLIGHTESTIMA-

TOR using failure probability §/8, the samples in X', and the initial estimates ypf, and output
its mean estimate .

5. If instead the output of 2DINLIEROUTLIERLIGHTTESTER is L, run 2DOUTLIERLIGHTESTI-
MATOR using failure probability §/4, the samples in X’ and initial estimates ', pg?. Return
its output i.

Theorem 3.9 (Final Two-Dimensional Estimator). For any sufficiently small constant T > 0,
there exist constants 0 < &, 5,L < 1 such that the following holds. Suppose n > O¢(log %) and

T=o0 215;2. Suppose the set U is a p-net, satisfying Assumption 3.6 for p = §9().
5

Given n two-dimensional samples x1, ..., x, with mean p and covariance ¥ < 0%, with prob-
ability 1 — 6, Algorithm 2DHEAVYTAILEDESTIMATOR returns an estimate i with

21og 2
i~ ul< (1—7)  JUNGy - oy ffﬁ

Proof. First note that by classical results on Median-of-Means | | and a union bound, for every
vector v € U U {eq, ea}, we have with probability 1 —§/4,

v log &
lwg — (v, )| <O o\ T(S

since n > O¢(log %) For the remaining proof, we condition on the above. Now, by a union bound,
there exist constants 0 < 5, L < 1, such that by Lemmas 3.5, 3.7 and 3.8, the following events
happen with probability 1 — 36/4.

e If the output of Algorithm 2DINLIEROUTLIERLIGHTTESTER is e;, (ej,x;) is (83, L)-inlier-
light. On the other hand, if the output is L, z; is (843, 8L)-outlier-light.

12



o If (ej,x;) is (B, L)-inlier-light, Algorithm 2DINLIERLIGHTESTIMATOR returns & with

21og 2
i — ull < (1 -2+ 6()) - JUNG - 7| ng 5

2log%

<(1-7)-JUNGy 0o -

o If z; is (8, 8L)-outlier-light, for L = O(), Algorithm 2DOUTLIERLIGHTESTIMATOR returns

[ with
i wi< (1+0(v3)) (,ﬁ

So, with probability 1 — § in total, for S small enough, Algorithm 2DHEAVYTAILEDESTIMATOR
returns estimate g with

QIOg%

7= ul< (1= 7)- JUNGy - 0| =

4 Open Questions

Our work suggests a number of exciting avenues for future research. Some of these are:

e What is the sharp rate for heavy tailed estimation when 10g% > d? Our work establishes
that it is not achieved by the naive strategy of aggregating one-dimensional estimates. Is it
possible to achieve the Gaussian rate?

e Our upper and lower bounds are statistical—what about polynomial-time estimation? What
are the sharp constants achievable, and is there a computational-statistical tradeoff? In
particular, for large d no estimator achieving even the JUNGy ~ v/2 factor loss is known—
current polynomial-time estimators | , ] rely on the median-of-means framework,
which loses constants even in one dimension.

e What are the sharp rates for other estimation problems under heavy-tailed noise? For in-
stance, covariance estimation or regression?
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A Vanilla One-Dimensional Catoni Estimator

We first describe a variant of Catoni’s one-dimensional estimator | | for bounded variance
distributions.

Assumption A.1. ¢ satisfies that for all x,

x? x?
—log<1—:v—|—2> <¢(x)<log(1+x+2>

Lemma A.2. For every constant Cy > 1 there exists constant Co > 1 such that the following holds.
Suppose Y satisfies Assumption A.1, n > Cslog %, and we have an initial estimate po with |po— pu|<
Cio WeletT = o 21(:;2. Given n one-dimensional iid samples x1,...,x, with mean wu
B

and variance at most o2, with probability 1—6, the output i of Algorithm CATONIESTIMATORLOCAL

satisfies
log & 2log 2
|ﬁ—u!§(1+()2 gd)-a-\/ 85
n n

16

log %




Algorithm 1 CATONIESTIMATORLOCAL

Input parameters

e Failure probability §, One-dimensional iid samples x1,
Scaling parameter T'

Zn, Initial estimate pg, ¢ function
1. Compute

2. Return mean estimate 1 = r(uo) + po

Proof. By Assumption A.1, we have

2o (3r0m)] = [T o (5 (722))]

e[ o

2
n )
T 272
=1
K — o 1 "
= <1+T+2T2- [0 + (1 — po) })
n 2
< exp (1 — o) + 35 - [07 + (01— 1m0)?))

So, by Markov’s inequality, for T'= o

n
— . we have
2log % ’

21og 2 log L
Pr r(uo>z(u—uo>+o-\/f‘5<l+02 g5>

n

[21log 2 log +
.o - Og5<1+c2og5)
n n

< exp % [0% + (1 — p0)?] —

2
< exp <— log 5)

= 5/2

NIs

since |u — ppl< Cio

g& , for Cy > Q(C?).
Similarly, for the lower tall the MGF is given by

E [exp (~ 2r(60)] < HEK ko, (&

-

)|
< exp (—f(u — Ho)

_f_i

7 (07 + (= 0)?] )
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So, by Markov’s inequality, for T' = o - ﬁ, we have
o

2log 2 log &
Pr (o) < (n—po) —o - ng5 <1+Czi‘5> <0/2

Then, taking a union bound gives the claim. O

Algorithm 5 CATONIESTIMATOR

Input parameters:

e Failure probability §, One-dimensional iid samples x1, ..., x,, ¥ function, Scaling parameter
T, Approximation parameter 0 < £ < 1.

1. Use the first ©(&n) samples to compute the Median-of-Means estimate p with failure prob-
ability 6/2.

2. Return the result zi of Algorithm CATONIESTIMATORLOCAL using initial estimate pug, and
the remaining (1 — ©(§))n samples, and failure probability /2.

Theorem A.3. For every constant & > 0, suppose n > O¢(log %), ¥ satisfies Assumption A.1, and

n
T-
2log 5

at most o2, with probability 1 — &, the output i of Algorithm CATONIESTIMATOR satisfies

consider T = o

Given n one-dimensional iid samples x1, ..., T, with mean u and variance

R 2log 4
i—pl <(1+8)-0- °
Proof. First, by classical results on Median-of-Means [ |, 1o satisfies with probability 1 — /2,
log 1
o — pl< Coy| —2
ng
for some constant C' > 0. Then, invoking Lemma 1 using the remaining (1 — ©(£))n samples and
failure probability /2 gives the claim. O

B Improved Heavy-Tailed Estimator

We will make use of the following notions of “(3, L)-inlier-light” and “(8, L)-outlier-light” distri-
butions throughout this section.

Definition 3.1 ((3, L)-Inlier-Light Distribution). A distribution x over R with variance at most
o2 is 4B, L)-inlier-light” if:

E [(x — ///)2]1|xf,u|§6T} < (1 — L)02

_ mn
forT =0 Plog 2"
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Definition 3.2 ((3, L)-Outlier-Light Distribution). A distribution x over R with variance at most
o2 is “(B, L)-outlier-light” if:
E[(z = p)*Lia—pzpr] < Lo

_ n
forT =0 Tlog T

A distribution x over R? is (B3, L)-outlier-light if (x,w) is (8, L)-outlier-light for all unit vectors

B.1 Improved One-Dimensional Catoni-Based Estimator when Inlier-Light

The following assumption on ¥ functions is stronger than the Catoni requirement, and allows for
a more accurate estimate when a distribution is (3, L)-inlier-light.

Assumption 3.3. 1 satisfies that for all x,
z? x?
—log <1—a:+2> < ¢Y(z) <log (1+x+2>

Additionally, for constants 0 < f,n < 1, for all |z|> g,
x? z?
—log <1—ZE—|—(1 —77)2> < (x) <log <1~|—1‘+(1—n)2>

There exist ¢ functions such that for every 8 > 0, there exists 7 > 0 such that Assumption 3.3
is satisfied. One such function is ¢ (z) = x — 23/6 for |z| < 1 and ¥(z) = 2sign(z) for |z| > 1. For
|z| < 1, there is ©(z*) flexibility in the choice of ().

Lemma 3.4 (Improved Rate for One-Dimensional Inlier-Light Distributions). For every constant
0< pB,L <1, Cy>1 there exists constant Cy > 1 such that the following holds. Suppose 1 satisfies

1
Assumption 3.8, n > Cslog %, and we have an initial estimate py with |py — p|< Croy/ lo%. We

J— n
letT =0 /210g§'

Given n one-dimensional iid samples 1, ..., 2, with mean p and variance at most o2, if x; is
(8, L)-inlier-light, then, with probability 1—40, the output i1 of Algorithm CATONIESTIMATORLOCAL

satisfies
L log & 21og 2
|ﬁu|§<1"+c2 gé)-m/ &
4 n n

Proof. By Assumption 3.3, we have

2o (20

oo (v (7))

(o (o (7)) vcsizoms] 5 o (6 (57 ) bcoons
(

- 1
1+E [QC TMO} T o7 (E [(xi — o)” ﬂlmi—uolsw/z} + (1= E [(z: - “0)21|fi—”°|>5T/2])>

IN

I
fom R R

s
l
—
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Now, since z; is (3, L)-inlier-light, so that E [(2; — 11)* 1|y, <pr| < (1 — L)o?, we have

E [(2i = )" Lja,—po|<pry2] < B [(25 = 1) Vo —pj<pr] < (1= L)o?

1
since | — po|< O <o\/ bff) < BT/2. So,

E [(f’fi — po)? l|xi—#0‘§5T/2] + (1= n)E [(#i — 10)* Lz, — o > 57/2]
< (= 10)® +E [(2i = 1)* Vg ol <prya) + (1= ) E [(@i = 1)Lz, o> 5772]
—2nE [(2; — 1) (1t = 10) Ljs— o > 57/2)

§<1_7]L)02
2

since n > Cs log %. So,

B oo (2r))] < [T (1 I i (1 - nzL))

=1

~

n

Then, by Markov’s inequality, for T' = o Tlog 2’

5

L Cslogs 2log 2
P T(uo)Z(u—uo)Jr( —”4+2ng5>-a- =

no? nL n nL Cologi 2log 2
< =y B it N [ 9
=P oo (1 2 ) T R ? n

2
< exp (— log (5>

= 5/2

. 210gl 2
since |y — po|< Croy/ —==, for Cy > Q(CY).

Similarly, for the lower tail, the MGF is given by
2
n p—po | no nL
E |oxp (= (ko)) | < exp (‘”' T 2 (1 - 2>)

so that by Markov’s inequality,

Pr {r(po) < (1 — po) — ( 1

_ n
for T =0 TR

Taking a union bound gives the claim.
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B.2 Testing Inlier-Light vs. Outlier-Light

Algorithm 6 1DINLIEROUTLIERLIGHTTESTER

Input parameters:

e Failure Probability ¢, One-dimensional iid samples x1,
Outlier-Lightness parameters [, L, Initial estimate pg.

., Ty, Scaling parameter T, Inlier-
1. Compute
1 n
2
B= n Z(xi = 10) g, —po| <267
i=1

2. If B < (1 —2L)o?, return “INLIER-LIGHT”. Otherwise return “OUTLIER-LIGHT”.

— n
letT =0 /210g%.

Lemma B.1. For every constant f < 1/16,L > 168 and Cy > 1, there exists constant Co > 1
T
such that the following holds. Suppose n > Cy log%, and we have that |py — p|< Croy/ lo% We

probability 1 — §, we have that

Given n one-dimensional #d samples x1, ..., T, with mean p and variance at most o2, with

o [f Algorithm 1DINLIEROUTLIERLIGHTTESTER returns “INLIER-LIGHT”, then x; is (3, L)-
inlier-light,

o [f Algorithm 1DINLIEROUTLIERLIGHTTESTER returns “OUTLIER-LIGHT”, then x; is (43,4L)-
outlier-light

Proof. First, note that the variance of (xz; — “)QHIM—#\SBT is at most (87¢)?, and it is bounded by

(BT)?. Thus, by Bernstein’s inequality, since 7' = o /21:g§ and L > 80, with probability 1 — ¢,
1 n

21og 2 1
- < BTo\| % +2(8T)2 28

n

n

D @i = )L yepr — B [(x = 1)L yy<pr]
=1

and

ST\

=2B0% < Lo*/4

2log 2 1
< 48Ta | % +8(8T)2 28

n

n

S|

(@i — 1) *Ljg,—yj<apr — E [(# = 1)* 1o py<apr]
=1

ST\

= 880?% < Lo?
We condition on the above. Now, since |pug — u|< Cio

log 5 < BT e have
n — 2

2 2

(@i = p10) " Lo, —p<pr < (T = 10) Lz, po <287
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So, since |u — po|< Cio g log 3

, we have, by Cauchy-Schwarz,

]]"xl —p|<BT

<

S|

log % 1

n
log
Z( M0)21|$i—uo|§25T + 5 fo?—0 6 +2C10 \/
=1

TL

MO) ]1|z1—,uo\§26T < (]— - 2L) 2 then

— fio) 11|gcZ po|<28T

So, if Algorithm 1DINLIEROUTLIERLIGHTTESTER returns “INLIER-LIGHT” so that £ 3% | (z;

*Z

3L
1) Uje,—pi<pr < <1 - 2) o
for Cy large enough. So, in this case

E[(x = )" Lpopcpr] < (1 —L)o?
so that x; is (B, L)-inlier-light, as claimed. For the other case, note that
(@i — p0) Lz, —pj<apr = (@ u0)21|xi—#0‘§25T
Again, by Cauchy-Schwarz, since |u — po|< Cro

log %

*Z

>

S|~

n
Z(ﬂﬁz - H0)2]1|:ci—u0|<2BT Cio
i=1

n

1)° 1), pj<apT
log & log & 1 —
2196 5 )
—2C ol E
n 10\/ n P

MO) ]1|z1—,uo\§26T > (]- - 2L)

— 10)* L}, —po|<28T

So, when Algorithm 1DINLIEROUTLIERLIGHTTESTER returns “OUTLIER-LIGHT” so that 2 Y7 (z;—

) Ly, —pi<apr > (1= 3L)
i=1
for C'y large enough. So

2
E [(z = 1)* Lz pj<apr]
So, since the variance is at most o

> (1 —4L)0?

E [(z = 1)’ Lp—pi>a7] < 4L0”
so that x; is (48, 4L)-outlier-light, as claimed
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Lemma B.2. For every constant § < 1/16, L > 163, and Cy > 1, there exists constant Cg > 1
such that the following holds. Suppose n > Cylog + 5, and we have that |pg — p|< Croy/ o8 ‘5. We

letT =0 /21g5

Given n one-dimensional iid samples x1,...,x, with mean p and variance at most o2, with
probability 1 — &, we have that

o [fx;is (453,4L)-inlier-light, then Algorithm 1DINLIEROUTLIERLIGHTTESTER returns “INLIER-
LIGHT”.

Proof. The proof is similar to the proof of Lemma B.1. First, note that the variance of (x; —
N)Qﬂlzru\SMT is at most (43T¢)?, and it is bounded by (48T)2. Thus, by Bernstein’s inequality,

since T'= o 21;2 and L > 165, with probability 1 — 4,
&
1 — g 2 log 2
- Z(ﬂﬁi — 1) L py<apr — B [(& — ) Ljpy<apr] | < 48To % +2(4pT)? - 2
i=1

< 4B0? < Lo? /4
. . log 2 _ AT
We condition on the above. Now, since |pg — p|< Croy/ —* < 55, we have

(@i — 110)* L o <287 < (i — 110)* Ly — | <apT

So, since |y — po|< Croy/ —22 | we have, by Cauchy-Schwarz,

*Z — 110)* Lj,—puj<apT

1 & log + log + 1 «
. D (@i = 1) Ly, pg<apr + 012027 > +2Ci0 — > - Z 1)* Lz, <apT
i=1 izl

So, if z; is (43,4L)-inlier-light so that by the above

- Z 11|:1¢ —p|<4B8T < (1 - 3L)

we have
= Z — 10)* Ly, — o) <27 < (1 —2L)0”

so that Algorithm 1DINLIEROUTLIERLIGHTTESTER returns “INLIER-LIGHT” as claimed. 0
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Algorithm 7 2DINLIEROUTLIERLIGHTTESTER

Input parameters:

e Two-dimensional iid samples x1,...,x,, Scaling parameter 7', Inlier-Outlier-Lightness pa-
rameters 3, L, Initial estimates p', p62.

1. For each j € {1,2}, run Algorithm 1DINLIEROUTLIERLIGHTTESTER using samples
(ej,71),...,(ej,z,) and initial estimate s .

2. If for both j the output is “OUTLER-LIGHT”, return L. Otherwise, return e; such that the
output for run j was “INLIER-LIGHT”.

Lemma B.3. Suppose x is a distribution over R? with mean p and covariance ¥ < 021y such
that (vj,x) is (B, L)-outlier-light for each j € [2]. Suppose also that |(vi,v2)|< 3/4. Then x is
(453, 4L)-outlier-light.

Proof. For any w € S, there is some j € {1,2} with (w,e;) > % So,

E [(w,2 — 1)*1)(p 5y |>207) < 4E [<€j,$ — )1, ey >p7| < 4L07

as required. ]

Lemma 3.5 (Two-dimensional Inlier-Light vs. Outlier-Light Test). For every constant 8 < %,

L > 83, and Cy > 1, there exists constant Co > 1 such that the following holds. Suppose n >
. . 1
Co log% and suppose our initial estimates pg’ satisfy |y — (e, p)|< Cho 10% forje{1,2}. We

_ n
letT =0 /2log§'

Given n two-dimensional iid samples x1,...,, with mean p and covariance ¥ < o2l with
probability 1 — &, Algorithm 2DINLIEROUTLIERLIGHTTESTER satisfies the following.

o If the output is ej, (ej,x;) is (5, L)-inlier-light

o If the output is L, x; is (1643, 16L)-outlier-light. (That is, (x;,w) is (16/3,16L)-outlier-light
for all unit vectors w.)

Proof. By Lemma B.1, with probability 1 — 24,
e If the output is e;, then (ej, z;) is (8, L)-inlier-light as claimed.

e If the output is L, then both (eq, x;) and (eq, ;) are (43, 4L)-outlier-light. Then, by Lemma B.3,
x; is (1653, 16L)-outlier-light.

Reparameterizing § gives the claim. O

B.3 Properties of Inlier-Lightness

Lemma B.4. Suppose x is a two-dimensional distribution with mean p and covariance ¥ < 021y
such that (e;, x) is (B, L)-inlier-light. Consider vectors vy, va,vs such that for each j # k, |(vj, vg)|<
3. Then, for some j, (v;,x) is (8/8, L/8)-inlier-light.
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Proof. Under the constraints provided, there exists two j € [3] with |(vj,e;)|> 3. Then, there are
two cases

e Var((e;,z)) < (1— %) o?. In this case,

Var((vj,z)) <

so that (vj,z) is (8/4, L/4)-inlier-light.
e Var({(e;,x)) > (1 - %) o2. In this case, since (e;, z) is (3, L)-inlier-light,
E [((eis & — 1))*Lj(e, ampy>p11] > (1 - L) 0% —E[({eis — 1)’ Le; oy <o)
> —0

so that (e;, x) is (5/2, L/2)-outlier-heavy. Then, by (the contrapositive of) Lemma B.3, one
of the two (vj,x) is (8/8, L/8) outlier-heavy, and hence (/5/8, L/8)-inlier-light.

O
B.4 Two-Dimensional Catoni-Based Estimator when Inlier-Light
Algorithm 2 2DINLIERLIGHTESTIMATOR
Input parameters:
e Failure probability §, Two-dimensional iid samples x1, ..., zy,, ¥ function, Scaling parameter

T, Inlier-Outlier-Ligtness parameters 8, L, Approximation parameters 0 < £,7 < 1, Set of
unit vectors U, Initial estimates ug for u € U.

1. For every w € U, run Algorithm 1DINLIEROUTLIERLIGHTTESTER with samples
(u,z1), ..., {(u,x,), Failure probability ﬁ, initial estimate p, and Lightness parameters
B/32, L/32. If the output is “INLIER-LIGHT”, let a,, = 1 — ©(7). Otherwise, let o, = 1+&.

2. For every u € U, run Algorithm CATONIESTIMATORLOCAL with samples (u, z1), ..., (u, ),

initial estimate pg, and failure probability ﬁ and let the mean estimate obtained be fiy.

2
3. For each u € U, define set S, = {w S u, w) — | < oy - o/ Zlong‘s} Let S be the convex set
given by S := Ny Sy-

4. Consider the minimum enclosing ball of set S and return its center as the mean estimate .

Assumption 3.6. U is a p-net of O(1/p) unit vectors such that for every v € S', there exists a
vector u € U with ||v — ul|< p.
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This assumption is satisfied by a standard p-net in two-dimensions. Then, we have the main
result of this section - that if our distribution is inlier-light in some direction e;, then, Algorithm 2
2log %

n

outputs an estimate that has error smaller than JUNG> - o by a constant factor.

Lemma 3.7 (Two-Dimensional Estimator for Inlier-Light Distributions). For every constant 0 <
B <1/32,L > 3283, and C > 1, there exist constants &, 7 < 1 such that the following holds. Suppose

log %

n > O (log %), and we have that |pug — (u, p)|< Coy/ == for all uw € U. Suppose further that 1)

satisfies Assumption 3.3 for parameter /8 and that U satisfies Assumption 3.6 for p = 69© . Let

T=o n
2log 5

Given n two-dimensional iid samples x1, . .., Ty with mean p and covariance 3 < o021y such that
(ek, i) is (B, L)-inlier-light, with probability 1 — &, Algorithm 2DINLIERLIGHTESTIMATOR returns

a mean estimate [i with
21og 2
| — ull< (1= 7) - JUNGy - 0| =28
n

Proof. First, by Lemma B.2 and a union bound, with probability 1 — g, for any v € U such that
(u,z;) is (B/8,L/8)-inlier-light, Algorithm 1DINLIEROUTLIERLIGHTTESTER returns “INLIER-
LIGHT”, so that a,, =1 — ©(7) for all such wu.

By Theorem 1 and the union bound, with probability 1 — %, since |U|= O(1/p) = §7°9©) we
have that for every u € U,

210g%+210g%

[ = (u, )| < (1+O(£))'U'\/

n

2log%

<(1+¢)-0-

Similarly, for every u such that (u,z;) is (5/8, L/8)-inner-light, by Theorem A.3 and a union bound,

with probability 1 — &,
~ nL 2log%
[H — (u, )| < L= +¢&)0 —

So, for constant ¢ sufficiently small, there is a constant 7 > 0 with

oo 2
i (] < (1= B(7)) o[ 25D

With probability 1 — 4, all the above conditions hold, so that for any w € U that has (u, z;) that is
(8/8, L/8)-inner-light, we have that fi,, has smaller error than in the general case, and «a,, captures
this error. We condition on this event.

Then, if R is the circumradius of the set S in Algorithm 2DINLIERLIGHTESTIMATOR, its center
1 satisfies for every u € U,

[(u, i = p)|< R
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since by definition, the true mean p lies in S. So,

IA-ul= swp (wA-m< s (0,h-u)+ollE-ul< R+ plA—ul
w:||w||=1 veUU{e;}

so that

= pll<(T+0@)R=(1+R

2
since p = 69©) < €. So, it suffices to bound R by (1 — O(7)) - JUNGs - o 21(2;‘5, since for 7 a
small enough constant, this would imply

2log 2
i = < (1= 7) - JUNGy - 0| =22
as required.

To do this, note that if we consider the set S along with its circumcircle, since S is convex,
there must be a triangle contained in S whose vertices touch the circumcircle. Let vy, v9,v3 be the
unit vectors aligned with the sides of this triangle. There are two cases:

e There exists a pair i # j such that [(v;,v;)|> 2. In this case, R must be small. In

2
particular, since the diameter of S is at most 2-(1+&)-o QIZg ¢ each side length corresponding

to v;,vj, say a;,a; must be at most this quantity. But by law of cosines, the other side must

2log%
o

have length at most %( 1+&)-0 But for a triangle with sides a, b, ¢, the circumradius

abc

\/(a—f—b—‘rc) (b+c—a)(c+a—b)(a+b—c)

2v/2 2log 2 4 2log 2 2log 2
Rg\ﬁ(us)-a 20 < (1-0(r) 50y ot = (1= 6(7) - JUNGy - 0| =3

as required.

is equal to , which is monotonic in a, b, c. So, we have

e For every pair i # j, |(v;,v;)|< %. Then, since (e, x;) is (8, L)-inlier-light, by Lemma B.4,
there exists an [ € [3] such that v; is (8/8, L/8)-inlier-light. Then, by the above, we have
that a,, = 1 — ©O(7) so that the side of the triangle corresponding to v; has length at most

2
(1-O(r))-o 210%. But this means that R, the circumradius of a triangle with all two side

2 op 2
lengths bounded by (14 &) - o4/ Qlilg 2 and the third bounded by (1 — (7)) - o4/ 21% has

RS(1—@(7’))-0\/2105g

as required.
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B.5 Two-Dimensional Trimmed Mean Estimator when Outlier-Light

Algorithm 3 2DOUTLIERLICHTESTIMATOR

Input parameters:

e Failure probability J, Two-dimensional samples 1, ..., z,, Initial estimates pg', pug?, Scaling
parameter T', Approximation parameters 0 < 3,£ < 1.

1. Consider the subset of samples X’ obtained by throwing out any sample z; with |(e;, z;) —
g’ |> /BT for either e or es. Return estimate i = %ZZEX, ;.

Lemma B.5. For any constants §, L < 1, suppose x is a (§, L)-outlier-light distribution with mean
p and variance at most o®. Then, for T = o /ﬁ, we have the following.
4

L
’E [ml\x*MS%/BT] - /J’ S 7 OPT:
Proof. We have

)E {xl\w—MIS%/BT] - “‘ = ‘E [x]l|ac—u\>2\/BT} ‘
<E[loloysayar]

:/ﬁ Pr{lz — pl> f] dt
2+/BT

Note that Pr{|z — u|>t] < Le® for t > 2,/BT since x is (B8, L)-outlier-light, so that

~ t2

E {(90 - H)211|$_m>2\/BT} <E [(x — )*Ljep>pr] < Lo”

So,
(%) LO’2
E[ 1 }_ < / Sy
B |21y, p<ovpr| —#l < i £
Lo?

O]

Lemma B.6. DefinelT = o /21;; 5. Let x be a one-dimensional distribution supported in [—2+/BT, 2+/BT].
o

Let w € {0,1} be jointly distributed with x such that:

e Prjw=0] < O(%)
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Then,
|[E[wz] — E[z]|S 8- OPT}

Proof. Since w € {0,1},
log 4 2log &
|E[wz] — E[z]| = [E[z1y—o]|< 2¢/BT - O né <V Bo Té

Lemma B.7. Define T = o

O

21 . Let x be a one-dimensional (B, L)-outlier-light distribution

with mean p and variance at most o?. Let w € {0,1} be jointly distributed with x such that:
e Prjw= ]<O(10g‘5)
o w=0if |x —p| >2yBT

Then with 1 — & probability, given n independent samples (x;, w;), we have

1 — L
n;wixi—u < <1+0<\/B+\/B>) -OPT.

Proof. First, note that
B fwa] - il = [E [wel,_y<opmr] — 4
= )E [Wﬂ\w—ulswﬁT} —E [ﬂm—ulswﬁT] ‘ + ‘E [ﬂ\x—mswﬁf’} - F“
(e ) o

by Lemma B.5 and B.6.
Now since |wx — p|< 2/BT, and its variance is at most o2, by Bernstein’s inequality,

- 21 1
‘izwm—E | <"t o (vir- )
1=1

<(1+0(v/) o 2log ;

n
So, the claim follows. O
Lemma 3.8 (Two-Dimensional Estimator for Outlier-Light Distributions). Define T = o 210g
For any constant § < 1, let x1,...,z, be @id samples from a two-dimensional (5,0(3))- outlzer-

light distribution with mean p and covariance ¥ < o?Iy. Then, the output of Algorithm 2DOUT-
LIERLIGHTESTIMATOR when given as input initial estimates ,ug satisfying \,u%—(ej, w|< O <a\/ 10%

N————

outputs estimate [ satisfying with probability 1 — 6,
it - ul< (1+0(VB))-oPmy
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Proof. We will let w € {0,1} be jointly distributed with = such that w = 1 iff x would not be
thrown out in Algorithm 2DOUTLIERLIGHTESTIMATOR.
- 1
o w=0if |(u,r—p)|> 2\/BT for any u € S*. Since |} — (e;, u)|< O (%) < @, and since

any sample with |(e;,2;) — pd|> /BT is thrown out, w = 0 for any z with |(e;, ) — (e}, u)|>
58T
.

Furthermore, for any u € S', we have that if |(u, z) — (u, u)|> 2+/BT, then, for some j € {1,2},

58T
4

1
(e, ) = (ej, )= EKU,@ — {u, p)[> V28T >
so that w = 0 for any such z. So, w satisfies that w = 0 if [(u,z — u)|> 2/BT.

1
e Prjw =0/ <0 <10%) Since x is (8, O(p))-outlier-light, which means that E [|(u, x — u)|> ST] <
Bo? for every u € S', we have that

2 1 1
Pr (w2 - 2 2V/BT] < Pr .z~ )z BT) 5 J7 < 52

. 1
So, since |ug — (e, u)|< O (%) < /BT, we have

=

Pr [l(ej.a — u) > VBT] < Pr [[(es.x — > 2/BT] 5

n

1
so that Prjw =0] < s

n

Now, let U be a p-net as in Assumption 3.6, for p = §OWA), By Lemma B.7 and union bound,

with probability 1 — 0, for every u € U simultaneously, and the estimate i returned by Algo-
rithm 2DOUTLIERLIGHTESTIMATOR,

210gM
(.-l < (1+0(VB)) .0—\/7

(1 + O(\/B)) o - 2log

n

SO\

Then, we have
| —pll = sup [(v,&— p)
vil|v][=1

< sup [{u, i — ] + plli —
uelU

< (140 (V5)) - o225 4 2P

i< (1+0 (V) "ﬁ

as claimed. 0

so that
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B.6 Final Improved Two-Dimensional Estimator

Algorithm 4 2DHEAVYTAILEDESTIMATOR

Input parameters:

e Failure probability d, Two-dimensional samples x1, ..., xy,, ¥ function, Scaling parameter T',
Inlier-Outlier-Lightness parameters 3, L, Approximation parameters 0 < &, 7 < 1, set of unit
vectors U

1. Using ©(&)n samples, compute Median-of-Means estimates ,ugj of the one-dimensional samples

(ej, ;) with failure probability W for each j € {1,2}.

2. Using ©(&)n samples, compute Median-of-Means estimates p of the one-dimensional samples

(u, x;) with failure probability W for each u € U.

3. Let the set of the remaining (1 — ©(§))n samples be X’. Run Algorithm 2DINLIEROUT-
LIERLIGHTTESTER using failure probability /4, the samples in X’ and initial estimates
1o s 1o’ -

4. If the output of 2DINLIEROUTLIERLIGHTTESTER is some e;, run 2DINLIERLIGHTESTIMA-

TOR using failure probability §/8, the samples in X’, and the initial estimates p, and output
its mean estimate fi.

5. If instead the output of 2DINLIEROUTLIERLIGHTTESTER is L, run 2DOUTLIERLIGHTESTI-
MATOR using failure probability 6/4, the samples in X’ and initial estimates ug', pg?. Return
its output ji.

Theorem 3.9 (Final Two-Dimensional Estimator). For any sufficiently small constant T > 0,
there exist constants 0 < &, 5,L < 1 such that the following holds. Suppose n > O¢(log %) and

T=o0 /21:g2' Suppose the set U is a p-net, satisfying Assumption 3.6 for p = §9().
5

Given n two-dimensional samples x1, ..., x, with mean p and covariance ¥ < 0%, with prob-
ability 1 — 6, Algorithm 2DHEAVYTAILEDESTIMATOR returns an estimate i with

- 21og 2
7= pl<@=7)- JUNGz- 0y — °
Proof. First note that by classical results on Median-of-Means | | and a union bound, for every
vector v € U U {ey, ea}, we have with probability 1 — §/4,
log %

v <
s~ (o) <0 [ oy 2

since n > O¢(log %) For the remaining proof, we condition on the above. Now, by a union bound,
there exist constants 0 < §,L < 1, such that by Lemmas 3.5, 3.7 and 3.8, the following events
happen with probability 1 — 36 /4.
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e If the output of Algorithm 2DINLIEROUTLIERLIGHTTESTER is e;, (ej,z;) is (83, L)-inlier-
light. On the other hand, if the output is L, z; is (843, 8L)-outlier-light.

o If (ej,x;) is (B, L)-inlier-light, Algorithm 2DINLIERLIGHTESTIMATOR returns f& with

21og 2
I = ull < (127 + 6()) - JUNG: - 7| ng 5

210g%

<(1-7)-JUNGy o\|—

o If z; is (8, 8L)-outlier-light, for L = O(), Algorithm 2DOUTLIERLIGHTESTIMATOR returns

[ with
a-sl< (1+0 (V) oy 2282

So, with probability 1 — § in total, for 8 small enough, Algorithm 2DHEAVYTAILEDESTIMATOR

returns estimate g with
2log 2
i = < (1= 7) - JUNGy - 0| =22
n

B.7 Improved d-Dimensional Estimator

Notation. For z € R? and subspace W, we will let Ty mean the projection of x onto W.

0(d)
Assumption B.8. V C (Sd*1)2 is a set of size (%) of pairs of vectors (v, v?) with W the

subspace spanned by vectors in pair j. Let W be the subspace orthogonal to W. Then, for any
x € RY, there exists (v',v?) € V such that for the subspace W spanned by (v',v?), lzgw 1< ¢l

Note that for every ¢ < 1 and d, there exists a set V satisfying the above assumption. In

0(d)
particular, if we let Z C R? be a (-net of size <%> , and then let V' C (R%)? be the set of pairs

(z,w) for each z € Z and any vector w orthogonal to z, then V satisfies Assumption B.8.
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Algorithm 8 HIGHDIMENSIONALHEAVYTAILEDESTIMATOR

Input parameters:

e Failure probability §, d-dimensional samples z1, ..., x,, Covariance bound o2I,.

1. Let B, L, &, 7, be sufficiently small universal constants as given by Theorem 1.1 and 3.9. Let
log %

¥ be a function Assumption 3.3. Let T' = o\/ — .
p =099 and let V C (R%)? satisfy Assumption B.8.

Let U C R? satisfy Assumption 3.6 for

2. For each pair of vectors (v!,v?) € V, let W be the subspace spanned by them. Let z|w be
the projection of vector x onto W.

3. For each (v',v?) € V with associated subspace W, run Algorithm 4 using samples
Ty|w,- -, Tpw With failure probability 6/[V|, and approximation parameters {,©(7), and
let the output be two-dimensional mean estimate [y .

4. For each (v',v?) € V with associated subspace W, consider the set Sty =

2
{w Hlwyw — Bw[|< (1 —O(7)) - JUNG2 -/ 2105’5} Let S be the convex set given by
S = ﬁ(v17v2)evs(v1’v2).

5. Return the center iz of the minimum enclosing ball of the set S as the mean estimate.

Theorem 1.1. There exists constants T,C > 0 such that the following holds. Let d > 2, and
suppose n > Clog% > C2%d. There is an algorithm that takes n samples from a distribution over

R® with covariance ¥ < oI, as well as 0 and &, and outputs an estimate [i of the mean p that
achieves

21og 1
=l <(1—7)  JUNGy- oy =28

n
with 1 — & probability.

Proof. By Theorem 3.9 and a union bound, with probability 1 — §,

R 2logM
law —pwl < (1 -6(r) +&) - JUNG2 - o T‘S
dlog i 210 L
<0 ngC +(1-0O(r)+&)-JUNG; - o (;gé
ZIOg%
<(1-0(r)) - JUNGs -0 -

since n > C?d. Thus, conditioned on the above, p when projected onto any subspace W spanned
by (v!,v?) € V, lies in S projected onto W. So, by Theorem E.2, for the center fi of the minimum
enclosing ball of S, and any W spanned by (v!,v?) € V,

R 2log &
1= hywl< = O(7)) - JUNGq - o\| — .
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Then, by Assumption B.8, there exists (v'v?) € V with associated subspace W such that

(= )y lI< ¢l = g

So,
17 = pll = (= w11 = ) ]
(= p)yw ll+C - {7z = pel
so that
R 2log§
7= plls (X =7)- JUNGg-o\| —
for 7 sufficiently small. O

C Robust Lower bound

Let v1,...,v411 be the d+ 1 vertices of a regular d-dimensional simplex centered at the origin, with
l|lvill = 1. Then S v; =0 and (v;,vj) = —3% for i # j.
For e < -5 +1, define D* be the distribution that is each v; with probability ¢, and 0 with the
remaining probability 1 — e(d + 1) probability. So D* has mean 0 and an isotropic variance of
1 d+1
E | =c- 14 (de)— = ——e.
E o o) =e 1+ (de) gy = e
For each j € [d + 1], let D; be the same as D* except replacing v; with —v;. Then D; has
mean —2¢cvj. For every direction u L v;, D; has the same variance d%la as D*; and the variance
in direction vj; is
d+1 d+1
E [(vj,z)?] = E [(vj,z)]? = ——¢ — 4¢*
E [0~ E [fog,a)f? = Tote—ae? < T
Thus each D; has covariance ¥ < ‘“d'lsl and TV (D*, D;) = ¢ for all j.
Informally, thls means that robust mean estimation, on input (D*, o, ¢), needs to output a mean
i that is good for each Dj; the best it can do is output 0, which has error 2¢ for each i. Thus the

error is
2d
2 2(|3
e =7 VEISIE

is JUNG . More formally, we start with this lemma:

€.

This constant, d +1 ,

Lemma C.1. Let vy,...,vq41 € R? be vertices of a reqular simplex centered at the origin. Then
for any vector u € R,

— >
eyl = ulll 2 el

Proof. We can write u in barycentric coordinates, v = > a;v; for > a; = 1. Then for any permu-
tation 7 of [d + 1], we write uz := ) ar(;yvi- By symmetry, this satisfies

) Ur||] = E ; — .
e[dﬂ]wv wrll = _E,_ [l =]

By choosing 7 to be a uniform permutation,

(2 1~ Um E (3 E T i =
e[d+1]wv ulll = [d+1 [lvi = uxll] = e[d+1}[”v [u = [d+1][Hv = lloxl-
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Lemma C.2. For everyd > 1 ande < d+1, every algorithm for robust estimation of d-dimensional
distributions with covariance ¥ < oI has error rate

E[|fi — ul] > JUNGy - V202

on some input distribution.

Proof. Take the distributions D*, D; described above, so o’ = d+1e Suppose the true distribution
is D; for a random j € [d+1], and the adversary perturbs each D into D*, then gives the adversary
samples from D*. The algorithm’s output f is independent of j, and has expected error

Bl = plll = ElllE = (=2ev)1l)

By Lemma C.1, this is at least 2. Thus

Elllg — pl] > \/ \/2025—JUNGd\/202

O

Finally, we remove the restriction that ¢ <
dimensional space.

d+1 by applying the above lemma to (1/¢ — 1)-

Theorem 1.2. For everyd > 1 and e < 1 5, every algorithm for robust estimation of d-dimensional
distributions with covariance ¥ < 021 has error rate

E[l|z — pl] = JUNGq - (14 0(e)) - V202
on some input distribution, in the population limit.

Proof. If d < % — 1, this is the same as Lemma C.2. For d > % — 1, we instead restrict to a
d = L* — 1]-dimensional space before applying Lemma C.2. Thus

E[| - pll = JUNGy - V202

Now,

JUNGd/:\/d,ZJrl V2 1—m_f(1—e)zJUNGd.(1—e).

D Robust Estimation, Upper Bound
The following result is folklore:

Lemma D.1. If X,Y are real-valued variables with Var(X), Var(Y) < 02 and TV (X,Y) < 2¢,
then

21202
E[X] - E[Y] < =
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Proof. Couple X and Y so that Pr[X # Y| < 2e. Then by Cauchy-Schwarz,

EX - Y =E[(X - Y)lxzy]
E[(X = Y)’|E[1% ]

<
< (Var(X —Y) +E[X - Y]?) - 2.

Canceling terms, and using that Var(X —Y) < 2(Var(X) + Var(Y)) < 402,
(1—2¢)E[X —Y]? < 80%¢
giving the result. O

Theorem 1.3 (Folklore + Jung’s theorem). For every d > 1 and € < %, there is an algorithm for
robust estimation of d-dimensional distributions of covariance ¥ < oI with error rate

E[|i - ul] < JUNGy - (1+0(e)) - V2o
in the population limit.

Proof. Given the corrupted input distribution D’, take the set of all possible distributions X with
TV(X,D) < ¢ and Var(X) < 02, and look at the corresponding means. Let S denote the set of
these candidate means. We know that the uncorrupted distribution lies in the candidate set, so its
mean lies in S.

For any two distributions X, Y in the candidate set, we have TV (X,Y) < TV(X,D)+TV(D,Y) <

2e. Therefore the same holds for any 1-dimensional projections (v, X); in particular, by Lemma D.1,

IELX] — E[Y]|| = max E[{v, X) = {v, V)] < \2/\1/52;5

: 2V 202%¢e
so S has diameter at most e

Then Jung’s theorem states that the circumcenter of S has distance at most JUNG - \/jvlzii to

each point in S, and in particular to the true mean. Finally, given that ¢ < 0.3, \/1%72& <142. O

E Geometry Results

Theorem E.1 (Jung’s Theorem | 1). Let K C R? be a compact set and let D = max,, geic||p—
q||2 be the diameter of K. There exists a closed ball with radius

d
R<Dy/——
- 2(d+1)
that contains K. The boundary case of equality is obtained by the d-simplex.

Theorem E.2 (Generalized Jung’s Theorem [ ). Let K C RY be a compact set, and let R;
be the mazximum circumradius of any i-dimensional projection of K. Then, for any 1 < j <1 <d,

iG+1)

R; <\|—==
—\ViE+1)

'Rj
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