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Abstract

We present a sample- and time-efficient differentially private algorithm for ordinary least squares,
with error that depends linearly on the dimension and is independent of the condition number of
X T X, where X is the design matrix. All prior private algorithms for this task require either d°/2
examples, error growing polynomially with the condition number, or exponential time. Our near-
optimal accuracy guarantee holds for any dataset with bounded statistical leverage and bounded
residuals. Technically, we build on the approach of Brown et al. (2023) for private mean estimation,
adding scaled noise to a carefully designed stable nonprivate estimator of the empirical regression
vector.

1. Introduction

We present a sample- and time-efficient differentially private algorithm for ordinary least squares

(OLS) regression. Central throughout the theory and practice of data science, OLS is used in numer-

ous domains, ranging from causal inference, to control theory, to (of course) supervised learning.
Given covariates X € R™*? and responses iy € R", the OLS estimator is defined as

-1
fos = (X7X) XTy.

Among the many reasons for the popularity of OLS is the fact that it is a statistically and computa-
tionally efficient way of solving linear regression. Speaking informally, OLS has low excess error
whenever the number of samples 7 is as large as the problem dimension d. Crucially, its statistical
performance does not depend on the condition number (X T X), the ratio between the maximum
and minimum eigenvalues. Furthermore, it can be computed in closed-form using only basic linear-
algebraic operations, with no need for the subtle hyperparameter tuning often inherent in first-order
methods.
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Given its widespread use in the analysis of personal data, there is a long line of work giving
differentially private algorithms to approximate OLS. However, designing practical and efficient
algorithms for this problem has been a particularly challenging endeavor; so far there are no clear
answers even in the d = 1 case when x and y are both scalars (Alabi et al., 2022). Existing al-
gorithms for DP regression suffer from one of three limitations: they either have poor dimension
dependence in their sample complexity, place unnaturally restrictive assumptions on the geometry
of the data, or run in exponential time.

In terms of private algorithm design, one natural and well-established approach is sufficient
statistics perturbation, which privately produces separate estimates of X ' X and X "y and then
combines them to produce a single parameter estimate. Such approaches are often efficient and
some versions come with formal accuracy guarantees. An exemplar in this line is the AdaSSP al-
gorithm of Wang (2018). The central drawback in all these algorithms, however, is the sample
complexity as d grows: privately producing an accurate estimate of X ' X requires roughly d3/2
samples (Dwork et al., 2014). Furthermore, many approaches within this class add noise propor-
tional to the worst-case sensitivity of X T X and X "y (see, e.g., Sheffet, 2017). To deal with the
fact that this sensitivity is unbounded in the case of real-valued data, these results assume uniform
norm bounds on the covariates = and responses y (e.g., ||z|| < By, |y| < By). While conceptu-
ally simple, they fail to capture the intrinsic complexity of the problem and do not satisfy natural
properties like scale invariance.

Another approach comes via private optimization, searching for a parameter estimate that ap-
proximately minimizes the sum of squared errors. Despite a wealth private convex optimization
methods that can be applied directly to linear regression, off-the-shelf approaches again require
d3/% samples for accurate estimates. A notable exception is the recent work from Varshney et al.
(2022), whose algorithm based on private gradient descent succeeds with only roughly d samples.
However, its error grows with the square of the condition number, a high price to pay for many
problems. A polynomial dependence on (X " X) is inherent in private first-order optimization
for linear regression, as the smoothness of the optimization task is directly linked to the condition
number.

The only known approach that avoids these two issues is the exponential-time algorithm of
Liu et al. (2022), which comes from the framework they call high-dimensional propose-test-release
(HPTR), after the propose-test-release (PTR) framework of Dwork and Lei (2009).

We see the mirror of this story in private mean estimation, where Kuditipudi et al. (2023) and
Brown et al. (2023) recently gave the first sample- and time-efficient private algorithms with error
guarantees that adapt to the covariance of the data. All prior private algorithms achieving this
guarantee require d/2 examples, error growing polynomially with the condition number of the
covariance, or exponential time.

In this work, we build on the work of Brown et al. (2023) and present the first computationally
efficient (in fact, practically implementable) differentially private estimator for linear regression
with sample complexity independent of (X " X) and the optimal linear dependence on the dimen-
sion d. Furthermore, we make no use of norm bounds. We establish its utility under the “textbook”
conditions one would typically require to run OLS in the non-private setting. More specifically,
the algorithm is accurate as long no observation has high statistical leverage or a large residual,
formalized in Definition 2.
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(a) Large residual (b) High leverage

Figure 1: As famously illustrated by Anscombe (1973), a point may be influential because of its
large residual (a) or its large leverage (b). Definition 6 controls both quantities.

1.1. Our Results

In this work, we introduce a new algorithm, ISSP, for differentially private linear regression. At a
high level, ISSP works in two main phases. In the first, we search for a reweighting of the dataset
such that running OLS on this reweighted version is roughly stable. Having successfully found
this set of weights, we simply compute the OLS solution on this weighted version of the data and
add appropriately shaped Gaussian noise to the solution. While the approach is conceptually very
simple, establishing its correctness requires several significant technical advances.

Our estimator satisfies differential privacy (DP), the gold standard for privacy protection in
statistical data analysis. DP requires that an algorithm provides approximately the same output on
any datasets that differ in only one entry.

Definition 1 (Dwork et al. (2006)) Let X and Y be sets. An algorithm A : X™ — Y is (g,0)-
differentially private if for every x = (x1,...,2,) € X" and 2/ = (2,...,2)) € X" such that
x,x’ agree on all but one coordinate and for allY C ),

PlA(z) e Y] < ¢ P[A(@)eY]+4.

One of the core advances we make, in light of most previous results on DP regression, is that
we do not require any norm bounds on the data. We only assume the types of conditions a circum-
spect statistician would always verify to ensure that OLS is a sensible procedure. In particular, we
establish the utility of our estimator whenever the dataset is free of outliers, or “good.”

Definition 2 (L, R)-goodness) Fix parameters L, R > 0. A dataset (X, y) € R"™*4xR" is called
(L, R)-good if X ' X is invertible and the following conditions hold for all i € [n)].

(1) Bounded leverage: z (X" X) 'z; < L.
(2) Bounded residuals: |<332, Bols) — yl‘ <R.

Note that both of these conditions hold in various natural, well-studied settings. For instance,
when x,y are both subgaussian and drawn from a well-specified linear model with true param-
eter 3%, these conditions hold with high probability when L ~ d/n and R ~ ¢ where 0% =
E[(y — (B*,x))?] (see Theorem 5). This idea, of outliers being observations with high leverage
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or large residuals, is quite classical and found across standard texts. For instance, a standard
rule-of-thumb identifies high-leverage points as those with leverage greater than 2d/n or 3d/n
(Hoaglin and Welsch, 1978; Velleman and Welsch, 1981; Mendenhall et al., 2003). The precise
forms of stability we need to ensure privacy, however, are far from classical. They require a carefully
designed algorithm, which we elaborate in Section 1.3. Such a stable estimator, in turn, implies that
we can achieve differential privacy with small amounts of noise.

In these well-behaved instances, our mechanism takes a most straightforward form: it returns
the OLS solution plus a small amount of Gaussian noise.

Claim 3 If (X,y) is (L, R)-good for parameters R > 0 and L < c'e*log=2(1/6), for some
constant ¢, then I1SSP(X, y; ¢, d, L, R) releases a sample drawn from N(ﬁols, c? (XTX)_l), where
? = O (L R*log(1/0)/<?).

Attentive readers will detect a modest sleight-of-hand: (L, R)-goodness is a property of the data and
a priori unknown, yet the algorithm gets L and R as inputs! Nevertheless, an analyst with beliefs
about the data generation process can set these parameters appropriately. The maximum leverage
score does not depend on the scale of the data, only its concentration properties. Since it lies within
[0, 1], one might pick the L hyperparameter adaptively by calling ISSP a handful of times. Similarly,
if the analyst believes the labels are generated by a process such as y; < (x;, 8*) + N(0, 0?), they
can privately produce an accurate estimate o using standard tools (see Appendix D). We believe
alternative standardized or studentized definitions could remove this need for prior knowledge about
o. These alternatives would likely increase the complexity of our proofs.

The difficulty in our work lies in proving that ISSP is differentially private (Theorem 5); rea-
soning about utility is simple once we have Claim 3. More specifically, seeing how the output
distribution on good data matches standard statistical practice (and classical CLT-like analyses
of OLS), we can quickly derive error bounds. For instance, in the simplest case of fixed design,
where we consider only the randomness of the labels generated from a well-specified linear model
yi = (z, %) + N(0,02), we have Bos ~ N(B*,0% - (X T X)~1). Hence, from Claim 3, we see
that, relative to the empirical OLS solution, the private estimator is just a slightly noisier version of
the true parameter (and has the same kind of error covariance).

More formally, we can analyze the mean squared error (MSE) of our algorithm on any good
dataset.

Corollary 4 Fix (X,y), e > 0, and § € [0,1]. If (X,y) is (L, R)-good for L, < & log™2(1/4)
for some constant ¢ and R > 0, then ISSP(X, y; ¢, 0, L, R), releases (3 such that, for some absolute
constant ¢,

log1/d

1 ~ 1 d
B[ Ll XBIP| = Ll X+ Crr2 S

Proof By Claim 3, we have o — 5 = ¢ - (X T X)~"/2u for u ~ N(0,1). We then expand:

Eully — XB|° = Bully — XPoss + X (Bats — A
= Bu|y — X Bois + X - (X X)7H2?
= lly = X Bots 2+ ¢ - By [T (XTX)T2XTX(XTX) 2]
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where the cross terms drop out as « is independent and mean-zero. The matrices cancel and we are
left with E[u " u], which is exactly d. [ |

We emphasize that this result holds without any assumption that the data arises from a specific
family of distributions. It assumes (X, y) is fixed and (L, R)-good to bound the difference from
the empirical OLS solution on (X,Y"). However, if we do add such distributional assumptions, it
is easy to show that our algorithm produces a private parameter estimate that closely approximates
the true regression parameter. We state this fact as part of the following theorem, our main result.

Theorem 5 (Main Theorem) Fixe,n € (0,1), 6 € (0,e/10], and n,d € N. ISSP takes a dataset
(X,y) € R"™*4 x R", privacy parameters €, 6, and outlier thresholds Lo, Ry.

(1) ISSPis (e,0)-differentially private.

(2) Let X € R™ pe drawn i.i.d. from a d-dimensional subgaussian distribution D with mean
0 and covariance > = 0. Let y; = ﬁTxi + z; where the z; are drawn i.i.d. from a sub-
gaussian distribution with mean 0 and variance o2 (see Definition 29 in Appendix B). ' If
Ly =0(d/n), Ry = ©(0), and

- log 1 2
o Q<i+d\/2§ /5 d(log1/9) >

a? g2

with a large enough constant for some o« > 0, then ISSP returns 5 such that, with high
probability,

3-8l < on

Here, © and § hide logarithmic factors in 1/o, log(1/€), and log(1/3) as well as polynomial
factors of the subgaussian parameters.

(3) Algorithm 1 can be implemented to require one product of the form AT A for A € R™, one
product of the form AB for A € R"% and B € RdXd,None inversion of a positive definite
matrix in R¥™9; and further computational overhead of O(nd/¢).

Informally, this running time corresponds to 5(nd°"_1 +nd/e), where w < 2.38 is the matrix multi-
plication exponent. For modest privacy parameters, the running time of our algorithm is dominated
by the time needed to compute the nonprivate OLS solution itself.

This is the first computationally efficient algorithm whose sample complexity is linear in d
and has no dependence on the condition number (X " X). This almost matches the best known
sample complexity of an exponential-time algorithm from Liu et al. (2022); we have an additional
d(log(1/8))?/e? term, but this term does not depend on the final accuracy a.

We now briefly sketch the steps of the proof and discuss the paper’s organization. We establish
Theorem 5’s subclaims in Lemmas 22, 25 and 26. As outlined above, the utility analysis is straight-
forward once we have Claim 3 in hand. The full analysis is presented in Section 5. It is easy to see
that Algorithm 1 runs in polynomial time. In Section 6, we analyze a careful implementation.

1. We state the utility guarantees of our estimator for the case where data is drawn from a well-specified linear model
to simplify the presentation and enable direct comparisons to previous work. However, as per Corollary 4, on good
data our algorithm is always close to the OLS solution. Hence, we can prove closeness to the population quantity
whenever the OLS solution concentrates.
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Algorithm 1: InSufficient Statistics Perturbation (ISSP)
Input : dataset (X, y); privacy parameters ¢, ¢, outlier thresholds (Lg, Ry)

ko Pl"eﬂ] +8 ¢ 56448 exp (432K Lo) Lo RE - 12202/,
if Lo > 1/(96k) or Ly > 3¢/(561og 12/0) then
| return FAIL;
end
SCOREj, w < StableLeverageFiltering(X, Lo, k); // Algorithm 5
SCOREg, v <— StableResidualFiltering(X,y,w, Lo, Ro, k); // Algorithm 3
if M2/ (max{SCORE,, SCORE,}) = FAIL then
| return FAIL;
else
S, « X T diag(v)X;
B (S,)1XT diag(v)y; // OLS weighted by v
return 3 ~ ./\/'(B, S,
end

The bulk of the work comes in the privacy analysis. In Section 2, we analyze the greedy residual
thresholding algorithm, with the main result about that algorithm being Claim 11, the “intertwining”
property. Then, in Section 3, we establish our guarantees for StableResidualFiltering The
main results about StableResidualFiltering are Claim 13, which says that the score is low-
sensitivity, and Claim 14, which says that the weights are stable. Section 4 pulls these together to
establish the privacy of ISSP.

Appendix A covers additional related work. Appendix B provides necessary preliminaries.
Appendix C contains proofs deferred from the main text. Appendix D, via standard tools, shows
how to privately estimatie 2. Appendix E contains details on the lower bound of Cai et al. (2023).

1.2. Optimality

For modest values of the privacy parameters, the error of our algorithm is dominated by the empirical
error of OLS. Informally speaking, we obtain privacy “for free.”

Formally, our error guarantees are close to tight for random-design regression with subgaussian
covariates and subgaussian label noise. Suppressing constants and logarithmic factors other than
log 1/6, Theorem 5 says that we can achieve |3 — ||, < oo with high probability with

d dy/logl/s5 d(log1/6)?
n~ L 0g1/s . (ng/)-
(6% (675 1)

Known lower bounds imply this task requires

d log1/6
| logl/6

d
nZ—
[0 (6719 g

e))

The first term corresponds to the classical analysis of OLS. The second term was established by
Cai et al. (2023) and holds even for parameter estimation in £ norm; see Appendix E for a more
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detailed discussion. The third term, the minimal number of samples required to produce any esti-
mate, is from Karwa and Vadhan (2018) and holds even for one-dimensional mean estimation with
known variance. The exponential-time algorithm of Liu et al. (2022) nearly matches all three terms.
For constant € and 6 = 1/poly(n), our algorithm’s error guarantee in this setting is tight up to
logarithmic factors. An exciting topic for future work is determining the existence or impossibility
of efficient algorithms with error matching Eq. (1) up to constant factors.

1.3. Techniques

At ahigh level, our algorithm follows the blueprint for private mean estimation laid out by Brown et al.
(2021) and made computationally efficient by Kuditipudi et al. (2023) and Brown et al. (2023). Our
approach closely follows that of Brown et al. (2023), henceforth BHS. We now sketch our algo-
rithm, discuss how our analysis differs from that of BHS, and investigate how the notions we use
are, in a sense, “correct” for the task of private least squares.

Overview of ISSP Perhaps the most natural approach for private estimation of regression coef-
ficients is to perturb the ordinary least square estimator, [3,s. However, without restrictions on the
data, the sensitivity of ()5 is unbounded. Our key observation is that, on datasets with bounded
leverage and bounded residuals, the OLS solution is actually quite stable. If we could restrict
our inputs to only such outlier-free data sets, we might hope to release (5.5 plus noise with shape
(XTx)~L

While this would provide accuracy, it fails on privacy: we must accommodate worst-case data.
We use the PTR framework of Dwork and Lei (2009) to test if our input contains a large good
subset. We propose a greedy pruning algorithm which, in each iteration, removes the data point
with the largest residual and recomputes OLS on the remaining data. Similar approaches abound in
the literature on robust statistics, but we prove key new properties about how this algorithm behaves
across adjacent data sets and different outlier thresholds.

Adaptively selecting outlier thresholds Our algorithm takes as input target bounds L and R for
the leverage and residuals, respectively. This simplifies our analysis but is not strictly necessary.
The maximum leverage can only lie within the interval [0, 1], so one could imagine calling ISSP
repeatedly within this space (via a well-chosen grid or binary search) to find an appropriate setting,
perhaps via a small validation set. Independently, one could privately learn an appropriate value for
R directly through standard techniques; we give a complete description in Appendix D.

Proof techniques While our work builds on a long line of research connecting robust statistics
and differential privacy, it especially relies on the recent algorithmic approach of BHS, who gave
improved algorithms for private mean and covariance estimation. At a bird’s eye view, our recipe
for private linear regression follows the main ideas behind the mean estimator of BHS. However,
key parts of the implementation and analysis differ significantly in the more complicated linear
regression setting.

We start by discussing the ways in which our main proof strategy is similar to BHS. As men-
tioned previously, we introduce a notion of “good” outlier-free datasets for linear regression. We
repeatedly call a greedy algorithm to find a series of good weight vectors across a range of carefully
chosen outlier thresholds. We use these vectors to privately test that our input data is sufficiently
close to the good set and to finally produce a vector of weights over the input. Crucially, this weight-
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finding procedure is stable: if run on any adjacent dataset, it would produce a vector that is close in
¢, distance.

When adapting their analysis, however, we run into immediate issues. For both their definitions
of good set, BHS prove a number of strong properties that are false in the context of regression. For
mean and covariance estimation, the good sets are unique (i.e., for any dataset and outlier threshold,
there exists a unique largest good set), are directly found by the natural greedy algorithm, and enjoy
a form of monotonicity (e.g., introducing a new point to the dataset cannot alter the good set very
much). For the definition we use, there is no unique “largest good set”” which introduces significantly
more complexity in the analysis. What’s more, adding a single point may significantly affect the
downstream choices made by the greedy algorithm which further complicate the relevant stability
calculations.

In more detail, a key step in the BHS analysis establishes the following “intertwining” property
in the context of mean and covariance estimation. Suppose we call the greedy algorithm on a dataset
D with outlier threshold B and find a largest good subset S C [n]. If we then call the same algorithm
on an adjacent dataset D’ with a slightly larger outlier threshold B’, the largest good subset T will
satisfy the property that S C T (ignoring the index that differs between D and D).

We establish an analogous statement (Claim 11) about the output of our greedy residual thresh-
olding, Algorithm 2, even though we cannot prove the same uniqueness and monotonicity state-
ments. More specifically, we develop a novel regression-specific argument that uses the closed-
form expressions describing how the least squares solution changes when an observation is added
or removed. The exact arguments are formalized in Claim 7 and Claim 8, but we sketch the ideas
here.

For a dataset (X,y) and index i € [n], let §; = =} 3.1 be the fitted value. We denote by e; the

i-th residual: ¢; e 1; — y;. Recall the hat matrix:

HEX(XTX)7'XT,
so called because it maps the true labels to their “hat” values: §j = Hy. The leverage scores (also
known as sensitivities or self-influences) form its diagonal entries, while its off-diagonal entries will
be called (by us) the cross-leverage scores:

hi = Hm = .Z'ZT(XTX)_I.Z'Z‘ and HZ'J' = .Z'ZT(XTX)_IIL']'.

Note that, by Cauchy—Schwarz, the cross-leverages are no larger in magnitude than the leverages.
What happens if we remove an observation, say, (x;,y;), from the dataset? This takes the
form of a rank-one update. Applying the Sherman-Morrison formula we can derive closed-form
expressions for the changes in the OLS solution as well as (for any ¢ € [n]) the leverage score and
residual of point  after removing j. Using the subscript “(—7)” to denote the quantity after removal,
we have
H?,
_ »J
hi = hi—p) = =77,
XTX) 1z,
Bois — /Bols(—j) = w ’ (<xj7/8015> - yj)
1—h;
€
-0 = Mg 775

€; — ei(
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These well-known formulas have elementary derivations; the second and third correspond to the
DFBETA (“difference in 5°) and DFFITS (“difference in fits”) regression diagnostics (see textbooks
such as Mendenhall et al., 2003; Belsley et al., 2005; Huber, 2011). All three seamlessly generalize
to the case where the points are weighted. We can reuse them to reason about what happens when
we add points to the dataset.

Beyond their use in our formal arguments, these formulas show how our goodness definition in
Definition 6 is essentially the “right” one to analyze stability. The leverage score and the magnitude
of the residual exactly determine the sensitivity of the least-squares solution to adding or removing
that data point. To see this in more detail, consider the effect of dropping a point from a typical
dataset:

1/2 (XTX) e,

1T 2X)Y2(Bos = o) = H(XTX) (w5 — (7, Bos)

1—h;
2
_ iy
(1—hy)?

Arguing heuristically for now, if removing a point changes the OLS solution by A, to ensure privacy
one must ensure noise of magnitude at least A. It is impossible to do any better. Note that by work-
ing with (L, R)-good sets we can guarantee that the noise we add for privacy, A'(0, (X T X)™1)
where ¢ > LR?. bgg—%/é, has magnitude roughly A. This insight shows our accuracy guarantees
are sharp.

1.4. Notation

We use [n] to denote the set {1,...,n}and N = {1,2,...}. For a vector v € R" its support is
supp(v) = {i € [n] | v; # 0}. If we have a set S C [n], then IIg(v) € R"™ has (IIg(v)); = v;

def

for i € S and (Ilg(v)); = O otherwise. Also we define S = [n] \ S. We use ||v|| = ||v]|2 and

[v]ls = ||S*/2v]|. If M € R™ " is a matrix, then || M ||o denotes its spectral norm.

2. Analysis of Greedy Residual Thresholding

Algorithm 2: ResidualThresholding
input : dataset X, y; outlier threshold R; starting weights w

while TRUE do
Bw  WeightedOLS(X,y,w);
" 4 argmaX;coypp (w) ‘yz — a:iTﬁw| ;
if |y« — 2.\ 80| > R then
wi+ < 0;

else

‘ return w;
end

end
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In this section we establish the key properties of our greedy residual-thresholding algorithm.
This analysis contains the bulk of the technical novelty in our work. The main result is Claim 11, the
“intertwining” property that relates the outputs of ResidualThresholding on adjacent datasets.

Since we will be dealing extensively with weighted sets from now on, we expand the definition
of good sets in Definition 2 to vectors of weights.

Definition 6 ((L, R)-goodness, weighted) Fix a dataset (X,y) € R"™4 x R" and parameters
L,R > 0. A vector w € [0,1]" is (L, R)-good for (X,v) if, denoting W = diag(w), X WX is
invertible and the following two conditions hold for all i € supp(w).

(1) Bounded leverage: x] (X "W X)) lz; < L.
(2) Bounded residuals: |<3:Z, Buw) — yl‘ < R, where B, = (X TWX)"1 X TWy.

Furthermore, we will say that w is (L, 00)-good for (X, vy) if (1) holds, but not (2).

2.1. Stability and Goodness for Ordinary Least Squares

Our analyses rely on how goodness is affected when adding and or removing mass. As dis-
cussed in Section 1.3, closed-form expressions characterize the effects of removing a single point
(Mendenhall et al., 2003; Belsley et al., 2005; Huber, 2011). The following claim generalizes these
results to removing multiple weighted points, or adding weight to points already included in the
regression. In addition, it shows how these results interact with goodness. We defer the proof to
Appendix C.

Claim 7 (Changing Weight Within Support) Ler w,w’ € [0,1]" satisfy supp(w’) C supp(w)
and ||w — w'|1L < §. If wis (L, 00)-good for (X, y), then for all i € supp(w),

o7 (X7 diag(w)X) s < (14 2L]w — w']) L. @
If, in addition to the previous conditions, it also holds that w is (L, R)-good for (X, y), then
|2 Buw — 2 Bur| < 2|lw — w'|[LLR. 3)

In particular, since supp(w') C supp(w), Equations (2) and (3) apply to all i € supp(w'). Conse-
quently, w' is (nL,nR)-good for (X,y), where n = 1+ 2L||w — w'||1.

We next present a claim about adding a point to existing good weights: either the expanded
weights are good or the new point has a large residual (in which case our greedy algorithm, presented
later, will identify it). We illustrate these cases in Fig. 2. Such a claim also holds when we add sets
of points.

Mathematically, this proof contains little innovation beyond Claim 7. However, it provides a
key conceptual bridge. We see that it connects directly to our greedy algorithm, which removes
large residuals.

Claim 8 (Adding Weight Outside Support) Ler w' € [0,1]" be an (L, R)-good vector for a
dataset (X, y) and let v € [0, 1]"™ be a vector such that supp(w’) Nsupp(v) = 0. Define w = w'+v
and n = 1+ 8||v||1 L. Assume the following two conditions hold:

10
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(a) A good dataset. (b) Add star with small residual. (c¢) Add star with large residual.

Figure 2: We illustrate our analysis of adding a new observation (star) to an (L, R)-good dataset
(a). In (b), the added star is close to the original regression line. The new largest residual
may be greater than R but is less than R’. In (c¢), we instead add a significant outlier.
Multiple points may have residuals larger than R’, but the largest belongs to the star. In
this case, residual thresholding discards the star and recovers the original dataset.

(1) The matrix X " diag(w)X is invertible and for all j € supp(w),
z) (X diag(w)X) 'z; < 2L.

. . 1
(2) The weights v satisfy ||v||1 - L < 5

If max;cqupp (w) ‘yi — wiTBw‘ > R, then argmax;cgpp(w) |yi — wiTBw‘ C supp(v).

Proof We prove the contrapositive: if there exists j* & argmaxiesupp(w)’yi — ] By| with j* ¢
supp(v), then for all i € supp(w), |y; — z; Buw| < NR.

Note that since supp(w) = supp(w’) U supp(v) and supp(w’) N supp(v) = 0, j* ¢ supp(v)
implies j* € supp(w’). We first produce a lower bound on the j* residual under w’. By the triangle
inequality,

g = A 4T T
> iy — Bl — 56— -G

= |2} Bo — . Bur|

Note that by assumption, w is (2L, |e;«|)-good for (X, y). Since supp(w’) C supp(w), and |jw —

w'lly = |lv|li < g, we can apply Claim 7 to get that \ij*ﬁw — x};ﬁw/\ < 2|lw — w'|[1(2L)]e;+|.
Using this upper bound, we get that:

e+ | = Ly = @) Bur

= ‘ej*

2 |ej-

[ej- — 4w = ']}, L]e;-

To complete the proof, we use the upper bound |e;-| < R, which holds by the assumption that
J € supp(w’) (and that w’ is (L, R)-good). Rearranging our previous inequality, we get that for all
i € supp(w),

el

= 2] Byl < les| < < < (1+8L|jw—w'|1) R

’yl ‘Tz Bw’ — ‘6] -1 —4L||w _w/Hl — ( + ”w w ”1) ’

where we have used the inequality (1 — 2)~% < 1 + 2z, which holds for all z € (0, 1/2]. [ |

11
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2.2. Guarantees for Leverage Filtering

ResidualThresholding receives as input a vector w, the “starting weights,” and iteratively zeros
out any weights corresponding to residual outliers, recomputing the weighted OLS solution as it
goes. These starting weights w will come from the StableLeverageFiltering subroutine of
BHS, which filters out high-leverage outliers. The exact algorithm we use differs superficially
from the version in BHS, who use it for covariance estimation and call it “Stable Covariance.”
Our application only needs its properties as a leverage-filtering procedure. We give a complete
description of our variant in Appendix B.2.

The filtering algorithm has “goodness” guarantees (when the score is modest, many points re-
ceive weight and no point with weight has high leverage), utility guarantees (on outlier-free data, all
points receive full weight), and stability guarantees on adjacent datasets (the score is low-sensitivity
and the weights are stable). We now give the formal statement.

Theorem 9 (Guarantees for StableLeverageFiltering, Brown et al. (2023)) There is a de-
terministic algorithm StableLeverageFiltering receiving as input a list of vectors X € R™*¢,
a leverage threshold L, and a discretization parameter k € 7 and returning as output an integer
SCORE and a vector w € [0,1]". Let W = diag(w). Assume kL < 1. If SCORE < k the following
hold.

(1) ||w|ly > n — k. As a consequence, |supp(w)| > n — k.
(2) Foralli € supp(w), we have z] (X W X)) tz; < L.

On “outlier-free” data as defined below, the algorithm’s output is as follows.
(3) If z] (X" X)"Ya; < L/2€2 for all i € [n] then SCORE = 0 and w = 1.

To present the stability guarantees, let X and X' be datasets that differ in one entry. For any values
of k and L, consider

SCORE, w <— StableLeverageFiltering(X, L, k)
SCORE', w’ < StableLeverageFiltering(X', L, k).
We have the following sensitivity bounds.

(4) |SCORE — SCORE/| < 2.

(5) If SCORE, SCORE' < k then ||jw — w'||; < 2.

2.3. Properties of ResidualThresholding

The first claim we prove says that, when we run StableLeverageFiltering followed immedi-
ately by ResidualThresholding, the returned weights are good.

Claim 10 Let (X, y) be a dataset, k € N be a discretization parameter, and L, R > 0 be outlier
thresholds. Assume kL < 1/2. Consider the outputs of the following calls, where the latter uses the
output of the former:

SCORE, w < StableLeverageFiltering(X, L, k),
u < ResidualThresholding(X,y, R, w).

IfSCORE < k and ||u|l; > n — k then u is (2L, R)-good for X, y.

12
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Proof By the guarantees of StableLeverageFiltering, Theorem 9, when SCORE < k the
weights w give us a bound of L on leverage. That is, for all ¢ € supp(w),

e (XTWX) e < L.

Furthermore, since ResidualThresholding only alters w by setting some entries to 0, we have
that |jul|; = ||w||1 — ||w — u|;. Using the assumption that ||u|[; > n — k and the trivial bound
|lw]| < n, we get that ||w — u||; < k. Thus, setting U = diag(u), by the first part of {Claim 7, we
have for all ¢ € supp(u) that

z (XTUX) a; < (14 2L[lw —ul1) - L < 2L,

where we used the assumption that Lk < 1/2. Since ResidualThresholding only returns a
vector when the largest absolute residual is no greater than R, we are done. |

Our next claim relates the runs of residual thresholding on adjacent datasets at nearby residual
thresholds. This is the main result about our thresholding procedure.

Claim 11 (Intertwining) Let (X,y) and (X',y') be adjacent datasets that differ on index i*. Let
k € N be a discretization parameter. Let L, R, and R' > 0 be any outlier thresholds such that
kL < % and R' > exp(108kL)R. Consider the outputs of the following calls:

w, SCORE <— StableLeverageFiltering(X, L, k)
w’, SCORE’ +— StableLeverageFiltering(X', L, k),

which we feed into:

u < ResidualThresholding(X,y, R, w)
u' <+ ResidualThresholding(X' ', R, w').

Define I = supp(u)Nsupp(w’)\ {i*}. If SCORE, SCORE’ < k and ||ully > n—k then I C supp(u').

As we will see in Section 3, where StableResidualFilteringuses ResidualThresholding
to obtain stable weights, many indices of the weights are easily accounted for. This includes 7*,
which can be handled as a special case, as well as supp(w) \ supp(w’) and supp(w’) \ supp(w)
whose stability is established by Theorem 9. Ignoring those cases for now, we wish to show that
any point that is not filtered under (X, y) will also not be filtered under (X', ") provided that the
threshold used to filter (X', 3’) is sufficiently large. We illustrate these cases in Fig. 3. Now we are
ready to state the proof of Claim 11.

Proof Our first goal will be to show that IT;(w’) is sufficiently good. (Recall our notation: II;(w') €
[0, 1]™ takes the value w/ for ¢ € I and O elsewhere.) First, we see that u is (2L, R)-good for (X, y)
by noting that SCORE < k, ||u|l; > n — k, and kL < 1/2 and applying Claim 10. Next, we show
that IT;(w') is close to w in ¢; distance. In particular, by definition of ResidualThresholding, if
i € supp(u) then u; = w;. Hence,

Hu - Hf(w/)H1 = Z‘ul - (Hf(w/)M
i=1
= Z ‘Uz - (Hj(w'))i‘ + Z ‘uz — (Hj(w’)M

i€supp(u) igZsupp(u)

13



BROWN HAYASE HOPKINS KONG L1U OH PERDOMO SMITH

€

Figure 3: Graphical depiction of Claim 11°s “intertwining.” Here w represents the weights on
dataset (X, y) after leverage filtering and u the weights on (X, y) after residual filtering.
w’ and u' represent the analogous weights on an adjacent dataset (X',3’). By Theo-
rem 9’s guarantees for leverage filtering, the yellow, vertically hatched regions represent
a small amount of weight. The blue, horizontally hatched regions represent identical out-
comes after residual filtering (either kept on both (X,y) and (X’,y’) or discarded on
both). The claim’s main consequence is that only one index can fall in the magenta, solid
region, which receives weight under u and w’ but not «’. This is 7*, the index that differs
between (X, y) and (X', /).

If i ¢ supp(u), then u; = 0 and hence (II;(w’)), = 0 since II;(w’) is by definition only nonzero
outside the support of u. Hence, the second term in the last equation is 0. Moving on, by definition
of the set I,

=M@l = 3 Jwi = (Hr(w)),

i€supp(u)

= D |wi = Mauppar gy @),

t€supp(u)
< Jwie = (Msuppon oy (@) |+ D2 i = Mauppun (),
i€supp(u)

= |wy — 0] + Z |wi—w;|
t€supp(u)

< Jwie| + lw = w'[ly

<3.

The the last inequality follows from the last part of Theorem 9.
Since I C supp(u), and L < kL < 1/12 by assumption, it holds that |lu — II;(w')|]; <
3 < 1/(2L), and we can apply Claim 7 to show that IT;(w') is (21 L, 71 R)-good for (X, y) where
n = 1+ 12L. Furthermore, I1;(w’) is (2n; L, 71 R)-good for (X', y") because (II;(w'));+ = 0.
Now, we will show that during the execution of ResidualThresholding(X’, vy, R',w’) we
will never discard any i € I. Let w'() denote the weights obtained in the j™ iteration of the while-

14
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loop out of m total iterations, such that w'(®) = w’ and w/(™) = «’. We proceed to show the loop
invariant I1; (w'0)) = II; (w') for j € {0,...,m}. Since w’ = w'("), the invariant holds initially.

In each iteration, by the loop invariant we can decompose w'~1) as
w0 = T (w'UV) 4 T (') = T (w') 4 Tip(w'0).

Now, we note that we have [supp(u)| > |lul|1 > n — k by assumption and since SCORE’ < k, we
also have [supp(w’)| > n — k by Theorem 9. Therefore by inclusion-exclusion, |I| < 2k + 1 and

N HHT(w’(j_l)) H < 2k + 1. Now since 96kL < 1 by assumption, we note that

2||11; (w0 =) || L < 2(2k + 1)y L < 2(2k + 1)(1 + 12L0)L < 12kL <

ool —

and for ny =14 16(2k + 1)m L,

mem R = (1+16(2k + 1)(1 + 12L)L)(1 + 12L)R
< (1+96kL)(1+12L)R
< exp(96kL)exp(12L)R
< exp(108kL)R
<R

Thus by the (211 L, 71 R)-goodness of II;(w') and Claim 8, if max|y; — z, B,,G-1| > R’ then
argmax|y; —x, B,G-1| & I and so I (w')) = TI;(w'). Finally, it follows that TT; (u/) = TI; ().
Therefore, since I C supp(w’), we have I C supp(u’). [ |

We now observe that our greedy residual thresholding subroutine only removes more points
when run with smaller thresholds. We now state this simple fact for future reference.

Observation 12  Fix a dataset (X,y) and starting weights w. For outlier thresholds R < R/,
consider running

u < ResidualThresholding(X,y, R, w)
u' < ResidualThresholding(X,y, R/, w).

Foralli € [n], u; < u.

3. Analysis of StableResidualFiltering

In this section, we prove the stability guarantees for Algorithm 3, our new regression estimator.
Algorithm 3 repeatedly calls Algorithm 2, ResidualThresholding, over a range of slowly in-
creasing outlier thresholds. These thresholds are indexed by a number j € {0, 1,...,2k}, where k
is a discretization parameter. (Later, we connect this discretization to the privacy parameters, setting
k ~log(1/d)/e.) The key lemma used in these proofs is Claim 11, which relates the weights found
on a dataset (X, y) at level j to the weights found on an adjacent dataset (X', y') at level j + 1.

We start by showing that the SCORE value and the weight vector, v, returned by Algorithm 3 are
low-sensitivity.

15
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Algorithm 3: StableResidualFiltering
input : dataset X, y; base outlier thresholds Lg, Ry; weights w; discretization parameter k
Vj € [2k], Rj < (exp(108kL))’ - Ro;
for j € {0,...,2k} do
uld) ResidualThresholding(X,y, Rj,w);
SCOREY) < min{k,n — ||u|; + j};
end
SCDRE — minje{o _k} SCOREU);

Vg Zy =k+1 ul?),
return SCORE, v

Claim 13 (Score is Low-Sensitivity) Ler (X,y) and (X’ ) be adjacent datasets. Fix outlier
thresholds L, R and discretization parameter k. Assume k:L < g5+ Let

SCORE;, w < StableLeverageFiltering(X, L, k)
SCORE),w’ < StableLeverageFiltering(X', L, k)

and

SCOREg, v < StableResidualFiltering(X,y,w, L, R, k)
SCORE), v < StableResidualFiltering(X',y',w', L, R, k).

If SCORE;, SCORE] < k, then |SCORE; — SCORE)| < 4.

Proof We observe that all SCORE variables are at most k£ by construction. Without loss of generality,
assume SCORE; < SCORE). First, we consider the case when SCOREy = k. In this setting, since
SCORE/, < k we must have SCORE; = SCORE), hence |[SCOREy — SCORE),| = 0 and we are done.

Now, consider the case when SCORE; < k. Then, by definition of the StableResidualFiltering
algorithm, there must exist a j* € {0, ..., k} such that n— ||ul")||; +5* = SCOREy, where ") are
the weights returned by the ResidualThresholding subroutine (run within StableResidualFiltering)
at outlier threshold R;+.

Let u = uU") and v/ = (u ’)(j*ﬂ) denote the weights returned by ResidualThresholding
on dataset and outlier thresholds (X,y), R~ and (X',y'), Rj-41 respectively. Defining I as in
Claim 11, we note that

[/l > [T ()], = [lu = (u =T @), =l = e = ()]s
Now, seeking to bound the last term using Claim 11, we note that
(1) Rj«y1/Rj+ > exp(108kL) by the definition in Algorithm 3,
(2) kL < g5 by assumption

(3) Since, \|u<ﬂ'*> = ||lu||; and SCOREy = n — ||ul™)||; + j* < k, it holds that

|luli >n—k+j">n—k.
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Therefore, we can apply Claim 11, which implies that IT;(v') = IT;(w’). This gives

H’LL—H[ | - HHsupp(u (w) _Hl(w/)H
= | Mgupp(e) () = Mguppgun o} (@) |
< | Mgupp(uy (w — w') || +1
<3

Finally, combining the previous results gives
SCORE, < 1 — H(u’)<ﬂ'*+1>H1 YD)
<n—([u] = 3) +j" +1
= (n =Yy +5%) +4
= SCORE; + 4.

The first inequality in the calculation about holds by definition of StableResidualFiltering.
The second one uses our previous two calculations. |

Claim 14 (Weights are Stable) Ler (X,y) and (X', y ) be adjacent datasets. Fix outlier thresh-
olds L, R and discretization parameter k. Assume kL < g5. Let

SCORE(, w < StableLeverageFi1tering(X, L, k)
SCORE}, w’ < StableLeverageFiltering(X', L, k)

and

SCOREy, v < StableResidualFiltering(X,y,w, L, R, k)
SCORE}, v < StableResidualFiltering(X' v/, w', L, R, k).

If SCORE;, SCORE/, SCOREy, SCORE), < k, then ||v — '||; < 5.

Proof Consider the execution of ResidualThresholding resulting in a weight vector u. We ob-
serve that ResidualThresholding receives weight vector w as input and modifies it by setting a
subset of the weights to zero. Thus we can write the weight u; = w; - 1{u; # 0}. This (rather triv-
ial) modification allows us to write the output of StableResidualFiltering in terms of counts:

letting ¢; = Z?ikﬂ 1 ugj) # 0}, we have

= V)= 2 J =2
= Z u; - Z 1{u;”” # 0} .
j=k+1 Jj=k+1

Now note that by Observation 12, for j € {k+1,...,2k} we can have u 75 0 only if u( 2 # 0.
This implies that ul(.%_ci) # 0 and ug%_ci_l) =0.

Now since SCORE; < k, we know that there exists some j* € {0,.. k} such that n —
Hu H —I—] < k. Applying, Observation 12 again, we see that |[u)||; > |[uU)||; > n -k
for all j > j*. From this, we can conclude that |{i | ¢; # k}| < k.
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Now, define ¢’ analogously as the counts under (X', y’) and note that all of the previous obser-
vations apply under (X', y’) as well. Consider some ¢ € supp(w) N supp(w’) \ {¢*} and suppose
without loss of generality that ¢; > ¢,. Our goal will be to show that ¢, < ¢; < ¢, + 1. If we have
¢; = k, then ¢; = cg, SO we turn our attention to the case where ¢; < k. We know that ul(-%_ci) £ 0.
Now, seeking to show that (u;)(%_ciﬂ) # 0 using Claim 11, we note that

(1) ugzk_ci) and (u;)(zk_ciﬂ) were computed using outlier thresholds Rgj_., and Rop_¢ 11
which satisty Rog_c,+1/Rok—c, > exp(108kL) by the definition in Algorithm 3,

(2) wehave kL < % by assumption, and

(2k—ci) |

i

(3) we have Hu | > n — k as we observed previously.

Therefore we can apply Claim 11, which implies that (u;)(zk_ciﬂ) = 0. Recalling our previous

observation, we obtain ¢; < ¢; + 1 as desired. In summary, if ¢ € supp(w) Nsupp(w’) \ {i*} then
we can write ¢; = ¢; + A; where |A;] < 1.

Now, define D = {i € supp(w) Nsupp(w’) \ {i*} | A; # 0} and note that | D| < 2k since ¢;
and ¢} both contain at most k elements not equal to k.

Now, we are ready to complete the proof by noting that we can decompose the quantity we wish
to bound into four terms

+ Z |lciw;| + Z |wsi| + Z |lciw; — cjw;

Elv -1 = |Ci*wi* — Chwls

i€supp(w) i¢Zsupp(w) i€supp(w)
i¢supp(w’) i€supp(w’) i€supp(w’)
ii* ii* ii*

This is valid because |c;w; — ¢;w)}| appears exactly once on the right for each i. Now we will
consider each term separately. The first term is at most k because ¢;, ¢; are bounded by k and w;, w/
are bounded by 1. The summands of the second and third terms can be rewritten as ¢;|w; — w| and
¢;|w; — w}| and are thus bounded by k|w; — w}| and k|w; — w}| respectively. Now focusing on the
last term, we have

Z leiw; — cwl| < Z (Jeiws — ciwy] + |Aqw]])

i€supp(w) i€supp(w)
i€supp(w’) i€supp(w’)
ii* ii*
/ /
< E |ciwi — ciw;| + E | Aju]
i€supp(w) i€supp(w)
i€supp(w’) i€supp(w’)
ii* ii*
€D
< E k|w; — w}| + 2k.
i€supp(w)
i€supp(w’)
i#i*
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Combining the bounds for each term, we have

Klo—vh<3k+ D Klwi—wil+ > klwi—wil+ Y klw —w]

i€supp(w) igZsupp(w) i€supp(w)
igZsupp(w’) i€supp(w’) i€supp(w’)
ii* it ii*

< 3k+ k‘Z|wZ — wi|

=3k + k|lw — w'||1
< Bk

where the last line is an application of Theorem 9. |

The previous claim shows that the weights produced by StableResidualFiltering on ad-
jacent datasets are close in #; (when SCORE is less than k). In the next claim, we prove that the
weights are good. Note that this does not follow immediately from Claim 10, which says that the
weights returned by ResidualThresholding are good. Since StableResidualFiltering re-
turns an average of the vectors returned by ResidualThresholding, we have to argue that the
average of good sets is good.

Claim 15 (Weights are Good) Fix a dataset (X,y), outlier thresholds L, R, and discretization
parameter k. Assume Lk < %. Consider the following calls:

SCORE;, w <+ StableLeverageFiltering(X, L, k)
SCOREy, v < StableResidualFiltering(X,y,w, L, R, k).

Then the vector v is (4L, 2Ryy,)-good for (X, y), where Ry, = exp(216k2L) - R.

Proof StableResidualFilteringcalls ResidualThresholdingrepeatedly, producing a vector
u9) for each residual threshold R;. Recall from Observation 12 that for all i < j, since R; <
R; (within StableResidualFiltering) we have that u < uU) elementwise. This implies
that the support of u(?*) contains all other supports, including that of the average v. Additionally,
since SCOREy < k (by construction within the algorithm), there exists some j* € {0,...,k} with
|u™)|; > n — k, so the same lower bound holds for all j > k. Together, these facts imply that
|u®) — 4@y < K for all j > k. Since the ¢ norm is convex and v = E;[ul)], by Jensen’s
inequality we have ||u(®**) — v||; < k as well.

To finish the proof, we apply Claim 7: since supp(v) C supp(u®*)), [[u®*) — v|; < k, and
u®k) is (2L, Ryy,)-good, we conclude that v is (L', R')-good for

L
R

(1+4Lk) 2L < 4L

' <
! < (1 + 4Lk) - Rop. < 2Ryy.

Recalling that Ry, = (exp(108kL))?* - Ry, we finish the proof. [

19



BROWN HAYASE HOPKINS KONG L1U OH PERDOMO SMITH

4. Privacy Analysis of Algorithm 1

Our privacy analysis follows the blueprint established by Brown et al. (2021); Kuditipudi et al.
(2023); Brown et al. (2023). We use the well-known propose-test-release (PTR) framework of
Dwork and Lei (2009) and first privately check (via our low-sensitivity SCORE) if it is safe to pro-
ceed. If this check passes, we compute a vector of weights v € [0, 1]™. We use this vector to compute
a weighted covariance .S, and weighted least squares solution ﬁv. The output is then drawn from
N (Bv, 251 for some appropriate constant c.

On adjacent datasets, we may compute different weights v, v’. We know that, when the PTR
checks pass, these vectors are close in #;. The main work in this section, then, lies in connect-
ing this stability of weights to stability of parameters, which in turn implies N (ﬁAm s N (e,5)
N (Bv’; c2S;1). Note that this is more complicated than the standard Gaussian mechanism, since
both the shape and location of the noise change.

Before proving Lemma 22, our main privacy claim, we collect the necessary statements. First,
we recall the privacy check of BHS, which (in place of the standard Laplace-noise-and-threshold)
simplifies our analysis.

Claim 16 (PTR Mechanism) Fix0 < e <1, 0< 6§ < %, and 0 < A. There is an algorithm
M‘;’%R : R — {PASS,FAIL} that satisfies the following conditions:
(1) Let U be a set and g : U™ — R a function. If, for all x,x' € U™ that differ in one entry,
é .
9(x) — g(@')] < A, then MGy (g(-)) is (2,6)-DP
(2) M35 (0) = PASS.

(3) Forall z> 21810 L 9N MES (2) = FAIL

The next claim relates bounded leverage, /1 closeness, and covariance closeness. This state-
ment comes directly from BHS, Lemma 23; similar claims were used in Brown et al. (2021);

Kuditipudi et al. (2023). We use the notation dpp (.S, S2) to denote the maximum of H S, 1/2 S25, 12 _q

and HS; V2 612 - Recall that dpp (51, S2) = dpp(S7 ', S ) (Fact 27).

tr

Claim 17 Let L € (0,1) and let X, X' € R™ be adjacent (i.e., they differ in one out of n
rows). For vectors v,w € [0,1]", let S, = X " diag(v)X and S,, = (X")T diag(w)X'. Sup-
pose v and w both have bounded leverage: for all i € supp(v),wiTSU_ Yo, < L and for all
j € supp(w), 3:}5;133]- < L. Then S, and S,, are positive definite and, if (1 + |[v — wl|}1)L < &,
satisfy

dpp (Sy, Sw) < 2(2+ |lv — w|1) L.

An analogous claim says that, if we have two vectors v and v’ that are (L, R)-good on adjacent
datasets and are close in #1, then the regression parameters they induce are close. We defer the
proof to Appendix C, as similar claims appear in the robust statistics literature (Klivans et al., 2018;
Bakshi and Prasad, 2021).

Claim 18 Ler (X,y) and (X',y') be datasets differing in one entry. Let vector v be (L, R)-
good for (X,y) and let vector w be (L, R)-good for (X',y'). Set V = diag(v) and likewise W.
Let S, = X'VX, B, = (X'VX)'XVy, and B, = (X)TWX")"UX")TWy'. Assume
(o = wlli +2)L < L. We have ||S/*(8, — Bu)||2 < 4(||o — w||y + 2)2LR2.
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We use the following relationship between the closeness of covariance matrices and the indistin-
guishability of their induced Gaussians (as in Brown et al., 2021; Alabi et al., 2023; Kuditipudi et al.,
2023; Brown et al., 2023).

Claim 19 Fixe € (0,1) and 6 € (0,1/10] and let Sy, Sy € R**? be positive definite matrices. If
dpp(S1,52) < 31();72/6 then N'(0, S1) ~(e,5) N (0, S2).

We also need two standard privacy facts: privacy of the Gaussian mechanism and the DP almost-
triangle inequality.

Fact 20 (Gaussian Mechanism) Fix ¢, € (0,1) and let u,v be vectors. If ||u — v||a < A, then
forany 2 > A% . 21%22/5 we have N (u, ) =~ 5 N (v, ¢*I).

Fact 21 (See Vadhan (2017)) Suppose for some ¢ and § that distributions p1, ps, and p3 satisfy
P1 R(e,5) P2 and p2 R(c 5) p3. Then p1 X (o (14e2)5) P3-

We are now ready to prove our main privacy claim.

Lemma 22 (Main privacy guarantee) Fore € (0,1), § € (0,£/10], and Lo, Ry > 0, Algorithm 1
is (¢, 0)-differentially private.

Proof Consider the execution of Algorithm 1 on two adjacent datasets (X, y) and (X', y'), yielding
SCORE{, SCOREy, v, 3 and SCORE], SCORE,, v’, 3’ respectively. Note that in order to not immediately
fail, we must have

0= 96k 56 log 12/6
where k£ = [(12log 3/d)/c] + 8.
Privacy of the test First, we will show that

|max{SCORE,, SCORE;} — max{SCORE], SCORE, }| < 4.

By Theorem 9, we have [SCORE; — SCORE] | < 2. Without loss of generality, assume that SCORE; >
SCORE,.
Considering the case where SCORE; = k, we have max{SCORE;, SCORE;} = k and

max{SCORE}, SCORE,} > SCORE| > SCORE; —2 > k — 2

so in this case, [max{SCORE;, SCORE; } — max{SCORE], SCORE,}| < 2.
Now if SCORE; < k then SCORE] < k as well, so we can apply Claim 13 to get |[SCOREy —
SCORE)| < 4. Then by noting that max is 1-Lipschitz in the co-norm, we have

|max{SCORE, SCORE;} — max{SCORE], SCORE} }|
< max{|SCORE; — SCORE] |, [SCORE; — SCORE)| }
< max{2,4}
< 4.

Finally we see that M;/;’g/g(max{SCOREl, SCOREy }) is (¢/3,0/3)-DP by Claim 16.
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Privacy of the parameter estimate Now we will proceed under the assumption that

M/ (max{SCORE, SCORE, }) = My/pr/* (max{SCORE], SCORE) }) = PASS,
PTR PTR 1 2

with the goal of showing that N'(3, ¢2S; 1) R0 /3,25/3 N(B, 3 S_;1). Since the PTR checks passed,
Claim 16 says that
SCORE;, SCOREy, SCORE], SCORE), < k

where k = [(121log 3/0)/e] + 8, which matches the assignment in Algorithm 1. Now we can apply
Claim 14 to obtain ||[v — v'||; < 5 and observe that v, v’ are both (4Lg, 2 exp(216k%Lg) Ry)-good
by Claim 15. We will use the stability and goodness of the weights to establish the stability of both
ﬁ and .S,,.

Claim 18 requires 28Ly < ﬁ < i, which is true by assumption. The claim implies that
HSI%/Z(BA — B)||? < A? where A? = 3136 exp(432k2Lo) LoR3. Next, we see that transforming
B3, B’ by (S,)~/? allows us to apply Fact 20, giving

N(Ba 6251}_1) %6/3,5/6 N(B/702Sv_1).
as long as ¢ > A?. &bagg%, which is satisfied by construction in Algorithm 1.
Then, since 24Ly < 1/(4k) < 1/2 by assumption, Claim 17 tells us that dpp(Sy, Syr) < 56Lg.
We apply Fact 27 and Claim 19 to obtain
N(B,7C2SU_1) %8/3,5/6 N(Bla CZSJI)a
since 56 Ly < 3e¢/(log 12/0), which we assumed to be true. Finally, we apply Fact 21 to combine
the two results, observing that e®* < e < 3, to complete the proof. |

5. Utility Analysis of Algorithm 1

Given the privacy guarantee of Lemma 22, we analyze the utility of Algorithm 1 under the standard
subgaussian linear model. The definition of subgaussian variables and necessary concentration
inequalities are provided in Appendix B.1. We first note that data from the standard subgaussian
linear model is good with high probability.

Lemma 23 (Subgaussian data is good) Ler X € R™"*? be drawn i.i.d. from a d-dimensional sub-
gaussian distribution D with mean 0, (full-rank) covariance %, and subgaussian parameter Kp.
Let y; = ﬁTZL'Z' + z; where the z; are drawn i.i.d. from a subgaussian distribution with mean 0,
variance o2, and subgaussian parameter K. There exists constants K1, Kr, K,, > 0 such that for
anyn € (0,1), ifn > K, K5 (d +log(3/n)) then (X,y) is (L, R)-good, where

d+1
L= KiK. + ogn(?m/n)

and R = KrK,o+\/log(3n/n),

with probability at least 1 — n.
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Proof [Proof Sketch] Identical calculations about leverage appeared in Brown et al. (2021); Kuditipudi et al.
(2023); Brown et al. (2023).

Recall that we can write the vector of residuals e = § —y = (H — 1)z, where H is the hat matrix
and z the noise vector. Denote by r; the i-th row of H —I. Then e; = riT z, which (for any fixed H)
implies e; has subgaussian norm ||r;||K,. We know that ||r;|| < 1, since I — H is idempotent and
symmetric: 1 > (I — H);; = r,' ;. Thus all |e;| will be bounded with high probability. [ |

As we noted in Claim 3, when the input data is good ISSP returns the OLS estimate plus noise.
We use a bound on the error of the OLS estimate from prior work.

Lemma 24 (OLS error under random design, restatement of Theorem 1, Hsu et al. (2011)) Un-
der the distributional assumption of Lemma 23, there exists an absolute constant Koyg such that,
forany o € (0,1), if n > KoLsKp(d + log(1/4)), then with probability 1 — 0, we have

. KorsK20%(d +1log(1/6
Hﬁom—ﬁ”éé OLS 207 (n Og(/)).

Now, we are ready to prove the main accuracy lemma by bounding the norm of the added noise.

Lemma 25 (Main accuracy guarantee) Let X € R™? be drawn i.id. from a d-dimensional
subgaussian distribution D with mean 0O, (full-rank) covariance 3, and subgaussian parameter
Kp. Lety; = ﬁTZL'Z' + z; where the z; are drawn i.i.d. from a subgaussian distribution with mean 0,
variance o, and subgaussian parameter K. There exists constants K1, Kr > 0 such that for any

€ (0,1), if

d + log(3n
Lo =KL K} - #7 Ry = KrK,0+/log(3n/n),

n= §<K§<d+1og<$>>(bi%/5)2>,

then with probability at least 1 — 1) Algorithm 1 successfully returns 5 such that

and

En

18 - 8|y < O(K o JAF18A/ M) g e (d A log(n/n)y/log(n/n) 10g(1/5)>
¥ = o n o ’

where Q) hides log factors in Kp and log 1/0.

Proof We begin by determining how many samples are needed to ensure that (i) the algorithm
does not fail immediately and (ii) the data is (Lo, Rp)-good (for the specified values) with high
probability.

In order to not fail, we require Ly = O(g/log(1/6)). Meanwhile, in order to apply Claim 3, we
require Lo = O((g/1og(1/6)?)). Tt is clear that the second requirement implies the first. Thus, we
can expand our choice of L to get

d + log(3n/n) g2
Lo= K K2 229800 _ (S )
0 LB n © (log 1/6)?
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Using the fact that a/ log a = Q(b) implies a = Q(blog b), this translates to

- KBUBLOL (., (KBUoE LY ))

e2n

We note that this implies n = Q(Kp(d + log(1/6))) as required by Lemma 24. Now, in order
to apply Lemma 23, we additionally require n = Q(K%(d + log(1/ n))) As in Lemma 23, this
requirement gives us HZ_I/ 25y -1/2 —HH2 < 1/2 by Claim 31, which we will use later. Combining
the two outstanding requirements and dropping lower order terms gives

n= Q(K‘*D <d + 10g<K%(102g 1/5)2» (log 1/5)2> .

e2n g2

This ensures that (X, y) is (Lo, Ro)-good with probability 1 — O(n). When this happens the
PTR check passes deterministically. Thus, we now turn to evaluating the accuracy of our regression
estimate. We apply the triangle inequality about [5,s:

18— Bllz < 18— Bassllz + 1| Bots — Blls- 4

We analyze these terms separately.
The first term in Eq. (4) is solely about the empirical quantity. By Lemma 24, with probability
at least 1 — O(n) we have

uﬁols—mb:a([(oa w)

To bound the second term in Eq. (4), we apply Claim 3, which states that on good data B
is drawn from N (B, (X TX)™1) where ¢ = O(Lo R31og(1/8)/<?). Equivalently, we draw
2~ N(0,T) and set §§ < Bois + c¢(X " X)~/22. Plugging this in, we have

1Bots = Blls = [le(X T X) 7225
=c-[|2V2(XTX)7 22,

We plug in Y= %X T X the empirical covariance and apply Cauchy—Schwarz:

~ cC A
1Bo1s = Blls < =7 - =227z - 2]le.

By Claim 31 the matrix norm is at most a constant, and by Claim 30 we can bound ||z||3 = O(d +
log 1/7) with probability at least 1 — O(n). Plugging these in, along with our expressions for ¢, Ly,
and Ry, we arrive at the expression in the lemma. Applying a union bound over the three failure
cases finishes the proof. |
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6. Running-Time Analysis of Algorithm 1

In this section we prove the following guarantee about the running time of ISSP, whose computa-
tional requirements are quite lightweight. The core ideas in this proof appeared in the analogous
claim of BHS.

Lemma 26 (Running Time) Algorithm 1 can be implemented to require
(1) one product of the form AT A for A € R"*4,
(2) one product of the form AB for A € R"*% and B € R,
(3) one inversion of a positive definite matrix in R*%; and

(4) further computational overhead of O(nd/¢).

Ignoring bit complexity, this corresponds to time O(nd“_l + nd/e), where w < 2.38 is the ma-
trix multiplication exponent. For modest privacy parameters, the running time of our algorithm is
dominated by the time needed to compute the nonprivate OLS solution itself.

To establish this claim, we provide a second version of StableResidualFiltering, Algo-
rithm 4, which is more computationally efficient. We show that this alternative algorithm is func-
tionally equivalent.

Proof [Proof of Lemma 26] From BHS, Lemma 20 in Section 2.3, we see that we can implement
StableLeverageFilteringusing one product AT A, one product AB, one matrix inversion, and
at most O(log(1/8)/e) additional operations, each of which requires O(nd) time. We need two
additional conclusions from their analysis: StableLeverageFiltering can be implemented to
return the inverse weighted covariance (X "W X)~! in the same asymptotic running time and we
can update all leverage scores in time O(nd) when removing a single observation.

With the weights w and inverse covariance in hand, we call StableResidualFiltering The
initial regression parameter can be computed in O(nd) time, as we compute the vector X ' Wy
with a matrix-vector product (since W is diagonal) and multiply it with the inverse covariance.
Computing all residuals is linear-time.

Each outlier removal and associated set of updates can also be implemented in O(nd) time. This
is because the removal of a single point corresponds to a rank-one update, which can be done effi-
ciently. Recall from Section 1.3 the equation for updating the least squares solution after removing
a data point:

(XTX) "ty

1—h, (Y5 — (2, Bots)) -

/Bols(—j) = Bois +
(A nearly identical formula applies when the data are weighted.) Since we have the previous lever-
age scores and inverse covariance, this update can be performed in time O(nd). As before, with the
new regression parameter all the residuals can be recalculated in linear time.
Setting these details aside, we turn to the crux of the analysis: StableResidualFilteringis
functionally equivalent to Algorithm 4, our efficient version.
Algorithm 4 iterates through the residual thresholds in decreasing order. This is identical to inde-
pendently calling the greedy algorithm repeatedly from scratch, since the removal process is deter-
ministic (we can break ties in a consistent manner, e.g., using the index of the points). Formally, for
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Algorithm 4: StableResidualFiltering, More Efficient Implementation

input : dataset X, y; base outlier thresholds Lg, Ry; weights w; discretization parameter k

Vj € [2k], R; < (exp(108kL))7 - Ry;
COUNT <« 0;
for j € {2k,2k —1,...,0} do

end

while TRUE do

// check for large residuals

Bw  WeightedOLS(X,y,w); /* via rank-one update =*/
T argmaxiesupp(w)|yi — a:iTﬁw| ;

if |y;- — 2. By| < Rj or COUNT > k then

‘ break; /* too many outliers or no large residuals =/
end

wyx < 0; /* otherwise, remove weight =/

COUNT «+ COUNT + 1;

end
if COUNT > k then

// too many outliers
Vi < j,SCORE® « k;

Vi < j,u® « 0o

break;

end

// store result and move to next threshold
ul) w;

SCOREY) < min{k,n — |[u)|; + j};

SCORE <— min;eg,. ) SCOREY);

1 N\2k ).
CR el DD} uld);
return SCORE, v
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any R > R’ and any fixed X, y, w, the result of ResidualThresholding(X,y, R’, w) is identical
to calling u + ResidualThresholding(X,y, R, w) and then ResidualThresholding(X,y, R', u).

Algorithm 4 also tracks a count of observations it removes and halts if that number reaches k.
If it halts at level ¢, for all j < / it sets w9 = 0" and SCOREY) = k. To show that this has no effect
on the outcome of the algorithm, we suppose Algorithm 4’s count reaches k£ and analyze two cases.
Let ¢ € {0,...,2k} be the residual threshold index at which the count & was reached. We know
that u(®) returned by ResidualThresholding(X,y, Ry, w) in Algorithm 3, the main version of
StableResidualFiltering, satisfies ||ul®)||; < n— k, since after any removal the weight is zero.
This also holds for all ) with j < £.

Case 1: Suppose ¢ > k, i.e., ¢ falls among the indices used to compute the weights. Then
for all j € {0,...,k}, the indices used to compute the scores, Algorithm 3 computes u) with
|u9)||; < n — k. This means Algorithm 3 computes SCORE = , as does Algorithm 4 (since it sets
SCORE; = k for all j < k). (Recall that this causes ISSP to fail deterministically, so the weights do
not impact the output.)

Case 2: If ¢ < k, then / falls among the indices used to compute the score. (Thus, Algorithms 3
and 4 return the same weights.) Algorithm 4 sets SCOREVU) = k for all j < ¢. We claim that
Algorithm 3 also computes SCOREY) = k for all j < £. To see this, recall that on these indices
Algorithm 3 computes u) with ||ul)||; < n — k.

To finish the proof, we note that the final 3, and S, ! computed by ISSP can be computed with
at most k rank-one updates from their initial values. Since k = O(log(1/0)/e), we are done. W
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Appendix A. Additional Related Work

Private Mean Estimation Many of the developments in private linear regression have analogs in
private mean estimation, albeit rearranged chronologically. Consider the canonical mean estimation
problem with “covariance-adaptive” error guarantees, which respect the shape of the dataset: the
error is measured in Mahalanobis norm with respect to the covariance matrix > of the data X,
|12=1/2(j1 — )||. This scales each direction according to the directional variance, providing a more
relevant measure of utility. This is closely related to how linear regression error corresponds to the

S-norm, ||3 — A|s.
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For non-private mean estimation, the distinction between Euclidean and Mahalanobis norm
error are minor. For example, the empirical mean achieves such a geometry-aware guarantee and,
like the OLS estimator, is accurate with roughly d samples with no dependence on the condition
number of the covariance of the data.

For private estimation, geometry-aware estimation is significantly more challenging, since the
privately learning the geometry, i.e., the covariance matrix, is more sample expensive than the pri-
mary task of mean estimation. At the same time, it seemed like it was necessary to design the privacy
noise that matches the shape of the data covariance. The standard Gaussian mechanism privately
estimates the mean with only d samples but its error depends polynomially on the condition number,
a high price to pay when the estimator does not respect the geometry. The work of Kamath et al.
(2019) allows us to privately learn the covariance and apply the Gaussian mechanism on whitened
data, but, as with the SSP approaches for linear regression, this requires d*/2 samples. A long line of
work that follows either makes more strict assumptions on the geometry or pays a price in the sample
complexity (Karwa and Vadhan, 2017; Biswas et al., 2020; Cai et al., 2021; Aden-Ali et al., 2021;
Bun et al., 2019; Bun and Steinke, 2019; Liu et al., 2021; Kamath et al., 2022; Hopkins et al., 2022;
Alabi et al., 2023). Of particular relevance for our work are frameworks introduced by Tsfadia et al.
(2022) and Ashtiani and Liaw (2022), which remove outliers in a way that depends on the rest of the
dataset (e.g., asking that inliers be close to a large number of other examples). These frameworks
bear some similarity to our techniques and to those of Brown et al. (2023), especially their “Stable
Mean” estimator. Informally, our approach improves over theirs in the ability to adapt the definition
of outlier and the resulting geometry as points are removed.

Brown et al. (2021) was the first to address this geometry-aware challenge in private mean es-
timation. They termed it the covariance estimation bottleneck and gave two exponential-time ap-
proaches for avoiding it, achieving accurate estimation with O(d) samples and no dependence on
the condition number. The first, which combined the exponential mechanism with PTR (Propose-
Test-Release), served as a direct inspiration to the HPTR (High-dimensional PTR) framework of
Liu et al. (2022). The concurrent works of Kuditipudi et al. (2023) and Brown et al. (2023) built
on the second algorithm of Brown et al. (2021), giving time-efficient algorithms matching the guar-
antees of the exponential-time approaches. The sample complexity has linear dependence on the
dimension d and no dependence on the condition number x(X T X). As in Kuditipudi et al. (2023)
and Brown et al. (2023), our goal is to achieve the same for linear regression.

Private Linear Regression. Commensurate with its centrality in statistical theory and practice,
significant effort has gone into producing differentially private algorithms for least squares (Vu and Slavkovic,
2009; Kifer et al., 2012; Mir, 2013; Dimitrakakis et al., 2014; Bassily et al., 2014; Wang et al., 2015;
Foulds et al., 2016; Minami et al., 2016).

One standard theme in many of these works is the class of assumptions that directly enable
global sensitivity analysis. Prime examples include assuming that the covariates satisfy an £ norm
bound or that the true parameter lies in some ball about the origin. Such guarantees are incomparable
with our definition of goodness (for example, our definition allows arbitrarily large covariates, but
covariates with bounded norms may still have high leverage). Under some collections of these
assumptions, state-of-the-art guarantees are achieved in (Wang, 2018; Sheffet, 2019), which in our
setting translates into a sample complexity of n. = Q(d"/(ag)) to achieve (1/0)||8 — Bz < a.
Both these prior algorithms and ours analyze accuracy under the assumption that the input data is
“outlier-free." The prior work uses conditions on the norm of the covariates or the magnitude of the

32



INSUFFICIENT STATISTICS PERTURBATION

labels. These assumptions lend themselves handily to global sensitivity calculations. In contrast,
our work uses a notion of outlier-freeness which is more in line with standard statistical practice:
we ask that the dataset have no high-leverage or high-residual points.

When applied to data from the standard sub-Gaussian linear models, ISSP is the first compu-
tationally efficient algorithm to achieve linear dependence in the dimension d and no dependence
on the condition number x(X " X) (see Theorem 5). This nearly matches the best known sam-
ple complexity of Liu et al. (2022) that relies on an exponential time approach of HPTR: n =
O(d/a? + (d +1og(1/68))/(ag)) samples suffice to achieve an error of (1/0)||3 — S|z < . Ex-
isting computationally efficient approaches based on gradient descent either assume the covariance
matrix is close to identity (Cai et al., 2021; Brown et al., 2024) or have polynomial dependence
on the condition number (X TX ) (Varshney et al., 2022; Liu et al., 2023). The best known sample
complexity of an efficient algorithm is by Liu et al. (2023): n. = O(d/a? + (k!/2d1og(1/6))/(ag)).

Iterative Thresholding. Our ResidualThresholding algorithm is a special case of the family
of iterative thresholding algorithms, a longstanding heuristic for robust linear regression that dates
back to Legendre. Its theoretical properties in the non-asymptotic regime have been extensively
studied recently in Bhatia et al. (2015, 2017); Suggala et al. (2019); Pensia et al. (2020); Chen et al.
(2022). Shen and Sanghavi (2019b) and Awasthi et al. (2022) studied the iterative trimmed esti-
mator under generalized linear models and Shen and Sanghavi (2019a) studied the mixed linear
regression setting. It is worth noting that most iterative thresholding algorithm in the robust linear
regression setting will alternate between finding the OLS solution of the current set and finding the
set with the smallest residual under the current regression coefficient, and no data point is perma-
nently removed in each iteration. In contrary, our algorithm will permanently remove one data point
in each iteration before recomputing the OLS solution.

Appendix B. Preliminaries

We collect here known preliminary results that we use in our analyses.
Fact 27 Let S1, .52 be positive-definite matrices and define

dpp (51, S2) = maX{HSl_l/25251_l/2 1 52—1/25152—1/2 1

o

)
tr

Then dpp(S1,S2) = dpp (S, S5 t).

Proof Note that 51_1/25251_1/2 and 521/251_15;/2 are similar and likewise, 52_1/25152_1/2 and
511/252_1511/2 are similar. Thus,
tr}

o

dpp (S, S2) = max{Hsl‘l/%s;l/? 1

’52—1/25152—1/2 1

tr7
= max{“S;/szlsép —1)| L |[si2sy s 1
= dpp (S, S;)

= dpp(S; .55 ")

b
tr

as desired. [ |
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B.1. Subgaussian Random Variables and Concentration Inequalities

For formal proofs of claims and further discussion we refer to Vershynin (2018).

Definition 28 (Subgaussian Norm) Let y € R be a random variable. The subgaussian norm of y,
denoted ||y, is ||yl|y, = inf {¢t > 0: Eexp (y*/t?) < 2}.

Definition 29 (Subgaussian Random Variable) Ler y € R be a random variable with mean [
and covariance Y. Call y subgaussian with parameter K if there exists K > 1 such that for all
v € R% we have

Ky = o)y, < KVoTSo.
For example, the Gaussian distribution A/ (1, ) is subgaussian with parameter K = O(1).

Claim 30 (Concentration of Norm) Lety,...,y, be drawn i.i.d. from a d-dimensional subgaus-
sian distribution with parameter K, > 0, mean p, and (full-rank) covariance .. There exists a
constant K1 > 0 such that, with probability at least 1 — 3, we have both

a1
by VZ(gZ%Z/i—H)

Claim 31 (Concentration of Covariance) Let y1,...,y, be drawn iid. from a d-dimensional
subgaussian distribution with parameter K, > 0, mean p = 0, and (full-rank) covariance Y. Let
S = % Yoy yZyZT be the empirical covariance. There exist positive absolute constants Ky and Ko
such that, for any B € (0,1), if n > Ko(d + log 1/3), then with probability at least 1 — 3 we have

. log 1
IS-V25n12 )|, < K1K§ [d+ Zg /ﬁ‘

B.2. Details on StablelLeverageFiltering

2
éKlKZ.w'

HE—1/2(y1 _ #)Hz < KlKj(dJrlog 1/8) and Y "

As a preprocessing step, ISSP performs a leverage-score filtering routine introduced by BHS. The
algorithm we use differs only superficially from their version. (For instance, they compute a set
of weights w € [0,1]™ and a weighted covariance estimate, while we only care about the weights
themselves.) For completeness, we now state the version we use here. Recall that Theorem 9
contains the relevant guarantees proved by BHS.

Appendix C. Deferred Proofs

We now give the proof for Claim 7, which characterizes the effect of removing weighted points
from a least squares model. This is a natural generalization of standard results (Mendenhall et al.,
2003; Belsley et al., 2005; Huber, 2011).

Proof [Proof of Claim 7] We start by setting up notation and bounding a term useful in proving both
(2) and (3).
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Algorithm 5: Stable Leverage Filtering (StableLeverageFiltering), BHS

Input: dataset X € R™*%; outlier threshold Lg; discretization parameter k € N
A« [n];
for j = 2k,2k —1,...,0do
Lj = exp{j/k} - Lo;
repeat
Sa ¢+ Tieamin];
OUT < {z cA: xiT(SA)_lw,- > Lj};
A<+ A\ 0OUT
until OUT = (;
Aj — A;

end
SCORE «— min{k, ming<;<p{n — |4 + j}};
fori=1,...,ndo
1 2k . .
W; < E Zj:k+1 ]1{2 c Aj},
end
return SCORE, w;

Setup Assume without loss of generality that supp(w) = [n], as any points outside the support
of w are irrelevant. Let v = w' — w, ||v|1 = p, W = diag(w) (likewise W’ and V), and C =
XTWX. Decompose V = PN (for “positive” and “negative”) where P, N are diagonal matrices
with P;; = /|v;| and N; ; = sign(v;) - \/m

Let A =T +Y whereY = NXC7'XTP. If |[V|s <e < 1thenI+Y = (1 —¢)l.
Consequently, A is invertible and [|A~|| < 1/(1 — €). To prove that ||Y]|2 < &, we use the fact
that ||Y||2 < ||Y||r and compute:

INXCTXTPIE =3 (Niahys “ZTC_%')Q
il
= LZZ\%H’UJI
= in\vi\ Z\%‘!
i

— 2w - '},

%]
< Z N2.p2 12
.J

Ultimately, we arrive at [[A~!||s < (1 — |Jw — w'||; L)~ . In the first line of the calculation above,
we used the fact that, by our initial assumption on the goodness of (X, w),

2] C 7 ajlla < |C7Y 2242/ O™ 22|2 < L2

Since, ||w — w'||1 L < 1/2, we conclude that [|A~Y]|5 < 2.
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Bounding the Leverage Scores Consider an index ¢ € supp(w) Write out its leverage under w’
and plug in our notation:

o= az] <XTW'X>_1:L"Z-
_— (XTWX + XTVX) T
. (C + (PX)TNX)_lx,-.

Recalling the fact that, l‘;l—c_lllti = h;and A = I + NXC~'X TP, we can apply the Woodbury
matrix identity to arrive at the following relationship between k) and h;:

-1
W= ol [0—1 -7 (PX)T(1+ NXCTH(PX)T) NXC’_l} i
= h;—z] CT'XTPATINXCa;.

We want to upper bound this leverage, h;, so we take the absolute value of the right-hand term and
apply Cauchy—Schwarz:

2] CTIXTPATINXC Y| < |A7Yo - [|[PXC a2 - [INXC ay|o.

We already argued that ||A~!||3 < 2, so we turn to the second term in the product:

IPXC™ il =) PPl O ay)?

Jj=1

n
< ol L2 = w — ||y - L2,
j=1

Note that an identical bound also holds for | N X C~1x;

9, hence we have

B, < h; + 2w — w'||; L?
< L+ 2w —w | L* = (142w —w'|1L) - L

Bounding the Residuals As above, we use the Woodbury matrix identity to derive an expression
for the regression line (,,.

By = (XTW’X>_1XTW’y

XWX + XTVX) (XTWy + XTVy>

(
( +(PX TNX) (XTWy+XTVy>
(c

-1 _ o Ypx)TAINXC™ )(XTWy—I—XTVy>.
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This expression expands into four terms, which simplify nicely:

Buw = Bu

+C7 X Ty
—CTIXTPATINXCI X TWy
—CIXTPATINXCTIX Ty

= Buw
+ CTIXTPATIN(PATIN)tVy
—C'XTPATINXB,
—CIXTPATINXCTIX Ty

— B+ C—1XTPA—1N(N—1AP—1Vy — X B — XC—1XTVy>.

We can further simplify the expression in the parentheses. In particular, by plugging in the definition
of A, we have that N"'AP~'Vy — X8, — XC~1X "V can be rewritten as:

N1 (I n NXC—1XTP>P—1vy — XBy - XCTIXTVy

=N 'PWy+ NINXCIXTPP Wy — XB, — XC'XTVy
=V Wy+XC'XTVy—XB, - XC'XTVy

=y— XPuw.

Plugging back in, we arrive at
Bw = Buw+CIXTPATIN(y — XBy).

To finish the proof, we consider the residual on a point z; € supp(w):

= ‘yi_x;r/@w"i‘x;rﬁw_x;rﬁw’
< ‘yz - x;r/Bw| + |w;r5w _‘Tz—'rﬂw’
<R+ |o/ CT'XTPATIN(y — XBu),

|yi - wz—'rﬂw’

The bound ‘yl —z; Bu ‘ follows from our initial assumption that w is (L, R)-good for (X, 3). We can
bound the second term in an analogous way to how we bounded the leverage scores. In particular,

using the fact that || N||s < /||w — w'||1,

2] CT'XTPAT'N(y — XBy)| < ||PXC ™ wi|, - AT, - IN(y — XBuw)ll,
<2LR||w — w'||;.
This completes the proof. |
We now prove Claim 18, which says that, if two weight vectors on adjacent datasets are both

good and close in total variation distance, then their least-squares solutions are close as well. We
start by considering the setting where the vectors correspond to the same dataset.
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Claim 32 Assume v, w are both (L, R)-good for dataset (X, ). Define S, = X "diag(v)X, B8, =
S;XTVy, and likewise Sy, By If ||v — w1 L < 1, then HS&Q(BU — Buw)|? < 4|jv — w|3LR2

From this claim, Claim 18 is an easy corollary.
Proof [Proof of Claim 18] Vectors v, w € [0, 1] on adjacent datasets (X, y) and (X', y’), respec-
tively, correspond to vectors v/, w’ € [0,1]"*! over the datasets’ union. We have |[v/ — w'||; <
lv —wl||1 + 2. [ |

Proof [Proof of Claim 32] We start by expanding out the squared norm and substituting in the
definition of S,:

HS},M(BU - Bw)H2 = <5v - 510,50(511 - 5w)>

= <,8v_5w7 Zlezx;r (Bv_ﬂw)>'

i€[n]

Next we expand the sum across 3, — 3, and add and subtract ZZ v; - T;Y;, which makes the right-
hand side of the inner product look like a pair of gradients.

1S+2(8, — %)H2 = <5v - 5w,zvi - xi(xi, By) — Zvi : xi(:ﬂi,ﬁw>>
= <5v - 5w,zvi cxi (i, Bo) — i) — Zm' - xi (s, Bu) — y2)>

By definition, 3, is the vector that sets the first gradient to zero, so we have

“511;/2(511 - 510)“2 = <5v — Puw,0 — Z'Ui : $z(<$2y5w> - yz)>

We now add and subtract the gradient at 5, weighted by w, which leaves a gradient term (also zero
by definition) and the differences v; — w;:

H51%/2(ﬁv - 5w)H2 = <ﬁv — Bw, — sz : xi(<$iaﬁw - Z - 'Uz <5Ezaﬁw> - yz)>

</8v Bw?o Z _vl <‘T“/8w> y’)>
= 32 (B = B s = ) - i (. ) — wi)).

We now insert S, 12 Sy /2 in the middle of each inner product. We apply Cauchy—Schwarz to each

term and pull out the scalars (recall that w; and v; are scalars, x; is a vector):

H511}/2( H Z<Sl/2 B - /Bw) (wz - ’UZ') . S;l/2xi((w,-,ﬁw> — yz)>
< ZHSW = Bu)|| - 1w = vi) - Sy 2 (i, Bu) — i) |

= Z’Ui —wil - [|S2(Bo = Bu) || - |15 2| - (i, Bu) — wil-
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Both sides of the equation have a | 55/ 2 (By — Bw)H term; these cancel. We apply ¢/~ on the
weight differences, leverage scores, and residuals. There is some subtlety here: define set U =
supp(v) U supp(w). Then we have

1828, = Bl < S loi = wil 1520l - |G ) — i

< |l — . =172 | —ul)
< o= wlh - (el 552 - o ) — ]

Y221 < VL. Similarly, if

By the definition of goodness, if ¢ € supp(v) then we have ||,
i € supp(v), we have |y; — z; B, < R.

However, these bounds may not hold for points outside the relevant support. Claim 17 allows us
to bound the leverage: for all i € supp(w)Usupp(v) we have ||S, Y 2w,|]% < 2L, since we assumed
(1+ o — wlh)L < L.

Similarly, bounding the residual involves a simple trick alongside Claim 7. Let w be the entry-
wise minimum of {w, v}, so w; = min{w;,v;}. We have |0 — w1, [|& — v||1 < ||w — v]||; and,
furthermore, the support of w is contained in both the support of w and that of v. Thus, we can
apply Claim 7: assuming i € supp(w) (since otherwise ¢ € supp(v) and we have a bound on the

residual)

lyi — 2] Bol = |yi — ) Bu + 2] Buw — & Bu + 2] B — x By
<lyi — &} Bul + |2 Buw — 2] Bu| + |2 Bs — x] Bu]
< R+ 2||w — w|[; LR+ 2|w — v|; LR
< (1+4v—w|iL)R.

Since [[v — w||y L < 1, this is at most 2R. [ |

Appendix D. Estimation of o>

Algorithm 6: Private o> Estimator

Input: S = {(z;,v;)},, target privacy (£, do), target failure probability .

Partition S into k = |C log(1/(60¢))/e] subsets of equal size and let G; be the j-th partition,
where each dataset is of size b = |G| = [n/k].

For each j € [k], denote ¢; = ming(1/|G;|) Zz‘e(}j (yi — BT x;)2

Partition [0, 0o) into bins of geometrically increasing intervals
Q= {..., [22/4,9-14) | [2=1/4 1) [1,21/4) , [21/4, 22/4) ..} U {[0, 0]}

Run (eg, 6p)-DP histogram learner of Lemma 34 on {; }é‘?:l over 2

if all the bins are empty then Return |

Let [¢, r] be a non-empty bin that contains the maximum number of points in the DP histogram

Return ¢

Lemma 33 Algorithm 6 is (€0, 00)-DP. Let S = {(xi,y;)}I'_, be a dataset of i.i.d. samples with
z; ~ N(0,X), y; = ] 8" + z and z; ~ N(0,0?) for some unknown true parameter 3* =
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S E[y;x;] € RY and unknown ¥ and . Suppose
g (oB(1/(300)
€0 ’

with a large enough constant then Algorithm 6 returns { such that, with probability 1 — (,
Ly
—o? <0< V257,
V2o T T

where O(-) hides logarithmic factors in log(1/eg),log(1/d).

We provide a proof in Appendix. D.1.

D.1. Proof of Lemma 33 on the private o2 estimation

The privacy proof follows from the DP-histogram frorn Lemma 34. We provide proof for utility.
For each of the partition Gj, we show a; := 3 ZZeG (yi — 5T:EZ)2 concentrates around the

true parameter 3* where f3; 1= argming (1/|Gj) X icq, (¥ — BTx;)% Let f(B) = 1 >iec; Wi —
BT2;)*. We know f(B;) = ming % ZiGGj (yi — BT a)* < % ZiGGj (yi — B*Tai)? = % Ziegj 27
Since 22 are sub-exponential, from Bernstein bound, we know there exists constant ¢; > 0 such
that with proability 1 — ¢, 2 320 22 < 0?(1 + ¢ log(;/o - clog(;/o).
Now we show lower bound of f (ﬁj). For any /3, we also have

FB) =3 Y- wTw = Y it al @ —w))?

1€Gy 1€G;

Let 3 := (XY2(8* - B),0) € R™ and #; := (722, 2/0) € R4 fori € [n]. By
definition, we can see that z; is zero-mean sub-Gaussian with covariance I, 1.

B =5 3 (FT
i€G;

Following Lemma 9 from Jambulapati et al. (2020), we know for any vector 3, there exists
c2 > 0 such that with probability 1 — (,

S GTE AP = BT S el 1| B §CQ\/d+1+log<1/c> L, A Lt los(1/Q)

b iEGj iEGj b b

This means for any w, we have

S| =

f(B) =

b
S TR 2 (1o TLTREU LB UO) sy )
icC;

\/d—i—l—HOg 1/¢) 62d+1+log(1/o 52

1—61 b )
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Together with the upper bound, this implies that there exists constant c3 > 0, such that with
probability 1 — (,

%Zai_oi :‘f(ﬁj)—az‘gc?, (\/d+1+log(1/<)+d+1+log(1/g)>02‘

1€G b b

By union bound, there exists a constant ¢4 > 0 such that if b > ¢4(d + log(k/()), then for all
j € [k,

1
[ — 02| = b > ai— o’ <287
1€Gj

With probability 1 — ¢, {%; }é‘?:l lie in interval of size 2%/462. Thus, at most two consecutive
bins are filled with {1); }le. Denote them as [ = I; U .

Our analysis indicates that P(y; € I) > 0.99. By private histogram in Lemma 34, if £ >
s log(1/(00¢)) /€0, |Pr — pr| < 0.01 where py is the empirical count on I and p; is the noisy count
on I. Under this condition, one of these two intervals are released. This results in multiplicative
error of v/2.

Lemma 34 (Stability-based histogram (Karwa and Vadhan, 2018, Lemma 2.3)) Forevery K €
N U {oo}, domain Q, for every collection of disjoint bins By, ..., By defined on Q, n € N,
€ >0,0 € (0,1/n), B > 0and o € (0,1) there exists an (e, d)-differentially private algorithm
M : Q" — RX such that for any set of data X1, ..., X, € Q"

(1) Pr = + Y xen, |
(2) (]51,...,]5[()<—M(X1,...,Xn),and

(3)

8 8
n > min {% log(2K /), p log(4/(a5))}
then,
P(lpr —pr| < B) > 1 -«

Appendix E. Lower Bound

Series of advances have been made in designing tools for lower bounds in statistical estimation.
Fingerprinting Narayanan (2023).
Our lower bound is a direct corollary of a similar lower bound on linear regression from Cai et al.
(2023).

Theorem 35 Let Py, ,2 be a class of distributions over (x4,2i) € R% x R, where z; are i.i.d.

samples from a d-dimensional subgaussian distribution with mean 0 and covariance 3. > 0, and z;
are i.i.d. samples from a subgaussian distribution with mean 0 and variance o (see Definition 29
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in Appendix B). We observe labelled examples from linear model: y; = ' z; + z; with E[z;2;] = 0.
Let M. 5 be a class of (¢,9)-DP estimators that are functions over the datasets S = {(x;, y;) }I";.
Then if 0 < e < 1, d < ne, 6 < n~F) for some v > 0, there exists constant C' > 0 such that

d d?
inf E||M(y,z) = BI3; > Co* =+ == | -
Méljﬂwm leil;ﬁ [M(y,z) = Bl > Co <n + n2€2>

Proof We will apply the lower bound below from Cai et al. (2023).

Theorem 36 ((Cai et al., 2023, Theorem 3.1)) Consider i.i.d. observations {(y1, 1), , (Yn,Tn)}
drawn from the Gaussian linear model:

1 —(y—278)"
fﬁ(ylw)zmaexp< s @);mn.

Suppose E[xxz "] is diagonal, and \pax(Elzz]) < O < oo, | X|l2 < Vd almost surely. If

d<ne,0<e<landd <n O for some v > 0, then

d d?
inf E|M(y,z) — B2 > o2 [ £+ -2 .
Mérflv(s,agsggd 1My, ) = Bll2 2 o <n n2e2

Note that this lower bound holds for every construction of z; that satisfies the assumption. We
construct one instance of joint distribution P € Py, ;2 such that it also satisfies the assumptions in
Theorem 36. Let {x;}"_, be i.i.d. samples from N'(0,1;). And let 7; = =; - I[z; < V/d]. Clearly,
{2}, satisfies that E[Z7 ] is diagonal, Apax(E[#3T]) < 1 and Z; are bounded by v/d. Let z; be
independent Gaussian distribution with variance o2. By Theorem 36, we know there exists constant
C such that

d
inf E|M(y,z) — 8|2 > Co? [ =+ — ).
i 1M(y,z) = Bl = Co™ { = +
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