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Abstract

We introduce and study the problem of posterior inference on tree-structured graphical models
in the presence of a malicious adversary who can corrupt some observed nodes. In the well-studied
broadcasting on trees model, corresponding to the ferromagnetic Ising model on a d-regular tree with
zero external field, when a natural signal-to-noise ratio exceeds one (the celebrated Kesten-Stigum
threshold), the posterior distribution of the root given the leaves is bounded away from Ber(1/2), and
carries nontrivial information about the sign of the root. This posterior distribution can be computed
exactly via dynamic programming, also known as belief propagation.

We first confirm a folklore belief that a malicious adversary who can corrupt an inverse-polynomial
fraction of the leaves of their choosing makes this inference impossible. Our main resultis that accurate
posterior inference about the root vertex given the leaves is possible when the adversary is constrained
to make corruptions at a p-fraction of randomly-chosen leaf vertices, so long as the signal-to-noise
ratio exceeds O(logd) and p < ce for some universal ¢ > 0. Since inference becomes information-
theoretically impossible when p > ¢, this amounts to an information-theoretically optimal fraction
of corruptions, up to a constant multiplicative factor. Furthermore, we show that the canonical belief
propagation algorithm performs this inference.
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1 Introduction

Posterior inference is the central problem in Bayesian statistics: given a multivariate probability distri-
bution, often specified by a graphical model, and observed values for a subset of the random variables in
this distribution, the goal is to infer resulting conditional, or posterior, distribution on the unobserved
variables. Bayesian methods allow rich domain knowledge to be incorporated into inference, via prior
distributions, and posterior distributions offer an expressive language to describe the uncertainty re-
maining in unobserved variables given observations. Observations are not necessarily distributed iid
conditioned on unobserved variables —a graphical model may specify a complexjoint distribution among
observed variables.

How robust are posterior inferences to corruptions or errors in observed data? Or, to misspecifiation of
the underlying probabilistic model? The rapidly developing field of robust estimation addresses similar
questions in the frequentist setting where the goal is to construct point estimators which retain provable
accuracy guarantees when a small fraction of otherwise iid samples have been maliciously corrupted
[DK23]. But, to our knowledge, relatively little attention has been paid to questions of robustness to
adversarial (i.e. non-probabilistic) contamination in posterior inference.

We study robustness of posterior inference to adversarial corruption and model misspecification for
a protoypical family of graphical models: broadcast processes on trees (see [EKPS00] and references
therein).

Definition 1.1 (Broadcasting and inference in regular trees). Given a depth-t tree with vertices V where each
non-leaf node has d children, we consider the following joint probability distribution on {1}V First, assign the
root vertex a uniform draw from {—1,+1}. Then, recursively assign each child vertex the same sign as its parent
with probability 3£ and otherwise the opposite sign. Observing the signs of the leaf nodes oy in the broadcast tree,

our goal is to infer the posterior distribution of the sign or of the root.
The broadcast process on trees is a useful “model organism” for our purposes:

1. Like many graphical models used in practice, it is tree-structured. This means that posterior
inference is algorithmically tractable via dynamic programming, in this setting called “belief prop-
agation”.

2. Some graphical models exhibit correlation decay, meaning that the covariance/mutual information
between subsets of random variables decays (exponentially) in the graph distance between the
corresponding subsets. Strong forms of correlation decay (e.g., strong spatial mixing) imply that
the distribution on any unobserved node far enough in graph distance to every observed node is
insensitive to the values of the observed nodes. This means that any corruptions in observations
won't affect the posterior on the unobserved node, but also means that even without corruptions,
no interesting inference can be made about the unobserved node.

As d and ¢ increase, the broadcast process exhibits long-range correlations, because the leaf signs
o1, collectively carry information about the sign or of the root vertex. In particular, when de? > 1
(the celebrated Kesten-Stigum threshold), this holds even in the limit of infinite tree depth, that is,
lim; e I(0r; 0r) > 0. Thus, there is nontrival inference to be performed, but by the same token,
incorrect observations of the leaf signs could adversely affect the accuracy of this inference.

We introduce and study several models for adversarially-robust inference in a broadcast tree. In each
of these models, a malicious adversary observes the leaf signs o}, resulting from a broadcast process and
may flip a subset of them — the specifics of how this subset is chosen are important, and vary across our
models. The corrupted leaf signs are then passed to an inference algorithm which aims to output the
conditional distribution of the root sign conditioned on the signs of the non-corrupted leaves. Crucially, we
do not know which subset of leaf signs has been flipped at inference time.



Organization In the remainder of this section, we give a high level overview of our results (Section 1.1),
discuss how our results can be interpreted in terms of model misspecification (Section 1.2), discuss some
related work (Section 1.3) and provide some proof ideas for our main results (Section 1.4).

1.1 Results

The first adversarial model we consider is the simplest and most powerful: for some p > 0, the p-fraction
adversary can choose any pd' leaves (out of d' leaves in total) and flip their signs. In this setting we
confirm what we believe to be folklore [Pol23]:! for any p > d~!), this adversary can make the posterior
distribution at the root unidentifiable from given the (corrupted) leaf signs. In what follows, for a random
variable X, we write { X} for the distribution of X, and for an event E, we write { X | E} for the distribution
of X conditioned on E. We also write dry (-, -) for the total variation distance between two distributions.

Theorem 1.2 (Proof in Section 5). There exists ¢y > 0 such that for every p, d and & < eq, there exists a
eO(t)—fractz'on adversary A such that if (or, or) is distributed according to the broadcast process with parameters
d, e,

dry({or | or = 1}, {A(oL) | or = —1}) < e™90),

An alternative interpretation of Theorem 1.2 is that the Wasserstein distance, with respect to the
Hamming metric, between the distributions {01, | or = 1} and {01 | or = —1}, decays exponentially with
t.

Theorem 1.2 implies that no algorithm can reliably distinguish whether og = 1 or or = -1, with
advantage better than e~®) over random guessing, in the presence of an ¢°®)-fraction adversary. Ac-
curately computing the posterior distribution {or |or} and then sampling from it would distinguish
these cases with nonvanishing advantage as t — oo (if ¢2d > 1). Hence, computing the posterior in the
presence of this adversary is impossible.

While this may make it appear that posterior inference in the broadcast tree is inherently non-robust,
recent works [MNS16, YP22] tell a contrasting story about a weaker adversary. The p-random adversary
simply flips each leaf sign independently with probability 0 < p < 1/2. It turns out that the posterior
at the root vertex can still be accurately recovered in the presence of the p-random adversary as long
as p(¢,d) is held fixed as t — co [MNS16, YP22] — this is sometimes call “robust reconstruction.” This
suggests the question:

Is posterior inference in the broadcast process possible in the presence of an adversary more malicious
than the p-random adversary?

We introduce a semirandom adversary, whose power lies in between the worst-case adversary of
Theorem 1.2 and the p-random one. For the semirandom adversary, the locations of allowed sign flips
are random, but the decision whether to make a flip is made adversarially, in full knowledge of all of the
leaf signs.

Definition 1.3 (p-semirandom adversary). Fix p > 0. A p-semirandom adversary receives leaf signs oy, and
flips an independent coin x,, for each leaf u which is heads with probability p. For each leaf u, if u’s coin is heads,
the adversary may choose to flip the sign o,,.

Our main result shows that when the signal-to-noise ratio d¢? exceeds the Kesten-Stigum threshold
by a logarithmic factor, there is p(¢e, d) > 0 such that the distribution of the root vertex can be successfully
inferred even in the presence of a p-semirandom adversary, for large-enough depth t. In what follows,
we write (0r, o1.) ~ Dy ¢+ to denote (or, 01) distributed according to the broadcast on tree process with
parameters d, ¢ run up to depth ¢.

However, we are not aware of anywhere it is written in the literature.

2



Theorem 1.4 (Main theorem, follows from Lemma 3.2 and Lemma 3.11). For any 6 > 0 there exists C such
that for any d, e satisfying de® > Clog 12 there exists po(e) = Q(¢) and to(5, d) such that if p < po and t > t,
for any p-semirandom adversary A, the belief-propagation algorithm BP satisfies

E  dryv({or|oL}, BP(A(oL)) £ 0,

oL "’Dd,s,t

where the expectation is taken over the broadcast process or, o1, as well as the random choice of which vertices the
adversary A may choose to corrupt.

The algorithm BP in Theorem 1.4 simply computes the posterior distribution of the root spin or as if
the leaf spins had been A(c;) rather than oy, via dynamic programming — this is the canonical method
to compute posterior distributions in tree-structured graphical models [EKPS00, MNS16]. Our analysis
of belief propagation borrows techniques from the arguments of [MNS16] for the random-adversary
case, but since the semirandom adversary can introduce nasty dependencies among leaf vertices, these
arguments are far from transferring immediately.

We can also replace the assumption that the allowed corruptions are in random locations with a natural
deterministic assumption on the pattern of allowed corruption locations. Concretely, if de? > C log %,
then for every ¢ > 0 there is k such that if the adversary makes at most c corruptions in every height-k
subtree of the broadcast tree, we show that our algorithm successfully infers the distribution at the root
vertex. We capture this in Theorem 4.2.

Open question: robustness down to the KS threshold Theorem 1.4 leaves an important open question:
is robustness against a semirandom adversary possible for all de? > 1, as in the random-adversary
case? Or, does the semirandom adversary shift the information-theoretic phase transition from non-
recoverability to recoverability of the root spin away from 1?2

1.2 Adversarial Corruption versus Model Misspecification

Adversarial robustness is of course desirable when inference is performed with potentially-corrupted
data. But is it useful beyond protection against malicious data poisoning?

Background: corruptions and misspecification in frequentist statistics In (frequentist) robust statis-
tics, there is an appealing relationship between adversarial corruption of a subset of otherwise-iid samples
and learning/estimation under model misspecification. Suppose we design a learning algorithm which
takes samples from some distribution D in a class of distributions D, of which 1% have been corrupted
by an adversary, and successfully learns some D which is close to D in total variation distance.

Now, suppose that D is misspecified, in the sense that it does not contain the ground truth distribution
D, but only contains some D’ € D such that TV(D, D’) < 0.001. Since the adversary could have coupled
D and D’ to make corrupted samples from D’ look as though they are from D, then even given samples
from D the algorithm must still learn some D with small TV(D, D).

Misspecified Bayesian models Adversarially-robust algorithms in our setting are also robust against an
appropriate notion of model misspecification. Concretely, fix ajoint probability distribution u(xo, x1, ..., x,)
and random variables Xj, ..., X, jointly distributed according to i, and consider the posterior inference
problem where we observe ajoint sample X, ..., X, and aim to output the distribution {Xy | X1, ..., X, }.

2In the related stochastic blockmodel setting, a so-called “monotone” adversary is known to shift the analogous non-
recoverability threshold by a constant factor [MPW16]. In our setting, a monotone adversary would correspond to one
who observes the root sign og and may flip any leaf sign o1 to agree with og.
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Now, let S C 2["! be a set of possible subsets of observed variables which are correctly specified by p, the
remaining ones being misspecified — formally, we introduce the following definition:

Definition 1.5. An algorithm ALG solves the S-misspecified inference problem for u with error § if for every S € S
and every 1’ such that p|s = 1'|s,

E dTv(ALG(x), {XO | Xg = Xs}) <9o.

x=(xg,xg)~p

Importantly, the algorithm ALG only knows S, not the particular S or p/’.

In Definition 1.5, u’ is our “ground truth” description of the world, and y is our misspecified model.
Given a sample x1, ..., x, from u’|;; .}, if we knew i’ then the best inference we could make about xg
would be the conditional distribution of x( given x1, ..., x,. But there is a problem — we do not know p’.
If we knew S, we could discard the observations whose distributions we know nothing about, and infer
{Xo|Xs}. We do not know S, but Definition 1.5 requires ALG to compete with a hypothetical algorithm
that does.

Of course, many other possible notions of model misspecification for the posterior inference problem
are possible —we make no claim that this definition is universally applicable. Exploring alternative notions
of graphical model misspecification and their consequences for posterior inference is a fascinating open
direction.

Interpreting our results as robustness to model misspecification Inthe context of the broadcast process
on trees, we take X, above to be the sign at the root vertex og, and Xj, ..., X, to be the leaf vertex signs
oL. Theorem 1.2 shows if we take S to be all subsets of size (1 — p)d’ then the S-misspecified problem
is impossible. Theorem 1.4 has the following corollary, showing that there is a large set S of possible
misspecifications against which robust inference is possible (indeed, a random S sulffices).

Corollary 1.6. Under the same hypotheses on 0,d, €, p as Theorem 1.4, there is some to(d, 0) such that if t > t
then there exists S C 214'1 with |S| = 224 and an algorithm which solves the S-misspecified inference problem
with error 6, where Q, 4(-) indicates asymptotic behavior as t — oo.

The proof of this corollary constructs a p-semi-random adversary which can sample from a misspec-
ification distribution y’. We defer the proof to Section A.

1.3 Related Work

Algorithmic Robust Statistics Algorithmic robust statistics in high dimensions has developed rapidly
in both statistics and computer science in the last decade. This field has focused on parameter estimation,
distribution learning, and prediction using (otherwise-)iid samples of which a small fraction have been
maliciously corrupted. The recent book [DK23] provides a comprehensive overview.

We highlight one parallel between our results and robust supervised learning. In PAC learning, the
Massart noise model [MNO06] is a parallel to our semirandom adversary. In the Massart noise model,
for each labeled example (x, f(x)), the learner gets to see (x, y), where y is selected by flipping a coin
which comes up heads with probability p < 1/2 and then allowing an adversary who sees x the chance
to make a (randomized) decision whether to let y = f(x) or y = 1 — f(x). The Massart noise model is
an important middle ground between randomized noise models (e.g. random classification noise [Kea90])
and nastier noise models (e.g. agnostic learning), and has recently led to several algorithmic advances
[DGT19, DKTZ20].

A couple of recent works in algorithmic robust statistics design “robustified” versions of belief
propagation or its dense-graph analogue, approximate message passing [I523, LM22], often in the context
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of adversarially-robust algorithms analogues of the “linearized-BP” algorithm for community detection
(often called the “nonbacktracking spectral algorithm” [Abb18]) in the stochastic blockmodel [BMR21,
DdANS22].

Finally, our work has a parallel in [CKMY22], which studies Bayesian inference with corruption in
a Gaussian time-series setting (Kalman filtering). This work also finds a strong information-theoretic
impossibility result for corruptions at adversarially-chosen times (corresponding for us to adversarially-
chosen leaf locations), and an efficient inference algorithm when corruptions are made at random times
but with knowledge of the rest of the time series.

Broadcasting on Trees Broadcasting on trees is an important special case of the ferromagnetic Ising
model, and the problem of reconstructing the root vertex label from observations at the leaves has been
extensively studied in probability, statistical physics, and computer science [Mos04]. It has significant
connections to Markov-chain mixing times [BKMP05, MSW04], phylogenetic reconstruction [DMRO06],
and community detection [MNS15]. Of particular interest because of an important application to in-
ference in the stochastic block model [MNS16, YP22] is the “robust reconstruction” problem, originally
introduced in [JM04] to study sharpness of the Kesten-Stigum phase transition. From the perspective of
our work, this is the root-inference problem in the presence of a random adversary.

Robust Bayesian Inference Ensuring that Bayesian inferences are robust to inaccuracies in the choices
of priors and models is a longstanding concern dating at least to the 1950s [Goo50, BB86], with too vast a
literature to survey here. Well-studied approaches involve choosing flat-tailed or noninformative priors
and placing a hyperprior on a family of models to capture uncertainty about the true model.

1.4 Overview of Proofs

Optimal recovery from p-semirandom adversary In Section 3.1, we prove Theorem 1.4 in the regime of
small ¢, thatis ¢ < ¢ for some small ¢*. In Section 3.2, we finish the proof of Theorem 1.4 by addressing
the case that ¢ > ¢*. Both proofs use the following template. The belief propagation algorithm produces,
for each vertex u, a “belief” Z,, € [-1,1], which implicitly specifies an inferred posterior distribution
{04 | Odecendents(u)} by specifying the bias of that distribution. Z, is a function of Z,1, ..., Z,4, where
ul,...,ud are children of u and Z, = o, for a leaf-vertex o.

Let X, denote the belief which would have been produced by BP if it were run on a non-corrupted
leaf spins o1, and Z, the belief produced when BP is run with corrupted leaf spins. Our goal will be to
show that |X,, — Z,| < 0 for 6 as small as we like, so long as u is at large-enough height in the tree.

We begin by showing that when de? exceeds Kesten-Stigum threshold by a O(log d) multiplicative
factor, the difference |Z,, — X,,| in our estimated belief Z,, for any vertex u at height 1 is moderately close
to the actual “ground truth” belief X,,. That is, we show that

E max |Z, - X,|=0(¢),
adversary

where the expectation is taken over the randomness in the broadcast process and also the allowed
corruption locations x, in the p-semirandom adversary (Lemma 3.4), and maxadyersary denotes maximizing
over choices of leaf-spin flips made by the p-semirandom adversary at the allowed locations x.

Next, we employ a contraction argument to show that this “worst case” perturbation of beliefs
contracts as we move up the broadcast tree. More precisely, in Lemma 3.6 we basically show that if u is
the parent of ui then

1
E max |ZM—Xu|S§]E max |Zyi — Xyil-

adversary adversary



This would then show that by taking a sufficiently large tree, we are able to recover the belief at the root
to arbitrarily high precision.

We note that [MINS16] employs a similar contraction argument. However, the random adversary of
[MNS16] flips each leaf spin independently. In comparison, our p-semirandom adversary can introduce
new long-range correlations between the leaves in our broadcast tree.

Our contraction argument uses a first order Taylor expansion of the belief propagation function. Fix
a vertex u with children u1, ..., ud. In Lemma 3.6, we effectively show that there is some f: [-1,1] = R
which captures the effect of each Z,; on BP(Z,1, ..., Z,q4) in the sense that

E max |Z,—-X,|=E max |BP(Zy1,...,Zyq)— BP(Xy1,..., Xyua)l

adversary adversary
d d
<E_max E[f(zui) - ]_1[ F(Xui)
d
<E adr\g?s):ry; maX{lf/(ZuiN/ |f/(Xuz)|} ’ |Xui - Zuil - max E[f(zuj)/ gf(xu])
= ]

where the second inequality above follows from an application of the mean value theorem (plus some
additional facts about monotonicity of f).

Now, if |X,; — Z,i| were independent of Z,;, X,;; (conditioned on 0,), as it would be in the random
adversary setting, we could modify the above chain of inequalities to condition each one on ¢, and then
use this independence to separate the | X,; — Z,;| term from the max{[] j#i f(Zuj), T1 j#i f(Xyj)} term. As
long as we could show that the latter term was small, we would be able to obtain a contraction in this
way.

Butbecause of long range correlations introduced by the adversary, even though | X,;; —Z,;| is expected
to be small by the induction hypothesis, it is conceivable that the adversary can coordinate its flips in

a way that blows up max{|f"(Zu:)|, |f'(Xu)|} max {H#i FZup), Tl f(xuj)}. To circumvent this, we

carefully reintroduce independence by splitting the p-semi-random adversary into several independent
“local” adversaries who can only see small subtrees. Formally, this corresponds to continuing the above
with the bound

d
<E Z( max max{|f'<zm>|,|f’<xui)|}-|xl¢i—zui|)- max maxy | | £(Zuj), | | F(Xup)

= adversary adversary i i
Strengthening the induction hypothesis to include E maxXagversary |Zuj — Xuj| = O(e) will allow us to
bound remaining terms above involving f and f’, leading to our contraction.

Information-theoretic lower bound: Proof of Theorem 1.2 To prove that a p-fraction adversary makes
posterior inference impossible, we construct a coupling between the distributions {07 |or = 1} and
{o] | 0% = —1} such that with all but exponentially-small probability, 0. and o] differ onad ~Q)_fraction
of coordinates. The key observation is that, for a spin 0, and children oy, ..., 044, the distributions
{out,..., 0440y = 1} and {oy1,..., 044 |0, = —1} have Wasserstein distance roughly ed. If we are
allowed to flip an e-fraction of coordinates, we can couple the distributions successfully with high
probability. This e-fraction propagates down a height-t tree to become an ¢’ fraction of necessary flips.

This argument can even be adapted to the p-semirandom adversary when p is ()(¢) (see Theorem 5.3),
by showing that the coupling needs only to flip signs which the p-semirandom adversary is allowed
allowed to flip.



Spread adversary In Theorem 4.2 we show that for every c¢ > 0 there exists k such that if an adversary
makes at most c corruptions in every height-k subtree of the broadcast tree, then we can optimally infer
the root.

The algorithm for Theorem 4.2 proceeds in two stages: first we run a “noise injection” phase — flipping
each leaf node independently with small probability — and then we run belief propagation. We appeal
to the bounded-sensitivity property of the posterior inference function in Theorem 4.4 (which is where
the noise injection phase arises) in order to establish the base case of the contraction. The inductive step
of the contraction is identical to that of Theorem 1.4.

2 Preliminaries

For a set Q), we write A(QQ) to denote the space of probability distributions over Q. If QO = {+1}, a
distribution v € A({+1}) is also associated to a belief B = By, b. For v,v" € A({+1}), clearly drv (v, V') <
O(|B — B’|) where B, B’ are the respective beliefs.

For a random variable X and event E, we write { X | E} for the distribution of X conditioned on E. For
distributions p, v, we write drv(u, v) for the total variation distance between p and v. We write Dy . ; to
denote the random process of generating spins on depth t d-regular trees according to the broadcast on
tree process with parameters d, . In an abuse of notation, we will often write (or, o) ~ Dy ¢+ to mean a
sample from the marginal distribution of D . ; on the spins of the root R and the d* spins of the leaves L.

3 p-semi-random Adversary
In this section we prove our main result, Theorem 1.4. We make no attempt at optimizing the relevant
constants and prove Theorem 1.4 with

&

to = log(d) +log(6™"), and p = T (1)

Given the output of a broadcast on tree process that was run up till depth t, we recursively apply
belief propagation until we reach the root and output the belief thus obtained. Specifically, suppose the
spins of the leaves are given by Z; o (1 < i < d'), then recursively define

Zji=BP(Zgjs1,i-1, Zdj+2,i-1, - - - Zad(j+1)-1,i-1)

forl1 <i<tand1<;j<d, where BP: R? — R is the belief propagation function given by

ML, +eX) - TTL,(1 - eX;)
[T, (1 + X)) + [12,(1 - eX)

BP(Xy,...,Xq) =
We argue separately in the cases of small and large «.

3.1 Small-¢ case

In this section we will prove Theorem 1.4 when ¢ < ¢* for some sufficiently small constant ¢*; we capture
this in Lemma 3.2. This small-¢ case already captures the main ideas in the proof of Theorem 1.4; we
defer the large-¢ case to Section 3.2. Before we state Lemma 3.2 we introduce some convenient notation.

Definition 3.1. Given d, ¢, p, t, for a function f : {il}dt — R, let E maxadversary f (x) be the expected value of:



o Sampling o ~ Dy and a 0/1-valued vector x of length d' with entries independently equal to 1 with
probability p and 0 otherwise

* Given or and x, return max f (o} ) where o and o} differ only on the coordinates indicated by x.
The main result in this section is:

Lemma 3.2. There exist absolute constants C and &* > 0 such that if de* > Clog(d) and ¢ < &* then for any
0 > 0, with p(e, d), to(6, d) as in (1), for any t > to,

E max |Xroot,t - Zroot,tl < 6
adversary
Note that Lemma 3.2 establishes Theorem 1.4 in the case ¢ < ¢* since X,oot ¢ is the bias corresponding
to the posterior distribution of the root. Before we describe the main ideas behind the proof, we need one
more piece of notation. If x € {0,1}¢" is the random bitstring produced by the p-semi-random adversary,
we define:

Definition 3.3. Given a vector x € {0,1}* indexed by leaves of a (d + 1)-ary tree of depth t and an (internal)
node u in that tree, we write x,, to denote the restriction of x to the leaves of the subtree rooted at u.

The key steps in our contraction argument are given by the following two lemmas. The first, Lemma 3.4
captures that even at height-1 internal nodes, the adversary cannot (in expectation) corrupt the beliefs by
more than O(1/d). We will prove Lemma 3.4 later in this section.

Lemma 3.4. There exists an absolute constant C such that for any k > 1, if de* > C log (1%) then for any vertex
u at level t — 1, we have
(1-¢)l/4

E [X _z ‘ :+1]s
max | u,l u,1| Oy 100d

adversary

. . . —e)l/4 .
We note that because we are above the Kesten-Stigum regime, it follows that (1150) — < 105, and so we

can recover the beliefs at level t — 1 up to error O(¢). The O(¢) bound on the RHS of Lemma 3.4 is crucial
as the base case for an induction up the remaining t — 1 levels of the tree. Our induction hypothesis,
captured below in Lemma 3.6, relies on the computed beliefs Z, , at a higher level r > 1 being distance

at most < ¢ to X, , (in expectation).
For the both the base case and inductive step of the contraction argument, we will start by rearranging
1-eX
X

the belief propagation function definition of X, » to X,, » = 2/(1+[];<4 %) —1. We obtain a simpler

EXyir-1
bound on X, — Z,, by then applying an elementary-calculus bound on ﬁ - ﬁ to | X — Zuyl:
Claim 3.5 (Proof in Section A). Forany 0 < p < 1 and any x,y > 0, we have |- — ﬁ < %pr - yPl.

v 2172 _e7 o \1/2
(Hd 1é_Xw) —(Hd ! éz‘”’") ‘ Conditioned on the values of

So, it will be enough to bound i=1 TreXors i=1 TreZurr

d 1_Ezui,r
i=1 1+¢eZyj,

for all i; we introduce random variables Y, , = Xy, — Xy, = Zp,,land Yy , = Xy » + | Xy » — Zy 1| to capture
the hypothetical situation that all these signs have lined up.

1/2
| Xuir — Zuir|, the extremal values for (H ) are achieved when sign(Xy; » — Zyi ) is the same

1
d ]-_EXui,r /2
i=1 1+£Xu,',, °

The technical key underlying our contraction argument is that we get a bound relying only on the
assumption that

The following Lemma 3.6 says that both the resulting extremal values are close to (]_[

oyi =+1

maxE | max |Yyi, — Xuir|
i<d adversary



is in turn bounded. It would be much easier to argue under the stronger assumption of a bound on

o, = +1

: )

E [max max |Yyi, — Xuirl|
i<d adversary

The latter would amount to the assumption that the adversary has been unable to have much effect on
the beliefs computed at any of the children of . But this would be too strong an assumption to use
inductively — the risk is that at level ¥ + 1 of the induction we would need an assumption on

o, =+1

/ ®)

E [max max |Yuij,r - Xuij,rl
i,j<d adversary

and so on. This eventually would amount to a union bound aiming to show that |Y, x — X, x| < ¢
simultaneously for every height-k vertex u, but this simply isn’t true — since the adversary gets to corrupt
a constant fraction of leaves, there are subtrees of the broadcast tree where they could achieve, say,
| Xk — Yu k| > 0.1.

In the non-adversarial setting, [MNS15] can make a similar argument, avoiding an assumption like
(2) by leveraging the independence of the beliefs Z,,; x conditioned on the sign o,. Crucially for them,
the signs of Z,; x — Xy x conditioned on ¢, are independent across i = 1,...,d, which leads important
cancellations. This independence fails in the adversarial setting, because the adversary’s choices whether
to corrupt a leaf vertex may depend on signs of other far-away leaves! We carefully re-introduce indepen-
dence by replacing the adversary who sees the whole tree with “local” adversaries who see only subtrees
— we must argue that these local adversaries are not too much weaker than the original p-semirandom
adversary. We show this argument in Section 3.1.2.

Lemma 3.6. Define Yy, = Xo,r —|Xo,r = Zo| ,and Yy , = Xy » +|Xo,r — Zo,r|. There exist constants e*,C’,R > 0
such that if ¢ < &*, €2d > C’', the following holds: let r > 1, for any vertex u at level t — r — 1 with children

Oui = +1] < g, then

ul,...,ud and suppose & := E [maxadversary |Yiir — Xuir|

1/2
d 1- EYui,r
L 1 + gYMZ r
i=1 .

Furthermore, the above holds with Y;i,k’ Y;l.,r replacing Yy k., Yui r respectively.

1/2

E max oy = +1 < de_R(d—l)éZCE

adversary

d 1- EXm',r
- 1 + EXMZ r
i=1 !

Given Lemmas 3.4 and 3.6, we show how to deduce Lemma 3.2.

Proof of Lemma 3.2. Let @ = £/10. We prove by induction on r > 1 that for any vertex u at level r, we have

E| max [|Xyi—r—1— Zut—r-1] ‘ oy =+1| < 27 (g, 4)

adversary

Having proved this, it will suffice to take t( < log(6~!) and iteratively apply (4).
The base case when r = 1 follows from Lemma 3.4. Assume the claim is true for » and we aim to
prove the claim for r + 1. Fix a vertex u atlevel t — (r + 1) and let its children be u1, ..., ud.



By taking p = 3 in Claim 3.5, it follows for any k that

|Xu,k+1 - Zu,k+1| = |BP(Xu1,k/ ceey Xud,k) - BP(Zul,k/ ey Zud,k)l

1/2 1/2
<4 1- fxui,k 3 1- EZui,k 5)
- ; 1+ EXu,‘,k ; 1+ EZm',k '

By the monotonicity of x > 12 we have the pointwise inequalities

_ eV
1 éKMk<1—€ZMk<1—fnmk
1+ ‘?Y;i,k T 1+ eZyix T 1+ eYuik

and therefore

1/2 1/2
1- 6Xui,k _ 1- 5Zui,k
; 1+ SXui,k ; 1+ EZ”Z'/k
1/2 1/2 1/2 A 1/2
< max 1—eXyik B 1—&Yuik 1—eXyik B L—eYl ©)
- ; 1+ eXyik ; 1+ eYyik ; 1+ eXyik ; 1+ €Y1:i,k ’

Thatis, the “worst case adversary” is the one that is able to perturb the spins atlevel  such that running
belief propagation on these spins produces beliefs {B,; « } satisfying sign(By; x — Zui k) = sign(Buyj k= Zuj k)
forall 1 <1i,j < k. It follows that

E [ max |Xu,t—r—1 - Zu,t—r—1| ‘ oy =+1

adversary

1/2
1- EXui,t—r - EZ”irt—V 12
<4E| max — - l_[ ou = +1
adversary 11+ SXui,t—'r . 1+ EZ”irt_"
i i
1/2 1/2
1—eXyit—r L= &Yyit-r /
<4E| max PE— - l_[ ou = +1
adversary 11+ SXuz',t—r . 1+ EYui,t—V
i i
1/2 RV, 1/2
1 - gXlli,t—r 1 - éYMZ‘,t—T
+4FE | max —_— - 1—[ 7 ou=+1
adversary A1+ eXyir—r A1+ gYui t—r
i ! !

Applying Lemma 3.6 to the above gives

< 16d(27" L a)e RU@-De?

o, =+1

E [ max |Xu,t—r—1 - Zu,t—r—ll
adversary

and by choosing C sufficiently large such that ¢?d > Clog(d), we can make the above smaller than
2-(+D-1y as desired. m

3.1.1 Base case: level t — 1

In this subsection, we prove Lemma 3.4. Fix a vertex u at level t — 1, and suppose the sum of the
uncorrupted spins of its d children is S while the sum of the corrupted spins of its d children is S’.

10



Proof idea: The main idea is that a Chernoff bound gives S, S’ = ©(ed). Vaguely speaking, if most
of the input to the belief function BP function is +1, then we would expect the output of BP to also be

1/2 1/2
d l_fxui,r / _ d l_fzui,r /
i=1 1+eXyi, i=1 1+eZy;,

a la Claim 3.5, we can

quite close to 1. By writing |Z,, ;1 — X, 1| < ‘(H
convert S, S’ = Q(ed) and ¢2d 2 log(d) to a O(1/d) bound on the magnitude |Z,, 1 — X, 1|-

Proof of Lemma 3.4. Let S denote the random variable given by the sum of the d uncorrupted spins of the
children of u and let S’ be the sum of the d corrupted spins of the children of #. Then we have that
E[S |0, = +1] = ed, and in particular the Chernoff bound implies that for sufficiently large d (which we
can arrange by taking a sufficiently large C), we have

(1-¢)l/4

F 800d

S < €_2d |Ou =+1| < EXp(—Sd/S) < (1_8/2)‘1 <

By a Chernoff bound, since p = ¢/4 in (1), we also have for sufficiently large d,

ed 1—e)l/4
P[lxul = ? SeXp(—Q(Ed)) < (1—8/2)d < % (7)
In particular, it follows that
2
ed ed (1—e)l/* (1—¢)l/*
P|S>—and min '>—|>|1-—F"F—| 21-——.
(S =2 Y ey T 6 ) = ( s00d ) © 400d
Next, by Claim 3.5, note that we can bound
o exu, (1 ez | d d
— EAyir — &Luyir £ €
E Zy1—Xua| <2E — - —_— S>—,5>—
adr\g?s)gryl 1 u,ll - adr\gzris)a(ry (i— 1+ EXuily (i: 1+ 5Zui,r) | 2 6
_\1/4
+92. &
4004
[ \S'/2 .\ S5/2 : . 1/4
1-¢ 1-¢ ed ed| (1-¢)
=2E - S>—,8>—|+——
adIvré?sfry(He) (1+e) 525 6] 200d
) ed &d
1—e\* 1-e\2 (1-e)/*
<2 +2 + —
1+e l+e¢ 200d
, 1—¢)l/4
< go-0cterd) , (1= &) 77
= 200d
_N\1/4
_(-¢)
~ 1004
by taking a sufficiently large C. O
3.1.2 Contraction in the presence of an adversary
d 1-eXyi 1/2 d 1-€Yyi 1/2 .
We turn to the proof of Lemma 3.6. In the proof, we relate (Hi:1 T aX:i:) - (Hizl T 5YZ::) with

| Xuir — Yuir| (Whose expected value is bounded by assumption) by applying the mean value theorem.

11



Specifically, we write

d 1—eXyir
Ll 1+ eXyir

i=

1/2 d y 1/2 i af
1-¢ ui,r
- — < Xyir— Yy 2 (. . )
(i:1 1+ eYui,r) ;l uiyr m'rlyle[\gﬁ%ﬁd,r] 8x(yl)l;_[f(y]) (8)

where f(x) = (L‘r—;‘)l/ ? The following two claims allow us to bound the size of each of the terms in the
derivative. We comment that the proof of Lemma 3.6 strongly utilizes the independence of the locations
in x where a flip is allowed. This is because a priori we are only able to work with the expected value
version of (8), and it is this independence that allows us to split the products and bound them term by

term.
Claim 3.7. Let f(x) = (L‘r—iﬁ)l/?. There exists ¢ > 0 such that if |x| < c, then we have |f(x)| <1-x + 35i2
Claim 3.8. There are €*,x > 0 such that for all ¢ < &*,all x € [-2,2] and all a € [-2, 2], we have

0 (1—8(x+a))1/2

- < K.
ox \1+e(x+a)

We defer the proofs of Claims 3.7 and 3.8 to the Appendix. We also quote without proof the following
lemma from [MNS16].

Lemma 3.9 ((MNS16, Lemma 3.5]). For a vertex u at level s, let uy, ..., ugr denote its d” children at level s + r.
Let S, denote the sum of the spins Z?;l oy;. Then

(e2d) -1

Var[S, |0, = +1] = (1 — ¢)?d" Sy

Using this second moment bound on the majority vote, we can deduce that the ground truth beliefs
Xyui x are all close to 1 in the regime where we exceed the Kesten-Stigum threshold by a constant.

Lemma 3.10. There exists C > 0 such that for all d, e with e2d > C , forall s > 1, we have

EB[Xys|ow=+1] >

ol 3

Proof. Let S be the sum of the spins of the children s levels down from u. By the optimality of sign(X s)
as an estimate for o, given the spins of children s levels down, we have

E|X,s|+1
% > P(sign(S) > 0)
o1 Var[s | o, = +1]
~ (B[S|ou=+1])?
€2Sd25
=1-
(e5d%)2(e2d — 1)
>1- 1
- C-1

where in the second inequality we applied the Chebyshev inequality. Observe that

1- E[lxu,sl | Oy = +1]
5 .

P[Xys <0|o, =+1] >

12



Consequently,

E[Xus <0|oy, =+1] 2 B[| Xy 5| | 0w = +1] = 2P[ X, s < 0] 0y = +1]
= 2E[|Xu,s| | Oy = +1] -1

4
>1— ——
- C-1

7

8

\%

for sufficiently large C. m]

Proof of Lemma 3.6. We will prove the case of Y,; ,; the Y;i , case follows by nearly identical reasoning.

Now, let f(x) = (55)"2 let g(y1, ..., ya) = [1j<a f(¥)), and let gi(y1, ..., ya) = z9y By applying the
mean value theorem, we can write

E [ max |g(Xu1 Freo- /Xud,r) - g(Yqu, cee /Yud,r)l ‘ oy, =+1

adversary

<E| max Z|xw—ym,,|- max gy vl [ ou = 41 ©)

adversary 4 yr€lYur,r, Xu1,r]

Yd E[Yud,r rXud,r]

d

<«xE Z max | Xyir— Yuir| - max max l_[f(y]
i=

oy, = +1{.
+ adversary adversary y1€[Yy1,r, Xu1,r]

: ];tz
yde[Yud,r/Xud,r]

In the above, « is the constant from Claim 3.8. In the second inequality, we introduced the “local”
adversaries who only looks at the subtree beneath ui. At this point, we note that maxadversary | Xui,r — Yui rl
only depends on the randomness which we revealed in the subtree below ui, while
MaXadversary MAXy, €[V, ;, Xu1r] H}i:l f(y;) only depends on the randomness that we reveal in the subtrees

j#i
Ya€l¥udr Xud,]
below uj for j # i. Because of the tree structure, it follows that if we condition on o, = +1, then
MaXadversary | Xui,r = Yui,r| is independent of maxXadversary MaXy,; e[y, ,, X1 ] H?:l f(yj). Itis crucial that the
J#i
Ya€l¥ud,r Xud,)
derivative of the belief propagation function has this separation property, allowing us to leverage the
independence to write:

13



ﬂf(Xm )= ]_[f(Ym )

max
adversary

|
a
iNg

d

nf(y])‘ oy =+1

max |Xuir — Yuir| | oui =+1|-E| max max
adversary adversary y1 €[Yy1,r, Xu1,r]
];#z
yde[yud,wxud,r]

<xdéE

max max
adversary y1€[Yy1,r, Xu1,r]

d-1
[1rwp|ou=+
=1

yde[Yud,r /Xud,r]

where in the last inequality we used symmetry of the subtrees and also the fact that

:E[

This equality holds because maxadversary | Xui k — Yui k| measures the magnitude of the change in beliefs
of the worst adversary, and there by flipping +1 to —1 and vice versa there is a coupling between the

E

max |Xuz k— ui,kl

adversary

max |Xul k—

adversary

Y'/

max | Xyik —
adversary

Y'/

ou=-1| =

broadcast processes when ui = +1 and ui = —1 which leaves this magnitude invariant. In particular, this
implies that
E |: max |Xui,r - Yui,rl Oui = +1] <&
adversary
by the hypothesis of the claim. Next, we write
d-1 d-1
E| max max l_[f(y]) ‘ oy, =+1| <E max 1_[ max f(y;) | oy = +1
adversary yIE[Yul,r,Xul,r] j:1 yle[thl,thl,r] ] adversary
yde[ ud, erud vl _yde[Yud.,r/Xud,r]
d-1
=| | E| max max  f(y;) ‘ oy =+1
j=1 adversary 1 e[Yul,r /Xul,r] J
L yde[yud.,rlxud,r]
s
< E| max f(Xu] r |Yuj,r - Xu]',rl) ’ oy = +1
i1 adversary
]:

where the third equality follows because of independence of x,; and x,; for i # j and the final inequality

14



follows from the monotonicity of f so that max,c, 5] f(x) = f(a). Now we apply Claim 3.7 to the each
term in the above inequality to obtain

d d
max l—l (Xui,r) - l_lf(Yui,r) ‘ oy =+1
adversary . .
d-1 2 2
3e*(Xujr = Yujr — Xujrl)
jr uj,r uj,r
< xdé E [ max (1 - 5(Xuj,r - |Yuj,r - Xuj,r') + oy =+1
adversary 5
j=1
d-1 2 2
3&“ maXadversar (X i _|Y = Xuj |)
y\Auj,r uj,r uj,r
<x 5]_[15 1 — e(Xujy — max |Yuj, — Xuj,l) + ‘ Ou = +1
adversary 5
j=1
d-1
<wdé | [|1- eB[Xuj o = +1]+ € E max [[Yuj, — Xuj,llou = +1]
L adversary
j=1
2 —
3¢’E max [(Xu] r— |Yuj,r - Xuj,rl) loy = +1]
adversary
+
)
d-1 5,2 25, =
3e? Emaxydversary Xy i r=1Yyi r=Xyi pN2lou=+1]
< Kdé r[ e_gE[Xltj,r|Uu=+1]+gEmaXadversary[lyuj,r_Xuj,r||Uu=+1]+ dversary W’g L .
j=1
-1 3“-'2Ema"adversary[(Xuj r“Yuj r=Xuj r|)2‘°ll:+1]
< kd& l_[ e—sE[Xu/,,|ou:+1]+sé+ = 4 4
—_ 7
j=1

where for the penultimate inequality we used the fact that 1 — x < e™ for all x € R.
To simplify this further, note that by Lemma 3.10 we have

1+¢ 1-¢
E[Xui,r|au = +1] = E[Xui,rl(jui = +1] + T E[Xui,rlaui = _1]
1+¢ 1-¢
=E : Xui,r - Xui,r | oy =+1
Te
ZEE[ uzr|0u1—+1]> g (10)

And furthermore E maxadversary [(Xuj,r — |Yuj,r — Xu]',rl)2 oy, = +1] < 1+ 4¢&, since we have both |Xuj,r|2 <

o, = +1] < 2& and

1, Emaxadversary[2xuj,r|Yuj,1' - Xuj,k| oy = +1] < 2Emaxadversary[|yuj,r - Xuj,r|

E maxXadversary[|Yuj,r — Xu]-,rl2 ‘ 0y, = +1] < 2&. This allows us to write

- 3+2£
< xdée (d— l)e( Tpgem 1434128 )

l_[f(Xul r) - r[f(Yuz r)

as desired. O

max
adversary

‘au—+1

3.2 Large-¢ case

In this subsection, we aim to prove the following result.

15
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Lemma 3.11. For any 0 < &* < 1, there is some C(&*) > 0 such that for all ¢ > & and d satisfying *d >
—Clog(1 — ¢), then with p(e), to(5, d) as in (1), for any t > to,

E max |Xroot,t - Zroot,tl < 6
adversary
Here, the expectation E is taken with respect to the underlying broadcast process which produces leaf spins o1, and
the Ber(p) variables x indicating which leaf spins can be corrupted by the adversary.

The gist of the proof of Lemma 3.11 is similar to that of Lemma 3.4, with the main caveat being that
approximations such as Claim 3.7 no longer work, and so we need to use other estimates to bound the
belief propagation function. To that end, we first state a technical lemma that we need to bound the
“worst case” derivative of the belief propagation function.

Lemma 3.12 (Effectively [MNS16, Lemma 3.16]). Forany 0 < &* < 1, there is some d*(&*), some A = A(e*) < 1
such that forall 1 > ¢ > &*,d > d* there exists v(e, €*) such that if |£| < v and Y; = min{max{X,; xr — &, -1}, 1}

fork >1,
[1=¢Y;
E 1+£);’oll:+1
1

o) = EPa-
82
Because the proof of this lemma is near verbatim that of [MNS16, Lemma 3.16], we defer its proof to
Subsection A.
First, we prove an analogue of Lemma 3.6 in the setting of large ¢. For technical reasons, in the
following we define the truncated random variables

<A

In fact, we can take v(e, €

Yoik = max{—1, Xyi k — | Xuik — Zuikl},

and
Y/

ik = min{ Xk + [ Xuik — Zui kl, 1}.
These random variables effectively behave like their counterparts from before, in terms of recording the
“worst case” adversary. In fact, we observe that this definition of Y, x and Y/, is quite natural; —1 and

1 are the extreme points that the adversary can perturb the beliefs. The reason why such a truncation
1-¢ Yui,k
1+5Yui,k

is necessary is basically because when we apply equation 5, we need to ensure that avoids the

singularity —e L of }:L—zz

Lemma 3.13. For any 0 < &* < 1, there is some C(&*) > 0 such that for every 1 > ¢ > ¢ and d such that
€2d > C, the following holds: let r > 0, for any vertex u at level t — r — 1 with children ul, ..., ud and suppose

Oui = +1] < w, where v is as in Lemma 3.12, then

1/2 p 1/2
1—¢eYyi,
L LT+ eYyir

1=

E=E [maXadversary |Yui,r - Xui,r|

E| max

oy =+1| < —=.
adversary

d
1- €Xui,r
~ 100

LT+ eXui g
i=1 ’

Furthermore, the above holds with YL:i,r replacing Yy r.

Proof of Lemma 3.13. First, by applying Markov’s inequality on the hypothesis of the claim, note that for
any 1 <i < d we have
1-¢

< .
d

P[ max |Yui,r - Xui,rl =V ‘ oy =+1 (11)

adversary
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Because of the independence of x,,; from x,; for i # j, we have for any I C [d] such that = {iy,...,in},

< (1;5)'”.

o, =+1

P[ max |Yyuir— Xuir| ZvViel ’ o, =+1

adversary

m
= l_[P max |Yui,r - Xui,r| =2V
i1 adversary

1=

Let f(x) = \/1£. By the independence of x,; from x,; for i # j, we apply the mean value theorem
to obtain
ad%l?é}aiy l_[f(Xm 1/) - r[f(yul r) ‘ Ou — +1

oyui = +1

d
§ max ul r— Yui,rl
— adversary

1
a—opr 117 )] ow=+1
(1 - 8)3/2 !:ll adr\g?s}:ry yle[éﬁ?&ul/r]f(y]) Oy

ydE[Yud/k rXud/kJ

max f(Yyj,)| oy =+1

< —
(1 - 6)3/2 1_[ adversary

where the second inequality holds by monotonocity of f and the symmetry of subtrees rooted at
ul, ..., ud. For the first inequality, note that since ‘%’ is convex on [—1, 1] with a minimum at x = % and
we truncated the random variables Yj,; x so that we always have X,; x, Y,i x € [-1, 1], we can bound ‘%‘
by its value at the endpoints

f B £ e 1
max (1) = max , < )
dx V1—e(e+1)3/2 V1+e(l-e)3/? (1-e)3/?

For the first inequality, we also used the fact that

E[ max |Xuz r Yui,r| oui = +1 oy =+1| <&

adversary

=E [ max |Xuz r Yui,rl

adversary

which is fundamentally because | X,; , — Yyi | measures the worst-case magnitude by which an adversary
can perturb the beliefs.

Let B be the event that maxadversary |Yui,r — Xui,-| = v for all i € I and maxXadversary | Yui,r — Xui,r| < v for
alli ¢ I.
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By the law of total probability,

d-1
E ﬂad%é?;)a{ryf(yuj,r) oy =+1
d-1
: Z PBilow = +1]E 1—[ dmax f(Yuf,r) By, 04 =+1
; adversary
Ic[d] ]

] -
1+¢e\2 1 — e(max{-1, Xy;, —v})
< P8 — 41 E ’ ’ , =+1
Z [Br1 | 0w ] (1 — g) l;[ \/1 + e(max{-1, Xy, —v}) B o
] _

Ic[d]
1+e)\2 1 — e(max{-1, Xyi , —v})
< S BB |0y = +1 E ' |80 = 1)
zcz[o;] ol ](1—8) 1,;[ \/1+€(max{—1,Xui,r—V}) o

Next, we use Lemma 3.12 to bound E [\/ L elmax{—1, Xy —v}) ’ B;, 0, = +1|. Now, we note that

1+e(max{-1,Xyi,—Vv})

1-¢ =1, Xyiyr —
E\/ e(max{~1, X, v})’BbOM:+1

1+ e(max{-1, Xy, —v})

max |Yyix— Xuik| <v, o4 =+1
adversary

_E 1- e(max{—l, Xui,r - V})
B 1+ E(maX{_l, Xui/r - V})

1-e(max{-1,X,;,—v}) _
E |:\/1+s(max{—1,xui,r_v}) Gu - +1

<

Pl max |Yyir — Xuis| <v]oy = +1]
adversary

A

|
=) =
Q=

<A,

where the second equality follows since x,; is independent from x,,; for i # j, the penultimate inequality
follows by applying Lemma 3.12 to bound the numerator and applying (11) to bound the denominator
and the last equality follows for some A < 1 by taking sufficiently large C(&*) so that d > C(¢”) is
sufficiently large. Putting all this together, it follows that

d-1

E l—[ max f(Yyjr)

o, =+1
adversary

]j=

m

I EEYEREES
ofil)

IA

IA
~
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for sufficiently large d > d*. Combining these bounds, we obtain

P — 1 d-1
(T+o(}) o
(]_ — 5)3/2 — 100

‘au—+1

]‘[f(xm ) - ]_[fmu )

by taking sufficiently large C(&*) to ensure that

A d-1 1 4
2 ofl)) s [ Aol
1-2 d 1-2 d

as desired. m]

max
adversary

_% log(1-¢) (1 B 8)3/2

2 —,
—100d

With this inductive contraction lemma in place, the proof of Lemma 3.11 is immediate.

Proof of Lemma 3.11. Letv = % We induct on r > 1 to prove that

< 27 (r=1)y, (12)

E| max |Xut r— Zu,t—rl oy =+1

adversary

The base case of r = 1 is Lemma 3.4 by taking C sufficiently large, and the inductive step follows by
applying Lemma 3.13. m]

4 (c,k)-spread adversary

Finally, we introduce a deterministic adversary - the (c, k)-spread adversary - for which we can also
accurately reconstruct the spin of the root.

Definition 4.1. Let ¢ > 0 and k > 0 be given. The (c, k)-spread adversary is an adversary that receives leaf
signs oy, and is allowed to flip ¢ of the leaf spins of his choice among every height k subtree.

Theorem 4.2. There exists a universal constant C > 0 with the following property. For any c > 0and d, e > 0
such that €2d > Clog(d), there exists some k(c) and to such that if t > t then there exists an algorithm ALG which
takes as input an element of {1} and outputs an element of A(x1) with the property that for any (c, k)-spread
adversary A acting on the broadcast, then

drv({or | oL}, ALG(Ap(oL))) < 6.

(0R,0L)~Di et , X
As before, we implement a contraction argument. Fix d, ¢. Note, however, that for instance when
c > d, we cannot expect the base case of our contraction argument as in Lemma 3.4 to work because the

adversary could choose to concentrate all of his flips in one subtree of height 1. For the base case of the
induction, we instead look at a subtree of height k; this is captured by the following Theorem 4.4.

Definition 4.3. The c-flip adversary is an adversary that is allowed to flip ¢ of the leaves of his choice after
witnessing the entire broadcast tree process.

Theorem 4.4. There exists C > 0 such that the following holds: for every c,d, e, > 0 there exists an algorithm A
and a constant K(c) > Osuchthatifde? > Cand ift > log(K6™1), there exists an algorithm ALG: {il}dt — A(£1)
such that for any c-flip adversary A, we have

E drv({or | oL}, ALG(A(01))) < 6.

(0R,0L)~Da e ¢
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Proof of Theorem 4.4. Let ¢ = min{6/(8¢c),log(1 + 6/4)/(4c)}. To define the algorithm A, consider first the
following random process N. A draw o1 ~ N corresponds to the output {+1}@V" from running the
broadcast on tree process with flip probability 15¢ down a d-regular tree (i.e., each non-leaf node has
d — 1 children) and then passing each bit of the leaves through independent binary symmetric channels
with flip probability %

We also define the “clean” process 7 : a draw o7, ~ 7 corresponds to the {x1}-1 spins of the leaves
at level t of a broadcast on tree process with flip probability 15¢

We let

An(x) =Pn(or =1 ‘ or =x)—Py(or = -1 ‘ oL =Xx),

and
A7 (x) =Py(ogr =1 ‘ op =x)—Ps(og = -1 ‘ oL = X),

both of which can be computed by belief propagation. Ultimately, we will take A = Ay
The goal is to find some K such that for t > log(K6™1), we have the bound

c
oL dx & @evi) —Ag(or)

i=1

E max E

or~7 v1,...,0c€L x~Ber(#)(d‘1)t

An < 5. (13)

We claim that [MNS16, Lemmas 3.4, 3.5] gives the quantitative bound that there is some constant
K(c) > 0 such that if t > log(K67'), then

4
oln E |An(op)| 21— 27 (14)

Define S to be the sum of all the spins drawn from the process N. Then [MNS16, Lemmas 3.4, 3.5] gives

E[Slaroot = +1] = IPEtdt,
Var[S|oveot = +1] = (1 — ¢2)d" + (1 - 2)¢2((62d)’ Dd'

2d-1
Since 1 =, 6, there exists K(c) such that if t > log(K6™1), then (£2d)! > £~ meamng that (1 —y?)d! is
dominated by (1 — £2)y? (e Z)‘; i % In particular, in this case we have the (crude) bound of

3 2 2((52d)t - 1)d'
Var[s|0root = +1] < 5(1 —€ )l/) W

By Chebyshev’s inequality, it follows that if > log(K6™!) then

2
P[S > Olﬁroot = +1] >1- @

Because sign(Ax(x)) is the optimal estimator of 000t given oy, we have

P BN - lsign(n (1)) = +1lor0 = +1]
> P[sign(S) = +1|0ro0t = +1]
>1- 2
- e2d

which upon rearranging gives (14).
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Combining (14) with the proof of [MNS16, Theorem 3.3], we have that if t > log(K67!), then

1
E E An(x @ 0L) —Ar(oL)| < - E E |An(x ® 01) — Ag_, (o1)]-
0L~T x~Ber(35)@-1! 2 o1~Ti1 x~Ber(15¥)@d-ni"t

By iterating this contraction result, it follows that if # > log(max{2, K}67!), then we have

E E |An(x @ o1) — Ar(or)| < 6/2.
o~T x~Ber(#)(d_1)f

By the triangle inequality, in order to obtain the desired conclusion it suffices therefore to prove

E max E

or~7 v1,...,0c€L x~Ber(¥)(d‘l)t

<5/2.

c
An (GL Dx D @evi) —An(x ® o)
i=1

By symmetry and the triangle inequality, it suffices to prove that

<5/4. (15)

E max

! 1-U\(g_1)\t
o T v1,...,0c€L x~Ber(Td)(d 1) Pt

c
P (OR = 1|0L = GIL@XGB @evi) —PN(GR = 1|GL = OIL @x)

In fact, we will show that the difference above is at most 0/4 for any choice of G’L, v1,...,0:,x. For
any x, € {il}(d‘l)t, using Bayes’ rule, we can write

P NloL = xrlog = 1]P olor =1
P(UR/UL)NN[GR =1 ’ oL =xL] = (or,0L) N[ L L| R ] (or,0L) N[ R ]

Pog,on)~nloL = x1]

and for any choice of vy, ..., v,

c
aRzl’oL:xLEB@evi

_ Pog,o0)~N [GL =X 9 @?zl ey;|0R = 1] Plog,op)~nl0oR = 1]

P ~N
(0r.0L) - Plog,on)nloL = x1 @ ey]
Pop o1 )~N aL:xLEB@Ll €y GRZI] _ c
1-¢ ROL [ i 1+ 1-y Pog,o )~N[‘7L—XL€B@1':1 eZ’i] 1+
Note that (—=)° < R e ey < (=) and (—-)° < —&4 Flo =] < (=)
That is,
19\ ¢ P(UR,GL)~N [GR =1 ‘ oL =x. © @le 30,»] L\ ©
L-2pe < |35 < <|op| sV (16)
2 Plog,o)~nloR =1 ) oL = xi] 2
Our choice of ¢ gives the desired inequality 15. m]

As mentioned earlier, we use Theorem 4.4 as a primitive to kickstart our contraction argument. To be
more precise, our algorithm and the relevant parameters in our proof of Theorem 4.2 are as follows. Fix
d, €, 6 and let K(c) be the constant from Theorem 4.4 and set

k = K(c), to = 10°(log(d) — log(1 — €) + log(671)). (17)

Given the output of a broadcast on tree process that was run up till depth ¢, we partition the bottom
k levels of the tree into subtrees of size d* (for an illustration, refer to Figure 1). On the leaves of each of
these subtrees, run the algorithm from Theorem 4.4 and suppose the outputs are beliefs Z; x (1 < i < d'~F)
for the d'~% nodes at level ¢ — k of the broadcast tree. Now, recursively apply belief propagation until we
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Figure 1: An illustration of the partition of the levels of the tree in the algorithm.

reach the root and output the belief thus obtained. Specifically, recursively define
Zji = BP(Zgjs1,i-1, Zdj+2,i-1, - - - » Zd(j+1)~1,i-1)

fork <i<tand1<j<d,where BP: RY — R is the belief propagation function given by

ML, (1 +eXy) - [T4,(1 - eX;)
[T, (1 + eXi) + 14, (1 — eX;)

BP(Xy,...,Xq) =
We can restate Theorem 4.4 in terms of an upper bound on the maximum perturbation from the
ground truth X, «.

Lemma 4.5 (Consequence of Theorem 4.4 for the parameters in (17)). There exists an absolute constant C
such that if de? > Clog(d) then for any vertex u at level t — k where t > to where k and to are as in (17), we have

v(e, €%)
E [ Xuk -7 - +1] <n&e)
adnvl?;)a(ry | uk u,kl Ou 10d
Proof of Theorem 4.2. We induct on r > 1 to prove that
E [ max |Xu,t—r - Zu,t—rl oy =+1| < 2_(r_k)V- (18)
adversary

The base case of r = k is Lemma 4.5, and the inductive step follows by applying Lemma 3.6 when ¢ < ¢*
and Lemma 3.13 when ¢ > ¢*. To finish up, it suffices to take t¢ < log(6™!) and iteratively apply (18). O

5 Information-theoretic lower bounds

First, we establish the folklore result that the p-fraction adversary is very powerful and can in fact
completely erode any information in the leaves about the posterior distribution of the root.

Definition 5.1. Fix p > 0. The p-fraction adversary is allowed to look at all the d* spins of the leaves and then
flip the signs of pd" leaves of his choosing.

Theorem 5.2. For every p, d and ¢, there exists some to such that if the p-fraction adversary is allowed to corrupt
the leaves of the broadcast on tree process with parameters (d, €) that was run up to level t > ty, it is information
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theoretically impossible to recover the root vertex. In fact, we prove that for (or, o1) ~ D¢t there exists a p-fraction
adversary A for which we have

drv({or | or = 1}, {A(0o1) | or = —1}) < 79,

The quantitative bound in the theorem implies that it is impossible to have an algorithm A that recovers
the root vertex with an advantage larger than ¢~®).

Proof. Set to = logp~t/(log 11—2‘5) + 1 and throughout this proof we consider t > t;. Let D, be the
distribution of the leaves at level t of a broadcast process with parameters (¢, d) with root being +1 and
D; be the distribution with root being —1. And, let DZ,, D_, be the analogous joint distributions on the
first ¢ levels of the broadcast tree.

We claim that it suffices to exhibit a coupling (x, :(x)) € {il}(d‘l)[ X {il}(d‘l)t between x ~ D} and
114(x) ~ D, such that with probability 1 - e we have dist(x, 7:(x)) < (4ee)!(d — 1)! where dist refers
to Hamming distance between the two strings.

Indeed, consider the following p-fraction adversary A: for x ~ D}, if dist(x, 7:(x)) < (4ee)(d — 1)
then let A(x) = 7:(x), where by our choice of parameters we have that (4e¢)’ < p. Otherwise, let A(x) = x.
Let A" denote the distribution corresponding to A(x) where x ~ D;". In particular, this means that

drv (D], Af) < e 90,

It suffices therefore to exhibit the coupling 7; as claimed. Define 71;(x) for x ~ D} to act as follows: (in
the following, let £ = lj‘;'; é_) here one should think of marked vertices as the vertices where the adversary
did not make any changes, and the goal of the adversary is to flip unmarked vertices that are labelled ‘+’

tO l_/

e Sampley ~ DZ, | x (thatis, DZ, conditioned on the leaves of the tree taking labels x).
e Lety’(root) = —1.

¢ Traverse down the tree starting from the the nodes at level 1, that is, from the children of the root. If
the current node v is marked, let y’(v) = y(v) and mark all its children. Otherwise, if v is unmarked
and y(v) = —1, then mark v and all its children and set y’(v) = y(v). Else, if v is unmarked and
y(v) = +1, with probability £ leave it unmarked and set y’(v) = —1. Otherwise with probability
1 — &, mark v and its children and set y’(v) = +1.

o Let 71;(x) be the restriction of y’ to the vertices at level ¢.

In order to prove that this coupling has the desired properties, we first show that with high probability,
the Hamming distance between x and 7;(x) is small.

Note that if for a vertex v at the ¢-th level, we have 7;(x(v)) # x(v) then v has to be unmarked, and
furthermore there is a path of + unmarked vertices connecting v to the root. The latter occurs with
probability at most &. Applying Markov’s inequality immediately gives

P[dist(x, 71¢(x)) = p'(d — 1)!] < e,

Next, we need to show that 7;(x) ~ D;". We will actually show that y* ~ D_, by inducting on ¢. For
the base case, note that for any vertex w on level 1, we have that

P[y’(w):—]:(%—s)+(%+e)£:%+e
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as desired.
For s < t, we write y’, to denote the restriction of y’ to labels of vertices in levels r < s. Note that it
suffices to prove that for any vertex v at level s + 1 with parent w,

Ply'(0) = +lyk] = 5+ @)e.

Indeed, note that

Ply'(v) = + | y<]
=Ply'(v) = + | y.,, w marked]P[w marked | y_,] + P[y’(v) = + | y.,, w unmarked]P[w unmarked | y’,]

= (% + y’(w)e) P[w marked | y_,] + P[y’(v) = + | y'(w) = —, w unmarked]P[w unmarked | y’,].

Since
Ply'(v) =+ |y (w) = —, w unmarked] = 1 - P[y’(v) = — | y/(w) = —, y(w) = +, w unmarked]
1 1 1
—1—(5—84-(54‘5)5)—5—6
= Sy )

and P[w marked | y_,]| + P[w unmarked | y_ | = 1, the above indeed implies that

Ply/(0) = +lyl] = 5 + ¥ ()

as desired. O

Another natural question is whether the bound on p in Theorem 1.4 is tight; that is, can we prove any
information theoretic lower bounds on p-semi-random adversaries? To that end, we have the following
upper bound of p < ¢. This means that at least in the range of de? > log % being a log-factor above the
Kesten-Stigum threshold, belief propagation achieves the optimal p (up to constant factors) in terms of
being robust against p-semi-random adversaries.

Theorem 5.3. For every d and ¢, there exists to such that if a (135-)-semi-random adversary is allowed to corrupt

the leaves of the broadcast on tree process with parameters (d, €) that was run up to level t > to, then it is information
theoretically impossible to recover the root vertex. That is, for (og, a1) ~ Da,e s there exists a (135-)-semi-random
adversary A such that

dry({or | or = 1}, {A(or) | og = —=1}) < ™90,

Proof. Set to = 1/(log(2e¢)™). We adapt the adversary that we used to prove the information theoretic
bound in Theorem 5.2. Retain the notations as in the proof of Theorem 5.2, where 7t; defines a coupling
on (D;", D;). Consider the following adversary B: for x ~ D/, if all the sites of 7;(x)Ax (i.e. the sites
where the two vectors differ) are selected as possible sites for corruption, and we call this event good, then
output 1;(x). Otherwise, return x. Let B;“ denote the distribution corresponding to B(x) where x ~ Df.

We claim that the good event happens with probability 1. To that end, we traverse down the tree
and mark vertices as in the process described in Theorem 5.2 until we reach level t — 1. For each of these
marked vertices on level t — 1, we simulate the process of choosing whether to mark its children with the
coin flips in the (115-)-semi-random adversary. In other words we couple random coin flips to mark the
children and change their spins with the coin tosses in the adversary. The bound on the semi-random

robust gain follows from Theorem 5.2 as well. m]
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A Deferred proofs

Proof of Corollary 1.6. We claim that an equivalent formulation of Theorem 1.4 is that for any &', d, ¢, p
satisfying suitable hypothesis, there exists t((d, 6") such that for any adversary B that takes as input o
and S C [n] and is only allowed to flip the signs of the restriction oy |s, there exists an algorithm ALG with
the following guarantee:

E drv ({or | o1}, ALG(B(0L, S))) < 0

(0R,0L)~Dae,1,5~Np t

forall t > t{ where A, ; is the uniform distribution on subsets S C [d'] of cardinality pTdt < |S| < 2pd".
To this end, note that if k < m then

E max dry ({or | o}, ALG(B(or, S
(0R,OL)~D et ,S~Dp,t |S|=k ({or oL} (B( )

< E d ,ALG(B(0L, 9))).
(O}~ D ans Sl max dry ({or|or} (B(o1,5)))
Let A;/t be the distribution on subsets S  [d!] of cardinality pd" < |S| < 2pd’ whereP[S] = p|5|(1—p)”‘|s|.
Note that p™(1 — p)"~™ is decreasing on the range pd’ < m < 2pd’ since p < 3. Consequently,

E dry ({or | oL}, ALG(B(0L, S))) < ( E drv ({or | oL}, ALG(B(or, S)))

(UR,O'L) ’ S~Ap,n UR/JL) ’ S~A,/D,n
< E drv({or|or}, ALG(A(0L))) + P[|x| > 2pn]
(UR/OL)
< E drv({or|oL},ALG(A(0r))) + e P" 1",
OR,0L
where the final inequality follows from the Chernoff bound. This implies that we can take t((d, ') =
t(d, 5 + e~P'/6),
By an application of Markov’s inequality, it follows that 0.99 of subset S C [n] have the property that

E drv ({or | oL}, ALG(B(0L, S))) < 0. (19)

(0R,0L)~Da,e ¢

We claim that we can take S to consist of the subsets S which satisfy (19). First we check that these
subsets have the desired property. Indeed, it suffices to note that for any p with pu|s = D, ¢ +|s, we have

oL~ orls o7l

< E drv (ALG(oLls, 07l5,S), {or | oL})

oL,0l5

E dry(ALG(or,S), {orloL}) = E E dry [ALG(0Lls, 073, S), ET{GRWL}
GL§

where the first inequality follows because of the convexity of the total variation distance and the second
inequality follows by (19).
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Finally, we show that S is large in size. This follows because

t

S| > 0.99( d

pdt) > exp(pdt) — QQE,d(dt)

where the second inequality is true for sufficiently large ¢. m]

Proof of Claim 3.5. Let f(x) = = and g(x) = xP. We claim that

1+x
|f'(x)] < g'(x)/p = xP71.

The desired inequality then follows from the fundamental theorem of calculus. Now, |f'(x)| = (1 + x)~2
and so when x > 1, we have |f’(x)| < x™2 < x?~! and when x < 1 we have |f’(x)| <1 < xP~L. |

Proof of Claim 3.7. It suffices to note that for sufficiently small x, we have

1—x\? 3x2
<l—-x+—.
1+x 5

Indeed, the above holds as for sufficiently small x, we have

3x2\? x?
(1+x)(1—x+?) =1—x+E+O(x3)21—x,

as desired. O

Proof of Claim 3.8. It suffices to note that for

d (a—x)1/2 —(a +B)

dx\p+x) aa-0)PE xR

By setting @ = 1 — ea and = 1 + €a, it follows that for sufficiently small ¢, it follows that the desired
quantity is bounded above by a constant. m|

Proof of Lemma 3.12. In what follows, denote 11 := 15£. We adapt the proof of [MNS16, Lemma 3.16]. For

l-¢ex
1+ex

simplicity of notation denote f(x) = By applying Markov’s inequality to Lemma 3.10, it follows

that for some 7 = 7(¢*) to be chosen and sufficiently large ¢2d relative to 7, we have
P[Xyix >1- T171/4 |o, =+1]>1- T173/4 —-1.
Since Y; > X,i x — ||, it follows that
PV >1-t =gl ou =+1] ZP[Xui,k—la >1-m = 1&]| o, =+1] >1-mt— = a.

The remainder of the proof is near verbatim that of [MNS16, Lemma 3.16] and we repeat it here for
completeness. Since f(x) is decreasing in x, it follows that

E[f(X)|ou =+1] < f(8)P[X > 5|0y = +1]+ f(-DP[X < 5|0y = +1]

for any random variable X supported on [~1,1] and s € [~1, 1]. Applying this for s = 1 — '/ - & and
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X =Y, the above probability estimate implies that
E[f(Y;)| oy = +1] < f(1 —n"* = |EDa + fF(-1)(1 - ).

We claim that we can make each of the terms above bounded away from % by taking 7(e*) = % and
"2p1/
v(e, &) = %. Note that this choice of v(e, *) satisfies v = 7'/

We can compute

2n + etnt/t + €&
2-(2n+ 8’[171/4 + ¢|&))

3/4

f(1—m”4—Iél)(l—Tn3/4—n)<\/ A -t -7

<[+ ——(ernV +elél)) S(1—T*t =)
V5

< Jni=n)+ J%g(mw + &N - 1)

n

< ynd-=mn+ VoAl —1n

where the second inequality follows by Taylor expanding v/x1 — x around x = 7, and our choice of
parameters ensure that 2(17 + €v) < 2( + v) < 1 so that the derivative of v/x1 — x is bounded. Finally, it
can be checked that the above is bounded away from for our choice of parameters for our choice of t

and v since 1 € (0, 2 ] in fact our choice ofparameters ensures that y/n(1 — )+2T1]1/4\/1 -n<s3 —c(e )
for some c(&*) > O ThlS follows because for 0 < ¢ < 1, we have that n'/*\/T =1 < 7 + 55 and we also

have \n(1-n) <5 -5 ° and so we can write

(= m) + 21 - n< — (e )2(——4.;3/4)-

We can also compute

FEDERmY +1) = 2en' 1=+ (n(1 ).

Note that (1 — n) is bounded away from 1 on the interval 1 € (0, 15
It follows that there is some d*(¢) such that for all d > d*(&”), there is some A(e*) < 1 such that

E[m‘au:+l

as desired. O

<A
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