®

Check for
updates

Anonymous, Timed and Revocable Proxy
Signatures

Ghada Almashaqbeh'®) and Anca Nitulescu?

! University of Connecticut, Storrs, CT, USA
ghada@uconn.edu
2 I0G, Paris, France

anca.nitulescu@iohk.io

Abstract. A proxy signature enables a party to delegate her signing
power to another. This is useful in practice to achieve goals related
to robustness, crowd-sourcing, and workload sharing. Such applications,
especially in the blockchain model, usually require delegation to satisfy
several properties, including time bounds, anonymity, revocability, and
policy enforcement. Despite the large amount of work on proxy signatures
in the literature, none of the existing schemes satisfy all these properties;
even there is no unified formal notion that captures them.

In this work, we close this gap and propose RelaySchnorr, an anony-
mous, timed, and revocable proxy signature scheme. We achieve this in
two steps: First, we introduce a tokenizable digital signature based on
Schnorr signature allowing for secure distribution of signing tokens. Sec-
ond, we utilize a public bulletin board, instantiated as a blockchain, and
timelock encryption to support: (1) one-time usage of the signing tokens
by tracking tokens used so far based on unique values associated to them,
(2) timed delegation so that a proxy signer cannot sign outside a given
period, and (3) delegation revocation allowing the original signer to end a
delegation earlier than provisioned. All of these are done in a decentralized
and anonymous way so that no one can tell that someone else signed on
behalf of the original signer or even that a delegation took place. We define
a formal notion for proxy signatures capturing all these properties, and
prove that our construction realizes this notion. We also discuss several
design considerations addressing issues related to deployment in practice.

1 Introduction

Proxy signatures allow one user (the original signer) to delegate their signing
right to another party (the proxy signer). The proxy signer can generate sig-
natures that are verified using the original signer’s certified public key.! Proxy
signatures are useful in many applications related to distributed systems, e-
cash using smart cards, grid computing, and workload sharing [16,31,33,38].
For example, Alice can let her assistant (Bob) reply to (and sign) emails on her

! This is not to be confused with proxy re-signatures [3,7], in which Alice gives a
trusted third party a secret key skp—, that is used to transform Bob’s signature into
Alice’s signature. Our focus in this work is on signature delegation.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
N. Mouha and N. Nikiforakis (Eds.): ISC 2024, LNCS 15257, pp. 23-43, 2025.
https://doi.org/10.1007/978-3-031-75757-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-75757-0_2&domain=pdf
https://doi.org/10.1007/978-3-031-75757-0_2

24 G. Almashagbeh and A. Nitulescu

behalf while on a vacation, or simply she can share the workload of handling
emails with Bob. Anonymous delegation guarantees that no one can tell that
the task was delegated. Alice may further limit the delegation rights to a certain
task or period of time, and may retain the ability to revoke the delegation at
any moment of her choice.

The concept of proxy signatures was first introduced in [30], where several
types of delegation were presented: full delegation—the original and proxy sign-
ers share the same secret key, partial delegation—the original signer generates a
delegation key for the proxy signer to use, and delegation by warrant—the orig-
inal signer specifies a policy that restricts which messages the proxy signer can
sign. Since then, a large number of followup works emerged analyzing security
and efficiency of older schemes, and devising new constructions, e.g., [4,14,23~
25,31,39]. Other foundational works focused on formulating and unifying the
security requirements of proxy signatures, and strengthening the adversary model
[9,29,35]. Furthermore, several works focused on extending proxy signatures to
handle different settings and support new features, such as threshold proxy signa-
tures [22,37], blind proxy signatures [42], and anonymous proxy signatures [17].

Motivation. Our motivation stems from recent advances in distributed systems
and Web 3.0 applications, and their need for delegation of signing rights. The con-
tinuous emergence of such applications raises the question of whether we can real-
ize many of the robustness, user-control, and flexible-configuration features (facil-
itated by trusted banks/financial institutions) in the trustless blockchain model.
This model also introduced new needs that did not exist before, such as managing
hot and old wallets and targeted attacks against consensus. Having cryptographic
schemes that cover various properties is valuable as these can always become off-
the-shelf solutions for new needs arising in this active area. In this work, we iden-
tify the properties and capabilities that decentralized applications require from
signature delegation, and how to realize them. Towards this, we discuss two moti-
vating applications, and we explain how existing solutions are not suitable as there
is no single scheme that supports all the required properties.

Application 1: Decentralized Finance (DeFi) and Wallet Management. In DeF1i,
blockchains are used to facilitate financial services. There is always the ques-
tion of whether DeFi can replace traditional banking systems. For example, can
Alice allow a family member to spend currency from her Ethereum account in a
controlled way without giving away her secret key? (in a similar way to issuing
a credit card to a family member while the original account owner controls the
credit limit and activation period of the new card.) Delegated signatures can
easily enable that: Alice delegates signing rights to her sister Eve, under a policy
ensuring that, e.g., only transactions with capped values can be issued, and that
delegation is valid only for a given period. Alice can also end, or revoke, the
delegation earlier if desired. Given the decentralized nature of blockchains, Alice
wants to do all of that in a decentralized way.

Another use case is related to cold and hot cryptocurrency wallets. Cold
wallets are used to store most of the funds and are not connected to the Internet.
It happens that the hot wallet (e.g., a mobile application) may need more funds

Anonymous, Timed and Revocable Proxy Signatures 25

for a particular activity than what was originally anticipated. Transferring funds
between the two wallets requires the cold wallet to be connected to the network,
which is risky. By delegating the signing capability to the hot wallet, it can
non-interactively transfer funds out of the cold wallet, reducing security risks.

Application 2: System Robustness. Another important application is related to
system robustness and addressing targeted attacks. Take Byzantine agreement-
based consensus as an example. For each round, a committee will agree on the
next block. A party, say Alice, can designate a few other parties as backups to
sign on her behalf. If Alice’s machine is down, Bob can sign on Alice’s behalf
after a preset timeout. So, even if Alice is a victim of a targeted attack, Bob
will do the work until she recovers. Here anonymity is a key; backups must be
anonymous to avoid targeted attacks against them as part of attacking Alice.
The same analogy can be applied to any system in which designated parties
must be available to perform particular functionalities.

These applications outline several desired properties. Delegation anonymity
hides that a delegation took place and the identities of the proxies, ensuring
that to an outsider everything appears to be done by the original signer. Also,
delegation should be of an ephemeral nature so it can be exercised during a preset
time period. Another feature is revocability, which could be automatic when
the delegation period is over, or on-demand due to unforeseen circumstances.
Moreover, policy enforcement allows restricting the proxy signer’s power, e.g.,
signing messages that belong to a certain class. Furthermore, decentralization
and non-interactivity are important features especially for large-scale distributed
systems. That is, all delegation information are generated by the original signer
and can be sent to the proxy signer in one shot; no further interaction with the
original signer and no trusted third party are needed when the proxy generates
signatures. This promotes scalability and agrees with the spirit of delegation—
the original signer can go offline once the delegation is created.

Despite the large amount of work around signature delegation, there is no
single proxy signature scheme that achieves all the properties mentioned above,
and there is no formal notion that covers all these properties. Full delegation, by
giving away the signing key, offers anonymity but at the price of losing control
over the delegation. Many schemes allow some fine-grained control [14,20,30],
but violate anonymity. Others [4,17] support controlled and anonymous delega-
tion, but without any revocation capability or timed notion. At the same time,
schemes that support timed delegation and/or revocation [27,28,36,41] either do
not offer anonymity, require interaction between the original and proxy signers,
rely on trusted/semi-trusted third party, or do not have formal security analysis.

These observations raise the following question: Can we construct a decen-
tralized and non-interactive proxy signature scheme that is anonymous, timed
and revocable? and how to formally define its security?

1.1 Contributions

In this paper, we answer this question in the affirmative by defining a formal
notion for anonymous, timed and revocable proxy signatures, and constructing

26 G. Almashagbeh and A. Nitulescu

a proxy signature scheme, called RelaySchnorr, that satisfies all the properties
discussed above.

Formal Modeling. Our notion builds on previous proxy signature defini-
tions [9,17,29] and defines the additional properties that we require. We gener-
alize the notion to produce generic delegation information instead of restricting
these to be tokens or delegation keys. We also introduce a revocation algorithm
covering automatic and on-demand revocability. For policy enforcement, we view
it as two parts: a policy over time encapsulating the delegation period, and a
policy over the message specifying which messages can be signed. To support
delegation anonymity, verification of all signatures is done under the original
signer’s public key without involving the proxy signers’ identities. We formally
define correctness and security, where the latter covers unforgeability under cho-
sen message attacks, anonymity, revocability, and policy enforcement. We note
that none of the existing definitions covered all these properties at once, and
none of them defined a time policy or revocation.

Construction. We introduce a new proxy signature scheme, RelaySchnorr, that
realizes our notion. RelaySchnorr combines Schnorr signature, timelock encryp-
tion, and a public bulletin board to support token-based delegation that is anony-
mous and revocable, and enforces time and message policies.? We introduce a
one-time tokenizable digital signature scheme based on Schnorr signatures. This
is done via a two-layered approach: the first layer produces a token, while the sec-
ond layer produces a signature over the intended message using this token. The
original signer can produce tokens on her own and communicate them securely
to the proxy signer. Signature verification is done against the public key of the
original signer, and the signature structure is identical whether it is generated
by the original or proxy signer. In terms of size, a signature consists of four field
elements and one group element, so the cost of delegation consists of one group
element and two field elements compared to original Schnorr signatures.

We enforce one-time use of a token by publishing its unique value (i.e., a
unique random element k) on the bulletin board. Any signature with an already
published k value will be rejected, and upon accepting a valid signature, the
verifier publishes the corresponding k value on the board, preventing the proxy
signer from reusing a token. This differs from conventional one-time signatures,
where if a signer signs more than one message her signing key will be revealed.
A proxy signer would attempt to reveal the original signer’s signing key, and
hence the conventional notion does not work in our setting. Our approach does
not reveal the key even if a proxy signer (locally) uses a token to sign several
messages, and still only one of these signatures will be accepted. As noted,
verifiers are trusted to publish the k values of the signatures they accept. In
blockchain applications (our main target) signed transactions are verified by the
miners/validators, so consensus honest majority guarantees this behavior.

2 We assume a secure bulletin board that is an append-only, publicly-accessible log
instantiated in a decentralized way as a blockchain maintained by a set of miners (we
refer to the miners as validators). Any secure bulletin board (that satisfies persistence
and liveness) can be used whether it is based on proof-of-work, proof-of-stake, etc.

Anonymous, Timed and Revocable Proxy Signatures 27

For the timed delegation, we achieve that in a decentralized way without
involving a time server or public warrants that compromise anonymity. We utilize
the bulletin board along with timelock encryption [19]. In timelock encryption,
a ciphertext is locked to a time p so that when time p comes, some public
information will become available allowing for decryption. To enforce a proxy
signer to exercise the delegation within a time period [pq, pb], where p is a round
number from the board, the original signer encrypts the delegation tokens locked
to time p, and privately sends them to the proxy signer. Only at time p, the
proxy signer can access the tokens. To enforce the end of the period, or automatic
revocation of delegation, the original signer encrypts all unique k values of these
tokens in another ciphertext locked to time p, and publishes that on the board.
When time p, comes, the board validators will decrypt and publish all unused
k values preventing the proxy signer from using any unused tokens after pp.

For on-demand revocation, we do that in a similar way to automatic revoca-
tion. The difference is that the original signer publishes the unused k values of
the delegated tokens before time pp,. To the best of our knowledge, we are the first
to support revocability and the timed notion in an anonymous and decentralized
way. For policy enforcement over messages, we follow generic approaches [17,20]
for two cases: public policy (using the warrant approach) and private one (using
non-interactive zero knowledge proofs—NIZKs).

A few challenges arise when deploying our scheme in practice. Examples
include synchronization issues of the board, denial of service (DoS) attacks, and
anonymity concerns related to mass publication of k values during revocation.
We discuss these and other challenges, along with solutions, in our construction.

Security. We formally prove security of RelaySchnorr based on our notion.
Unforgeability relies on the unforgeability of Schnorr signatures in the random
oracle model [34], and the Schnorr knowledge of exponent assumption [5,12].
Anonymity is achieved by having identical signature structure and behavior (i.e.,
with respect to any information published on the board) for the original and
proxy signers. Revocability relies on the security of timelock encryption and the
bulletin board. Policy enforcement relies on the security of digital signatures (for
public warrants) or NIZKs (for private policies), as well as security of timelock
encryption and the bulletin board.

Lastly, we note that the techniques we devise to support the timed /revocabil-
ity notion could be of independent interest; they could be used to support these
features for other cryptographic functionalities. Furthermore, the reliance on
Schnorr signature, which is a widely studied and used cryptographic primitive,
favors construction simplicity. This could also make it easier for our construction
to be adopted in practice by systems that use Schnorr signatures (e.g., Bitcoin
is awaiting the adoption of Schnorr signatures as proposed in BIP 340 [40]).

1.2 Related Work

We review existing proxy signature schemes showing that none of them support
all the properties we aim to achieve. In the full version [2], we further review
works on relevant notions and position our work with respect to these efforts.

28 G. Almashagbeh and A. Nitulescu

Anonymity. Anonymity is usually not supported since the proxy signer’s key is
public and needed for verification, e.g., [30]. Fuchsbauer et al. [17,18] address this
issue by unifying the notion of proxy and group signatures, and they consider
traceability with a trusted authority holding a trapdoor that can compromise
anonymity if needed. Beside introducing a centralized entity, this scheme does
not support revocation or timed delegation. Functional signatures [11] allow
deriving a secret key sk, from the original signer’s key, so a proxy signer can
sign a message m only if f(m) =1 (where f represents the policy). Delegatable
functional signatures [4] utilize signature malleability to allow delegation. Both
notions support anonymity but not timed or revocable delegation.

Time-Bounded Delegation. The few works on timed notion for delegation are
limited. Lu et al. [28] add the delegation period to the public warrant, and relies
on a trusted server to issue a timestamp for each signature a proxy signer wants to
generate. Sun et al. [36] adopt an interactive delegation process; a verifier asks the
proxy signer to sign a message, and one of these parties generates a timestamp
that the other verifies. Beside being interactive and involving a trusted server,
these schemes violate anonymity and do not have formal security.

Revocation. Techniques for revoking delegation rights [30,41] are based on
changing the original signer’s key so all delegated signatures will be rejected,
or on creating a public list of revoked proxy signers’ keys. The scheme in [41]
uses revocation epochs, where for each signature, the proxy signer generates a
proof that her key is not on the epoch revocation list, so anonymity is not sup-
ported. Others [13,27,28] rely on a (semi-)trusted server, where the proxy signer
must contact this server when generating a signature: the original signer updates
the server with all revoked proxy signers to deny their requests. This approach
introduces centralization and trust issues, which we avoid in our scheme.

Policy Enforcement. Warrants are used to enforce a policy over delegation, and
are usually public—a verifier rejects any signature over a message that violates the
warrant [9,29]. Private warrant approaches either rely on NIZKs to show that a
signed message belongs to a hidden (committed) set of messages [21], on polyno-
mial commitments to restrict the proxy signer to sign messages following a specific
template [20], or on anonymous non-interactive credentials [14]. However, none
of these schemes offer anonymity. Functional (delegatable) signatures [4,11] and
traceable policy-based signatures [1] support private policy and proxy anonymity
using NIZKs, but without any timed notion for the delegation (and the latter
requires interaction between the proxy and the tracing authority). In terms of
message policy enforcement, we use these generic approaches, while we leave trace-
ability for future work as we do not to involve a trusted entity.

2 Preliminaries

We provide an overview of timelock encryption (TLE) that we utilize in our
construction. More about the correctness, security, and candidate constructions
of TLE, and an overview of Schnorr signatures (where we adopt the formulation
from [32] that mitigates related key attacks), can be found in the full version [2].

Anonymous, Timed and Revocable Proxy Signatures 29

Notation. We denote the natural numbers by N, the integers by Z, and the inte-
gers modulo some g by Z,. Elements of Z, are lowercase, and elements of a mul-
tiplicative group G of order ¢ generated by generator G € G are uppercase. A
denotes the security parameter, pp denotes the public parameters, negl(\) denotes
a function negligible in A, and PPT stands for probabilistic polynomial time.

Timelock Encryption (TLE). TLE enables encrypting messages towards a
time p (which is a round number from the bulletin board) such that they can be
decrypted only after that time. Thus, for each p, a round-related information 7,
is published on the board to enable decryption. We adopt the definition in [19]
with a more generalized time information production algorithm as shown below.

Definition 1 (Timelock Encryption (TLE)). A Timelock encryption
scheme & is a tuple of five PPT algorithms defined as follows:

TLE.Setup(1*) — (pp, s): Takes as input the security parameter X, and outputs
public parameters pp and a private key s.3

TLE.RoundBroadcast(s, p) — m,: Takes as input the round number p and a pri-
vate key s, and outputs the round-related decryption information m,.

TLE.Enc(p, m) — (ct,, 7): Takes as input the round number p and a message m,
and outputs a round-encrypted ciphertest ct,, and trapdoor T for pre-opening.

TLE.Dec(m,, ct,) — m': Takes as input the round-related decryption information
7, and a ciphertext ct,, and outputs a message m’'.

TLE.PreOpen(ct,, 7) — m’: Takes as input a ciphertext ct, and a trapdoor T,
and outputs a message m’.

We use TLE in a blackbox way by invoking the algorithms defined above. We
leave any details of, e.g., model and security of the blockchain and time infor-
mation, to the concrete instantiation (which we require to be fully decentralized
and publicly verifiable). We briefly discuss TLE correctness and security, and
TLE instantiations in the full version [2].

3 Definitions

In this section, we formulate a notion for anonymous, timed and revocable proxy
signature scheme. We build on previous definitions for proxy signatures [9,17,29]
and extend them to cover the additional properties we require.

Definition 2. An anonymous, timed and revocable proxy signature scheme X
s a tuple of seven PPT algorithms defined as follows:

Setup(1?) — pp: Takes the security parameter X as input, and outputs a set of
public parameters pp.°

KeyGen(1*) — (sk,vk): Takes the security parameter \ as input, and outputs a
signing key sk and a verification key vk.

Sign(sk, m, policy) — o: Takes the signing key sk, a message m, and a policy
policy as inputs, and outputs a signature o over m.

3 The public parameters pp are implicitly input to all subsequent algorithms.

30 G. Almashagbeh and A. Nitulescu

Delegate(sk, vk, degspec) — (deglnfo, rk): Takes as inputs the signing and verifi-
cation keys (sk,vk), and delegation specifications degspec (i.e., any auxiliary
information and the policies over the time period and the messages that can
be signed). It outputs delegation information deglnfo and a revocation key rk.

DegSign(m, deginfo) — o: Takes a message m and the delegation information
deglinfo as inputs. It outputs a signature o over m.

Revoke(deglnfo, rk, revState[vk]) — revState|[vk]’: Takes deglnfo, the revocation
key rk, and the revocation state associated to vk as inputs, and outputs an
updated revocation state revState[vk]’.

Verify(vk, m, o, revState[vk]) — 1/0: Takes as inputs the verification key vk, a
message m, a signature o over m, and the revocation state revState of vk. It
outputs 1 if the signature is accepted, and 0 otherwise.

We require the scheme X to satisfy the following properties: correctness, exis-
tential unforgeability under chosen message attacks, anonymity, revocability, and
policy enforcement, which we define below.

As shown above, the inputs for Sign include the policy, which we view to
be composed of two sub-policies: policy,, determines which messages can be
signed, and policy, determines the time period so that a signature produced
and verified outside this period will be rejected. Although the latter is needed
for the timed delegation but we include it here to satisfy anonymity. That is,
all signatures whether produced by the original or proxy signer will have the
same structure. The term policy is general and could be extended to include
additional polices if desired. Also, policy is configured by the original signer;
the proxy signer cannot change it. For delegation, Delegate takes as input the
delegation specifications degspec, which includes all auxiliary information needed
for delegation configuration, such as number of signing tokens in token-based
schemes, and the policy policy to be enforced. The produced deglnfo that will be
sent to the proxy signer will include the same policy found in degspec and all
information a proxy signer needs to sign.

Our definition contains one verify algorithm used for all signatures whether
produced by the original or proxy signer. Verify will reject any signature that
does not satisfy the policy, and checks that the signature is not revoked (based
on the revocation state revState associated with vk that is publicly available).*

Lastly, note that when Revoke is invoked, it updates the revocation state of
vk to which the delegation is associated. This update is simply a concatenation
operation that appends the new revocation information. Furthermore, this is a
revocation of a delegation so the proxy signature cannot exercise the delegation
anymore. It is not about revoking signatures that were already accepted.

4 In our construction, Verify takes the current revocation state of vk (retrieved from
the bulletin board) as input; it uses this state to check the freshness of the signature
and then updates this state to include the unique value of the accepted signature to
enforce one-time usage. One may argue that the definition of Verify should output
an updated state revState to reflect that. However, we did not incorporate that to
keep the definition general so it can be used by future constructions that may not
rely on a bulletin board to enforce the one-time property.

Anonymous, Timed and Revocable Proxy Signatures 31

Now we define the properties listed in Definition 2. We use code-based
games [6] to formulate our security notions; an experiment Exp¥, is played
with respect to a security notion sec and an adversary A against a scheme X.
Furthermore, and similar to [8], we define the following helper functions that are
not available in the actual scheme, but only for the challenger in the experiments.

SimSetup(1*) — (pp,td): Receives the security parameter)\, and outputs the
public parameters pp which distribution is computationally indistinguishable
from what is produced by Setup, and a trapdoor td.

ExtDeg(td, o, {deglnfo}) — 1/0: Receives a trapdoor td, a valid signature o, and
a set of delegation information {deglnfo}. It returns 1 if any of the deglnfo in
this set was used to generate o, and 0 otherwise.

As shown, ExtDeg determines if a forgery signature was generated via a
delegation based on hidden values in the signature. We resort to the use of such
help function, as in [8], since this check cannot be performed on the available
public signature values without a special extractor, since that would break the
anonymity property of the scheme.

Correctness. Informally, correctness implies that a signer holding a valid secret
key or delegation information can always produce a valid signature o over a
message m such that Verify will accept that signature if: the signature verifies
correctly against vk; it is not revoked based on the latest version of revState[vk];
and that it does not violate the specified policy.

For all A, all m € {0,1}*, any policy policy = (policy,,,, policy,) such that m
satisfies policy,, and the time of signing/verification is within policy,, any del-
egation specifications degspec and delegation information for this specifications
deglnfo such that policy = degspec.policy = deglInfo.policy, and the latest public
revocation state revState based on which the signature o is not revoked, the
following probability is 1:

pp — Setup(1*)
(sk, vk) < KeyGen(1%)
Pr | Verify(vk, m, o, revState|[vk]) = 1| (deglnfo, rk) « Delegate(sk, vk, degspec)
o < Sign(sk, m, policy) V
o « DegSign(m, deglnfo)

Existential Unforgeability. This property states that no adversary can pro-
duce a valid signature without the knowledge of the signing key sk or a delega-
tion information deglnfo created with respect to (sk,vk). Formally, for all A, all
m € {0,1}*, and any PPT adversary A, there exists a negligible function neg|
such that Pr[ExpPErf’zyEUF‘CMA()\) = 1] < negl()), where Exppzrf’;yEUF‘CMA is the
experiment of existential unforgeability under chosen message attacks defined in
Fig. 1, and the probability is taken over all randomness used in the experiment.

We note the following in the description of Expg");\yEUF'CMA. Checking if
the forged signature has been produced using a delegation obtained through
ODelegate is done by invoking ExtDeg over the signature and Lgeleg (With the

32 G. Almashagbeh and A. Nitulescu

EXP ProxyEUFfCMA()\) OS|gn(m, pOl|Cy)

A
1: Lsign < @, Laeleg < @ 1: o « Sign(sk,m, policy)
2: (pp,td) + SimSetup(l’\) 2: Leign < Lsign U{m}
(sk, vk) + KeyGen(lA) 3: return o

O « {OSign, ODelegate} ODelegate(vk, degspec)

5: (m",o") « A9 (vk

.(.) (vk) . 1: (deglnfo,rk) <
6: if m” € Lagn V ExtDeg(td, 0", Lgeleg) = 1

Delegate(sk, vk, degspec)

7 return 0

s . % % 2: Ldeleg < Ldeleg U {deglnfo}
8: if Verify(vk,m", o™, revState[vk]) = 0

3: return (deglnfo,rk)
9: return 0
10: returnl
Fig. 1. Existential unforgeability under chosen message attacks.

Exp gﬁﬁ‘”°”(A) Chaly(m*, degspec)
10 bE {01} 1: ifb=0

2: pp « Setup(1?) oo < Sign(sk, m", degspec.policy)

2
3: (sk,vk) < KeyGen(1%) 3: ifb=1
4: O + {ODelegate, OSign} 4 (deglnfo, rk) < Delegate(sk, vk, degspec)
5: (m”"degspec) < A°(vk) 5: o1 <+ DegSign(m”™, deglnfo)

6: &« Chaly(m",degspec) 6: returnop

71 b« A9(5)
g: ifb"=b
9: return 1

10: return 0

Fig. 2. Anonymity for delegation (OSign and ODelegate are as defined in Fig. 1).

trapdoor 7) which will decide if this signature was produced using any of the
degInfo in Lgeleg. Note that this helper function is not part of the actual scheme,
and that 7 is secret. Thus, seeing a signature does not reveal that a signature
was produced by the original or proxy signer, thus compromising anonymity.

Delegation Anonymity. This implies that the verifier, or any adversary, will
not be able to infer any information about a delegation (one that he does not
know its deglnfo). That is, all signatures will appear as if they were produced by
the original signer—they do not reveal anything about the identity of the proxy
signers or even that there are delegations in the first place. Thus, all signatures
are indistinguishable (in terms of structure and behavior) and all are verified
against the original signer’s verification key vk. Also, the produced deglnfo is

Anonymous, Timed and Revocable Proxy Signatures 33

EXP DegReV(A)

1: (pp,td) « SimSetup(1™), (sk, vk) + KeyGen(1*)
2: O « {OSign, ODelegate}
degspec + A (vk)

=W

(deglnfo, rk) «<— Delegate(sk, vk, degspec)

revState[vk] < Revoke(deglnfo, rk, revState[vk])

(m*, o) « A° (vk, degInfo)

if ExtDeg(td,c", deglnfo) = 1 A Verify(vk,m*, 0", revState[vk]') =

ot

return 1

© 0 N O

return 0

Fig. 3. Delegation revocation (OSign and ODelegate are as defined in Fig. 1).

transmitted to the proxy signer over a secure channel, thus outside these two
parties, no one will be able to tell that such information was produced.
Formally, for all A, all m € {0,1}*, and any PPT adversary A, there exists

a negligible function negl such that Pr[ExpDegA"On (A) = 1] < 1 + negl(\), where

ExpDegAnon is the experiment of delegation anonymity defined in Fig. 2, and the

probablhty is taken over all randomness used in the experiment.

As shown in the figure, the adversary A will choose a message m* and del-
egation specifications degspec (where the latter includes a policy policy). The
challenger, based on the value of b, signs m™ using either delegation information
deglnfo generated based on degspec, or the signing key sk (hence, no delegation)
and returns the signature to A. The adversary A is challenged to tell which
method was used for signing.

Revocability. This implies that an adversary A cannot produce a valid signa-
ture that will convince the verifier using a revoked delegation. Formally, for all
A, all m € {0,1}*, and any PPT adversary A, there exists a negligible function
negl such that Pr[ExpDegRev()\) = 1] < negl()\), where E><pDegRev is the experiment
of delegation revocation defined in Fig.3, and the probablhty is taken over all
randomness used in the experiment.

As shown in the figure, A is challenged to produce a valid signature (that will
be accepted) using the revoked delegation. Thus, the game checks that indeed
the signature o* is produced using the revoked deglnfo as done before. This check
is needed to rule out the following trivial attack: A, who has access to ODelegate,
can produce a valid signature that verifies under vk using a different delegation
from the one in the challenge that is not revoked, thus always winning the game.

Policy Enforcement. Informally, this implies that an adversary holding a valid
delegation cannot produce a signature, that will be accepted, such that policy is
not satisfied. This covers violating the policy over the message or the time.

34 G. Almashagbeh and A. Nitulescu

EXp %EEIZoIicy()\)

1: pp < Setup(1%), (sk, vk) + KeyGen(1")
2: O « {OSign, ODelegate}
3: degspec + .Ao(vk)

4: (deglnfo,rk) < Delegate(sk, vk, degspec)
(m*, o) « A° (vk, degInfo)

ot

6: Parse degspec.policy as (policy,,,, policy,)

7: if Verify(vk,m", ", revState[vk]) =1 A (m”* ¢ policy,, V now ¢ policy,)
8: return 1

9: return 0

Fig. 4. Policy enforcement (OSign and ODelegate are as defined in Fig. 1).

Formally, for all A, all m € {0,1}", and any PPT adversary A, there exists
a negligible function negl such that Pr[Expg‘fﬂ%"cy()\) = 1] < negl()), where

Expgﬂ: °liey ig the experiment of delegation policy enforcement defined in Fig. 4,
and the probability is taken over all randomness used in the experiment. As
shown in the figure, we use the variable now to refer to the current time, which
is publicly accessible in the system. Thus, to check that the time policy is violated
we check that now is outside the time period specified in policy,. Also, the notion
m* ¢ policy,, represents checking that m* does not satisfy policy,,.

4 Construction

We present RelaySchnorr, an anonymous, timed and revocable proxy signature
scheme that realizes the notion defined in the previous section. It relies on dis-
tributing one-time signing tokens to the proxy signers. Towards that, we intro-
duce a tokenizable version of Schnorr signature, and employ a public bulletin
board (an immutable, append-only log maintained by a set of validators with
an honest majority, which can be instantiated as a blockchain), and timelock
encryption to enforce the one-time use of signing tokens as well as the timed and
revocable properties. The full construction is shown in Figs. 5 and 6. To simplify
the discussion, we present our scheme with only the time policy, and we assume
full synchrony with the bulletin board (i.e., any message that is sent appears
immediately there). Toward the end of the section, we discuss enforcing a policy
over the messages and handling synchrony of the board, as well as issues related
to reducing the storage and information lookup on this board.

As mentioned before, the board state state is public and accessible by all
parties. The time notion we use is in term of rounds derived from this board (in
a similar way as done in blockchains). That is, a round is a block index from
the board, which we denote as state.round. We also use the notation state[vk] to

Anonymous, Timed and Revocable Proxy Signatures 35

access the revocation state associated with vk, and state.roundlnfo(p) to access
the TLE decryption information published on the board for round p.

One-Time Tokenizable Signature Scheme. This is based on Schnorr sig-
natures, and done via a two-layered approach; layer 1 produces a token, while
layer 2 produces a signature over m using the token.

For the signing algorithm, as shown in Fig. 5, we first generate a token using
the signing key sk = x, that is actually a Schnorr signature over a random
element k with a secret randomness r. In particular, the signature requires com-
puting w = H(k, X, R), where R = G". Looking ahead, the tuple (z,w, k) will be
the token given to the proxy signer. To sign a message m, the original signer uses
z as a secret key and produces another Schnorr signature over m with random-
ness e (note that the value z is also a random element in Z,). So this signature
will be over the value ¢ = H(m, Z, E), where Z = G*. The output signature
is 0 = (w,¢,s,k,Z). The verification algorithm uses the public key vk = X to
verify a signature by verifying the two layers of the Schnorr signature. As shown
in Fig.6, this is done by computing the randomness R and E and then veri-
fying that the signed hashes, w and ¢, are indeed correct hashes based on the
computed randomness.

The one-time property is enforced as follows. Each new signature contains a
unique, freshly generated value k. When receiving a valid signature, the verifier
checks that k is not on the board state associated to vk, namely state[vk], and if
s0, the signature will be accepted and the verifier posts the k£ value on the board
to be appended to state[vk].> Any signature with an already-published k will be
rejected. Looking ahead, this will enable one-time use of delegated tokens. As
noted, verifiers are trusted to behave as prescribed by publishing the k values of
the signatures they accept. In blockchain applications (our main target) signed
transactions are verified by the miners who publish valid signed transactions
(that include the k values) on the blockchain, so consensus honest majority
guarantees this behavior (hence, it is not a trust in a single entity). Also, as
shown, due to the reliance on the updated bulletin board state to enforce the
one-time property, our construction is stateful (in practice, updating the state is
done automatically in blockchain applications since accepting a valid transaction
means that this transaction and its signature—including k—will be published
on the board).®

To preserve delegation anonymity, the original signer must mimic the behav-
ior of signatures produced by delegation (which we will see shortly). As shown
in Fig.5, every now and then the original signer will publish on the board a
TLE ciphertext of a list of fresh and previously-used k values (locked to a future
time). This is done to mimic having ct; associated with a delegation (and so the
automatic revocation). Also, every now and then, the original signer will gener-

5 The verifier sends & to the board validators who will update the state state[vk] when
publishing a new block.

5 Having a bulletin board does not introduce direct interaction between the original
and proxy signers; an original signer produces deglnfo and sends it in one shot to the
proxy signer who can exercise delegation without any help from the original signer.

36 G. Almashagbeh and A. Nitulescu

Let A be a security parameter, S be the original signer, P be the proxy
signer, and TLE be a timelock encryption scheme as defined in Definition 1.
Construct an anonymous, timed and revocable proxy signature scheme X =
(Setup, KeyGen, Sign, Delegate, DegSign, Revoke, Verify) as follows:

Setup(1*): On input the security parameter), set G to be a cyclic group of a prime
order ¢ with a generator G € G and hash function H : {0,1}* x G — Z, initialize
state = {}, and invoke TLE.Setup(1*). Output pp = (TLE.pp, H, G, G, g, state).

KeyGen(l)‘): On input the security parameter A, choose uniform x € Z,, then
compute X = G*. Output the signing key sk = = and the verification key vk = X.

Sign(sk,m): On input the signing key sk = x and some message m, do:

1. Choose uniform k,r, e € Zy, compute R =G", E = G°

2. Compute w = H(k, X, R), z = (r + wz) mod ¢, and Z = G*

3. Compute ¢ = H(m, Z,F) and s = (e + ¢z) mod q (if z = 0 or s = 0 start

again with fresh r and e)

4. Output the signature o = (w, ¢, s, k, Z)
Every now and then, S either (1) populates a set klist from the stored k values and
fresh ones, encrypts it as (cts, 7») = TLE.Enc(klist, ps), where pp is some future round
number, and posts (pp, ctpy) on the board (resulting in state’[vk] = state[vk]||(p», cts)),
or (2) posts a fresh klist on the board (resulting in state’[vk] = state[vk] || klist).

Delegate(sk, vk, degspec): On input the keypair (sk = z,vk = X) and delegation
specifications degspec = (u, [pa, pb]), where u € N and [pq, py] is the delegation
period, do the following;:
1. Set klist = {}
2. Do the following for i € {1,...,u}:
(a) Choose uniform k;,r; € Zq
(b) Compute R; = G™ and w; = H(ki, X, R;)
(¢) Compute z; = (r; + wixz) mod g (if z; = 0 start again with fresh r;)
(d) Set t; = (zi,w;, ki) and klist = klist U {k;}
3. Compute two ciphertexts: (ctq, 7a) = TLE.Enc(t1 || - - || tu, pa) and (cty,) =
TLE.Enc(klist, py) (where 73 is the revocation key rk).
4. Set deglnfo = (pa, pb, Cta)
5. Output (deglnfo, cty || 7)
S stores ciphertext ct, and trapdoor 7, to be used for revocation if needed (74 is
dropped as it is not needed), posts (pp,cty) on the board (resulting in state’[vk] =
state[vk] || (s, cts)), and sends deglnfo to P.

Fig. 5. RelaySchnorr—continued in Fig. 6.

ate a fresh list of k values and publish the list itself on the board. This is done
to mimic the mass publishing of k& values associated with on-demand revocation.

Timed Delegation. To delegate signing, i.e., the Delegate algorithm in Fig. 5,
the original signer chooses the delegation specifications including the number of
signing tokens and the delegation period. The original signer uses her signing
key sk = x to generate u fresh signing tokens, denoted as t1,...,t,. Each of

Anonymous, Timed and Revocable Proxy Signatures 37

DegSign(m, deglnfo): On input a message m and delegation information deglnfo, P
does the following (let pnow = state.round be the current round number):
1. If prow < Pa OF Prow > pb, then do nothing
2. If pa < prow < pb, then:
(a) If deglnfo = (pa,ps,cta), then retrieve m,, from the board (mw,, =
state.roundInfo(p,)) and set deglnfo = (pa, pb, TLE.Dec(m,, , cta))

(b) Pick an unused signing token t = (z,w, k) from deglnfo

(¢) Compute Z = G*

(d) Choose uniform e € Z, and compute E = G°

(e) Compute ¢ =H(m, Z, E), and s = e+ cz mod ¢ (if s = 0 start again with

a fresh e)
(f) Output the signature o = (w, ¢, s,k, Z)

Revoke(deglnfo, rk, state[vk]): On input deglnfo = (ps, ctp), revocation key rk, and

revocation state state[vk], do (let pnow = state.round be the current round number):

1. If pnow > ps, then retrieve m,, from the board (m,, = state.roundInfo(ps)) and
compute klist = TLE.Dec(7, , cts)

2. If prow < pv, then use rk = 7, to compute klist = TLE.PreOpen(cts, 1)
3. Add all k values such that k € klist Ak ¢ state[vk] to the board state state[vk]

associated with vk resulting in an updated state state[vk]’.

Verify(vk,m, o = (w, ¢, s, k, Z), revState = state[vk]): On input the verification key
vk = X, the message m, signature o = (w, ¢, s, k, Z) over m, and the revocation
state state|[vk], if k € state|[vk], then output 0. Else, add k to state[vk] (resulting in
state’[vk] = state[vk] || k) and do the following:

1. Compute R=27-X"“Yand E=G*-Z~°

2. Output 1 if and only if w = H(k, X, R) A ¢=H(m,Z, E).

Fig. 6. RelaySchnorr (cont.).

these tokens contains z (first layer Schnorr signature over a fresh k), and the
corresponding w and k values.

Our goal is to enforce a time period over the delegation in a decentralized
way and without violating anonymity. To do that, we utilize a recent notion of
timelock encryption TLE (defined in Sect.2) in the blockchain model (again,
we view the bulletin board as a blockchain). We represent the time period [a, b]
in terms of block indices, or rounds, covering the intended period. That is, this
period will be [p4, pp], where p, (respectively pp) is the round number during
which the block with index a (respectively index b) is mined. To force a proxy
signer to use the signing tokens only during [pqa, p»], we propose the following.
The original signer uses TLE to encrypt the tokens in a ciphertext ct, such
that when p, comes, and so the decryption information m,, becomes publicly
available, the proxy signer can decrypt ct, to retrieve the tokens. To enforce the
end of the period, recall that any signature with a k value that appears on the
board state state will be rejected. Thus, the original signer uses TLE to produce
another ciphertext ct, for time p, encrypting klist (the list of &k values of the
delegated tokens) and posts ct, on the board. When time p, comes, and so 7,

38 G. Almashagbeh and A. Nitulescu

becomes publicly available, the board validators will decrypt ct, and publish all
unused k values in klist on the board (this is included under Revoke in Fig. 6).
This will prevent the proxy signer from using the unused tokens after time py.

The original signer stores ct, and its secret trapdoor 7, that can be used for
early revocation (if needed) as we explain shortly. He then sends the delegation
information deglnfo = (p,, s, cty) to the proxy signer over a secure channel since
this is secret information, and posts (pp,cty) on the board.

Delegated Signing. As shown in Fig. 6, at time p,, the proxy signer decrypts
ctq using the decryption information 7,, that will become available on the board
at that time. This will reveal deglnfo containing the signing tokens. The proxy
signer can use any of these tokens to sign a message m as follows: it chooses a
random e and computes a signature using any of the unused (k, w, z) in deglnfo,
which produces the second layer Schnorr signature. This signature has the same
structure as the signatures that the original signer would produce, and will be
verified using the same Verify algorithm against the original signer’s verification
key vk = X, thus preserving anonymity of the proxy signer.

Revocation. We support decentralized and anonymous two types of revocation:
automatic, when the delegation period is over enforced by the timed property
discussed above, and on-demand allowing the original signer to end the delega-
tion before time p,. Both are done by decrypting ct, and publishing all unused
k values on the board, preventing the proxy signer from using the tokens tied to
them. The difference is that for automatic revocation, decryption is done using
mp, that will become publicly available at time p,. While for on-demand revo-
cation, that only the original signer can execute, the trapdoor 7, of deglnfo (in
particular ctp) is used to PreOpen cty.

As mentioned in Sect. 2, we employ a decentralized TLE scheme in our con-
struction. The decryption information is produced using RoundBroadcast for each
round (either by relying on a period random beacon as in [19] or a committee
that will be elected at round p as in [15]). This information will be published on
the board. For the decryption of ct, and publishing all unused k values, we pig-
gyback that on the tasks that the board validators do. Thus, the validators keep
a record of all ct;, for each round p, and when 7, becomes available, they decrypt
cty and post all unused k values on the board. Furthermore, RoundBroadcast as
defined in Definition 1 involves a secret value s that is used to produce the round
decryption information. This value (and whether it is needed) is based on the
concrete instantiation of the TLE scheme (e.g., using the scheme in [19], s will
be shared among the producers of the threshold random beacon).

As noted, during revocation or when the delegation period ends, multiple &
values will be published on the board. One may argue that such mass production,
or even the existence of ct,, may violate delegation anonymity. However, this is
not the case since: (1) this information does not contain anything about the
identity of the proxy signer or which delegation it is tied to, and (2) the original
signer will mimic a similar behavior (i.e., periodic publishing of multiple k values
and ctp) for her own signatures as outlined in the Sign algorithm in Fig. 5.

Anonymous, Timed and Revocable Proxy Signatures 39

Policy Enforcement. The construction above enforces only a time policy. To
restrict the proxy signer to sign messages that satisfy certain policy policy,,,, we
can adopt two generic approaches from the literature [17,20].

Public Policy. If policy,, is public, we use the warrant approach. The original
signer encodes the conditions that message m must satisfy in policy,,, and signs
it using a separate signing key (to prevent a proxy signer from using one of
the signing tokens to sign any policy she wishes). Any secure signature scheme
can be used to sign policy,,; no need to be a proxy scheme. Thus, an original
signer will be known using two public keys: the one used for signing the policy
and the one used for the proxy signature. The original signer sends the signed
policy as part of deglnfo as discussed previously. For Sign, the original signer can
pick any policy,,. Both Sign and DegSign will output policy,, as part of output
signature structure o. Verifying a signature now additionally includes verifying
that policy,, is signed by the original signer, and that m satisfies this policy.

Private Policy. For private policy policy,,,, we employ a NIZK proof system, so
that a signature includes a proof 7 attesting that m satisfies policy,,, and that
this private policy is signed by the original signer as above. policy,,, is basically
encoded as a function f (or a circuit that encodes the required conditions). Also,
the public parameters of the system will include any public parameters needed
for the NIZK proof system. In terms of signing, o will be computed over m || ©
to preserve the proof integrity. Verifying a signature will involve verifying 7 to
ensure that the private policy,, is satisfied.

Denial of Service (DoS) Attacks Against Signers. A signature will be
directly rejected if its k value is already published on the board. Earlier we state
that the k values are either published by the verifiers (after accepting a valid
signature), by the original signer (when executing an early revocation), or by the
board validators (when a delegation period ends after decrypting ct;). However,
in practice an attacker may perform a DoS attack against the original or proxy
signers by intercepting a signature (before being verified) and publishing its k
value on the board to invalidate the signature.

We can address this attack as follows: instead of just logging only the k value
of a signature, we publish the whole signature and the hash of the signed message.
Thus, a signature will be rejected if another valid signature (with the same k
value) over a different message is already on the board. This also means that
ctp will contain valid signatures over random hashes using the tokens instead
of just a list of the k values of these tokens. Thus, when we say a k value, we
implicitly refer to a valid signature tied to this k& value and the component c
in the signature (based on construction) is computed over the hash of m rather
than m itself. In blockchain applications, our main target, this is not an issue;
either way transactions are already published on the chain with their signatures,
which will prevent DoS attacks against signers.

Remark 1 (Validity of Accepted Signatures QOutside the Delegation Period). A
valid signature produced during the delegation period will stay valid outside
that period since the verifier can easily check that it is for the same message in

40 G. Almashagbeh and A. Nitulescu

hand and can be verified as many times as desired. A signature over a different
message means a reuse of a token and either way will be rejected.

Bulletin Board Synchronization and Off-Chain Processing Issues. In
presenting our construction earlier, we assumed that the board is instantly
synced. That is, any information sent to the board will appear directly and
all parties will see the updated board state instantly. However, this is not the
case in practice; propagation delays and other factors may prevent that. So a
verifier might be checking an old state that does not contain the updated list
of k values/signatures, which allows a proxy signer to use a token several times
(with several verifiers) during this period. Furthermore, our scheme is similar
to off-chain processing in blockchains. That is, a signature is handed directly
to verifiers who rely on the current state of the board during verification. Sim-
ilar to the concept of double spending in off-chain payments, a malicious proxy
signer may reuse a token to generate several valid signatures each of which is
handed to a different verifier at the same time. All these verifiers will accept
these signatures since none of these signatures is published on the board yet.
We handle both issues by introducing the concept of delayed signature accep-
tance. A verifier will verify the signature as before, then publish it on the board
as above, but will not take any action based on this valid signature—which is
basically based on the content of the signed message—until later, e.g., a few
rounds later. If at that time this verifier finds out that more than one valid
signature (over different messages than what she has) using the same k value
appeared on the board, they will reject the signature. Note that in blockchain
applications, the signature is destined to the board validators, e.g., it is a signa-
ture over transactions to be posted on the board. Hence, this issue is resolved by
consensus itself. That is, only one valid signature associated with a given k value
will be accepted and parties act based on the confirmed state of the blockchain.

Reducing Information Lookup Time. As noted, a verifier has to check that
the k value (or basically the signature) is not already published on the board
(under state|[vk]) before accepting a valid signature. The cost of information
lookup grows linearly with the number of signatures produced under a given vk.
This cost can be reduced by using, e.g., universal accumulators [10,26] that are
dynamic and allow for non-membership proofs. For each vk, the board validators
compute an accumulator of the associated k values and they update it as more
k values are published. A signature will be accompanied with a non-membership
proof proving that its k value is not in the accumulator. Thus, a verifier just
needs to verify the validity of this proof.

5 Security

In the full version [2], we prove the following theorem (where schnorr-koe is the
Schnorr knowledge of exponent assumption [5,12]).

Anonymous, Timed and Revocable Proxy Signatures 41

Theorem 1. Assuming EUF-CMA security of Schnorr signatures, the
schnorr-koe assumption, a secure bulletin board, a CCA-secure TLE scheme,
an EUF-CMA secure signature scheme, and a secure NIZK proof system,
RelaySchnorr is an anonymous, timed and revocable proxy signature scheme (cf.
Definition 2).

Acknowledgements. We thank Yolan Romailler for insightful discussions about
timelock encryption and drand. The work of G.A. is supported by Protocol Labs
grant program RFP-013: Cryptonet network grants, and in part by NSF Grant No.
CNS-2226932.

References

1. Afia, I., AlTawy, R.: Traceable policy-based signatures with delegation. In: Deng,
J., Kolesnikov, V., Schwarzmann, A.A. (eds.) CANS 2023. LNCS, vol. 14342, pp.
51-72. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-7563-1_3

2. Almashagbeh, G., Nitulescu, A.: Anonymous, timed and revocable proxy signa-
tures. Cryptology ePrint Archive (2023). https://eprint.iacr.org/2023/833

3. Ateniese, G., Hohenberger, S.: Proxy re-signatures: new definitions, algorithms,
and applications. In: CCS (2005)

4. Backes, M., Meiser, S., Schréder, D.: Delegatable functional signatures. In: Cheng,
C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol.
9614, pp. 357-386. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49384-7_14

5. Bellare, M., Crites, E., Komlo, C., Maller, M., Tessaro, S., Zhu, C.: Better than
advertised security for non-interactive threshold signatures. In: Dodis, Y., Shrimp-
ton, T. (eds.) CRYPTO 2022. LNCS, vol. 13510, pp. 517-550. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-15985-5_18

6. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409-426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679_25

7. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127-144.
Springer, Heidelberg (1998). https://doi.org/10.1007/bfb0054122

8. Bobolz, J., Diaz, J., Kohlweiss, M.: Foundations of anonymous signatures: Formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Financial Cryptography and Data Security (2024)

9. Boldyreva, A., Palacio, A., Warinschi, B.: Secure proxy signature schemes for del-
egation of signing rights. J. Cryptol. 25(1), 57-115 (2012)

10. Boneh, D., Biinz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 561-586. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7_20

11. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, p. Boyle, E., Goldwasser,
S., Ivan, I.: Functional signatures and pseudorandom functions. In: PKC (2014)-
519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0-29

https://doi.org/10.1007/978-981-99-7563-1_3
https://eprint.iacr.org/2023/833
https://doi.org/10.1007/978-3-662-49384-7_14
https://doi.org/10.1007/978-3-662-49384-7_14
https://doi.org/10.1007/978-3-031-15985-5_18
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/bfb0054122
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-642-54631-0_29

42

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

G. Almashagbeh and A. Nitulescu

Crites, E., Komlo, C., Maller, M.: How to prove Schnorr assuming Schnorr: security
of multi-and threshold signatures. Cryptology ePrint Archive (2021)

Das, M.L., Saxena, A., Gulati, V.P.: An efficient proxy signature scheme with
revocation. Informatica 15(4), 455-464 (2004)

Derler, D., Hanser, C., Slamanig, D.: Privacy-enhancing proxy signatures from non-
interactive anonymous credentials. In: Atluri, V., Pernul, G. (eds.) DBSec 2014.
LNCS, vol. 8566, pp. 49-65. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-43936-4_4

Déttling, N., Hanzlik, L., Magri, B., Wohnig, S.: McFly: verifiable encryption to
the future made practical. In: Baldimtsi, F., Cachin, C. (eds.) FC 2023. LNCS,
vol. 13950, pp. 252-269. Springer, Cham. (2023). https://doi.org/10.1007/978-3-
031-47754-6_15

Foster, 1., Kesselman, C., Tsudik, G., Tuecke, S.: A security architecture for com-
putational grids. In: CCS (1998)

Fuchsbauer, G., Pointcheval, D.: Anonymous proxy signatures. In: Ostrovsky, R.,
De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 201-217. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3_14

Fuchsbauer, G., Pointcheval, D.: Anonymous consecutive delegation of signing
rights: unifying group and proxy signatures. In: Cortier, V., Kirchner, C., Okada,
M., Sakurada, H. (eds.) Formal to Practical Security. LNCS, vol. 5458, pp. 95-115.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02002-5_6

Gailly, N., Melissaris, K., Romailler, Y.: tlock: Practical timelock encryption from
threshold BLS. Cryptology ePrint Archive, Paper 2023/189 (2023)

Hanser, C., Slamanig, D.: Blank digital signatures. In: ASIA CCS (2013)

Hanser, C., Slamanig, D.: Warrant-hiding delegation-by-certificate proxy signature
schemes. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250,
pp. 60-77. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03515-4_5
Herranz, J., Sdez, G.: Verifiable secret sharing for general access structures, with
application to fully distributed proxy signatures. In: Wright, R.N. (ed.) FC 2003.
LNCS, vol. 2742, pp. 286-302. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45126-6_21

Kim, S., Park, S., Won, D.: Proxy signatures, revisited. In: Han, Y., Okamoto, T.,
Qing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 223-232. Springer, Heidelberg
(1997). https://doi.org/10.1007/bfb0028478

Lee, B., Kim, H., Kim, K.: Strong proxy signature and its applications. In: Pro-
ceedings of SCIS, vol. 2001, pp. 603-608 (2001)

Lee, J.Y., Cheon, J.H., Kim, S.: An analysis of proxy signatures: Is a secure channel
necessary? In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 68-79. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36563-x_5

Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs.
In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253-269. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5_17

Liu, Z., Hu, Y., Zhang, X., Ma, H.: Provably secure multi-proxy signature scheme
with revocation in the standard model. Comput. Commun. 34(3), 494-501 (2011)
Lu, E.J.L., Hwang, M.S., Huang, C.J.: A new proxy signature scheme with revo-
cation. Appl. Math. Comput. 161(3), 799-806 (2005)

https://doi.org/10.1007/978-3-662-43936-4_4
https://doi.org/10.1007/978-3-662-43936-4_4
https://doi.org/10.1007/978-3-031-47754-6_15
https://doi.org/10.1007/978-3-031-47754-6_15
https://doi.org/10.1007/978-3-540-85855-3_14
https://doi.org/10.1007/978-3-642-02002-5_6
https://doi.org/10.1007/978-3-319-03515-4_5
https://doi.org/10.1007/978-3-540-45126-6_21
https://doi.org/10.1007/978-3-540-45126-6_21
https://doi.org/10.1007/bfb0028478
https://doi.org/10.1007/3-540-36563-x_5
https://doi.org/10.1007/978-3-540-72738-5_17

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Anonymous, Timed and Revocable Proxy Signatures 43

Malkin, T., Obana, S., Yung, M.: The hierarchy of key evolving signatures and a
characterization of proxy signatures. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, p. Malkin, T., Obana, S., Yung, M.: The hierarchy
of key evolving signatures and a characterization of proxy signatures. In: EURO-
CRYPT (2004)-322. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24676-3-19

Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing oper-
ation. In: CCS (1996)

Okamoto, T., Tada, M., Okamoto, E.: Extended proxy signatures for smart cards.
In: ISW 1999. LNCS, vol. 1729, pp. 247-258. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-47790-X_21

Morita, H., Schuldt, J.C.N., Matsuda, T., Hanaoka, G., Iwata, T.: On the security
of the Schnorr signature scheme and DSA against related-key attacks. In: Kwon,
S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 20-35. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-30840-1_2

Neuman, B.: Proxy-based authorization and accounting for distributed systems.
In: International Conference on Distributed Computing Systems (1993)
Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361-396 (2000)

Schuldt, J.C.N., Matsuura, K., Paterson, K.G.: Proxy signatures secure against
proxy key exposure. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 141-
161. Springer, Heidelberg (2008). https://doi.org/10.1007 /978-3-540-78440-1_9
Sun, H.M.: Design of time-stamped proxy signatures with traceable receivers. IEE
Proc.-Comput. Digit. Tech. 147(6), 462—466 (2000)

Sun, H.M., Lee, N.Y., Hwang, T.: Threshold proxy signatures. IEE Proc.-Comput.
Digit. Tech. 146(5), 259-263 (1999)

Varadharajan, V., Allen, P., Black, S.: An analysis of the proxy problem in dis-
tributed systems. In: IEEE Computer Society Symposium on Research in Security
and Privacy (1991)

Wang, H., Pieprzyk, J.: Efficient one-time proxy signatures. In: Laih, C.-S. (ed.)
ASTACRYPT 2003. LNCS, vol. 2894, pp. 507-522. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-40061-5_32

Whille, P., Nick, J., Ruffing, T.: Schnorr signatures for secp256k1. Bitcoin Improve-
ment Proposal 340 (2020)

Xu, S., Yang, G., Mu, Y., Ma, S.: Proxy signature with revocation. In: Liu, J.K.,
Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9723, pp. 21-36. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-40367-0_2

Zhang, F., Kim, K.: Efficient ID-based blind signature and proxy signature from
bilinear pairings. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol.
2727, pp. 312-323. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
45067-X_27

https://doi.org/10.1007/978-3-540-24676-3_19
https://doi.org/10.1007/978-3-540-24676-3_19
https://doi.org/10.1007/3-540-47790-X_21
https://doi.org/10.1007/3-540-47790-X_21
https://doi.org/10.1007/978-3-319-30840-1_2
https://doi.org/10.1007/978-3-540-78440-1_9
https://doi.org/10.1007/978-3-540-40061-5_32
https://doi.org/10.1007/978-3-319-40367-0_2
https://doi.org/10.1007/3-540-45067-X_27
https://doi.org/10.1007/3-540-45067-X_27

	Anonymous, Timed and Revocable Proxy Signatures
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Preliminaries
	3 Definitions
	4 Construction
	5 Security
	References

