VeBPF Many-Core Architecture for Network
Functions in FPGA-based SmartNICs and IoT

Zaid Tahir? Ahmed Sanaullah®

Sahan Bandara?

Ulrich Drepper® Martin Herbordt?

3CAAD Lab, Electrical and Computer Engineering, Boston University, USA. - "Red Hat Inc.

zaidt@bu.edu asanaull @redhat.com

Abstract—FPGA-based SmartNICs and IoT devices integrated
with soft-processors for executing network functions have been
introduced to overcome hardware-reconfigurability limitations in
DPUs (Data Processing Units) and MCUs (Microcontroller Units),
respectively. However, existing FPGA-based SmartNICs and IoT
devices lack a highly configurable many-core architecture that
specializes in network packet processing.

This work introduces a resource-optimized highly configurable
VeBPF (Verilog eBPF) many-core architecture built upon VeBPF
CPU cores that we have developed for specialized network
packet processing in FPGAs. These VeBPF cores are eBPF
ISA compliant and have been developed in Verilog HDL for
easy integration with existing FPGA IP blocks/subsystems. The
VeBPF many-core architecture executes multiple eBPF rules on
multiple VeBPF cores in-parallel for low-latency network packet
processing. Due to the highly configurable hardware design of this
VeBPF many-core architecture, any number of VeBPF cores can
be instantiated by assigning a parameter Ny, gpp in the Verilog
code of the VeBPF many-core architecture and any number
of eBPF rules can be uploaded, with FPGA resources as the
only constraint. The proposed VeBPF many-core architecture
has been designed to process eBPF rules faster if Ny,pgpp is
increased and the eBPF rules can be dynamically changed
during run-time without requiring new bitstreams. It uses various
hardware and computer architecture optimizations to support its
implementation on low-end FPGAs-based IoT devices along with
high-end FPGA-based SmartNICs, for network packet process-
ing. We have also developed automatic-testing and simulation
frameworks for the proposed VeBPF many-core architecture,
using the latest open-source tools like Python and Cocotb. We
have released the Verilog HDL code for VeBPF core development,
VeBPF many-core architecture, C software libraries for RISC-V
control of m-plane (management-plane) of the VeBPF many-core
architecture and the simulators as an open-source contribution
for further advancement of FPGAs in many-core architectures,
eBPF, SmartNICs, IoT, cybersecurity and communication.

Index Terms—FPGA, Many-core, Multi-core, eBPF, Smart-
NIC, IoT, RISC-V, Network Communication, Cybersecurity.

I. INTRODUCTION AND BACKGROUND

As is well-known, advances in process technology have run
up against limitations in Dennard scaling and Moore’s Law
resulting in fundamental changes to CPU architecture, the most
obvious being the emergence of multicore. Other fundamental
shifts in computing, such as to data-centers/clouds and edge-
based IoT devices have exposed new limitations in CPU
architectures, especially when cost and power are considered.
Money, energy and time is lost with every cycle of cloud host
CPUs spent on network communication and other tasks that
are unrelated to the user applications.

sahanb@bu.edu drepper@redhat.com herbordt@bu.edu

In order to decouple host CPUs from the computational
loads of network packet processing, SmartNICs (Smart Net-
work Interface Cards) [1] have been introduced that perform
network functions. Since SmartNICs need high computational
capability, throughput, and energy efficiency, many-core pro-
cessors have also been integrated into the latest SmartNICs
such as DPUs (Data Processing Units) [2] or FPGA-based
SmartNICs [3].

DPU-based SmartNICs suffer from the limitation that the
hardware is fixed and if new hardware features are required,
e.g., due to upgrades in protocols and interfaces, the existing
DPU may need to be replaced, or, at least, lose relative
performance. FPGA-based SmartNICs have long filled a niche
in this space as they provide high-throughput communication
while having reconfigurable hardware [4]-[7]. Often this con-
figurability is used, at least partially, to implement dedicated
soft processors [3], [8], [9]. The issue addressed here is the
design of these processors: many-core architectures available
for FPGAs are mostly based on homogeneous general purpose
processors such as RISC-V [10], [8], or, if they are heteroge-
neous many-core architectures [11], they still involve various
general purpose processors not specialized for network packet
processing.

For network packet processing eBPF ISA (Instruction Set
Architecture) [12] provides specialized instructions for net-
work functions, which is one of the reasons eBPF compilers
and tool-chains are native to UNIX-like operating systems with
eBPF bytecode executed in the kernel space. Many technology
companies have included eBPF into their software stacks [13].
Due to these advantages eBPF ISA compliant soft-processors
have been developed like [14], [15]. Both, however are single
processor solutions. [14] uses a custom compiler to convert
native eBPF instructions to special VLIW instructions; this
introduces issues of maintaining correct versions of compilers
and drivers [16]-[18]. [15] is written in Migen [19], which
may be difficult to integrate with IP blocks written in HDLs.

In the existing FPGA-based SmartNICs such as [1], [3],
[20], [21], the network packet processing frameworks are
aimed at high-end FPGAs for cloud-based deployments. This
leaves a void for network packet processing frameworks for
low-end FPGAs essential to IoT devices [22], [23]. These
FPGA-based IoT devices have easy access to fast wireless
networks due to the maturity of 5G infrastructure. The com-
munication loads on these FPGA-based IoT devices have
increased tremendously, especially with Al integrated in many

applications. Such high connectivity also introduces threats of
malicious cyberattacks [24]. Hence, low-end FPGAs used as
IoT devices also need a network packet processing framework
that takes the network packet processing load off the main
soft-processor. The problem is that these low-end FPGA-based
IoT devices lack such a resource-optimized network packet
processing framework.

Due to the lack of many-core architectures specialized in
network packet processing and in order to offload network
communication processing loads for both high-end FPGA-
based SmartNICs and low-end FPGA-based IoT devices, this
paper presents a highly configurable and resource-optimized
VeBPF many-core architecture. The PE (Processing Element)
of the proposed many-core architecture, the VeBPF CPU core,
has been developed to specialize in network packet processing.

The contributions of this work are summarized as follows:

e The PE of the proposed many-core architecture, the
VeBPF core, has been developed to be eBPF ISA [12]
compliant, making it specialized for network packet
processing. It is implemented in Verilog HDL, ensuring
portability and easy integration with existing IP blocks.

o We have developed various design optimizations for low-
latency network packet processing, e.g., single clock cy-
cle reprogramming of the VeBPF core, making it possible
to switch between multiple eBPF rules by changing the
VeBPF core PC externally in just a single clock cycle.

« Due to the flexible and optimized hardware design of the
VeBPF many-core architecture, any number of VeBPF
cores can be instantiated and any number of eBPF rules
can be uploaded.

o The scheduling and arbitration logic in the proposed
VeBPF many-core architecture has been designed in such
a way that increasing the number of VeBPF cores leads
to faster processing of the eBPF rules on the network
packets.

« We have designed the shared data and control buses of
the VeBPF many-core designs to minimize resource us-
age. Resource-intensive communication modules such as
NOC:s and reconfigurable match action pipelines (RMTs)
were intentionally avoided.

« Unlike existing network packet processing frameworks in
FPGA-based SmartNICs [1], [3], where the full network
packets are held in temporary registers till processing on
them is completed, the VeBPF many-core architecture
has been designed such that the full network packets are
written to memory as soon as they arrive.

e We also developed an automatic testing framework for
the developing and upgrading the VeBPF CPU core, and
a complete simulation framework for the VeBPF many-
core designs.

We have released the Verilog HDL code for VeBPF core!
development and the VeBPF many-core design.? This includes

Uhttps://github.com/zaidtahirbutt/VeBPF
Zhttps://github.com/zaidtahirbutt/ VebpfManyCore

the C libraries for RISC-V control of the management-plane,
as well as the simulation and testing frameworks.

In the coming sections we elaborate on the computer
architecture design details of the VeBPF core development and
the overall many-core hardware architecture. We also present
a firewall application implemented using VeBPF on a FPGA-
based IoT device. We compare resource usage of the VeBPF
cores with similar PEs.

II. VEBPF MANY-CORE ARCHITECTURE

This section presents a detailed overview of the hardware
architecture of the proposed VeBPF many-core architecture
and its building blocks, starting from the many-core PE (the
VeBPF CPU core) and rest of the modules that make up this
VeBPF many-core architecture.

A. VeBPF CPU Core

One of the major goals of the proposed VeBPF many-core
architecture is to ensure that the PE, the basic compute unit of
the many-core architecture, is specialized for network packet
processing and the VeBPF many-core architecture is readily
usable without requiring custom drivers and compilers. It is
due to these reasons that we developed the VeBPF CPU core,
which is the PE for our VeBPF many-core architecture, to
be eBPF ISA [12] compliant since eBPF is native to UNIX-
like OS and is widely used by technology companies in their
software stacks [13].

We deliberately chose Verilog as the HDL language for the
development of the VeBPF CPU core, after doing research and
development on other higher-level HDL languages like Migen
[19], [15], we found that these higher-level HDL languages
aren’t readily portable with other lower-level HDL languages
like Verilog, VHDL and System Verilog. Hence developing
the VeBPF CPU core in Verilog HDL would make our VeBPF
many-core architecture quite portable.

Q,
VeBPF CPU Core A~
reset_in mum—m) 2
y oo
st eo_rlein121) outputs |
assign Halt State | mmdae
r —

enable_new_eBPF_rule_in mummmp | [TNTURNOSNS
Custom-PL
Call Handler

clk_in m—

m— Ticks_out (64-bit)

z
o'
€BPF Instr €BPF Instr
Execute Decode

Ry _in (64-bit) mmmmp
R,_in (64-bit) mummmp
Ry _in (64-bit) mummmp
R —
R bit) m—

VeBPF_pgm_
VeBPF_pgm_addr_i
VeBPF_pgm_en_in mummmp

VeBPF_pgm_ack_out dmmmm

—V /eBPF_data_word_in (64-bit)
qm— V/eBPF_(1-bit)
pr—3
— veBPF_

8-bit wide Network Packet
64-bit wide Data.Mem
Pgm.Mem

Fig. 1: VeBPF CPU core computer architecture overview.

1) VeBPF CPU core computer architecture: The VeBPF
CPU core is depicted in Fig. 1, has a Harvard architecture
as seen from the separate program and data memory blocks.
The data memory is 8-bits wide and its depth is adjustable.

https://github.com/zaidtahirbutt/VeBPF
https://github.com/zaidtahirbutt/VebpfManyCore

We normally select the depth of the data memory to be equal
to that of the of the maximum length of the network packet
headers instead of setting it to full network packet length
because the VeBPF core only needs to process the headers
of the network packets as is usually done in eBPF programs.
The program memory is 64-bits wide and its depth is also
adjustable. The VeBPF core has 11 64-bit registers (RO — R10).
The registers R — R5 are used as input registers and they are
not cleared upon reset given to the VeBPF core. The register
RO is used as the output register.

As soon as the reset_in signal is set LOW, the VeBPF
core starts executing the eBPF instructions that are read from
the program memory based on the value of PC and sent to
the Instruction Fetch module, which then get decoded and
executed by their respective blocks as shown in Fig. 1. As
soon as the eBPF exit instruction is processed and the eBPF
program is finished, the Halt_out output port becomes HIGH
with the output result available at RO register. If any error
had occurred during processing, the Error_out signal becomes
HIGH. The total clock ticks taken to run the eBPF program
are also available at Ticks_out output port. The eBPF call
instruction in Linux Kernel is used to call Helper_Functions
while in case of the VeBPF core, the call eBPF instruction is
directed to the Custom-PL Call Handler block where users can
implement application specific custom hardware accelerators.

2) Single clock cycle eBPF rule switching: We have de-
veloped an important functional optimization to the computer
architecture of the VeBPF core where the instruction pointer
that reads the eBPF program instruction from the program
memory, is settable from outside the VeBPF core while the
VeBPF core is in reset state, for the purpose of reprogramming
the VeBPF CPU core to a different eBPF rule within a single
clock cycle. The block labelled as Re-assign instr_pointer
depicted in Fig. 1 is in charge of doing that. The benefit of
this optimization is that the VeBPF core is reprogrammable
to a different eBPF rule with just a change of its instruction
pointer to the value where the particular eBPF rule is located
in the program memory of the VeBPF core in a single clock
cycle. This optimization saves tremendous amount of clock
cycles versus what it would have taken if, for each eBPF
rule, that rule would have had to be uploaded in the program
memory of the VeBPF core first before its execution. It is
pertinent to mention here that the VeBPF many-core multi-
rule program loader module Fig. 5 uploads all the eBPF rules
to the program memories of all VeBPF cores so that all the
VeBPF cores are reprogrammable to any eBPF rule with just
a change in their instruction pointers in a single clock cycle
by the VeBPF many-core multi-rule scheduler module Fig. 6.

3) VeBPF CPU core resource usage: Table-1 shows the
FPGA resource utilization of a single VeBPF core compared
with PE of a RISC-V-based many-core architecture [8] and
a eBPF ISA compliant core that needs custom compilers
and drivers [14]. Our VeBPF core requires significantly less
FPGA resources as seen in Table-I which falls in-line with
the goal of optimized computer architecture design of the PE
of our VeBPF many-core architecture so that we are able to

TABLE I: FPGA Resource Utilization for Various PE Cores

Single PE Core LUTs FFs BRAMs
VeBPF core 3500 1600 1.5

RISC-V PE [§] 7878 1944 20

SEPHIROT [14] | 27000 | 4000 -

target both low-end FPGAs for IoT deployments and high-end
FPGAs for SmartNIC deployments.

B. VeBPF Many-Core Architecture Overview

The VeBPF many-core architecture depicted in Fig. 2
features VeBPF cores as the basic PE of this many-core
architecture along with the main building block modules.
The PEs of this VeBPF many-core architecture are accessed
through different shared data buses for writing network packet
data as PE data-memory and eBPF rules as PE program-
memory. The PEs are also controlled and monitored through
different control buses for various control operations like re-
programming a certain PE, monitoring if any PE has finished
processing by checking Halt_out output port and if it is
HIGH then reading the result from its RO register along with
Error_out and Ticks_out output ports, executing a certain eBPF
rule on a PE selected through arbitration, etc. All of these
shared data and control buses are operated by the different
building blocks of this VeBPF many-core architecture that we
refer to as modules.

All the building blocks of the proposed VeBPF many-core
architecture including the PEs and modules, are highly flexible
and can be adjusted for various target deployments, e.g., if a
high performance deployment is needed like a SmartNIC, then
the modules can be configured for that, similarly they can also
be configured for low-resource deployment like IoT.

VeBPF Many-core Architecture/‘

VeBPF

VeBPF Network
Packet Slicer
and DMA

re VeBPF Many-core g
Data Loader

Table FIFO
‘with VeBPF Processing Results

VeBPF
result
valid

Rpkt Rxpkt VeBPF
StartPtr Length result

Interconnect

Fig. 2: Overview of the VeBPF many-core architecture.

The proposed VeBPF many-core architecture sits between
the network subsystem and the memory subsystem as shown
in Fig. 2. The RISC-V soft-processor controls the m-plane,

i.e., the CSRs (control status registers) of the VeBPF many-
core architecture. The complex interactions of RISC-V with
the VeBPF many-core architecture on the m-plane are available
in the C libraries we provide with the rest of the open-source
code for this VeBPF many-core architecture.

The VeBPF many-core architecture is connected with the
UART subsystem as well. You can see in Fig. 2 that the
VeBPF many-core architecture and the RISC-V soft-processor
are sharing the same DDR memory, it is because the target
deployment for the VeBPF many-core architecture shown in
this Fig. 2 is for the FPGA-based IoT device deployment for
which we have performed various experiments for this paper.
If a different deployment was targeted like a FPGA-based
SmartNIC, the VeBPF many-core architecture would have had
its own separate memory to write packets to, whereas the
RISC-V would have had its own separate memory. The aim
of showing this particular shared memory configuration is to
show the flexibility of our VeBPF many-core architecture and
its ability to provide native eBPF rule-based network packet
processing functionality to a resource limited FPGA-based IoT
device as well as for high-end FPGA-based SmartNICs.

Before going into the details of the main modules of the
VeBPF many-core architecture, a summary of the main steps
required to activate the VeBPF many-core architecture is listed
below:

1) The number of VeBPF cores required just need to be
specified in the Ny,ppr parameter before compilation of the
FPGA bitstream. More VeBPF cores would result in faster
processing of the eBPF rules;

2) The eBPF rules are uploaded from the host PC through
the UART subsystem (VeBPF UART RX) as shown in Fig. 2.
Any number of eBPF rules can be uploaded and the eBPF
rule-set can be changed dynamically during run-time.

3) The RISC-V program instructions for controlling the
m-plane of the VeBPF many-core architecture are uploaded
through the UART subsystem as well (RISC-V Prog UART
RX) as shown in Fig. 2. After RISC-V is activated, as a part
of the m-plane functionality, it allocates the starting memory
address and the total memory available for the network packets
to their respective CSRs in the VeBPF many-core architecture
through the MMIO bus connection. This step arms the VeBPF
many-core architecture to start receiving network packets from
the network subsystem;

Rest of the steps of operations are mentioned in the modules
definitions of the VeBPF many-core architecture below.

C. VeBPF Network Packet Slicer and DMA

The VeBPF network packet slice and DMA (Direct Memory
Access) module is shown in detail in Fig. 3. This module is
responsible for receiving the network packets from the network
subsystem (Ethernet Controller block) through an AXI-stream
port. Unlike other network packet processing frameworks [3],
[14] that have to hold the network packets till processing on
those packets is completed, the Network Packet Slicer slices
the header of the network packet (RxPkt) and copies the
network packet header and its header length in two FIFOs

while handing-off the full network packet to the DMA RxPkt
to DDR block. It is important to note that the header length
varies according to the type of network packet received and
users can set a custom header length as well.

The DMA RxPkt to DDR block checks the CSRs for the
starting memory address and total memory available for the
network packets. The DMA RxPkt to DDR block writes the
RxPkt to memory after acquiring the grant for the memory
bus from the Mem Bus Grant Module block and writes the
corresponding RxPkt metadata to the RxPkt Descriptor Table
FIFO and updates its own registers that keep track of of the
currently available memory and the current memory address
for the next RxPkt to write to. The RISC-V using the m-
plane is able to read the RxPkt metadata from the RxPkt
Descriptor Table FIFO. The RISC-V can then access the
RxPkts from memory if needed, using that metadata. The
RISC-V through the m-plane then clears the RxPkt metadata
RxPkt Descriptor Table FIFO entries by incrementing the
relevant FIFO read pointers, which signals to the DMA RxPkt
to DDR block to increment its currently available memory.
The VeBPF Network Packet Slicer and DMA module sends
a HIGH RxPktHdr_available_flag signal to the VeBPF many-
core data loader module (Fig. 4) as soon as a RxPkt header
becomes available in the RxPkt Headers FIFO.

VeBPF Network Packet Slicer and DMA \

Starting memory address for RxPkts | Total memory available for RxPkts
CSR Register (Allocated by RISC-V) CSR Register (Allocated by RISC-V) .
) !
1

RX

RxPkt Descriptor Table FIFO —— S_Axis_DATA Ethernet >
Sosaty, s x
Rxpkt s Rxpkt DMA &
Rxpt Idx e l:n 3 @“m P o -m_ m‘ (:n)ntrt:llel;X ‘
P H

Mem Bus

[T Grant

Subsystem

Module

DDR

1
!
I g

!

1| “RxPkt Descriptor Table A l l 'l
1 cleared | o

1

! IscV

FIFO” is read and
RxPkt Headers RxPkt Headers

by RISC-V
L} LA L
H l l . _LengthFIFO FIFO

I
On-board | FPGA fabric
peripheralsi

1

Fig. 3: VeBPF Network Packet Slicer and DMA Module

D. VeBPF Many-core Data Loader

The VeBPF many-core data loader module reads the RxPkt
header and its length from the FIFOs, that were written to
by the VeBPF network packet slicer and DMA module, as
soon as it receives a HIGH RxPktHdr_available_flag. The
VeBPF many-core data loader loads the RxPkt header in all
the VeBPF cores through the VeBPF Many-core Data Shared
Bus as shown in Fig. 4.

For each 64-bit data word of the RxPkt header that is written
to all the VeBPF cores, the VeBPF Many-core Data Loader
block waits for acknowledgements (ACKs) from all the VeBPF
cores using a reduction bit-wise AND operation on the ACK
signals from all VeBPF cores, before the VeBPF Many-core
Data Loader block writes the next 64-bit data word of the
RxPkt header till the full header is written to all the VeBPF

cores data memories. The reason for writing the same RxPkt
header in all the VeBPF cores is that multiple eBPF rules can
be executed in-parallel on different VeBPF cores on the same
RxPkt header so that a valid result can be obtained in minimal
time, in order to keep the processing latency to a minimum.

After the VeBPF many-core data loader module uploads
a RxPkt header to all the VeBPF cores, it sends a HIGH
VeBPF _data_loading_done_flag signal to VeBPF many-core
multi-rule scheduler module, indicating that there is a RxPkt
header available for executing eBPF rules on.

VeBPF Many-core Data Loader

l FPGA fabric
This flag goes to the “VeBPF Many-

core Multi-rule Scheduler” module

VeBPF core # 1

:
-
i

" RxPkt Headers
FIFO

RxPkt Headers
Length FIFO

Fifo Empty Flags

VeBPF Many-core Data
Loader

Fig. 4: VeBPF Many-core Data Loader Module

E. VeBPF Many-core Multi-rule Program Loader

The VeBPF many-core multi-rule program loader module is
what gives the VeBPF many-core architecture the flexibility to
upload eBPF rules of varying lengths and the dynamicity to
change the eBPF rule-set during run-time without requiring a
new FPGA bitstream.

The VeBPF many-core multi-rule program loader module
is depicted in Fig. 5. The eBPF rules uploaded enter from
the UART subsystem (VeBPF UART RX) and since the eBPF
rules can be of any length, the Dynamic eBPF Rules Metadata
Parser block stores these eBPF rules in a eBPF Rules FIFO
along with the metadata of those corresponding eBPF rules in
the eBPF Rules Metadata Table FIFO.

Once all eBPF rules have been uploaded by the user, the
VeBPF Multi-core Multi-rule Instruction Uploader block reads
these eBPF rules and their metadata from the corresponding
FIFOs and these eBPF rules are uploaded as program mem-
ory to all VeBPF cores through a shared VeBPF Many-core
Program Shared Bus. The ACKs from all the VeBPF cores
are bit-wise reduced AND-ed together after each 64-bit eBPF
instruction program word is written to every VeBPF core, and
this process repeats till all eBPF rules are present in every
VeBPF core program memory. The reason for all VeBPF cores
having all the eBPF rules in their program memory is that
the VeBPF many-core multi-rule scheduler module Fig. 6 can
switch to any eBPF rule on any VeBPF core in a single clock

cycle by just changing the instruction pointer of that VeBPF
core.

If a new eBPF rule-set is required, a HIGH
VeBPF _rst_new_rules_flag signal is sent (Fig. 5) and
the whole eBPF rules uploading process is repeated again.
Once all eBPF rules have been uploaded to all VeBPF cores,
the VeBPF many-core multi-rule module sends a HIGH
All_eBPF _rules_uploaded_flag signal to the VeBPF many-
core data loader module and the VeBPF many-core multi-rule
scheduler module and the flag All_eBPF_rules_uploaded_flag
is kept HIGH unless a new eBPF rule-set is being uploaded.

VeBPF Many-core Multi-rule Program Loader

—
FPGA fabric

eBPF Rules Metadata Table FIFO

eBPF Rules

BPF Rule
FIFO Start
o Length

€BPF Rule
Idx

Total eBPF
Rules

1 Ty
I eBPF Rules FIFO H

VeBPF Multi-core Multi- = ™ RI?JVI::EI:Q:::; VeBPF
B et g Voo et e g
rule Instructions Uploader | Parser e UART RX

Fig. 5: VeBPF many-core multi-rule program loader module

F. VeBPF Many-core Multi-rule Scheduler

This VeBPF many-core multi-rule scheduler module de-
picted in Fig. 6 is one of the most complex hardware logic in
the VeBPF many-core architecture that really makes this ar-
chitecture highly parallelized, resource-efficient and optimized
for low latency multi-rule eBPF network packet processing.

The VeBPF many-core multi-rule scheduler module

waits for HIGH flags from VeBPF many-core data
loader module (VeBPF_data_loading_done_flag) and
VeBPF many-core multi-rule program loader module

(All_eBPF _rules_uploaded_flag), HIGH values of these flags
indicate that a RxPkt header is available for processing in all
VeBPF cores and all eBPF rules have been uploaded in all
VeBPF cores respectively.

The VeBPF many-core multi-rule scheduler then checks the
VeBPF multi-core Arbitrer block to see if any VeBPF core
is idle, and as soon as the arbitrer provides an idle VeBPF
core to the VeBPF Many-core Core-Selector and Multi-rule
Re-programmer block, it reprograms that idle VeBPF core to
the current eBPF rule, that hasn’t been executed yet, using
the eBPF rule metadata from the eBPF Rules Metadata Table
FIFO that was filled by the VeBPF many-core multi-rule
program loader module. The idle VeBPF core is reprogrammed
to this selected eBPF rule in a single clock cycle by first
selecting that VeBPF core through a DEMUX using the grant
id given by the VeBPF multi-core Arbitrer as the select line
of the DEMUX as shown in Fig. 6.

After the idle VeBPF core has been accessed through
the DEMUX, it is reprogrammed to the selected eBPF rule
in a single clock cycle by changing its instruction pointer

externally to the location of the selected eBPF rule. Af-
ter the VeBPF Many-core Core-Selector and Multi-rule Re-
programmer block reprograms the idle VeBPF core, it transfers
the grant id and the relevant eBPF rules information like total
eBPF rules already reprogrammed, to the VeBPF Many-core
Tracker and Rules-runner block which basically activates/runs
the reprogrammed idle VeBPF core and keeps a track of it until
it reaches a halt state.

As soon as the VeBPF cores reach halt states, the VeBPF
Many-core Tracker and Rules-runner block sends the VeBPF
RO result information and the eBPF rules information, like total
eBPF rules already reprogrammed, to the VeBPF many-core
multi-rule result analyzer module (Fig.7). While the VeBPF
Many-core Tracker and Rules-runner block is running and
keeping track of all the VeBPF cores in parallel and forwarding
their results to the VeBPF many-core multi-rule result analyzer
module as soon as the results are received, the VeBPF Many-
core Core-Selector and Multi-rule Re-programmer block is
incrementing the eBPF rule index as soon as it hands off a
reprogrammed VeBPF core to the VeBPF Many-core Tracker
and Rules-runner block, and then VeBPF Many-core Core-
Selector and Multi-rule Re-programmer block waits for the
VeBPF multi-core Arbitrer block to give it the next idle VeBPF
core so that the next eBPF rule can be reprogrammed on the
granted idle VeBPF core and handed off to the VeBPF Many-
core Tracker and Rules-runner block. All of these hand-shakes
between VeBPF Many-core Core-Selector and Multi-rule Re-
programmer and VeBPF Many-core Tracker and Rules-runner
blocks are happening in parallel till the VeBPF many-core
multi-rule result analyzer module sends a valid result received
flag (VeBPF _result_registered_flag).

After the VeBPF many-core multi-rule scheduler module
receives the valid result flag VeBPF_result_registered_flag
from the VeBPF many-core multi-rule result analyzer module,
it waits for the next RxPkt header to be uploaded by the
VeBPF many-core data loader module and this whole process
repeats that involves reprogramming and running eBPF rules
on the multiple VeBPF cores in parallel till a valid eBPF packet
processing result is received.

G. VeBPF Many-core Multi-rule Result Analyzer

The VeBPF many-core multi-rule result analyzer mod-
ule is depicted in Fig. 7 and this module takes in
inputs from the VeBPF many-core multi-rule scheduler
module and these inputs include the most recent eBPF
processing result VeBPF_core_most_recent_result_r0 along
with total eBPF rules Total eBPF rules and total eBPF
rules that have been run/reprogrammed currently 7o-
tal_eBPF _rules_reprogrammed.

The data flow diagram in Fig. 7 tells us how VeBPF
many-core multi-rule result analyzer module works. If a valid
eBPF result (valid result is either “store result”, “error”,
“drop packet”) is received in the VeBPF Result Analyzer
block or if the eBPF result is “don’t care” but the To-
tal_eBPF _rules_reprogrammed is equal to Total_eBPF_rules,

then forward the eBPF processing result to the Write VeBPF
Result block.

The Write VeBPF Result block appends the VeBPF result
to the RxPkt Descriptor Table FIFO which now is renamed as
RxPkt Descriptor Table FIFO with VeBPF Processing Results.
The RISC-V soft-processor through the m-plane, can read the
VeBPF processing results directly from this RxPkt Descriptor
Table FIFO with VeBPF Processing Results table instead of
having to read the RxPkt metadata from this table and using
this metadata, read the RxPkt from memory and processing
the packet as per the eBPF rules for the same result.

The Write VeBPF Result block after writing the VeBPF
results sends HIGH VeBPF_result_registered_flag signal
to VeBPF many-core multi-rule scheduler module so it
can start processing eBPF rules on the next RxPkt
header. Write VeBPF Result block also sends a HIGH
VeBPF _load_next_rxpkthdr_flag signal to the VeBPF many-
core data loader module signalling it to load the next RxPkt
header into the VeBPF cores data memory.

As seen in the detailed description of the hardware architec-
ture of the VeBPF many-core architecture modules, the limited
space in this paper isn’t enough to highlight every important
detail, so the detailed figures along with looking at our open-
source code for this VeBPF many-core architecture would be
useful for further insights. The C code libraries for the RISC-
V control of the m-plane of the VeBPF many-core architecture
are also an important part of the body of knowledge of this
VeBPF many-core architecture.

H. Automatic Testing & Simulation Framework

We have developed two separate automatic-testing and
simulation frameworks (Fig. 8) for the further development
and optimization of VeBPF CPU cores and the VeBPF many-
core architecture respectively. Both automatic-testing and sim-
ulation frameworks have been developed using open-source
tools like Python, Cocotb [25] and Icarus Verilog. Open-source
tools like Python make it easy to simulate complex network
packet interactions with our VeBPF many-core architecture.
These automatic-testing and simulation tools are available on
our publicly available code repositories and since they use
open-source tools, anyone can use them. The VeBPF CPU core
automatic-testing framework tests all the eBPF instructions on
any upgrades made to the VeBPF CPU core and notifies about
failures of the VeBPF core to execute any eBPF instruction,
which streamlines and accelerates the development of VeBPF
CPU core upgrades and the VeBPF-many core architecture.

III. EXPERIMENTS AND RESULTS

In order to show the high-configurability and versatility of
the proposed VeBPF many-core architecture, we have imple-
mented a firewall application against malicious network cyber
attacks using the proposed VeBPF many-core architecture on a
resource-limited FPGA-based IoT device. We used the FPGA
board Arty A7-100T [26] as the FPGA-based IoT device. For
the eBPF firewall experiments, we chose to implement the
state-of-the-art firewall rules being used by the technology

VeBPF Many-core Multi-rule Scheduler

lFPGA fabric

VeBPF_core_1_available_flag

eBPF Rules Metadata Table FIFO

VeBPF_core_2_available_flag

VeBPF_core_N_available_flag

VeBPF_core_most_recent_result_r0

VeBPF Many-core Tracker

and Rules-runner

N VeBPF_RO_result buses

N VeBPF_reset_in buses
N VeBPF_Halt_out buses

VeBPF core #1

[
VeBPF core #2 1

eBPF Rules
FIFO Start
Ptr

eBPF Rule
Length

eBPF Rule
A Idx

Total eBPF
Rules

‘This flag is coming from “VeBPF Many-
core Multi-rule Resul

i-rule Result Analyzer” module

VeBPF_result_re

VeBPF_data_loading_done_flag

Tizon
ip_next_eBPF_rule

Fobit

VeBPF_core_grant_id

VeBPF core # N

RO Halt_o Rst_i

o]

Fig. 6: VeBPF many-core

VeBPF Many-core Multi-rule Result Analyzer

Jrecatabric 17 VeBPF resultis “Don't care’, keep
" =

rules are processed

1 VeBPF resultis “Store Result” ‘error”|
or “drop-packet’, then stop processing
the remaining eBPF rules and store the

d Ioad the next RxPkt Header

Ifall eBPF rules have been processed
and the result i still “Don't care”, write
that result and load next RxPkt Header

The “VeBPF Processing
results” are read and
cleared by RISC-V

5):

wear
Fig. 7: VeBPF many-core multi-rule result analyzer module

VeBPF

Repkt Rxpkt Repkt VeBPF

‘
‘
‘
‘
ldx StartPtr Length result valid 1
‘
:
‘
‘
‘

Many-core Data Loader”

€BPF software toolchain

System Verilog,
Verilog, VHDL

P pUthon) s oo
e
Automatic Testing & Verification
RTL | VeBpr cPU corefor development & 5
nimiston o arF g —
focotb @
OR Waveform
@ Icarus Verilog
4] -]
g U ————
Simulation of the whole VeBPF
RTL Many-core Architecture RTL
ik s o
Vs e & RS core o R
ot bk Comenmicton
s RISC-V C and eBPF software toolchain ol

Fig. 8: VeBPF automatic-testing and simulation framework

sector as described by this technology report [27]. Table-II lists
these firewall rules implemented for the experiments described
below.

For evaluation of our VeBPF many-core architecture firewall
application (VeBPF many-core firewall). we uploaded the

multi-rule scheduler module

Table-II firewall rules as eBPF bytecode with the total number
of VeBPF cores Ny, ppr set at 12, since it was the highest
number of VeBPF cores we could synthesize along with all the
required subsystems as shown in Fig. 2, before the resources
ran out on the FPGA board. We evaluated the performance
of the 12-core VeBPF many-core firewall by comparing its
performance (latency) versus the RISC-V performance for
filtering the incoming network packets according to the Table-
II firewall rules. For the VeBPF many-core firewall evaluation
we sent 2000 malicious rx_pkts conforming to each firewall
rule in Table-II from the host PC at 100 Mbps to the Arty
FPGA board through the ethernet port. We repeated each
experiment multiple times to cater for randomization. Also,
all the experiments were repeated for different sizes of the
rx_pkts as shown in Fig. 9.

The max output firewall throughput of the 12-core VeBPF
many-core firewall versus RISC-V firewall can be seen in
Fig. 9 (top two graphs). It is noted here that the 12-core
VeBPF many-core firewall processes the rx_pkts at line-rate
for all packet sizes as seen by the orange line (output firewall
throughput) following the blue bars (input network through-
put). Whereas the RISC-V soft-processor on the FPGA-based
IoT device isn’t able to filter the smaller sized malicious
rx_pkts at line-rate, even after being fully committed to
filtering the network packets as per the firewall rules and not
performing any other IoT functions as seen in Fig. 9 (top two
graphs).

Hence the two-fold advantage that our 12-core VeBPF
many-core firewall provides is:

1) Line-rate firewall filtering of incoming network packets;

2) The VeBPF firewall carries the firewall processing load,

12-core VeBPF fil 1I-b:

tinput Network Throughput (Mbps) ~Output Max Firewall Throughput (Mbps)
Z100

2 90 90
< 80 80
2 70 70
% 60 60

50
E a0 40
T 30 30
g 20 20
& 10 10
Y 0
-]

128 256 512 1024 1500
Packet size (8)

RISCV fi ll-based max output d max output

sinput Network Throughput (Mbps) -Output Max Firewall Throughput (Mbps)
S 9 Y 90
5 80 - 80
299 70
260 60
50

e 40

30

20

10

o

64 128 256 512 1024 1500

Packet Size (B)
= RISCV Firewalllatency (us) per packet = 12-core VeBPF

8

Ea

Input Network Throughput (Mbps)
ro
Input Network Throughput (Mbps)

latency (us) per packet

(b

256 512 1024 1500
Packet Size (B)

us) per p:

1llI||

128 256 512 1024 1500
Packet Size (B)
Firewall Rules Group: eBPF_firewall_type1_spoofing_illegal_ips

H
g 0

Firewall Rules Group: eBPF_firewall_type2_illegal_net_udp_ports
= RISCV Firewall latency (us) per packet # 12-core VeBPF Firewall latency (us) per packet

HITY

128 256 512 1024 1500 128 256 512 1024 1500
Packet Size (B) Packet Size (B)

Firewall Rules Group: eBPF_firewall_type3_illegal_file_sys_udp_ports Firewall Rules Group: eBPF_firewall_typed_all_firewall_rules

Firewall Filtering Latency
(us) per packe«

o38288
_
F
F
F
F
H

Fig. 9: Firewall throughput and latency performance compar-
ison between VeBPF many-core firewall and RISC-V.

hence freeing up the RISC-V soft-processor to perform all the
safety and mission critical IoT device related tasks;

The Fig. 9 (bottom 4 graphs) also displays the performance
comparison in terms of firewall filtering latency per network
packet for the 12-core VeBPF many-core firewall versus the
RISC-V soft-processor for the firewall rules mentioned in
Table-II. We notice a common trend that the 12-core VeBPF
many-core firewall outperforms the RISC-V soft-processor
for all packet sizes even after the RISC-V soft-processor is
fully committed to firewall processing. The RISC-V firewall
filtering results would have been way worse if the RISC-V
soft-processor was performing other IoT related tasks as well,
like a real IoT device, which further highlights the advantages
provided by the proposed VeBPF many-core architecture for
network packet processing using native eBPF bytecode.

TABLE II: Firewall Rules

Blocked IPs, UDP ports
255.255.255.255, 127.0.0.0, 240.0.0.0, 0.0.0.0
111, 2000, 37, 135, 137, 138, 161, 162, 514
69, 2049, 389, 4045
All 3 firewall rule types combined

Firewall Rule Types
Type-1 (lllegal & Spoofing source IPs)
Type-2 (Network related critical destination UDP ports)
Type-3 (File system related critical destination UDP ports)
Type-4 (All rules combined)

IV. CONCLUSION AND FUTURE WORK

In this paper we presented a VeBPF many-core architecture
that provides network packet processing functionality for both
high-end and low-end FPGAs for FPGA target deployments
like SmartNICs and IoT. This VeBPF many-core architecture
is built using VeBPF CPU cores developed by us as the PE of
this many-core architecture. These VeBPF cores are eBPF ISA
compliant and are specialized for network packet processing
and use native eBPF bytecode as program memory.

Our experimentation on the FPGA-based IoT device as the
target deployment of the proposed VeBPF many-core archi-
tecture shows that the VeBPF many-core firewall implements
state-of-the-art firewall rules for incoming malicious network

attacks and filters them at line-rate and takes the processing
load off the main IoT device processor (RISC-V) as compared
to a dedicated RISC-V soft-processor which is slower.

For future work we want to show the proposed VeBPF
many-core architecture implemented on a FPGA-based Smart-
NIC and HPC applications. We are also looking into adding
more configuration options in the VeBPF many-core archi-
tecture. We have released the code, for VeBPF CPU core
and VeBPF many-core architecture Verilog HDL along with
their simulation frameworks built using open-source tools
and the C libraries for the RSIC-V m-plane of the VeBPF
many-core architecture, as an open-source contribution for
further advancement of FPGAs in many-core architectures and
communication.

ACKNOWLEDGMENTS

This work was supported, in part, by Red Hat through award
2024-01-RHOS.

REFERENCES

[11 A. Forencich, A. C. Snoeren, G. Porter, and G. Papen, “Corundum: An
open-source 100-gbps NIC,” in 2020 IEEE 28th Annual International
Symposium on Field-Programmable Custom Computing Machines, 2020,
pp. 38-46.

[2] K. Deierling, “What is a dpu,” 2020. [Online]. Available: https:
//blogs.nvidia.com/blog/whats-a-dpu-data- processing-unit/

[3] J. Lin, K. Patel, B. E. Stephens, A. Sivaraman, and A. Akella, “PANIC:
A High-Performance Programmable NIC for Multi-tenant Networks,” in
14th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 20), 2020, pp. 243-259.

[4] Q. Xiong, A. Skjellum, and M. Herbordt, “Accelerating MPI Message
Matching Through FPGA Offload,” in 2018 28th International Confer-
ence on Field Programmable Logic and Applications (FPL), 2018, pp.
191-1914, doi: 10.1109/ FPL.2018.00039.

[5] Q. Xiong, C. Yang, R. Patel, T. Geng, A. Skjellum, and M. Herbordt,
“GhostSZ: A Transparent SZ Lossy Compression Framework with
FPGAs,” in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2019, pp. 258—
266, doi: 10.1109/FCCM.2019.00042.

[6] A. Guo, T. Geng, Y. Zhang, P. Haghi, C. Wu, C. Tan, Y. Lin,
A. Li, and M. Herbordt, “FCsN: A FPGA-Centric SmartNIC Frame-
work for Neural Networks,” in 30th IEEE International Symposium
on Field-Programmable Custom Computing Machines, 2022, dOI:
10.1109/FCCM53951.2022.9786193.

[7] ——, “A Framework for Neural Network Inference on FPGA-Centric
SmartNICs,” in International Conference on Field-Programmable Logic
and Applications, 2022, dOI: 10.1109/FPL57034.2022.00071.

[8] A. Kamaleldin, S. Hesham, and D. Gohringer, “Towards a modular
RISC-V based many-core architecture for FPGA accelerators,” IEEE
Access, vol. 8, pp. 148 812-148 826, 2020.

[9]1 A. Guo, Y. Hao, C. Wu, P. Haghi, Z. Pan, M. Si, D. Tao, A. Li, M. Her-

bordt, and T. Geng, “Software-hardware co-design of heterogeneous

smartnic system for recommendation models inference and training,”
in ICS 2023: International Conference on Supercomputing, 2023, dOI
=10.1145/3577193.3593724.

J. Gray, “GRVI Phalanx: A massively parallel RISC-V FPGA accelerator

accelerator,” in 2016 IEEE 24th Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM). 1EEE,

2016, pp. 17-20.

A. Kurth, P. Vogel, A. Capotondi, A. Marongiu, and L. Benini, “HERO:

Heterogeneous embedded research platform for exploring RISC-V

manycore accelerators on FPGA,” arXiv preprint arXiv:1712.06497,

2017.

J. Schulist, D. Borkmann, and A. Starovoitov, “Linux Socket Filtering

aka Berkeley Packet Filter (BPF),” March 17, 2019. [Online]. Available:

www.kernel.org/doc/Documentation/networking/filter.txt
eBPF, “eBPF Case Studies.” [Online]. Available:
case-studies/

[10]

(11]

[12]

[13] https://ebpf.io/

https://blogs.nvidia.com/blog/whats-a-dpu-data-processing-unit/
https://blogs.nvidia.com/blog/whats-a-dpu-data-processing-unit/
www.kernel.org/doc/Documentation/networking/filter.txt
https://ebpf.io/case-studies/
https://ebpf.io/case-studies/

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

M. S. Brunella, G. Belocchi, M. Bonola, S. Pontarelli, G. Siracusano,
G. Bianchi, A. Cammarano, A. Palumbo, L. Petrucci, and R. Bifulco,
“hXDP: Efficient software packet processing on FPGA NICs,” Commu-
nications of the ACM, vol. 65, no. 8, pp. 92-100, 2022.

R. Prinz, “hbpf.” [Online]. Available: https://github.com/rprinz08/hBPF
S. Bandara, A. Sanaullah, Z. Tahir, U. Drepper, and M. Herbordt, “En-
abling VirtlO Driver Support on FPGAS,” in 8th International Workshop
on Heterogeneous High Performance Reconfigurable Computing, 2022,
doi: 10.1109/H2RC56700.2022.00006.

——, “Performance Evaluation of VirtlO Device Drivers for Host-FPGA
PCIe Communication,” in 31st Reconfigurable Architectures Workshop
(RAW), 2024, doi: 10.1109/IPDPSW63119.2024.00043.

S. Bandara, N. Cherry, and M. Herbordt, “Fully Transparent Client-Side
Caching for Key-Value Store Applications Using FPGAs,” in IEEE High
Performance Extreme Computing Conference, 2024.

M-labs, “A python toolbox for building complex digital hardware,”
2015. [Online]. Available: https://github.com/m-labs/migen

D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung ef al., “Azure
Accelerated Networking: SmartNICs in the Public Cloud,” in 15th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18), 2018, pp. 51-66.

Z. Zhao, H. Sadok, N. Atre, J. C. Hoe, V. Sekar, and J. Sherry,
“Achieving 100gbps intrusion prevention on a single server,” in [4th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), 2020, pp. 1083-1100.

C. Yang, “FPGA in IoT Edge Computing and Intelligence Transportation
Applications,” in 2021 IEEE International Conference on Robotics,
Automation and Artificial Intelligence (RAAI). 1EEE, 2021, pp. 78—
82.

L. Catarinucci, D. De Donno, L. Mainetti, L. Palano, L. Patrono,
M. L. Stefanizzi, and L. Tarricone, “An IoT-aware architecture for smart
healthcare systems,” IEEE internet of things journal, vol. 2, no. 6, pp.
515-526, 2015.

A. D. Wood and J. A. Stankovic, “Denial of service in sensor networks,”
Computer, vol. 35, no. 10, pp. 54-62, 2002.

Cocotb, “Cocotb, a coroutine based cosimulation library for writing
vhdl and verilog testbenches in python.” [Online]. Available: https:
//github.com/cocotb/cocotb

Digilent, “Arty A7-100T: Artix-7 FPGA Development Board.”
[Online]. Available: https://digilent.com/reference/programmable-logic/
arty-a7/reference-manual

SANS Institute, “Security consensus operational readiness evaluation
firewall checklist” [Online]. Available: https://www.sans.org/media/
score/checklists/FirewallChecklist.pdf

https://github.com/rprinz08/hBPF
https://github.com/m-labs/migen
https://github.com/cocotb/cocotb
https://github.com/cocotb/cocotb
https://digilent.com/reference/programmable-logic/arty-a7/reference-manual
https://digilent.com/reference/programmable-logic/arty-a7/reference-manual
https://www.sans.org/media/score/checklists/FirewallChecklist.pdf
https://www.sans.org/media/score/checklists/FirewallChecklist.pdf

	Introduction and background
	VeBPF Many-Core Architecture
	VeBPF CPU Core
	VeBPF CPU core computer architecture
	Single clock cycle eBPF rule switching
	VeBPF CPU core resource usage

	VeBPF Many-Core Architecture Overview
	VeBPF Network Packet Slicer and DMA
	VeBPF Many-core Data Loader
	VeBPF Many-core Multi-rule Program Loader
	VeBPF Many-core Multi-rule Scheduler
	VeBPF Many-core Multi-rule Result Analyzer
	Automatic Testing & Simulation Framework

	Experiments and Results
	Conclusion and Future Work
	References

