
Fully Transparent Client-Side Caching for
Key-Value Store Applications Using FPGAs

Sahan Bandara‡, Noah Cherry, and Martin Herbordt‡
ECE Department, Boston University ‡{sahanb, herbordt}@bu.edu

Abstract—Key-value stores (KVS) are a critical component of
current data center infrastructure. They help address the extreme
demand on data centers for high bandwidth, low latency access
to large amounts of data. Due to their importance, many efforts
have been made to improve their performance, which includes
using FPGAs to offload some functionality. These efforts have
been focused on improving the performance of the key-value
store itself and reducing the load on the server running the
KVS. However, with more FPGAs being deployed in the data
centers by many cloud service providers, some use models that
were not previously practical are becoming more realistic. In
this work, we explore one such use case where we attempt to
cache key-value entries at the network interface of the client
server. We propose an FPGA design that is capable of caching
the KVS data transparently to the KVS client application. The
proposed solution is able to improve the application throughput
while also reducing the network traffic generated by the KVS
client. Also, as the proposed solution targets client servers that are
typically shared by multiple clients, we discuss the importance of,
and present our vision for, an FPGA design supporting multiple
tenants.

I. INTRODUCTION

The demand on data centers for high bandwidth access to
large amounts of data is growing due to various factors such as
the rise of cloud services, the Internet of Things (IoT), and the
general evolution of the data center landscape. Large content
providers such as Facebook, Google, Wikipedia, etc. dedicate
significant compute resources to key-value databases. Key
value databases cache frequently accessed content, reducing
the load on back-end databases while providing low-latency
and high-throughput access to content. Key-value stores (KVS)
are used for tasks including storing user session data such as
login information, storing configuration settings that applica-
tions need to access quickly, and numerous others.

Key-value stores, especially those geared towards caching
small keys and values, pose challenges to data center servers
due to the number of small network packets that must be
processed. KVS clients generate a large number of requests
requiring the KVS server to process all the requests and
generate the response packets at a high rate to ensure high
throughput. This makes KVS services susceptible to bottle-
necks introduced by the networking stack of the operating
system. Due to this, much prior work (such as [1], [2], [3],
[4], [5]) has explored offloading key-value store functionality,
fully or partially, to FPGAs using custom hardware designs.
These designs tightly couple the KVS functionality with
the packet processing, often with streaming architectures to

provide higher throughput and lower latency compared to a
standard server.

While many of the prior works have focused on using
FPGAs to accelerate the KVS implementation itself, this work
focuses on the client interface. We propose a lightweight
FPGA design for caching the KVS entries on a network-facing
FPGA attached to the client server. The FPGA implements a
smaller key-value store and handles requests sent out to the
remote KVS server/s. If an entry corresponding to a request is
already in the local KVS, the FPGA responds to the request
without sending out the packet to the network. If not, the
FPGA behaves as a regular NIC and sends the packet out.
When a response packet is received, the value is cached in
the local KVS while forwarding the response packet to the
host. This allows the FPGA to service the next request for
the same entry. In this design, the FPGA acts as a secondary
network interface on the client-server and the caching happens
fully transparent to the KVS client application. Our FPGA
design presents a Virtio [6] network device interface to the host
machine. Virtio drivers are part of standard Linux distributions.
Therefore, unlike most other FPGA-based designs there is no
overhead of additional device drivers to communicate with the
FPGA. From the point of view of the host operating system,
the FPGA appears as a regular network interface. The only
configuration step necessary is creating routing table entries to
ensure that the packets intended for the remote KVS server are
directed to the FPGA network interface instead of the primary
NIC of the server.

We envision cloud applications that frequently access con-
tent from backend databases and use key-value stores as an
intermediate caching layer benefiting from the proposed solu-
tion. For instance, consider a front-end web server running on
a cloud server node. It needs to access the backend databases
to fulfill requests from the users. In such a scenario, it is
typical to have a key-value database such as Memcached [7]
running on a different set of nodes to cache the frequently
accessed content. The proposed solution can be deployed on
the front-end server if it is equipped with an FPGA. This
is becoming a realistic requirement as major cloud service
providers have deployed FPGAs in their data centers [8], [9],
[10], [11], [12], [13]. With caching at the network interface
of the front-end server, the application should experience
higher throughput due to a portion of requests being serviced
without requesting data from the node running the KVS.
Additionally, this will also reduce the network traffic on the
data center network. In this work, we present our preliminary



implementation with a single network interface and a KVS on
the FPGA. However, this work can be extended to implement
multiple PCIe functions that could be assigned to different
guest VMs on a server. The individual PCIe functions and
the associated controllers on the FPGA could serve different
applications and provide performance isolation and quality of
service guarantees for different clients.

The contributions of this work are as follows:
• Propose caching key-value store data at the client-server

network interface using network-facing FPGAs
• Present a lightweight FPGA design that acts as a net-

work interface card and performs caching for the KVS
transparently to the client application

• Propose a Virtio interface for the host-FPGA communi-
cation to reduce the overhead from custom device drivers
for the FPGA

• Describe how the proposed solution could be extended
to service multiple client applications running inside
individual guest VMs

• Evaluate application performance in terms of through-
put and network bandwidth utilization with and without
caching KVS entries at the network interface

The remainder of this paper is organized as follows. We dis-
cuss background and related work in Section II. The proposed
solution and the FPGA design are presented in Section III.
In Section IV, we explore the improvement in application
performance with the proposed solution. Finally, in Section V
we discuss future research directions and conclude the paper.

II. BACKGROUND AND RELATED WORK

A. Key-value Stores

Key-value stores (KVS) are non-relational databases that
provide the functionality of an associative array by storing data
as key-value pairs. KVS are suitable for storing a large variety
of structured and unstructured data types. They can handle
large amounts of data at high throughput and support quick
read and write operations, often in constant time O(1). With
the ever-increasing demand on data centers for high bandwidth
access to large quantities of data, distributed in-memory key-
value stores such as Memcached[7] and Redis[14] have be-
come integral middleware applications in the current datacen-
ter infrastructure. Many web service providers use KVS [15],
[16], [17], [18] and offer them to the users as a service [19],
[20], [21], [22].

1) Memcached: Memcached [7] is a free and open-source,
high-performance, in-memory key-value store. It is typically
used as a distributed caching system for “small chunks of
arbitrary data”. Memcached provides a number of operators
such as Get, Set, and Delete to manipulate the data
objects.

B. Virtio

Virtio [6] is an industry standard for I/O virtualization.
Guest operating systems running inside virtual machines use
Virtio drivers to access virtual backend devices emulated by
the host. Despite interacting with virtual devices, Virtio drivers

use regular bus mechanisms for tasks such as device discovery,
interrupts, and DMA. Therefore, it is possible to repurpose
Virtio drivers as generic device drivers for FPGAs and any
other device that implements a compliant interface. Authors
of [23], and [24] have presented a practical design strategy
for FPGAs to implement a Virtio-compliant interface.

Using Virtio drivers allows us to deploy an FPGA as
a network device without designing and implementing new
custom device drivers. Presenting the FPGA to the host OS as
a network device allows the KVS caching implementation to
be completely transparent to the host OS and the KVS client
applications executing on the host.

C. Related Work

Due to the importance of key-value databases, a large
number of prior works have made various attempts at im-
proving their performance. Firstly, there are the software-
oriented approaches focused on speeding up in-memory key-
value stores on CPUs. There are algorithmic and data structure
optimizations [25], parallel data access based methods [26],
and novel methods for managing storage [27]. Kernel-bypass
to overcome the limitations introduced by the network stack is
also a common strategy [26], [27], [28]. Another set of work
is focused on using RDMA to avoid the limitations introduced
by the TCP/IP protocol stack [29], [30], [31]. Apart from
academic work, research efforts have been made by large cloud
operators as well [18].

A significant number of research efforts have been made to
improve KVS performance using FPGAs. Many of these prior
efforts offload the KVS completely or partially to FPGAs to
achieve higher bandwidth and lower latencies [1], [2], [4],
[3], [5]. Some FPGA-based works also focus on caching
KVS entries using FPGAs [32]. There are also implemen-
tations that are geared towards specific applications such as
Blockchains [33], [34]. However, all of these works above
focus on the KVS node instead of the client nodes. The authors
of [35] discuss providing multi-tenant services with FPGAs
where all the tenants are using the same service.

III. METHOD

A. Scope for the Proposed Solution

We propose an FPGA design to perform caching at the
network interface for key-value store applications. This so-
lution targets servers running client applications that need
to access data from backend servers and rely on key-value
databases that run on dedicated nodes to cache frequently
requested data and reduce the load on the backend servers. The
target server should be equipped with a network-facing FPGA.
The FPGA is able to act as a secondary network interface
card for the server. Figure 1 depicts the general deployment
context targeted by the proposed solution. Here the frontend
server (server 1 ) is running some application that serves the
requests from the users. The data required to service the user
requests are stored in the database on server 2 . Server 3
runs a key-value store that caches the frequently accessed data
in order to reduce the load on the server 2 .



Fig. 1. Target deployment architecture (Adapted from [1])

With our proposed solution, all packets between servers 1
and 3 are sent through the network-facing FPGA on server
1 . The FPGA implements a smaller key-value store and the

network interface functionality. The architecture of the FPGA
design is described in Section III-B. The proposed FPGA
design includes a host interface compliant with the Virtio
specification [6]. This allows the host OS to use in-kernel
Virtio device drivers to communicate with the FPGA. Because
our concrete implementation is a Virtio network device, the
FPGA appears as a regular network interface card for the host
OS. Because our current implementation does not implement
any additional functionality such as checksum calculations,
TCP segmentation offload, etc., it relies on the host operating
system’s network stack and the device driver to provide
fully formed Ethernet frames to the FPGA. However, because
Virtio specification supports feature negotiation between the
device and the driver, future implementations can implement
additional network stack functionality and enable offloading
more work from the CPU to the FPGA. Any such additions
do not require any changes to the current use model where the
KVS client is oblivious to the existence of the FPGA or the
caching at the network interface.

Our current design implements a KVS compliant with the
Memcached binary protocol [36]. It should be noted that
the key idea of client-side caching of KVS values is not
unique to a particular protocol. We have opted to implement
a simple protocol to demonstrate the feasibility of the pro-
posed approach because the proposed solution/optimization is
orthogonal to the actual key-value store implementation. This
also means that many of the optimizations focused on the
KVS itself proposed in prior work are also applicable to this
solution and could be included in future implementations.

After a packet is copied to the FPGA memory from the
host memory using DMA, the KVS module reads the relevant
fields from the packet to identify the type of request and the
key. At present, our implementation only supports Get and
Set requests in the Memcached protocol. A Get request
triggers a KVS lookup. If the requested key is available in
the local KVS, the FPGA generates a response ethernet frame

and moves it to the appropriate buffer in the host memory.
If the key is not found, the request packet is sent out into
the network using the FPGA’s network interface. When the
response packet is received, the KVS module inserts the value
into its memory while the DMA controller moves the packet
to the host memory. The FPGA’s behavior for a Set request is
configurable. The two modes supported are: (i) Set requests
trigger a KVS lookup; entry is updated for a hit; the request
packet is sent out to the KVS server (ii) Set requests are
never cached; If the corresponding entry is in the local cache,
it is invalidated; Packet is sent to the remote KVS server. The
behavior should be selected based on the kind of data cached
and the consistency model enforced by the remote key-value
store. For all other request types, the local KVS is bypassed
and the packet is sent to the network interface. Any local
copies of the entry targeted by the unsupported request are
invalidated. Essentially, the FPGA behaves as if there is no
local cache in place for all unsupported requests.

B. Architecture

Figure 2 provides an overview of the FPGA design. The
major components of the design are described here.

Fig. 2. Overview of the FPGA Design

1) Key-value Store: The key-value store implementation is
compliant with the Memcached binary protocol [36]. A simple
CRC16 hash is used as the hash function for the KVS. This
allows us to implement a KVS with up to 216 entries. Keys and
values are stored in FPGA block RAMs (BRAM) to simplify
the design. However, the design could be modified to use off-
chip DRAM to store the values and BRAMs to store keys and
pointers to the values in DRAM. The KVS is implemented
as a direct mapped cache. Therefore, no replacement policy
is implemented. A single FSM handles the orchestration of
all computations, moving data to and from packet buffers,
reading/writing keys and values from/to BRAMs, and any
control communication with the two controllers that control
the PCIe and Ethernet interfaces. The KVS module acts as an
intermediary between the PCIe and Ethernet portions of the
design because it should be able to prevent packets from being
transmitted to the network if it is possible to service a request
with data cached locally.

2) PCIe and Ethernet IPs: We have implemented our
design on a Xilinx Ultrascale+ FPGA. Therefore, XDMA [37]



and CMAC [38] IP cores provided by Xilinx are used to
implement the PCIe and Ethernet interfaces respectively. The
CMAC IP is used without any modifications. However, the
RTL for the XDMA IP is slightly modified to support the addi-
tional functionality necessary to implement a Virtio-compliant
interface on the FPGA.

3) PCIe + Virtio Controller: The FPGA design follows
a modular approach where independent controllers control
different interfaces. The module responsible for controlling the
PCIe IP core also implements the data structures and the FSMs
required to implement the Virtio functionality. The Virtio
interface implementation is described further in Section III-C.
This controller informs the KVS module when new packets are
moved to a packet buffer. Similarly, the KVS module signals
the PCIe/Virtio controller when there are packets to be moved
to host memory.

4) Network Interface Controller: This module is responsi-
ble for controlling the interface with the network. This entails
controlling the Ethernet IP core, moving packets ready to be
transmitted from packet buffers to the IP core’s input ports,
and moving the packets received on the output ports of the IP
core to packet buffers. The KVS module signals this controller
when packets in the buffers are ready to be transmitted.
Similarly, this module signals the KVS after packets received
over the network are moved to packet buffers.

5) Packet Buffers: The packet buffers are implemented
using FPGA BRAMs. Since each buffer is accessed by more
than one controller, arbitration logic is implemented to grant
access to the buffers. The sizes of the buffers are config-
urable parameters. In-memory data structures are used to
exchange information such as packet sizes, starting addresses,
etc. among different controllers. This simplifies the signaling
between the modules. For instance, when the PCIe controller
signals the KVS module to indicate that new packets are
available, the KVS module reads a data structure placed
alongside the packet buffers in memory to find out the starting
addresses and sizes of the new packets.

C. Virtio Interface

One of the novel aspects of this work is using a Virtio
interface for host-FPGA PCIe communication. This removes
the overhead of designing and implementing custom device
drivers for the FPGA developer and the overhead of setting up
and maintaining the drivers for a system administrator. Since
the FPGA appears as a regular network interface card, no
changes are necessary for the KVS client application. The
implementation is based on the design presented in [23],
and [24]. The PCIe+Virtio controller module implements
several data structures that are used by the Virtio device
drivers for device initialization and regular operations such as
sending notifications to the device to trigger data movement
between the host and the FPGA. It also includes the FSMs
that implement the queue functionality used by Virtio drivers
and devices to communicate.

Virtio drivers are designed to be used by guest operating
systems executing in virtualized environments to access virtual

devices emulated by the host. Therefore, the drivers are not
designed to manage DMA engines on any particular device.
This means that the PCIe controller module is also responsible
for programming the DMA engine which is part of the PCIe
IP core. This requires the target device to have an IP core
(provided by the vendor, third party, or developed by a user)
that allows the DMA engine to be programmed by logic
implemented on the FPGA. If not, a device driver that presents
the FPGA as a network device to the host OS is necessary to
implement the proposed solution.

D. Extension to Multiple client Applications/VMs

Since Virtio drivers are intended for guest operating systems
and the drivers do not make any distinction between virtual
and physical devices as long as the correct interface is imple-
mented, it is possible for guest VMs to also access the FPGA
without additional device drivers. We have tested our current
implementation with a single PCIe function and a single VM
by using PCIe passthrough to assign the FPGA to the VM. We
expect to extend this approach to multiple VMs using multiple
PCIe functions and the Single Root I/O Virtualization (SR-
IOV) technique. This suits the target deployments we have
considered for this solution, which are cloud nodes running
applications that are key-value store clients. Typically such
applications run inside virtual machines and share the server
resources with other applications.

If there are multiple KVS client programs executing inside
different VMs on the same host machine, it is important to
provide each of them with a simple but secure mechanism to
access the FPGA. If the different clients are accessing different
key-value databases, the corresponding PCIe functions imple-
mented on the FPGA could have their own KVS controllers
and memory. Even if the different clients are accessing the
same database, each could be assigned their own cache on
the FPGA in order to provide additional security, performance
isolation, and quality of service guarantees.

Figure 3 depicts our vision for a multi-tenant deployment
where multiple KVS client programs are running inside in-
dividual VMs on the same server. The PCIe interface of the
FPGA presents multiple PCIe functions (physical or virtual) to
the host OS, which are assigned to individual VMs. VMs 2, 3,
and 4 are running KVS clients and therefore are connected to
the FPGA. VM 1 could be running a non-KVS program and
therefore is not connected. Within the FPGA, functions 3, and
4 share the same KVS controller. However, function 2, which
is connected to VM 2 uses its own KVS controller. This could
be due to VM 2 accessing a different KVS from the other two
VMs or due to security or performance guarantees required
by the program running in VM 2. The KVS controllers
implemented on the FPGA share the external interfaces such
as PCIe and Ethernet.

IV. EVALUATION

The purpose of allocating compute resources to run key-
value stores is to provide fast access to data frequently
accessed and reduce the load on backend databases. However,



Fig. 3. Example Multi-tenant Deployment

since traditional servers a prone to performance bottlenecks
when running key-value stores, many FPGA-based solutions
have been proposed to improve the throughput and latency of
the key-value stores. These approaches are typically evaluated
based on the improvement in application throughput. We also
evaluate our proposed solution based on application through-
put.

A. Experimental Setup

We have implemented our design on a Bittware CVP13 [39]
development board that uses a Xilinx Ultrascale+ FPGA
(part number: xcvu13p-figd2104-2-e). The machine hosting
the FPGA and running the KVS client program and the
server running the key-value store program are both connected
to the same 1 Gbps local network. We consider the KVS
client performance without the FPGA-based solution as the
baseline for our analysis. For time measurements, the test
applications use the clock_gettime() function with the
CLOCK_MONOTONIC option.

Since the real KVS workloads are dominated by read
requests [40], we focus our analysis on the performance
improvement for Memcached Get requests. Higher hit rates
on the local KVS cache correspond to better client application
performance since fetching a value from the FPGA takes
considerably less time compared to fetching the same value
from a remote server running the KVS. We assume that
the KVS client application’s performance is only limited by
accessing the key-value store on a remote node.

B. Results

In this section, we model the performance improvement
achieved by the proposed solution. The model is based on two
types of latency measurements made using the setup described
in Section IV-A.

1) Time taken for the client program to issue a Get request
to the key-value store running on a different machine
on the same network, and receive the response with the
value. This is considered to be the baseline performance
when there is no FPGA KVS cache implementation in
place.

2) Time for the client program to receive the response when
the KVS entry requested is cached in the FPGA.

Figure 4 shows the effective read throughput in for the client
program for different sizes for the value field ranging from 16
Bytes to 512 Bytes versus different cache hit rates for the
KVS cache in the FPGA. Performance for the 0% hit rate
is the same as the performance without the FPGA cache in
place. The highest performance improvement is seen for the
smallest values. This can be explained by the higher overhead
of network packets for smaller values. For the smallest sizes,
the overhead of the protocol headers alone is closer to the
size of the actual payload. The performance benefits decrease
with the size of the value. However, the negative slope of
the (light blue) line representing 512 Byte values cannot be
explained only by the decreasing overhead of the network
packets compared to smaller value sizes. The other factor
contributing to the poor performance is that our FPGA design
is still not optimized to handle larger values efficiently. With
an optimized design that can handle larger values better, the
proposed solution should result in improved performance for
a wider range of payload sizes.

Fig. 4. Application Throughput versus Cache Hit Rate

Figure 5 shows the network bandwidth versus the cache hit
rates. Please note that this is the network bandwidth perceived
by the client application and not the actual bandwidth utilized.
Because the application is unaware of the caching at the
network interface, from the point of view of the application, it
is experiencing higher network bandwidth utilization. For the
no-cache scenario (0% hit rate), the application only reaches
around 7% of the available network bandwidth of 1 Gbps when
fetching 16 Byte values from the KVS. However, with a 100%



hit rate, it could go up to around 13% which is almost double
the bandwidth for the no-cache case. The hidden benefit of
this is that the actual number of packets transmitted over the
network is reduced lowering the actual network traffic. The
reason for the poor performance of the 512 Byte value scenario
is the same as explained above.

Fig. 5. Network Bandwidth versus Cache Hit Rat

V. CONCLUSION

In this work, we explore a novel use case for FPGAs
enabled by more FPGAs being deployed in the data center:
caching key-value store data in the network interface of the
client server. We have presented a lightweight FPGA design
and presented our analysis based on preliminary results. We
demonstrate that the proposed method can improve application
throughput and reduce the network traffic generated by KVS
client applications.

One future research direction is optimizing the FPGA imple-
mentations of the KVS by applying optimizations from prior
work. Another is implementing support for larger caches by
using off-chip DRAM to store values and using FPGA BRAMs
only to store keys and pointers to the values in DRAM. We
are also working on implementing multi-tenant support as
described in Section III-D.

ACKNOWLEDGMENTS

This work was supported, in part, by Red Hat through award
2024-01-RH08.

REFERENCES

[1] J. Choi, R. Lian, Z. Li, A. Canis, and J. Anderson, “Accelerating
Memcached on AWS Cloud FPGAs,” in Proceedings of the 9th Interna-
tional Symposium on Highly-Efficient Accelerators and Reconfigurable
Technologies, 2018, pp. 1–8.

[2] S. R. Chalamalasetti, K. Lim, M. Wright, A. AuYoung, P. Ranganathan,
and M. Margala, “An FPGA Memcached Appliance,” in Proceedings of
the ACM/SIGDA international symposium on Field programmable gate
arrays, 2013, pp. 245–254.

[3] M. Lavasani, H. Angepat, and D. Chiou, “An FPGA-based In-line Ac-
celerator for Memcached,” IEEE Computer architecture letters, vol. 13,
no. 2, pp. 57–60, 2013.

[4] W. Liang, W. Yin, P. Kang, and L. Wang, “Memory Efficient and High
Performance Key-value Store on FPGA Using Cuckoo Hashing,” in
2016 26th International Conference on Field Programmable Logic and
Applications (FPL). IEEE, 2016, pp. 1–4.

[5] M. Blott, K. Karras, L. Liu, K. Vissers, J. Bär, and Z. István, “Achieving
10gbps line-rate key-value stores with {FPGAs},” in 5th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 13), 2013.

[6] M. S. Tsirkin and C. Huck, “Virtual I/O device (VIRTIO) version 1.2,”
May 2022. [Online]. Available: https://docs.oasis-open.org/virtio/virtio/
v1.2/csd01/virtio-v1.2-csd01.html

[7] “Memcached - A Distributed Memory Object Caching System.”
[Online]. Available: https://memcached.org/

[8] “Project Catapult.” [Online]. Available: https://www.microsoft.com/
en-us/research/project/project-catapult/

[9] A.M. Caulfield, et al., “A cloud-scale acceleration architecture,” in
MICRO, 2016.

[10] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung et al., “Azure
Accelerated Networking: SmartNICs in the Public Cloud,” in 15th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18), 2018, pp. 51–66.

[11] Amazon.com Inc., “Amazon EC2 F1 Instances.” [Online]. Available:
https://aws.amazon.com/ec2/instance-types/f1/

[12] “Deep Dive into Alibaba Cloud F3 FPGA as a Service
Instances.” [Online]. Available: https://alibaba-cloud.medium.com/
deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances-74b9aeac98ed

[13] “Cloud FPGA Accelerators: Turbocharge Your Workflows for Efficient
Processing.” [Online]. Available: https://www.nimbix.net/fpga-compute/

[14] “Redis - The Real-time Data Platform.” [Online]. Available: https:
//redis.io/

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” ACM SIGOPS operating
systems review, vol. 41, no. 6, pp. 205–220, 2007.

[16] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Transactions on Computer
Systems (TOCS), vol. 26, no. 2, pp. 1–26, 2008.

[17] Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Characterizing
facebook’s memcached workload,” IEEE Internet Computing, vol. 18,
no. 2, pp. 41–49, 2013.

[18] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab et al., “Scaling memcache at
facebook,” in 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13), 2013, pp. 385–398.

[19] “Amazon ElastiCache.” [Online]. Available: https://aws.amazon.com/
elasticache/

[20] “Azure Cache for Redis.” [Online]. Available: https://azure.microsoft.
com/en-ca/services/cache

[21] “ApsaraDB for Memcache.” [Online]. Available: https://www.
alibabacloud.com/product/apsaradb-for-memcache

[22] “Google Cloud Memorystore.” [Online]. Available: https://cloud.google.
com/memorystore

[23] S. Bandara, A. Sanaullah, Z. Tahir, U. Drepper, and M. Herbordt, “En-
abling VirtIO Driver Support on FPGAs,” in 8th International Workshop
on Heterogeneous High Performance Reconfigurable Computing, 2022,
doi: 10.1109/H2RC56700.2022.00006.

[24] ——, “Performance Evaluation of VirtIO Device Drivers for Host-FPGA
PCIe Communication,” in 31st Reconfigurable Architectures Workshop
(RAW), 2024, doi: 10.1109/IPDPSW63119.2024.00043.

[25] B. Fan, D. G. Andersen, and M. Kaminsky, “{MemC3}: Compact and
concurrent {MemCache} with dumber caching and smarter hashing,” in
10th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 13), 2013, pp. 371–384.

[26] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “{MICA}: A
holistic approach to fast {In-Memory}{Key-Value} storage,” in 11th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14), 2014, pp. 429–444.

[27] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri,
D. Ongaro, S. J. Park, H. Qin, M. Rosenblum et al., “The ramcloud
storage system,” ACM Transactions on Computer Systems (TOCS),
vol. 33, no. 3, pp. 1–55, 2015.

[28] Y. Ghigoff, J. Sopena, K. Lazri, A. Blin, and G. Muller, “{BMC}:
Accelerating memcached using safe in-kernel caching and pre-stack

https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/virtio-v1.2-csd01.html
https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/virtio-v1.2-csd01.html
https://memcached.org/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://aws.amazon.com/ec2/instance-types/f1/
https://alibaba-cloud.medium.com/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances-74b9aeac98ed
https://alibaba-cloud.medium.com/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances-74b9aeac98ed
https://www.nimbix.net/fpga-compute/
https://redis.io/
https://redis.io/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://azure.microsoft.com/en-ca/services/cache
https://azure.microsoft.com/en-ca/services/cache
https://www.alibabacloud.com/product/apsaradb-for-memcache
https://www.alibabacloud.com/product/apsaradb-for-memcache
https://cloud.google.com/memorystore
https://cloud.google.com/memorystore


processing,” in 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21), 2021, pp. 487–501.

[29] W. Tang, Y. Lu, N. Xiao, F. Liu, and Z. Chen, “Accelerating redis
with rdma over infiniband,” in Data Mining and Big Data: Second
International Conference, DMBD 2017, Fukuoka, Japan, July 27–August
1, 2017, Proceedings 2. Springer, 2017, pp. 472–483.

[30] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. Wasi-ur
Rahman, N. S. Islam, X. Ouyang, H. Wang, S. Sur et al., “Memcached
design on high performance rdma capable interconnects,” in 2011
International Conference on Parallel Processing. IEEE, 2011, pp. 743–
752.

[31] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “{FaRM}:
Fast remote memory,” in 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), 2014, pp. 401–414.

[32] E. S. Fukuda, H. Inoue, T. Takenaka, D. Kim, T. Sadahisa, T. Asai, and
M. Motomura, “Caching memcached at reconfigurable network inter-
face,” in 2014 24th International Conference on Field Programmable
Logic and Applications (FPL). IEEE, 2014, pp. 1–6.

[33] Y. Sakakibara, K. Nakamura, and H. Matsutani, “An fpga nic based
hardware caching for blockchain,” in Proceedings of the 8th Interna-
tional Symposium on Highly Efficient Accelerators and Reconfigurable
Technologies, 2017, pp. 1–6.

[34] A. I. Sanka, M. H. Chowdhury, and R. C. Cheung, “Efficient high-
performance fpga-redis hybrid nosql caching system for blockchain
scalability,” Computer Communications, vol. 169, pp. 81–91, 2021.

[35] Z. István, G. Alonso, and A. Singla, “Providing multi-tenant services
with fpgas: Case study on a key-value store,” in 2018 28th International
Conference on Field Programmable Logic and Applications (FPL).
IEEE, 2018, pp. 119–1195.

[36] Memcached, “Binaryprotocolrevamped.” [Online]. Available: https:
//github.com/memcached/memcached/wiki/BinaryProtocolRevamped

[37] Xilinx, “DMA/Bridge Subsystem for PCI Express v4.1,” Jun 2022.
[Online]. Available: https://docs.xilinx.com/r/en-US/pg195-pcie-dma

[38] ——, “UltraScale+ Devices Integrated 100G Ethernet
Subsystem Product Guide,” Nov 2023. [Online].
Available: https://docs.amd.com/r/en-US/pg203-cmac-usplus/
UltraScale-Devices-Integrated-100G-Ethernet-Subsystem-v3.
1-LogiCORE-IP-Product-Guide

[39] “CVP-13 FPGA Cryptocurrency Mining Board.” [Online]. Available:
https://www.bittware.com/cvp-13/

[40] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” vol. 40, no. 1,
2012. [Online]. Available: https://doi.org/10.1145/2318857.2254766

https://github.com/memcached/memcached/wiki/BinaryProtocolRevamped
https://github.com/memcached/memcached/wiki/BinaryProtocolRevamped
https://docs.xilinx.com/r/en-US/pg195-pcie-dma
https://docs.amd.com/r/en-US/pg203-cmac-usplus/UltraScale-Devices-Integrated-100G-Ethernet-Subsystem-v3.1-LogiCORE-IP-Product-Guide
https://docs.amd.com/r/en-US/pg203-cmac-usplus/UltraScale-Devices-Integrated-100G-Ethernet-Subsystem-v3.1-LogiCORE-IP-Product-Guide
https://docs.amd.com/r/en-US/pg203-cmac-usplus/UltraScale-Devices-Integrated-100G-Ethernet-Subsystem-v3.1-LogiCORE-IP-Product-Guide
https://www.bittware.com/cvp-13/
https://doi.org/10.1145/2318857.2254766

	Introduction
	Background and Related Work
	Key-value Stores
	Memcached

	Virtio
	Related Work

	Method
	Scope for the Proposed Solution
	Architecture
	Key-value Store
	PCIe and Ethernet IPs
	PCIe + Virtio Controller
	Network Interface Controller
	Packet Buffers

	Virtio Interface
	Extension to Multiple client Applications/VMs

	Evaluation
	Experimental Setup
	Results

	Conclusion
	References

