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Abstract—Compiler tuning through external mechanisms —
such as source code modifications, e.g., with pragmas, and ad-
justing compiler flags — is well-explored. Many researchers have
shown significant performance improvement through different
approaches, including heuristics and machine learning. Most of
these approaches, however, require a few hundred iterations to
converge towards an optimal answer. A number of studies have
addressed this problem by reducing the number of iterations
required, but we find that further improvements are still possible.
In this work, we explore the optimization of GCC compiler
flag settings with the goal of faster convergence. We find as an
ancillary result that the effectiveness of the compilation itself is
sometimes improved with respect to both code size reduction and
application program execution time. The proposed graph-based
approach can reduce the code size to 90% of the convergence
point with 15 compilations fewer on average, i.e., the solution
found after running Opentuner for many compilations. It also
can reduce the execution time over the -O3 level for different
versions of the Smith-Waterman and Bubble Sort by 1.2x and
5x, respectively.

Index Terms—Compiler Tuning, Source Code Transformation,
Source Code Optimization

I. INTRODUCTION

A fundamental problem of computing is the automatic
optimization of source code. A number of methods have been
adopted; these sometimes vary depending on the optimization
goal — e.g., latency, power, and/or code size — and the target
hardware. Often automatic optimization is done in conjunction
with optimizations applied by the programmer; usually iter-
atively, and sometimes following documented best practices.
The goal of these processes is to produce code that is at least as
good as what an expert alone can do. It is common, however,
for programmers to only optimize for certain performance
goals. For example, optimizing a source code to reduce the
binary size, a basic concern of programmers some decades
ago, nowadays, when done at all, generally depends solely on
the compiler’s capabilities.

In this work, the effectiveness of automatic optimization
with respect to both performance, i.e. execution time and
binary code size, and time to convergence are explored. The
approach investigated seeks to find the best compiler flag
settings to optimize a source code for a given optimization goal
and may be referred to as a type of external compiler tuning.
This type of optimization is in contrast to internal compiler
mechanisms such as implementing a new transformation. Our
motivation for this approach is as follows. While it is likely
that new internal mechanisms are waiting to be found, it is
also true that current compilers already have a sophisticated

set of optimizations (based on decades of prior research). For
example, GCC applies over 200 different optimization passes,
many repeatedly, and in various sequences.

In fact, this leads to the problem of pass selection: i.e., that
the overall benefit of these optimizations depends on what
set of passes has been selected, but also that the number of
possible selections is large. Compilers such as LLVM offer the
flexibility of reordering the passes without internally changing
the compiler. This is known as phase reordering. While this
approach has proven effective (as shown in [1]-[3]), it also
depends on the compiler internals for GCC, may be difficult
to implement and maintain, and may be slow.

In practice, default optimization levels can optimize pro-
grams for either code size or execution time. Many studies,
however, have shown that there are more effective ways to use
compiler optimization passes than default configurations (e.g.,
[4]). The naive way of finding the best set of optimization flags
is by brute force, but finding the best configuration in this way
is obviously impracticable. Thus, many studies have tried to
find a fast method using both iterative [5] and non-iterative
techniques.

We propose a graph-based algorithm for optimizing GCC
compiler flag settings. We address both time to convergence
and improving the effectiveness with respect to the various
performance types. This work has the following contributions
and innovations.

A fast and effective compiler tuning algorithm for GCC
for execution time improvement and code size reduction. This
approach takes into account the single-state intrinsic of GCC
pass optimization.

Analysis of the effectiveness of the algorithm: The approach
is compared to other automatic and manual methods to un-
derstand better how much further the proposed and related
compiler tuning algorithms can go.

Comparison with other possible code transformations and
optimizations: A comparison has been made on different
approaches used to transform and optimize a source code.
Included are Large Language Model (LLM) methods and other
optimizers.

II. APPROACHES TO OPTIMIZING SOURCE CODE
Optimization of a source code can be done for different
performance goals. In this work, we optimize for binary
size reduction and execution time improvement. Some of the
methods typically used are as follows.



A. Hand-tuning

Hand tuning can be extremely effective, but requires sig-
nificant expertise and effort. The products may also be brittle
with respect to changes in code and target hardware.

B. Creating New Compiler Optimizations

Given a fixed hardware architecture and programming lan-
guage, the lowest level of optimization is to implement a
new optimization from scratch. Even so, however, current
compilers suffer from the problem of knowing where and
what optimization to apply to get the best performance. In
other words, there is a need to make the existing compilers
more intelligent. As described in the introduction, for a given
source code this can be done in various ways: by directly
managing compiler optimization passes; by inserting directives
and pragmas into the source code; or by finding the best set
of optimization flags and parameters.

C. Tuning An Existing Compiler;, Why GCC?

An alternative is tuning the compiler without further modifi-
cation. This can be done by finding the best compiler flags and
parameters for a given source code (the approach taken here).
Success is measured by whether the selection outperforms the
default optimization flags, e.g., -O3. The process of finding the
best set is different for different compilers. In compilers such
as LLVM, the problem has a more extensive solution space
because of the ease of implementing pass reordering. On the
other hand, in a compiler such as GCC, optimization flags can
only be selected once and the compiler decides on the order
they should be applied. It is possible to write a plug-in for
GCC that internally changes the pass ordering. However, this
requires a significant understanding of the GCC compiler, is
hard to maintain, and can also result in incorrect compilation.

Although LLVM has the flexibility of pass reordering (with-
out breaking into the compiler as is necessary with GCC), it
doesn’t have the number or sophistication of the optimization
passes in GCC [6]. Moreover, in contrast to the limitations
imposed by a compiler, arbitrary phase reordering can cause
code to be incorrectly compiled. Tuning the GCC thus has the
potential to produce a better source code transformation.

D. Al Transformation-Based

The emergence of LLMs introduces new ways of transform-
ing source code. LLMs can, potentially, “understand” what a
source code is doing, which is a big step in knowing what
source of optimization is needed. However, no massive dataset
has the best optimization configuration for them. Thus, LLMs
can only identify some possible optimizations but can find the
best practice for writing source code quickly and effectively.
The problem with this approach is that it is not guaranteed to
produce a valid source code, and often, the resultant code is
not doing what it should.

III. GCC COMPILER TUNING

In this work, tuning a compiler means finding the best set
of actions as input to a compiler, which will result in a better
performance than the default configuration. This process can
be done in various ways depending on our compiler. In this
work, we are tuning the optimization flags for GCC.

A. Problem Statement

The problem we are trying to solve is finding the best set
of optimizations from a set of possible actions that optimize a
source code for a desired performance. This can be either real-
time execution time or binary size. More specifically, Given a
set S of possible actions, we are trying to find the best subset
P* that minimizes the loss function £. Mathematically, this
can be written as (1).

P* = arg glClg’ L(P) (1)

The set S is our solution space, and it contains all the
possible optimization flags. A few optimization flags need an
integer or choice value, and their space is not binary. For these
flags we treat each different value as a different flag.

B. Solution Space Characteristics

The solution space contains roughly 280 flags resulting
in 280! possible solutions. With brute force obviously being
impractical a more intelligent approach is needed with time to
convergence being a primary concern. Another concern is that
flags are not independent of one another. Some flags disable
the others, and some flags are only effective if they are used
alongside the others. Also, some of the flags may not affect a
given source code at all.

IV. A GRAPH-BASED SOLUTION FOR COMPILER TUNING

Due to GCC characteristics, where flags are not all inde-
pendent, we can redefine our problem statement as the finding
of the best subgraph of a fully connected graph where the
graph’s nodes are all possible flags. The Graph-based Flags
Tuner (GBFT) considers the dependencies of flags on each
other. The new problem is how to learn these dependencies.

In other words, the problem is to find the best subset of
edges of a fully connected graph with self-loops. The new
problem space solution is transformed from all possible flags
to all possible relations between two flags. Also, self-loops are
allowed because a single flag can be effective individually. A
relation between two flags is selected, and both of these flags
are chosen as a part of the solution. Fig. 1 shows how the
selection of edges helps in choosing the subgraph.

A. A Cyclic Epsilon Greedy Algorithm

To find the final version of the graph that has learned the
relations of the flags, some experiments on the same source
code should be run and evaluated. Each experiment should be
done with respect to a particular set of flags because there
are no apparent (a priori) relations between flags; an epsilon
greedy algorithm is used. This algorithm selects an € between
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Fig. 1: Choosing the optimal subgraph that results in the
optimal solution, nodes representing the compiler’s flags.

0 and 1. Then, with the probability of ¢, a flag will be chosen
to be selected or not. The rest of the flags can be set to
be selected or not selected. In this work, in each iteration,
a random epsilon is chosen.

After each experiment, the performance is evaluated, and
a reward is given to each edge between two flags selected
in the experiments. All the other edges will get a negative
reward. This helps to provide a smaller reward to flags that
are not effective. Algorithm 1 shows how to select the best
flags using the graph-based approach suggested.

B. A Twin Graph

One problem with flag selection is the large space of
possible solutions (input permutations). We have found that
for an algorithm to be both effective and converge quickly,
it should detect ineffective flags quickly. In this work, a
pair of (twin) graphs are used to address these during the
configuration. One is used for identifying flags set to on and
the other is for the flags set to off. A negative of the reward
is added to all the edges with nodes (flags) not selected in
an experiment. In this way, if a flag, whether on or off, is
not effective in improving or deteriorating the performance,
it is expected to be neutralized through different experiments.
Indeed, experimental results show that a bigger reverse reward
is more effective in finding the optimal solution.

C. Finding The Cut-off

One challenge in the proposed algorithm is to find the cut-
off to select the edges. In this work, within each experiment,
two parameters are updated gradually, converging to a cut-off
that can select highly condensed subgraphs with the highest
possible number of edges. This indicates that most of the pairs

Require: Fully connected graph G with nodes representing
flags
Ensure: Best set of edges F representing dependencies
between flags
1: Initialize reward matrix R with zeros
2: Select € € [0, 1]
3: for each experiment do
4:  Randomly select some flags and turn them off or on

5. Perform experiment and measure performance

6:  for each edge e;; between selected flags f; and f; do

7: Update reward R(e;;) < R(e;;) + per formance

8: end for

9:  for each edge ex; not between selected flags fi and f;
do

10: Update reward R(ex;) < R(eg;) — per formance

11:  end for

12: end for

13: for Some iterations do
14:  Pick a random number k and select kth largest edges
15:  Evaluate the performance

16: end for
Algorithm 1: Cyclic Epsilon Greedy Algorithm for Up-

dating the Graph Edges

in the subgraph were effective in improving the performance.
Then, space exploration is done around that point to find the
best cut-off and performance. The overall number of iterations
reported is the sum of these two approaches’ iterations.

V. LLM-BASED OPTIMIZATIONS

Given the tremendous attention currently being paid to
LLMs we decided to investigate using them as an alternate
baseline. There are two different ways to use LLMs to
optimize source code: prompt engineering and fine-tuning.
The first approach is more straightforward because it does not
require a considerable dataset or GPU capability to tune the
model. Fine-tuning, however, does require a reasonably high-
performance GPU for training and a labeled dataset containing
the code’s original version and the optimized version. Thus, it
is not doable for small scales.

However, studies suggested prompt engineering can be more
effective in some experiments [7]. In doing so, we tried to craft
the best prompt that results in the best code in different ways:

o Giving the characteristics of a desired function and get-
ting a well-written code;

o Giving the original code and asking the LLM to optimize
it; and

o Giving the original code but changing the variable and
function names to random ones.

The difference between options 2 and 3 is that it identifies
whether the LLM optimizes based on the semantics of the code
or just the finding of the best practice already somewhere in
its database based on the function and variable names. One
problem with this approach is that there is no clear way to



ask LLM to produce code with a smaller binary size because
it needs an end-to-end compilation.

VI. METHODOLOGY

One of the goals of this work is to determine whether com-
piler tuning is as effective as other approaches in improving
performance. We are also interested in the general question of
the limits of compiler tuning benefits, in particular, whether an
algorithmic insight has been found. In previous optimization
studies involving High Level Synthesis we have found that
this can sometimes be achieved, e.g., with the FFT [8], where
the butterfly circuit was generated, and Smith-Waterman [9],
where a systolic array was generated.

In this work we examined the performance of two applica-
tions: four different versions of the Smith-Waterman algorithm
and a bubble sort. We chose bubble sort because it is so
simple and would be obvious if the code were transformed into
an algorithm with Q(nlog(n)) complexity. We chose Smith-
Waterman because we have recently taken a deep dive [10]
into hand optimizing these codes using, e.g., a number of data
reorganizations. Our result was an improvement of 6x over
the naive code and we believe currently the fastest existing
version.

To compare the code size reduction, we used GNU core
utilities. Reducing the binary size for this application is useful
because it can reduce the size of the Linux kernel, which is
currently of great interest.

Code size reduction measurement has no error, and we
can report fixed numbers for improvement. In contrast, real-
time performance measurement has errors. Thus, we report the
statistical mean and distribution of evaluations. To do this, we
used Hyperfine to report the improvement in performance and
its variance [11].

To compare our approach with another existing approach,
we used the Intel compiler, ChatGBT 4, and OpenTuner [12]
as another tuning model to compare our results against it.

One consideration of this work is that the proposed algo-
rithm has two stages. The first stage is used to build the graphs,
and the next stage is to find the cut-off. The reported data for
this algorithm starts from the iteration where the graph has
been built and stopped with a given criteria, i.e., finding an
approximate cut-off with a reasonable performance.

VII. RESULTS

The result section is split into two major results: binary size
improvement and execution time improvement. Size improve-
ment is a better metric for comparing the convergence speed
of the two non-deterministic algorithms with variations within
each run. The execution time evaluation is done to find the
answer to the question of whether compiler tuning can make
a qualitative change or not. Thus, it is compared against other
compilers and ChatGBT-generated codes.

A. Code Size Improvement

To report the result, we used five random applications from
GNU core utilities within the Linux kernel. Improving their

binary size will help the Linux kernel become smaller, so it
is of significant importance.

The focus of this section is to show how fast our algorithm
can find the optimal solution. Thus, we are looking into
iterations before the 100th. More evaluations with longer
iterations show all of the benchmarks have a peak answer
between 8 — 13% improvement over -Oz which is found in at
least one of the experiments within 100 iterations. Fig. 2 shows
what portion of the test can result in an improvement higher
than certain thresholds. This is compared against OpenTuner.
As shown in Fig. 2, GBFT in almost all of the iteration
intervals has a higher chance of finding an answer with
higher improvement than OpenTuner. In order to show the
generalizability of the algorithm, the algorithm was run for all
the GNU core utilities, and their performance was collected.
Fig. 3 shows the distribution of tests reaching 90% of the
convergence point. The convergence point is the point at which
it converges after running the Opentuner for many iterations
to tune the performance (code size). Not all of the tests
could reach 90 % of the convergence point within the first
100 iterations. 63% of Opentuner tests failed to reach the
threshold, whereas 50% of GBFT tests failed to reach the
threshold. Also, for iterations finished before 100 iterations,
the average iterations to convergence for GBFT is 16% better
than Opentuner.

B. Execution Time Improvement

Execution time improvement is different than code size
improvement in some sense. The improvement can be due to
many factors depending on the application and hardware. One
purpose of showing the results in this section for different
applications is to investigate the effectiveness of compiler
tuning in performance improvement. The question is whether
a classic compiler like GCC can change the algorithm of
an application. To this end, an in-depth comparison has
been made between the different Smith-Waterman versions.
To see how much improvement is achievable using other
approaches. Four different versions of Smith-Waterman have
been used as a benchmark. Each version is suitable for specific
alignment score calculations and requires different heuristics
to be improved further. Fig. 4 shows the results for Smith-
Waterman versions against the expert hand-tuned version,
Intel compiler, GCC, and ChatGBT 40 prompt-engineered
(ChatGBT) version. As shown, the hand-tuned version has
an improvement of 5.6x, while the compiler-tuned version
has the least possible improvement of 1.2x for three versions.
Although this is not the best improvement that can be achieved,
the interesting point is that compiler tuning can be done for
any available source code, including the hand-tuned version,
so it is of importance, whereas other approaches, such as
the Intel compiler, can not result in a significant performance
improvement on the hand-tuned version.

Also, the problem with the LLM approach is that it could
only produce one correct version with no improvement. Any
further changes resulted in a wrong code that was no longer
doing the same thing. Also, it does not understand what the
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code is doing by changing the variable names. It seemed like
it was replacing a code or writing something from scratch
to do alignment rather than improvement on the given code.
The important point was that it could only generate a correct
optimized source code for one of the four examined Smith-
Waterman versions. The performance improvement of this

version was 2.7 x, which is significant and shows the capability
of these models for further research.

In addition, an investigation of tuning for sort algorithms
has been done. The question that was investigated was whether
compiler tuning can make a qualitative improvement or not.
Fig. 5 shows the performance improvement for different input
sizes and transformations in the assembly of the tuned version
versus the original version. The tuned version could perform
better, up to 5x over the -O3. However, the main changes
that have been applied are to loop unrolling rather than a
change in the algorithm, and the tuned version is still O(n?).
The other interesting finding is that the tuning cannot improve
the performance of the merge sort that has O(nlog(n) time
complexity. This is also aligned with the theory.

C. Discussion

The main challenges of this study were improving the speed
of convergence in iterative compiler tuning and analyzing its
effectiveness. Although iterative approaches can significantly
optimize a code, they can not produce a highly optimal answer,
and they still need a few iterations to optimize. The first
problem is intrinsic, but the second one is an open research
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direction. The question is whether it is possible to do the
tuning even faster.

The proposed algorithm can be improved in two ways. The
first is to update the graph more intelligently to find the optimal
graph faster. The second is to come up with a non-iterative but
effective way of finding the cut-off for the graph. A better but
harder way of doing this is to use a fully non-iterative approach
via new machine learning models, which is a direction that we
are pursuing right now.

The other finding of this study was the effectiveness of
LLMs in optimizations. The biggest challenge, though, is how
to validate the resultant code. In our small benchmark, we
have a chance to compare the outputs and see if they are fully
correct or not manually, but it is harder to validate on a large
scale automatically.

VIII. RELATED WORK

Optimizing a source code has been done since the start of
the first compilers, and much work has been done to improve
it. The optimization target can be for code binary size [13],
resource utilization [14], real-time performance [15], or a
combination of them [16] etc. The challenge with the real-
time performance evaluation is its variance, while code size
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optimization doesn’t have variations [17]. In this work, [11]
is used to measure the run time.

Source code transformation: One way of optimizing a
source code for real-time performance is by loop transforma-
tion. Polyhedral compilers [18], [19] transform loops to extract
possible parallelism. Another way of transforming source code
is by annotating it using pragmas and directives [3], [20].
As well as all the classical methods, new LLM methods are
introduced for source code optimization, and they showed
promising effects while not fully accurate responses [21]. This
high rate of false positives for code generation and the non-
deterministic behavior of LLMs make it hard to use them as
the ultimate solution to code generation for different usages
[22].

Compiler Tuning concept: [23] referred to tuning as
finding the best tiling size, number of loop unrolling, etc. In
this work, tuning refers to optimizing flag passes. Depending
on what compiler is used, the optimization task for tuning
varies [24]. The problem is either pass selections [25] or pass
reordering [26]. This is based on the characteristics of the
compiler.

Different Target Compilers: Different compilers require
different techniques and heuristics to be tuned. Many works
have been done on tuning only one compiler or a combination
of them, such as Just-In-Time compilation [27], LLVM [15],
[28], [29], GCC [30], [31].

Different Hardware Target: The source code optimization
should be applied based on the hardware architecture. In
FPGAs, one aim is extracting a systolic array, which requires
changing the structure of loops [32] or adopting a combination
of different optimization [33], [34]. Other tuning opportunities
exist for GPUs [35], [36] or heterogeneous systems [37].
Another usage of compiler tuning is general CPUs, which is
the focus of this work. It includes works that were mentioned
already.

Different Algorithm for compiler tuning: Countless
heuristics and algorithms tune the compiler. There are two
major optimization approaches: iterative and non-iterative. A
general and effective iterative way of optimizing is through
the evolutionary algorithms [10], [38], [39]. In recent years,



more machine-learning models have been used for compiler
tuning [40]. Reinforcement learning gives more flexibility in
self-tuning the compilers and code transformations [41], [42]
and is a well-known method for LLVM tuning since it requires
phase reordering [43]. However, it is not fast enough for GCC
since the problem is pass selection. Adapting the problem
to RL can be done using a histogram of passes. This adds
redundant complexity to the problem and the large state space
can eventually reduce the performance [44].

One goal that matters in compiler tuning in iterative ap-
proaches is to reduce the number of iterations, which is
addressed in [12]. This motivated this work to minimize the
required iterations even further. On the other hand, the non-
iterative approaches are those that try to predict a phase order
or a pass selection that optimizes a code based on static
analysis [31], [45].

Other heuristic ways are introduced to find the best set of
optimizations that can optimize a source code and reduce the
iteration numbers [46]. This work was inspired by [47] in
adopting a graph-based tuning for GCC, from phase reordering
problem to pass selection problem.

IX. CONCLUSION

One important aspect of compiler flags that should be con-
sidered is the relationship between flags. This study endorses
the idea that flags are not independent, and for an algorithm
to be effective, it needs to look into the relations between
flags. The proposed graph-based algorithm uses this idea by
learning the relations of each two pair of flags. It showed
relatively faster convergence to the optimal answer for code
size reduction only through the first 100 iterations.

In addition to this finding, we found that compiler tuning is
effective in increasing the performance of almost any source
code. It is a way that any programmer or tool can use to
improve the performance of a source code further. However,
it is not able to beat a hand-tuned version. In other words, it
cannot change an algorithm’s time complexity, but it is better
adapted to the hardware.
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