ACiS: Complex Processing in the Switch Fabric

Pouya Haghi* Angi Guo™ Tong Geng*

*University of Rochester

Abstract—For the last three decades a core use of FPGAs
has been for processing communication: FPGA-based SmartNICs
are in widespread use from the datacenter to IoT. Augmenting
switches with FPGAs, however, has been less studied, but has
numerous advantages built around the processing being moved
from the edge of the network to the center. Communication
switches have previously been augmented to process collectives,
e.g., IBM BlueGene and Mellanox SHArP, but the support has
been limited to a small set of predefined scalar operations and
datatypes.

In this extended abstract we present ACiS, a framework and
taxonomy for Advanced Computing in the Switch that unifies and
expands our previous work in this area. In addition to fixed scalar
collectives (Type 1), we propose three more types of in-switch ap-
plication processing: (Type 2) User-defined operations and types,
including data structures; (Type 3) Look-aside operations that
have state within the operation and can have loops; and (Type
4) Fused collectives built by fusing multiple existing collectives
or collectives with map computations. ACiS is supported in
hardware with modular switch extensions including a CGRA
architecture. Software support for ACiS includes evaluation and
translation of relevant parts of user programs, compilation of
user specifications into control flow graphs, and mapping the
graphs into switch hardware. The overall goal is the transparent
acceleration of HPC applications encapsulated within an MPI
implementation.

I. INTRODUCTION

High performance computing (HPC) systems are facing
a crisis in performance-portability and scalability. Problems
include increasing communication latency, networks that are
both overloaded and underutilized (depending on the applica-
tion mix), load balancing, and process skew. In this work we
propose ACiS, a framework and taxonomy for Advanced Com-
puting in the Switch. ACiS adds application-level computation
to communication switches; we find that extremely high-value
computing can be enabled with minimal redesign of either
network, NIC, or processing node, and that ACiS hardware can
be added to the switch without changing standard dataplane
architecture or loss of non-ACiS performance.

Thirty years of codesign have made FPGAs ideal com-
munication processors. There are at least three aspects to
this: (i) compute capability that is high performance and per-
application configurable; (ii) communication capability that is
vast and flexible through scores of multigigabit transceivers
(MGTs); and (iii) tight coupling of computation with com-
munication that enables application-level transfers in just a
few cycles. Use of FPGAs in ACiS is therefore a plausible
approach for addressing HPC scalability problems.

Offload of collective processing into SmartNICs [9], [61] is
well established and has a number of benefits: first, it enables
the bypassing of layers in the communication software stack;

TBoston University

Anthony Skjellum” Martin Herbordt™
#Tennessee Tech

second, the hardware implementations are substantially faster
than the software; third, it frees up the host processor for
other tasks and, potentially, enables better communication-
computation overlap; and fourth, some network-host commu-
nication is removed as the NIC handles additional send/receive
operations. While SmartNICs are valuable, this scheme still
forces processing into the endpoints.

Another approach is to offload collective processing into
the switches [16], [19]. This has two additional benefits:
first, latency is improved as computation is distributed rather
than performed in a single source (broadcast) or endpoint
(reduction); and, second, communication volume may be dras-
tically reduced as messages are quickly merged (reduction) or
slowly replicated (broadcast). Communication switches have
previously been augmented to process collectives, e.g., the
IBM BlueGene project and the Mellanox SHArP switch, but
the support has been limited to a small set of predefined scalar
operations and datatypes (e.g., [17], [19]). Moreover, beyond
collectives there are additional acceleration opportunities.

With ACiS we unify and expand our previous work [24],
[28], [29], [31] to provide a framework that further augments
switches to accelerate additional and more complex functions
that integrate communication with computation. In addition
to simple collectives (Type 1), we propose three more types
of in-switch application processing: Type 2 — User-defined
operations and types, including simple data structures; Type
3 — Look-aside operations that have state within the operation
and can have loops; and Type 4 — Fused collectives built
by fusing multiple existing collectives or collectives with
computations.

Implementations with reconfigurable logic have several in-
herent advantages over fixed logic implementations.! First,
they are not limited to a small, fixed set of operations; second,
hardware resources can be configured to match application
requirements; third, support can be extended beyond simple
datatypes to higher order structures such as matrices, tensors,
and user defined datatypes; fourth, since reconfiguration time
is similar to program load time, only resources that will
actually be used need to be configured.

Our hardware approach begins with a seamless integration
into a general router, added hardware support for aggregating
(reordering) packets for reduce-type (gather-type) operations,
and the flexibility to add more computational resources as the
switch bandwidth increases. Complexity is supported with a
CGRA-like architecture. Software support for ACiS includes

'We note that software implementations are out of the question since they
could never keep up with current line rates.

Ingress Egress
Match
Parser Accelerator D Match
Action eparser Parser Action Deparser
[e \
@ L 1D D D~ e § 1D Diﬂ-
D Header Bypass E D
Payload Bypass 7
Other
Payload Collective D D D Pipes Payload'
De M
PARSER| | Control DDD PAaRSER| | E [P
Plugin | |Aggreg.
Unit DQD A
Meta data
g_the’ — — .| DMA CPU
1Pes — Recirculate

Fig. 1. The well-known Protocol Independent Switch Architecture (PISA) enhanced with ACiS accelerator, a composable plugin to a packet
processing pipeline (one pipe shown). White blocks are proposed and grey blocks are in existing switches.

TABLE I
ACIS TYPES REFERENCE

Type O Processing single data streams

Type 1 Collectives on primitive types

Type 2 User defined operations and types
Type 3 | Look-aside processing - loops and memory
Type 4 Fused collectives and map functions

evaluation and translation of relevant parts of user programs,
compilation of user specifications into control flow graphs,
and mapping the graph into switch hardware. Another core
part of ACis is encapsulation within an MPI implementation
for transparent acceleration of HPC applications. Efficacy of
ACiS has been demonstrated [24], [28], [29], [31] on a number
of HPC applications including the NAS parallel benchmarks,
two MiniApps from Mantevo (miniFE and HPCCG), graph
convolutional networks (GCNs), PGEMM, and AMG.

For the rest of this report we first expand on the ACiS
Types, then give an overview of the hardware aspects of
ACiS, followed by some experimental results, an overview
of software support, and related work.

II. ACIS TYPES

We classify ACiS capabilities into progressively complex
types of in-switch computing (Table I):
Type 0: Consists of transformations on streams such as
changes in data types or appending a CRC code. This is a well-
understood subset of work proposed here and only mentioned
for completeness.

Type 1: Adds to Type O by supporting collectives, but
on a limited number of primitive data types (e.g., int) and
operations (e.g., add, max). Datatypes, operations, and com-
munication contexts (MPI communicator) are fixed.

Type 2 [28]: Adds to Type 1 by supporting collectives of
user-defined operations (e.g., dot product), datatypes (e.g.,

matrices, sparse datatypes), and communication context with
MPI communicators scalable to a large number of nodes.

Type 3 [29]: Adds to Type 2 by supporting look-aside
capability: functions requiring loops and off-chip memory.
The data plane has direct access to off-chip memory for
storing/retrieving packet data. Examples include accelerating
compression algorithms and communication-intensive parts of
machine learning inference for large-scale datasets.

Type 4: [31] Adds to Type 3 by supporting fused collectives
and the combining of collectives with map operations. An
example is fusing AllReduce with AlltoAll found in the NAS
sort benchmark. Another example is accelerating MapReduce
type of operations (used in DNN inference).

III. RELATED WORK, ACIS DIFFERENTIATION

Although the network is the computer is an old trope [51],
in practice it has most often meant use of the network as
a passive, transparent conduit. Recent years have seen the
flipping of the data center model from compute-centric to data-
centric [48], [65], in part, through the emergence of SmartNICs
[51-[8], [10], [37], [46], [49], [52], [56] and similar network-
facing devices [12], and their use in offloaded application
[13], [21]-[23], [64] and system [18], [41] processing. Simple
application-stream processing for collectives has also been
implemented in switches by IBM and Mellanox [4], [20], [52],
but these operations have had limited scope, e.g., reductions
only, and on a small set of operations and simple data types
(part of ACiS Type 1). Also, in general, they have offered
only modest benefit in typical environments [27], [35]. Our
recent work has demonstrated the viability and benefit of
extending in-switch processing in two ways: expanding in-
switch processing support along several dimensions (Types 2-
4 [28], [29], [31]) and network-centric acceleration of specific
applications [25], [26]. The work described here proposes
extensions and generalizations to these approaches, namely,

to advance intelligent communication by augmenting switches
to enable complex processing augmentations (to Types 2-4) as
described in Section II.

Of special mention is P4, the “domain-specific programming
language for network devices, specifying how data plane
devices (e.g, switches, routers, NICs, filters, etc.) process
packets” [50]. P4 has aided in increasing switch flexibility [11]
including accelerating applications that are beyond the basic
switching function. Examples are consensus algorithms [15],
database transaction processing [38], caching [44], and key-
value store [39]. While there has also been some exploration
of application-level processing [53] in P4 switches, including
support of collectives in ML training [54], these capabilities
are currently limited [60] by the supported set of operations
(e.g., no multiply), data types (e.g., no sparse data types),
and memory footprint. Perhaps most significantly, packets can
only access each memory location once within a traversal
[16]; while it is possible to recirculate packets, this reduces
throughput. To address these limitations, ACiS is designed
to handle advanced calculations, such as fused multiply-
accumulate (MAC) and sparse accumulation, off-chip memory
access with cacheable buffers, data reuse, and control.

In-switch computing is an active area of research with
Types 1-3 (defined in Section II) being partially addressed.
The work in [42] provides an in-switch computing paradigm,
implemented on NetFPGA, to accelerate aggregation of gra-
dients used in the training phase of reinforcement learning
(Type 1). The work in [16] designs a flexible programmable
switch on top of PsPIN building blocks to accelerate Allreduce
with custom operators and data types; that is, sparse data
(Type 2 on a single collective type). The work [45] presents
an RDMA-compatible in-network reduction architecture to
accelerate distributed DNN training in which the FPGAs are
connected to the switch and the switch is configured to route
the packets that need to be aggregated to the FPGA (Type
2). The work in [60] adds custom hardware based on a
MapReduce pattern/abstraction (built upon a CGRA) to P4
devices to enable per-packet inference of machine learning
(Type 3 - but with no fusion of collectives). To summarize,
we are not aware of previous work that fully supports user-
defined or complex collectives (Types 2 and 3) or in any way
addresses look-aside capability (Type 4).

IV. HARDWARE DESIGN

An important switch design consideration is modularity
[47], which ACiS follows by introducing composable plu-
gins to successively add capabilities. These plugins can be
(nearly) seamlessly added to existing switches and are network
friendly. Capabilities for Types 2-4 include flexible aggre-
gation and communication management, schedulability, and
stateful processing.

Given that ACiS types are built in successive layers, the
architecture is composed of successive plugins. Figure 1 shows
PISA, a state-of-the-art protocol-independent switch model,
enhanced with an ACiS accelerator for Types 1-4. Only one

pipe is shown in this figure; a switch is comprised of repli-
cated pipes and each pipe can include a number of physical
ports [62]. We note that packet processing in this model is
done at the header level. However, MPI-specific fields (e.g.,
source/destination ranks, tag) are embedded in the payload.
Thus, we modify the architecture by introducing a separate
pipeline for payload-level packet processing (bottom part of
Figure 1). We summarize the key ideas for each plugin.

Type 2 supports a collective processing unit including flexible
management of MPI communicator context and programmable
aggregation units with the support for different operations
and data types. Two plugins are (1) a collective control unit,
and (2) a programmable aggregation unit. We implement the
collective control plugin with lookup tables. Current protocol-
independent switches, however, do not offer flexible wide-
access to these lookup tables; that restriction is addressed with
this plugin. To route the output of the aggregation unit to any
pipe (1-to-N converter) there is (3) a multicast engine at the
end of the pipeline (inspired from the packet replication engine
in P4 switches [55]). Finally, in order to be compliant with
any MPI implementation, we also need two other plugins: (4)
a parser and (5) a deparser, but in the payload pipeline (see
Figure 1). These are again inspired from P4-based switches
and make it feasible to support different MPI flavors.

Type 3, which supports state and loops, uses a plug-in that
has an instruction-based reconfigurable compute unit and a
recirculate interface (if the switch architecture does not already
have one [36]). The key plugin is the interface for off-chip
memory, which facilitates stateful processing of HPC applica-
tions. To minimize the effort for the design of this type we
note that it is equivalent to supporting load/store instructions
in the CGRA (see Type 4 and Figure 2). However, a good
memory model is needed to fully exploit the capabilities
of the hardware without hampering the overall application
throughput. We take advantage of multi-banks provided by
recent off-chip memory technologies and specify separate
data and instruction memory for each SIMD Processing Unit
(SPU).

Type 4, Since the map operation (computation sandwiched
between collectives) can be any user-provided function, the
plugin must be programmable. We posit that a coarse grained
reconfigurable array (CGRA) is a suitable candidate for the
first plugin since both software-like programmability and near-
ASIC performance is achieved. Using an instruction-capable
CGRA makes the plugin user-friendly and brings the control
plane closer to the switch fabric. We divide the CGRA’s
processing elements into SPUs and then stack these SPUs in
a deep pipeline with a simple yet high speed interconnect. We
observe that many HPC applications operate on vectors of data
and these vectors are typically large. Consequently, the SPUs
have wide vector instruction support. For the second plugin, a
recirculate interface is used to process a chain of collectives.

AXI-MM

..., HBM Read J
Master
HBM Write
pasiey meta data
Stream-In’ [Vector PE! ~ Stream |
g I |
Stream-In, I | | -out |
Rei =
| I |
| FIFO | | | I Firo !
: | | | : |
AXI- | | | |
" AXI-
Stream | | Dis| P| | Assem)\ l
—> i Assem\ b | PE |, — bler — ||Stream
| E[[D_IL bler Jl : | E[[D_r_>
| FIFO | | | | FIFo |
|
I | | | : I
I | | | : I
: FIFO | > PE | | FIFO |
| |
| |
T)) (p— S,
Auto PC Logic Auto PC Logic Auto PC Logic
Increment Increment Increment
Vector <-| Decoder Vector <-| Decoder Vector <-| Decoder AXI-MM
A ry A |
$ T T 7
AXI-Lite| 4x7 HBM Read | Instruction
Control CT CcT CcT Master Loader

Fig. 2. The proposed CGRA architecture used in Figure 1 with three SIMD processing units (SPUs) in a deep pipeline. It is packaged with

AXI interface to facilitate the integration with switch pipelines.

V. ACIS EXPERIMENTAL EVALUATION

In this section, we present the experimental setup and the
performance/scalability study of ACiS for collectives, HPC/AI
kernels, and applications for different types.

A. Experimental Setup

For proof-of-concept, we have implemented and tested
ACiS on an FPGA-based system in both direct and indirect
network settings using the Xilinx Vitis unified software plat-
form. We compare ACiS with a high-end CPU cluster.

Indirect Network: The testbed is a two-node system on
CloudLab [32], [33] with a Xilinx Alveo U280 FPGA attached
to a Dell Z9100-ON switch (total of three nodes including
host). A 100 Gbps switch interconnects all three nodes. Each
process in the leaf nodes, two in this case, in addition to the
FPGA itself, is assigned an IP address and a port number. This
information is stored in the networking kernel of the FPGA
to forward the messages to the correct destination according
to the collective type and algorithm. Messages are sent from
the leaf nodes to the FPGA through the switch, processed in
the FPGA user kernel, and sent back to the corresponding
leaf node(s). We also provide a runtime that automates and
manages the execution of processes in basic/fused collectives.
This includes connecting to leaf nodes from the master process
(through SSH), creating processes there, assigning new port
numbers for each process, and waiting for the completion.
We use the Xilinx Vitis 2021.2 unified software platform to
program the FPGA. Our accelerator is coupled with a modified
version of [63] to send/receive packets from two leaf nodes.
The operating frequency is 250 MHz.

Direct Network: In the direct network testbed, two Alveo
U280 boards are directly connected using QSFP28 network

interfaces (capable of 100 Gb/s). Each board is connected to
an Intel Xeon E5-2620V2 server. To simulate a larger number
of nodes, we conduct an experiment to obtain parameters
used for the emulation of a larger-scale proxy system. In this
experiment, a sender process sends 1408 bytes worth of data
to a receiver process using TCP/IP network logic [34] handled
by FPGAs. We used the ExaMPI implementation [57] as the
middleware for this experiment. The parameters used in the
emulation (derived from our system setup) are shown in Table
II. MPI overhead is the average overhead of MPI_send and
MPI_Recv in ExaMPI.

For the rest of this section, we evaluate the performance
of ACiS on the direct network based on the emulator. The
emulation has the same requirements as [43]. That is, the
emulation should possess: (1) the same volume of traffic in
the network links, (2) an identical number of network hops,
and (3) an accurate overhead of the accelerator. For the ACiS
accelerator overhead, we use cycle-accurate RTL simulation
through testbenches using the Xilinx Vivado Tool. We emulate
an FPGA cluster with up to 128 nodes in a 3D-torus.

CPU Implementation: For the CPU reference, we use the
TACC Stampede2 [59] Skylake (SKX) compute cluster with
48-cores per node (2 sockets) 2.1 GH z Intel Xeon Platinum
8160 CPUs, and a 100 Gb/s Intel Omni-Path (OPA) network.
We used Intel MPI 18.0.2 as an Intel-compatible MPI is
recommended for this cluster; we found it usually gives better
performance than other MPI implementations.

B. Performance and Scalability

Type 2: Fig. 3 shows the simulation results of ACiS and
baseline MPI collectives for small (4 Bytes to 4 KB) and
medium-to-large message sizes (4 KB to 4 MB) for 32, 64,

TABLE II
PARAMETERS USED IN THE EMULATION OF THE DIRECT NETWORK.
* DENOTES THE AURORA IP LATENCY.

MPI Overhead 14.8 usec

Maximum Network Bandwidth (BW) | 95.9 Gbps
PCle Latency 0.9 usec
FPGA-to-FPGA Latency* 0.44 usec
Minimum Port-to-Port Latency 52 nsec

and 128 nodes (direct network) using the OSU benchmarks
(v5.6.2) [3]. The reported average latency is the average time it
takes for the processes to finish the operation. Processor-FPGA
communication latency is included in the time. To isolate the
impact of the design under study, e.g., from contention at
the PCle interface, we focused simulations with one process
per node. As the results suggest, ACiS demonstrates greater
performance compared to the CPU cluster baseline.

Type 3: We evaluate Type 3 for a Graph Convolution
Network (GCN) application on the direct network using
four datasets: PPI, Citeseer, Pubmed, ogbn-mag, and ogbn-
products. Figure 4 shows the performance and scalability of
GCN with and without ACiS acceleration across all datasets. It
demonstrates superior scalability of ACiS. On average, ACiS
improves application performance compared to a baseline
SKX cluster by a factor of 2.2x, 2x, 1.1x, 1.4x, and 10.1x
for PPI, Citeseer, Pubmed, ogbn-mag, and ogbn-products on
24 nodes with an average of 3.4 across all datasets.

Type 4: Indirect Network: To evaluate the efficacy in
indirect network settings we use CloudLab [32] with three
nodes (two leaf nodes and one node to host the FPGA) capable
of 100 Gbps. Since the runtime and MPI support are based on
Python, we compare this approach with a Python-based MPI,
MPl4py [14]. We demonstrate its performance compared to
traditional MPI for an instance of fused collectives used in
FEM applications. Figure 5 shows the latency comparison of
Allgather_op_allgather in both MPI4py and ACiS for different
message sizes. Op here is a prefix sum. The results are
from taking the average of five runs. It clearly shows that
ACiS provided superior performance, especially for larger
message sizes with, on average, a 1.98x improvement. The
performance benefit comes from the fact that intermediate
communications are bypassed and computations—sandwiched
between collectives—are directly processed in the accelerator.

Direct Network: We evaluate ACiS against the baseline
CPU cluster for NAS parallel benchmark (NPB) [2] and
miniFE [1]. NPB includes the following: IS (Integer Sort),
LU (Lower-Upper Gauss-Seidel solver), MG (Multi-Grid on a
sequence of meshes), and SP (Scalar Penta-diagonal solver).
And miniFE is an unstructured implicit finite element code.
Figure 6 shows the performance benefit of ACiS over the
original MPI implementation on the SKX cluster (64 and
128 nodes) for the NPB and MINIFE proxy applications.
SKX time and error bars represent the time it takes on SKX
cluster and std for five runs. BENCHMARK-X-TY represents
the benchmark with X nodes and ¥ OpenMP threads. Among
NPB applications, the performance benefits for MG and IS
are higher than for the others. For IS, one reason is that

the message size of collectives is relatively high, and ACiS
can take advantage of communication-computation overlap
and in-network data reduction. For MINIFE, the performance
improvement percentage is typically higher than that of NPB.

VI. SOFTWARE SUPPORT

Architectural enhancements should ideally be transparent
to all other aspects of the system. This inevitably requires
software support. Two aspects of this support are described,
followed by a database that allows programmers to automati-
cally find where ACiS collectives could collectives.

A. MPI Transparency

To support MPI transparently, and thus a large fraction of
HPC applications, a new transport layer needs to be created
using device-specific APIs to communicate with the switch
accelerator device. Each supported MPI routine can then be
modified to use the new transport (see, e.g., [28]. We have
already developed an FPGA transport to communicate between
MPI processes through a secondary FPGA-directed network
for an ExaMPI implementation [58]. ExaMPI is a light-weight
MPI implementation, being developed by one of the PIs, which
focuses on key blocks of functionality and new MPI concepts.

B. Configuring ACiS in the Switch

To facilitate programming and interaction with a switch
accelerator directly from an MPI application support for a
source-to-source (S2S) translator should be added. The S2S
translator includes (1) a parser, (2) a compiler, (3) an assem-
bler, and (4) a wrapper. The input is the source code for an
MPI application and the output is new MPI code enhanced
with fused collective routines. New routines are added for each
fused collective; each is modified with a loader (in addition
to Types 1-2 software support) to load the CGRA binary
(discussed below) into the switch accelerator.

We now briefly describe its features [29]. It is based on
LLVM [40] with the back-end target instruction set being
RISC-V (used by the CGRAs). LLVM emits an intermediate
representation (IR). In the back-end, target-dependent parame-
ters (e.g., CGRA dimension) are used to apply a number of op-
timizations. The steps in the back-end include parsing the IR,
generating the DFG, code generation, scheduling, and register
allocation. Next, an assembler takes the generated instructions
and outputs CGRA binary. Finally, the wrapper replaces parts
of the application containing the fused collectives with the
corresponding fused collective routine. The generated CGRA
binary is carried as an argument to the fused collective routine.

C. Database

In [30] we characterize a large number of MPI applications
to determine overall applicability of ACiS-supported opera-
tions, in both breadth and type, and so provide insight for
hardware designers and MPI developers about future offload
possibilities. Besides increasing the scope of prior surveys to
include finding (potential) new MPI constructs, we also tap
into new methods to extend the survey process. Prior surveys

Allgather Allreduce

Bcast Gather

105 5
’c/); 10
\;104 103
g
2 2
E 103 10
e 102
© 102
q>) 10!
< 1

101 10 OO

102 104 108
Message Size (Bytes)
(@)

102 104 108
Message Size (Bytes)
(b)
—#— SKX-32

—#+— SKX-64 —#— SKX-128

102 104 108
Message Size (Bytes)
(c)

102 104 106
Message Size (Bytes)
(d)

-e- FPGA-32 -o- FPGA-64 -o- FPGA-128

Fig. 3. ACiS vs MPI CPU cluster (SKX) execution times for 32, 64, and 128 nodes: (a) osu_allgather, (b) osu_allreduce, (c) osu_bcast, and (d) osu_gather.

PPI Citeseer Pubmed Ogbn-products Ogbn-mag
245 1.8 20 500 10000
b 1.6
Ess 1.4 15 400 1000
S 3 12
€25 1 300
5 10 100
g 2 0.8 200
@ 15 0.6
g1 0.4 5 100 10
505 0.2
200 0 0 0 1
= 2 4 8 16 24 2 4 8 16 24 2 4 8 16 24 2 4 8 16 24 48 2 4 8 16 24 48
Number of Nodes Number of Nodes Number of Nodes Number of Nodes Number of Nodes
SKX ACGiS
Fig. 4. Application performance and scalability comparison of GCN on a baseline CPU cluster (SKX) vs. ACiS.
08 100 1400
.81 90
—e— MPI4py 8 80 1200
0.7] —m. - 7 1000
Our Approach Z 6 500 E
E 50 @
0.6 2 20 600 £
— E‘ 30 400 =
0 0.5 20
g - 10 200
0 0
§ 04 T EEEEEEEERE
< S N 1 SR S - T < T S - R I T B
+ 0.3 el 2 3 =2 23 ¢ 3 & Z EEE & B @
S - 2= 32 g © 5 E E T = 2 &
- = g £ . = £ =
0.21 E E £ E %
mmm SKX Time (ms) ==Improvement (%) -+ LoGcN Model
0.11
Fig. 6. Performance improvement of ACiS over original MPI implementation
0.0 on SKX cluster (64 and 128 nodes) for the NAS parallel benchmarks and
2000 4000 6000 8000 10000 MINIFE. SKX time and error bars represent the time it takes on SKX cluster

Message Size (Bytes)

Fig. 5. Latency comparison of Allgather_op_Allgatherv in MPI4py and ACiS.
Op is prefix sum. The X-axis shows the message size in bytes used for
Allgathers and the Y-axis shows the latency in milliseconds.

on MPI usage considered lists of applications constructed
based on application developers’ knowledge. The we take,
however, is based on an automated mining of a large collection
of code sources. More specifically, the mining is accomplished
by GitHub REST APIs. We use a database management system
to store the results and to answer queries. Another advantage
is that this approach provides support for a more complex
analysis of MPI usage, which is accomplished by user queries.

and std for five runs, respectively.

VII. CONCLUSION

In this work, we propose a general-purpose, transparent,
framework for in-switch computing in reconfigurable devices
to provide application-level acceleration. We concentrate on
communication collectives and their combinations with each
other and with mapping functions. We find that the same basic
hardware substrate can be used for multiple extensions to basic
collectives: user definition, look-aside (context), and fusion
(including some level of control). We describe some of the
software support that enables transparency.

ACKNOWLEDGEMENTS

This work was supported, in part, by the National Science
Foundation through awards CCF-1919130, CCF-2151021, and
CCF-2326494; and by AMD and Intel both through donated
FPGAs, tools, and IP.

[1]
[2]
[3]

[4

=

[6

=

[7

—

[8

=

[9

—

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

“ECP Proxy Applications:
exascaleproject.org/app/minife/.
“NAS Parallel Benchmarks,” https://www.nas.nasa.gov/software/npb.
html.

“OSU Micro-benchmarks.” [Online]. Available: http://mvapich.cse.ohio-
state.edu/benchmarks/

G. Almasi, P. Heidelberger, C. J. Archer, X. Martorell, C. C. Erway, J. E.
Moreira, B. Steinmacher-Burow, and Y. Zheng, “Optimization of MPI
collective communication on BlueGene/L systems,” in Proceedings of
the 19th annual international conference on Supercomputing (ICS’05),
2005, pp. 253-262.

Arap, O. and Swany, M., “Offloading Collective Operations to Pro-
grammable Logic on a Zynq Cluster,” in High-Performance Intercon-
nects (HOTI), 2016 IEEE 24th Annual Symp. on, 2016, pp. 76-83.
Intel, “FPGA Programmable Acceleration Card D5005,”
https://www.intel.com/content/www/us/en/programmable/products/
boards_and_kits/dev-kits/altera/intel- fpga-pac-d5005/overview.html
[Last accessed: April 29, 2021].

Xilinx, “Alveo SmartNIC Accelerator Card,” https://www.xilinx.com/
products/boards-and-kits/alveo.html [Last accessed: April 29, 2021].
Xilinx, “Alveo SN1000 Accelerator Card,” https://www.xilinx.com/
applications/data-center/network-acceleration/alveo-sn1000.html [Last
accessed: April 29, 2021].

M. Bayatpour, N. Sarkauskas, H. Subramoni, J. M. Hashmi, and D. K.
Panda, “BluesMPI: Efficient MPI Non-blocking Alltoall Offloading
Designs on Modern BlueField Smart NICs,” in High Performance
Computing. Springer International Publishing, 2021, pp. 18-37.
——, “BluesMPI: Efficient MPI Non-blocking Alltoall Offloading De-
signs on Modern BlueField Smart NICs,” in High Performance Com-
puting. Springer International Publishing, 2021, pp. 18-37.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4:
Programming Protocol-Independent Packet Processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, p. 87-95, 2014.

A. Caulfield, E. Chung, A. Putnam, H. Angepat, J. Fowers, M. Hasel-
man, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Massengill,
K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou, and
D. Burger, “A cloud-scale acceleration architecture,” in 49th IEEE/ACM
Int. Symp. Microarchitecture, 2016, pp. 1-13.

E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman, M. Abeydeera,
L. Adams, H. Angepat, C. Boehn, D. Chiou, O. Firestein, A. Forin,
K. S. Gatlin, M. Ghandi, S. Heil, K. Holohan, A. El Husseini, T. Juhasz,
K. Kagi, R. K. Kovvuri, S. Lanka, F. van Megen, D. Mukhortov, P. Patel,
B. Perez, A. Rapsang, S. Reinhardt, B. Rouhani, A. Sapek, R. Seera,
S. Shekar, B. Sridharan, G. Weisz, L. Woods, P. Yi Xiao, D. Zhang,
R. Zhao, and D. Burger, “Serving dnns in real time at datacenter scale
with project brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8-20, 2018.
L. Dalcin and Y.-L. L. Fang, “mpi4py: Status update after 12 years of
development,” Computing in Science and Engineering, vol. 23, no. 4,
pp. 47-54, 2021.

H. T. Dang, M. Canini, F. Pedone, and R. Soulé, “Paxos made switch-y,”
SIGCOMM Comput. Commun. Rev., vol. 46, no. 2, p. 18-24, may
2016. [Online]. Available: https://doi.org/10.1145/2935634.2935638

D. DeSensi, S. D. Girolamo, S. Ashkboos, S. Li, and T. Hoefler, “Flare:
Flexible in-network allreduce,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’21, 2021.

A. Faraj, S. Kumar, B. Smith, A. Mamidala, and J. Gunnels, “MPI col-
lective communications on the blue gene/P supercomputer: Algorithms
and optimizations,” Proceedings - Symposium on the High Performance
Interconnects, Hot Interconnects, pp. 63-72, 2009.

miniFE Catalog,” https://proxyapps.

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh,
M. Andrewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung,
H. K. Chandrappa, S. Chaturmohta, M. Humphrey, J. Lavier,
N. Lam, F. Liu, K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel,
T. Sapre, M. Shaw, G. Silva, M. Sivakumar, N. Srivastava,
A. Verma, Q. Zuhair, D. Bansal, D. Burger, K. Vaid, D. A.
Maltz, and A. Greenberg, “Azure accelerated networking: SmartNICs
in the public cloud,” in I5th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18). Renton, WA:
USENIX Association, Apr. 2018, pp. 51-66. [Online]. Available:
https://www.usenix.org/conference/nsdil 8/presentation/firestone

R. L. Graham and et al., “Scalable Hierarchical Aggregation Protocol
(SHArP): A Hardware Architecture for Efficient Data Reduction,” in
2016 Workshop on Communication Optimizations in HPC, 2016.

R. L. Graham, L. Levi, D. Burredy, G. Bloch, G. Shainer, D. Cho,
G. Elias, D. Klein, J. Ladd, O. Maor, A. Marelli, V. Petrov, E. Romlet,
Y. Qin, and I. Zemah, “Scalable hierarchical aggregation and reduc-
tion protocol (sharp)tm streaming-aggregation hardware design and
evaluation,” in High Performance Computing, P. Sadayappan, B. L.
Chamberlain, G. Juckeland, and H. Ltaief, Eds. Cham: Springer
International Publishing, 2020, pp. 41-59.

A. Guo, T. Geng, Y. Zhang, P. Haghi, C. Wu, C. Tan, Y. Lin,
A. Li, and M. Herbordt, “A Framework for Neural Network
Inference on FPGA-Centric SmartNICs,” in [International Confer-
ence on Field-Programmable Logic and Applications, 2022, dOI:
10.1109/FPL57034.2022.00071.

——, “FCsN: A FPGA-Centric SmartNIC Framework for
Neural Networks,” in 30th IEEE International Symposium on
Field-Programmable Custom Computing Machines, 2022, dOI

10.1109/FCCM53951.2022.9786193.

A. Guo, Y. Hao, C. Wu, P. Haghi, Z. Pan, M. Si, D. Tao, A. Li, M. Her-
bordt, and T. Geng, “Software-hardware co-design of heterogeneous
smartnic system for recommendation models inference and training,”
in ICS 2023: International Conference on Supercomputing, 2023, dOI
= 10.1145/3577193.3593724.

P. Haghi, “ACIS: smart switches with application-level acceleration,”
Ph.D. dissertation, Department of Electrical and Computer Engineering,
Boston University, 2023.

P. Haghi, T. Geng, A. Guo, T. Wang, and M. Herbordt, “FP-AMG:
FPGA-Based Acceleration Framework for Algebraic Multigrid Solvers,”
in 28th IEEE International Symposium on Field-Programmable Custom
Computing Machines, 2020, dOI: 10.1109/ FCCM48280.2020.00028.
——, “Reconfigurable Compute-in-the-Network FPGA Assistant for
High-Level Collective Support with Distributed Matrix Multiply Case
Study,” in IEEE Conference on Field Programmable Technology, 2020.
P. Haghi, A. Guo, T. Geng, A. Skjellum, and M. Herbordt, “Workload
Imbalance in HPC Applications: Effect on Performance of In-Network
Processing,” in IEEE High Performance Extreme Computing Confer-
ence, 2021, doi: 10.1109/HPEC49654.2021.9622847.

P. Haghi, A. Guo, Q. Xiong, C. Yang, T. Geng, J. Broaddus, R. Marshall,
D. Schafer, A. Skjellum, and M. Herbordt, “Reconfigurable switches
for high performance and flexible MPI collectives,” Concurrency and
Computation: Practice and Experience, vol. 34, no. 2, 2022, doi:
10.1002/cpe.6769.

P. Haghi, W. Krska, C. Tan, T. Geng, P. Chen, C. Greenwood, A. Guo,
T. Hines, C. Wu, A. Li, A. Skjellum, and M. Herbordt, “FLASH:
FPGA-Accelerated Smart Switches with GCN Case Study,” in 37th
ACM International Conference on Supercomputing (ICS), 2023, dOI =
10.1145/3577193.3593739.

P. Haghi, R. Marshall, A. Skjellum, and M. Herbordt, “A Survey of
Potential MPI Complex Collectives: Large-Scale Mining and Analysis
of HPC Applications,” 2023.

P. Haghi, C. Tan, A. Guo, C. Wu, D. Liu, A. Li, A. Skjel-
lum, T. Geng, and M. Herbordt, “Smartfuse: Reconfigurable smart
switches to accelerate fused collectives in hpc applications,” in 38th
ACM International Conference on Supercomputing (ICS), 2024, dOI:
10.1145/3650200.3656616.

S. Handagala, M. Herbordt, and M. Leeser, “OCT: The Open Cloud
FPGA Testbed,” in 31st International Conference on Field Pro-
grammable Logic and Applications (FPL), 2021, doi: TBD.

S. Handagala, M. Leeser, K. Patle, and M. Zink, “Network Attached
FPGAs in the Open Cloud Testbed (OCT),” in IEEE INFOCOM 2022 -
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), 2022, pp. 1-6.

[34]

[35]

[36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]
[49]
[50]
[51]

[52]

[53]

[54]

Z. He, D. Korolija, and G. Alonso, “Easynet: 100 gbps network for
hls,” in 2021 3lIst International Conference on Field-Programmable
Logic and Applications (FPL). Los Alamitos, CA, USA: IEEE
Computer Society, sep 2021, pp. 197-203. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/FPL53798.2021.00040

T. Hoefler, T. Schneider, and A. Lumsdaine, “The effect of network noise
on large-scale collective communications.” Parallel Processing Letters,
vol. 19, pp. 573-593, 12 2009.

S. Ibanez, G. Antichi, G. Brebner, and N. NcKeown, “Event-Driven
Packet Processing,” in 18th ACM Workshop on Hot Topics in Networks,
2019.

Inventec, “FPGA SmartNIC C5020X,” https://ebg.inventec.com/en/
product/Accessories/Smart\ %20NIC\ %20Card/Inventec\ %20FPGA\
%20SmartNIC\ %20C5020X [Last accessed: April 29, 2021].

M. Jasny, L. Thostrup, T. Ziegler, and C. Binnig, “P4db - the case for
in-network oltp,” in Proceedings of the 2022 International Conference
on Management of Data, ser. SIGMOD °22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1375-1389. [Online].
Available: https://doi.org/10.1145/3514221.3517825

X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and
I. Stoica, “Netcache: Balancing key-value stores with fast in-network
caching,” in Proceedings of the 26th Symposium on Operating
Systems Principles, ser. SOSP *17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 121-136. [Online]. Available:
https://doi.org/10.1145/3132747.3132764

C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proceedings of the Interna-
tional Symposium on Code Generation and Optimization: Feedback-
Directed and Runtime Optimization, ser. CGO ’04. USA: IEEE
Computer Society, 2004, p. 75.

B. Li, K. Tan, L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng, and
E. Chen, “Clicknp: Highly flexible and high performance network pro-
cessing with reconfigurable hardware,” in Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communica-
tion, 2016.

Y. Li, L-J. Liu, Y. Yuan, D. Chen, A. Schwing, and J. Huang, “Accel-
erating distributed reinforcement learning with in-switch computing,”
in Proceedings of the 46th International Symposium on Computer
Architecture, 2019, p. 279-291.

——, “Accelerating Distributed Reinforcement learning with In-Switch
Computing,” in 2019 ACM/IEEE 46th Annual International Symposium
on Computer Architecture (ISCA), 2019, pp. 279-291.

M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya,
“Incbricks: Toward in-network computation with an in-network cache,”
SIGARCH Comput. Archit. News, vol. 45, no. 1, p. 795-809, apr 2017.
[Online]. Available: https://doi.org/10.1145/3093337.3037731

S. Liu, Q. Wang, J. Zhang, Q. Lin, Y. Liu, M. Xu, R. C. C. Chueng,
and J. He, “Netreduce: Rdma-compatible in-network reduction for
distributed DNN training acceleration,” CoRR, vol. abs/2009.09736,
2020. [Online]. Available: https://arxiv.org/abs/2009.09736

Mellanox, “Innova-2 Flex Open Programmable SmartNIC,” https://www.
mellanox.com/files/doc-2020/pb-innova-2-flex.pdf [Last accessed: April
29, 2021].

O. Michel, R. Bifulco, G. Rétviri, and S. Schmid, “The programmable
data plane: Abstractions, architectures, algorithms, and applications,”
ACM Comput. Surv., vol. 54, no. 4, 2021.

T. Morgan, “Intel’s best dpu will be commercially available — someday,”
The Next Platform, vol. August 31, 2021, 2021.

Napatech, “FPGA acceleration cards,” https://www.napatech.com/
products/ [Last accessed: April 29, 2021].

P4 Team, “Web page for P4 Opensource Programming Language,”
https://opennetworking.org/p4/, accessed 10/30/2022.

T. Perry, “Does the Repurposing of Sun Microsystems’ Slogan Honor
History, or Step on It?” IEEE Spectrum), no. 30 July, 2019.

R.L. Graham, et al., “Scalable Hierarchical Aggregation Protocol
(SHArP): A Hardware Architecture for Efficient Data Reduction,” in
First International Workshop on Communication Optimizations in HPC
(COMHPC), 2016.

G. Sankaran, J. Chung, and R. Kettimuthu, “Leveraging In-Network
Computing and Programmable Switches for Streaming Analysis of
Scientific Data,” in IEEE NetSoft, 2021, pp. 293-297.

A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krish-
namurthy, M. Moshref, D. Ports, and P. Richtarik, “Scaling distributed
machine learning with In-Network aggregation,” in /8th USENIX Sym-

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

posium on Networked Systems Design and Implementation (NSDI 21),
2021, pp. 785-808.

A. Shukla, K. N. Hudemann, A. Hecker, and S. Schmid, ‘“Runtime
verification of p4 switches with reinforcement learning,” in Workshop
on Network Meets AI & ML, 2019.

Silicom, “FPGA SmartNIC N5010 Series,” https://www.silicom-
usa.com/pr/fpga-based-cards/fpga-intel-based/fpga-intel-stratix-
based/silicom-fpga-smartnic-n5010_series/ [Last accessed:
29, 2021].

A. Skjellum and et al, “ExaMPI: A Modern Design and Implementation
to Accelerate Message Passing Interface Innovation,” Communications
in Computer and Information Science, vol. 1087 CCIS, pp. 153-169,
2020.

A. Skjellum, M. Riifenacht, N. Sultana, D. Schafer, I. Laguna, and
K. Mohror, “Exampi: A modern design and implementation to accelerate
message passing interface innovation,” in High Performance Computing,
J. L. Crespo-Marifio and E. Meneses-Rojas, Eds. ~ Cham: Springer
International Publishing, 2020, pp. 153-169.

D. Stanzione, B. Barth, N. Gaffney, K. Gaither, C. Hempel, T. Minyard,
S. Mehringer, E. Wernert, H. Tufo, D. Panda, and P. Teller, “Stampede
2: The Evolution of an XSEDE Supercomputer,” in Practice and
Experience in Advanced Research Computing on Sustainability, Success
and Impact, 2017.

T. Swamy, A. Rucker, M. Shahbaz, I. Gaur, and K. Olukotun, “Taurus:
A data plane architecture for per-packet ml,” in Proceedings of the 27th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ser. ASPLOS 2022, 2022, p.
1099-1114.

K. D. Underwood, J. Coffman, R. Larsen, K. S. Hemmert, B. W. Barrett,
R. Brightwell, and M. Levenhagen, “Enabling flexible collective com-
munication offload with triggered operations,” in /EEE 19th Symposium
on High Performance Interconnects, 2011, pp. 35-42.

F. L. Verdi and M. Chiesa, “Heavy hitter detection on multi-pipeline
switches,” in Symp. on Architectures for Networking and Communica-
tions Systems, 2022.

Xilinx, “XUP Vitis Network Example (VNx),” https://github.com/Xilinx/
xup_vitis_network_example, 2023.

Q. Xiong, C. Yang, R. Patel, T. Geng, A. Skjellum, and M. Herbordt,
“GhostSZ: A Transparent SZ Lossy Compression Framework with
FPGASs,” in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2019, pp. 258—
266, doi: 10.1109/FCCM.2019.00042.

H. Yoshida, “How is Data Ops Related to Data Centric Computing?” Hi-
tachi Blog, https:// community.hitachivantara.com/ blogs/hubert-yoshida/
2020/10/14/ how-is-data-ops-related-to-data-centric-computing, 2020.

April

