
ACiS: Complex Processing in the Switch Fabric

Pouya Haghi∗ Anqi Guo+ Tong Geng∗ Anthony Skjellum# Martin Herbordt+

∗University of Rochester +Boston University #Tennessee Tech

Abstract—For the last three decades a core use of FPGAs
has been for processing communication: FPGA-based SmartNICs
are in widespread use from the datacenter to IoT. Augmenting
switches with FPGAs, however, has been less studied, but has
numerous advantages built around the processing being moved
from the edge of the network to the center. Communication
switches have previously been augmented to process collectives,
e.g., IBM BlueGene and Mellanox SHArP, but the support has
been limited to a small set of predefined scalar operations and
datatypes.

In this extended abstract we present ACiS, a framework and
taxonomy for Advanced Computing in the Switch that unifies and
expands our previous work in this area. In addition to fixed scalar
collectives (Type 1), we propose three more types of in-switch ap-
plication processing: (Type 2) User-defined operations and types,
including data structures; (Type 3) Look-aside operations that
have state within the operation and can have loops; and (Type
4) Fused collectives built by fusing multiple existing collectives
or collectives with map computations. ACiS is supported in
hardware with modular switch extensions including a CGRA
architecture. Software support for ACiS includes evaluation and
translation of relevant parts of user programs, compilation of
user specifications into control flow graphs, and mapping the
graphs into switch hardware. The overall goal is the transparent
acceleration of HPC applications encapsulated within an MPI
implementation.

I. INTRODUCTION

High performance computing (HPC) systems are facing

a crisis in performance-portability and scalability. Problems

include increasing communication latency, networks that are

both overloaded and underutilized (depending on the applica-

tion mix), load balancing, and process skew. In this work we

propose ACiS, a framework and taxonomy for Advanced Com-

puting in the Switch. ACiS adds application-level computation

to communication switches; we find that extremely high-value

computing can be enabled with minimal redesign of either

network, NIC, or processing node, and that ACiS hardware can

be added to the switch without changing standard dataplane

architecture or loss of non-ACiS performance.

Thirty years of codesign have made FPGAs ideal com-

munication processors. There are at least three aspects to

this: (i) compute capability that is high performance and per-

application configurable; (ii) communication capability that is

vast and flexible through scores of multigigabit transceivers

(MGTs); and (iii) tight coupling of computation with com-

munication that enables application-level transfers in just a

few cycles. Use of FPGAs in ACiS is therefore a plausible

approach for addressing HPC scalability problems.

Offload of collective processing into SmartNICs [9], [61] is

well established and has a number of benefits: first, it enables

the bypassing of layers in the communication software stack;

second, the hardware implementations are substantially faster

than the software; third, it frees up the host processor for

other tasks and, potentially, enables better communication-

computation overlap; and fourth, some network-host commu-

nication is removed as the NIC handles additional send/receive

operations. While SmartNICs are valuable, this scheme still

forces processing into the endpoints.

Another approach is to offload collective processing into

the switches [16], [19]. This has two additional benefits:

first, latency is improved as computation is distributed rather

than performed in a single source (broadcast) or endpoint

(reduction); and, second, communication volume may be dras-

tically reduced as messages are quickly merged (reduction) or

slowly replicated (broadcast). Communication switches have

previously been augmented to process collectives, e.g., the

IBM BlueGene project and the Mellanox SHArP switch, but

the support has been limited to a small set of predefined scalar

operations and datatypes (e.g., [17], [19]). Moreover, beyond

collectives there are additional acceleration opportunities.

With ACiS we unify and expand our previous work [24],

[28], [29], [31] to provide a framework that further augments

switches to accelerate additional and more complex functions

that integrate communication with computation. In addition

to simple collectives (Type 1), we propose three more types

of in-switch application processing: Type 2 – User-defined

operations and types, including simple data structures; Type

3 – Look-aside operations that have state within the operation

and can have loops; and Type 4 – Fused collectives built

by fusing multiple existing collectives or collectives with

computations.

Implementations with reconfigurable logic have several in-

herent advantages over fixed logic implementations.1 First,

they are not limited to a small, fixed set of operations; second,

hardware resources can be configured to match application

requirements; third, support can be extended beyond simple

datatypes to higher order structures such as matrices, tensors,

and user defined datatypes; fourth, since reconfiguration time

is similar to program load time, only resources that will

actually be used need to be configured.

Our hardware approach begins with a seamless integration

into a general router, added hardware support for aggregating

(reordering) packets for reduce-type (gather-type) operations,

and the flexibility to add more computational resources as the

switch bandwidth increases. Complexity is supported with a

CGRA-like architecture. Software support for ACiS includes

1We note that software implementations are out of the question since they
could never keep up with current line rates.

1

Off-Chip

Memory

Queue

Queue

Match

Action
Match

Action
AcceleratorParser Deparser

Payload

Payload Bypass

Header Bypass

DMA CPU

Deparser

Traffic

Manager

Parser

Ingress Egress

Collective

Control

Plugin

Other

Pipes

Payload

Recirculate

PARSER

Meta data

De
PARSER

M
E

Queue

Other
Pipes

Aggreg.

Unit

Fig. 1. The well-known Protocol Independent Switch Architecture (PISA) enhanced with ACiS accelerator, a composable plugin to a packet
processing pipeline (one pipe shown). White blocks are proposed and grey blocks are in existing switches.

TABLE I
ACIS TYPES REFERENCE

Type 0 Processing single data streams

Type 1 Collectives on primitive types

Type 2 User defined operations and types

Type 3 Look-aside processing - loops and memory

Type 4 Fused collectives and map functions

evaluation and translation of relevant parts of user programs,

compilation of user specifications into control flow graphs,

and mapping the graph into switch hardware. Another core

part of ACis is encapsulation within an MPI implementation

for transparent acceleration of HPC applications. Efficacy of

ACiS has been demonstrated [24], [28], [29], [31] on a number

of HPC applications including the NAS parallel benchmarks,

two MiniApps from Mantevo (miniFE and HPCCG), graph

convolutional networks (GCNs), PGEMM, and AMG.

For the rest of this report we first expand on the ACiS

Types, then give an overview of the hardware aspects of

ACiS, followed by some experimental results, an overview

of software support, and related work.

II. ACIS TYPES

We classify ACiS capabilities into progressively complex

types of in-switch computing (Table I):

Type 0: Consists of transformations on streams such as

changes in data types or appending a CRC code. This is a well-

understood subset of work proposed here and only mentioned

for completeness.

Type 1: Adds to Type 0 by supporting collectives, but

on a limited number of primitive data types (e.g., int) and

operations (e.g., add, max). Datatypes, operations, and com-

munication contexts (MPI communicator) are fixed.

Type 2 [28]: Adds to Type 1 by supporting collectives of

user-defined operations (e.g., dot product), datatypes (e.g.,

matrices, sparse datatypes), and communication context with

MPI communicators scalable to a large number of nodes.

Type 3 [29]: Adds to Type 2 by supporting look-aside

capability: functions requiring loops and off-chip memory.

The data plane has direct access to off-chip memory for

storing/retrieving packet data. Examples include accelerating

compression algorithms and communication-intensive parts of

machine learning inference for large-scale datasets.

Type 4: [31] Adds to Type 3 by supporting fused collectives

and the combining of collectives with map operations. An

example is fusing AllReduce with AlltoAll found in the NAS

sort benchmark. Another example is accelerating MapReduce

type of operations (used in DNN inference).

III. RELATED WORK, ACIS DIFFERENTIATION

Although the network is the computer is an old trope [51],

in practice it has most often meant use of the network as

a passive, transparent conduit. Recent years have seen the

flipping of the data center model from compute-centric to data-

centric [48], [65], in part, through the emergence of SmartNICs

[5]–[8], [10], [37], [46], [49], [52], [56] and similar network-

facing devices [12], and their use in offloaded application

[13], [21]–[23], [64] and system [18], [41] processing. Simple

application-stream processing for collectives has also been

implemented in switches by IBM and Mellanox [4], [20], [52],

but these operations have had limited scope, e.g., reductions

only, and on a small set of operations and simple data types

(part of ACiS Type 1). Also, in general, they have offered

only modest benefit in typical environments [27], [35]. Our

recent work has demonstrated the viability and benefit of

extending in-switch processing in two ways: expanding in-

switch processing support along several dimensions (Types 2-

4 [28], [29], [31]) and network-centric acceleration of specific

applications [25], [26]. The work described here proposes

extensions and generalizations to these approaches, namely,

2

to advance intelligent communication by augmenting switches

to enable complex processing augmentations (to Types 2-4) as

described in Section II.

Of special mention is P4, the “domain-specific programming

language for network devices, specifying how data plane

devices (e.g, switches, routers, NICs, filters, etc.) process

packets” [50]. P4 has aided in increasing switch flexibility [11]

including accelerating applications that are beyond the basic

switching function. Examples are consensus algorithms [15],

database transaction processing [38], caching [44], and key-

value store [39]. While there has also been some exploration

of application-level processing [53] in P4 switches, including

support of collectives in ML training [54], these capabilities

are currently limited [60] by the supported set of operations

(e.g., no multiply), data types (e.g., no sparse data types),

and memory footprint. Perhaps most significantly, packets can

only access each memory location once within a traversal

[16]; while it is possible to recirculate packets, this reduces

throughput. To address these limitations, ACiS is designed

to handle advanced calculations, such as fused multiply-

accumulate (MAC) and sparse accumulation, off-chip memory

access with cacheable buffers, data reuse, and control.

In-switch computing is an active area of research with

Types 1-3 (defined in Section II) being partially addressed.

The work in [42] provides an in-switch computing paradigm,

implemented on NetFPGA, to accelerate aggregation of gra-

dients used in the training phase of reinforcement learning

(Type 1). The work in [16] designs a flexible programmable

switch on top of PsPIN building blocks to accelerate Allreduce

with custom operators and data types; that is, sparse data

(Type 2 on a single collective type). The work [45] presents

an RDMA-compatible in-network reduction architecture to

accelerate distributed DNN training in which the FPGAs are

connected to the switch and the switch is configured to route

the packets that need to be aggregated to the FPGA (Type

2). The work in [60] adds custom hardware based on a

MapReduce pattern/abstraction (built upon a CGRA) to P4

devices to enable per-packet inference of machine learning

(Type 3 - but with no fusion of collectives). To summarize,

we are not aware of previous work that fully supports user-

defined or complex collectives (Types 2 and 3) or in any way

addresses look-aside capability (Type 4).

IV. HARDWARE DESIGN

An important switch design consideration is modularity

[47], which ACiS follows by introducing composable plu-

gins to successively add capabilities. These plugins can be

(nearly) seamlessly added to existing switches and are network

friendly. Capabilities for Types 2-4 include flexible aggre-

gation and communication management, schedulability, and

stateful processing.

Given that ACiS types are built in successive layers, the

architecture is composed of successive plugins. Figure 1 shows

PISA, a state-of-the-art protocol-independent switch model,

enhanced with an ACiS accelerator for Types 1-4. Only one

pipe is shown in this figure; a switch is comprised of repli-

cated pipes and each pipe can include a number of physical

ports [62]. We note that packet processing in this model is

done at the header level. However, MPI-specific fields (e.g.,

source/destination ranks, tag) are embedded in the payload.

Thus, we modify the architecture by introducing a separate

pipeline for payload-level packet processing (bottom part of

Figure 1). We summarize the key ideas for each plugin.

Type 2 supports a collective processing unit including flexible

management of MPI communicator context and programmable

aggregation units with the support for different operations

and data types. Two plugins are (1) a collective control unit,

and (2) a programmable aggregation unit. We implement the

collective control plugin with lookup tables. Current protocol-

independent switches, however, do not offer flexible wide-

access to these lookup tables; that restriction is addressed with

this plugin. To route the output of the aggregation unit to any

pipe (1-to-N converter) there is (3) a multicast engine at the

end of the pipeline (inspired from the packet replication engine

in P4 switches [55]). Finally, in order to be compliant with

any MPI implementation, we also need two other plugins: (4)

a parser and (5) a deparser, but in the payload pipeline (see

Figure 1). These are again inspired from P4-based switches

and make it feasible to support different MPI flavors.

Type 3, which supports state and loops, uses a plug-in that

has an instruction-based reconfigurable compute unit and a

recirculate interface (if the switch architecture does not already

have one [36]). The key plugin is the interface for off-chip

memory, which facilitates stateful processing of HPC applica-

tions. To minimize the effort for the design of this type we

note that it is equivalent to supporting load/store instructions

in the CGRA (see Type 4 and Figure 2). However, a good

memory model is needed to fully exploit the capabilities

of the hardware without hampering the overall application

throughput. We take advantage of multi-banks provided by

recent off-chip memory technologies and specify separate

data and instruction memory for each SIMD Processing Unit

(SPU).

Type 4, Since the map operation (computation sandwiched

between collectives) can be any user-provided function, the

plugin must be programmable. We posit that a coarse grained

reconfigurable array (CGRA) is a suitable candidate for the

first plugin since both software-like programmability and near-

ASIC performance is achieved. Using an instruction-capable

CGRA makes the plugin user-friendly and brings the control

plane closer to the switch fabric. We divide the CGRA’s

processing elements into SPUs and then stack these SPUs in

a deep pipeline with a simple yet high speed interconnect. We

observe that many HPC applications operate on vectors of data

and these vectors are typically large. Consequently, the SPUs

have wide vector instruction support. For the second plugin, a

recirculate interface is used to process a chain of collectives.

3

PE

Stream-In

CT

VRF

PE

PE

FIFO

FIFO

FIFO

PE

VRF

PE

PE

Auto

Increment

Vector Decoder

HBM Read

Master

HBM Write

Master
Scalar

PE

RF

Dis\

Assem\

bler

Auto

Increment

Vector

HBM Read

Master

HBM Write

Master
Scalar

PE

RF

AXI-MM AXI-MM

PC Logic

Decoder

PC Logic

AXI

Control CT

Vector PE Vector PE

AXI-

Stream

AXI-Lite

PE

VRF

PE

PE

Auto

Increment

Vector

HBM Read

Master

HBM Write

Master
Scalar

PE

RF

AXI-MM

Decoder

PC Logic

CT

Vector PE Stream

-Out

FIFO

FIFO

FIFO

AXI-

Stream

HBM Read

Master

Instruction

Loader

AXI-MM

Assem\

bler

meta data

Fig. 2. The proposed CGRA architecture used in Figure 1 with three SIMD processing units (SPUs) in a deep pipeline. It is packaged with
AXI interface to facilitate the integration with switch pipelines.

V. ACIS EXPERIMENTAL EVALUATION

In this section, we present the experimental setup and the

performance/scalability study of ACiS for collectives, HPC/AI

kernels, and applications for different types.

A. Experimental Setup

For proof-of-concept, we have implemented and tested

ACiS on an FPGA-based system in both direct and indirect

network settings using the Xilinx Vitis unified software plat-

form. We compare ACiS with a high-end CPU cluster.

Indirect Network: The testbed is a two-node system on

CloudLab [32], [33] with a Xilinx Alveo U280 FPGA attached

to a Dell Z9100-ON switch (total of three nodes including

host). A 100 Gbps switch interconnects all three nodes. Each

process in the leaf nodes, two in this case, in addition to the

FPGA itself, is assigned an IP address and a port number. This

information is stored in the networking kernel of the FPGA

to forward the messages to the correct destination according

to the collective type and algorithm. Messages are sent from

the leaf nodes to the FPGA through the switch, processed in

the FPGA user kernel, and sent back to the corresponding

leaf node(s). We also provide a runtime that automates and

manages the execution of processes in basic/fused collectives.

This includes connecting to leaf nodes from the master process

(through SSH), creating processes there, assigning new port

numbers for each process, and waiting for the completion.

We use the Xilinx Vitis 2021.2 unified software platform to

program the FPGA. Our accelerator is coupled with a modified

version of [63] to send/receive packets from two leaf nodes.

The operating frequency is 250 MHz.

Direct Network: In the direct network testbed, two Alveo

U280 boards are directly connected using QSFP28 network

interfaces (capable of 100 Gb/s). Each board is connected to

an Intel Xeon E5-2620V2 server. To simulate a larger number

of nodes, we conduct an experiment to obtain parameters

used for the emulation of a larger-scale proxy system. In this

experiment, a sender process sends 1408 bytes worth of data

to a receiver process using TCP/IP network logic [34] handled

by FPGAs. We used the ExaMPI implementation [57] as the

middleware for this experiment. The parameters used in the

emulation (derived from our system setup) are shown in Table

II. MPI overhead is the average overhead of MPI send and

MPI Recv in ExaMPI.

For the rest of this section, we evaluate the performance

of ACiS on the direct network based on the emulator. The

emulation has the same requirements as [43]. That is, the

emulation should possess: (1) the same volume of traffic in

the network links, (2) an identical number of network hops,

and (3) an accurate overhead of the accelerator. For the ACiS

accelerator overhead, we use cycle-accurate RTL simulation

through testbenches using the Xilinx Vivado Tool. We emulate

an FPGA cluster with up to 128 nodes in a 3D-torus.

CPU Implementation: For the CPU reference, we use the

TACC Stampede2 [59] Skylake (SKX) compute cluster with

48-cores per node (2 sockets) 2.1 GHz Intel Xeon Platinum

8160 CPUs, and a 100 Gb/s Intel Omni-Path (OPA) network.

We used Intel MPI 18.0.2 as an Intel-compatible MPI is

recommended for this cluster; we found it usually gives better

performance than other MPI implementations.

B. Performance and Scalability

Type 2: Fig. 3 shows the simulation results of ACiS and

baseline MPI collectives for small (4 Bytes to 4 KB) and

medium-to-large message sizes (4 KB to 4 MB) for 32, 64,

4

TABLE II
PARAMETERS USED IN THE EMULATION OF THE DIRECT NETWORK.

* DENOTES THE AURORA IP LATENCY.

MPI Overhead 14.8 usec

Maximum Network Bandwidth (BW) 95.9 Gbps

PCIe Latency 0.9 usec

FPGA-to-FPGA Latency* 0.44 usec

Minimum Port-to-Port Latency 52 nsec

and 128 nodes (direct network) using the OSU benchmarks

(v5.6.2) [3]. The reported average latency is the average time it

takes for the processes to finish the operation. Processor-FPGA

communication latency is included in the time. To isolate the

impact of the design under study, e.g., from contention at

the PCIe interface, we focused simulations with one process

per node. As the results suggest, ACiS demonstrates greater

performance compared to the CPU cluster baseline.

Type 3: We evaluate Type 3 for a Graph Convolution

Network (GCN) application on the direct network using

four datasets: PPI, Citeseer, Pubmed, ogbn-mag, and ogbn-

products. Figure 4 shows the performance and scalability of

GCN with and without ACiS acceleration across all datasets. It

demonstrates superior scalability of ACiS. On average, ACiS

improves application performance compared to a baseline

SKX cluster by a factor of 2.2×, 2×, 1.1×, 1.4×, and 10.1×

for PPI, Citeseer, Pubmed, ogbn-mag, and ogbn-products on

24 nodes with an average of 3.4× across all datasets.

Type 4: Indirect Network: To evaluate the efficacy in

indirect network settings we use CloudLab [32] with three

nodes (two leaf nodes and one node to host the FPGA) capable

of 100 Gbps. Since the runtime and MPI support are based on

Python, we compare this approach with a Python-based MPI,

MPI4py [14]. We demonstrate its performance compared to

traditional MPI for an instance of fused collectives used in

FEM applications. Figure 5 shows the latency comparison of

Allgather op allgather in both MPI4py and ACiS for different

message sizes. Op here is a prefix sum. The results are

from taking the average of five runs. It clearly shows that

ACiS provided superior performance, especially for larger

message sizes with, on average, a 1.98× improvement. The

performance benefit comes from the fact that intermediate

communications are bypassed and computations–sandwiched

between collectives–are directly processed in the accelerator.

Direct Network: We evaluate ACiS against the baseline

CPU cluster for NAS parallel benchmark (NPB) [2] and

miniFE [1]. NPB includes the following: IS (Integer Sort),

LU (Lower-Upper Gauss-Seidel solver), MG (Multi-Grid on a

sequence of meshes), and SP (Scalar Penta-diagonal solver).

And miniFE is an unstructured implicit finite element code.

Figure 6 shows the performance benefit of ACiS over the

original MPI implementation on the SKX cluster (64 and

128 nodes) for the NPB and MINIFE proxy applications.

SKX time and error bars represent the time it takes on SKX

cluster and std for five runs. BENCHMARK-X-TY represents

the benchmark with X nodes and Y OpenMP threads. Among

NPB applications, the performance benefits for MG and IS

are higher than for the others. For IS, one reason is that

the message size of collectives is relatively high, and ACiS

can take advantage of communication-computation overlap

and in-network data reduction. For MINIFE, the performance

improvement percentage is typically higher than that of NPB.

VI. SOFTWARE SUPPORT

Architectural enhancements should ideally be transparent

to all other aspects of the system. This inevitably requires

software support. Two aspects of this support are described,

followed by a database that allows programmers to automati-

cally find where ACiS collectives could collectives.

A. MPI Transparency

To support MPI transparently, and thus a large fraction of

HPC applications, a new transport layer needs to be created

using device-specific APIs to communicate with the switch

accelerator device. Each supported MPI routine can then be

modified to use the new transport (see, e.g., [28]. We have

already developed an FPGA transport to communicate between

MPI processes through a secondary FPGA-directed network

for an ExaMPI implementation [58]. ExaMPI is a light-weight

MPI implementation, being developed by one of the PIs, which

focuses on key blocks of functionality and new MPI concepts.

B. Configuring ACiS in the Switch

To facilitate programming and interaction with a switch

accelerator directly from an MPI application support for a

source-to-source (S2S) translator should be added. The S2S

translator includes (1) a parser, (2) a compiler, (3) an assem-

bler, and (4) a wrapper. The input is the source code for an

MPI application and the output is new MPI code enhanced

with fused collective routines. New routines are added for each

fused collective; each is modified with a loader (in addition

to Types 1-2 software support) to load the CGRA binary

(discussed below) into the switch accelerator.

We now briefly describe its features [29]. It is based on

LLVM [40] with the back-end target instruction set being

RISC-V (used by the CGRAs). LLVM emits an intermediate

representation (IR). In the back-end, target-dependent parame-

ters (e.g., CGRA dimension) are used to apply a number of op-

timizations. The steps in the back-end include parsing the IR,

generating the DFG, code generation, scheduling, and register

allocation. Next, an assembler takes the generated instructions

and outputs CGRA binary. Finally, the wrapper replaces parts

of the application containing the fused collectives with the

corresponding fused collective routine. The generated CGRA

binary is carried as an argument to the fused collective routine.

C. Database

In [30] we characterize a large number of MPI applications

to determine overall applicability of ACiS-supported opera-

tions, in both breadth and type, and so provide insight for

hardware designers and MPI developers about future offload

possibilities. Besides increasing the scope of prior surveys to

include finding (potential) new MPI constructs, we also tap

into new methods to extend the survey process. Prior surveys

5

102 104 106

Message Size (Bytes)
(a)

101

102

103

104

105
Av

er
ag

e
La

te
nc

y
(u

S)

Allgather

102 104 106

Message Size (Bytes)
(b)

101

102

103

Allreduce

102 104 106

Message Size (Bytes)
(c)

101

102

103

Bcast

102 104 106

Message Size (Bytes)
(d)

101

102

103

104

Gather

SKX-32 SKX-64 SKX-128 FPGA-32 FPGA-64 FPGA-128

Fig. 3. ACiS vs MPI CPU cluster (SKX) execution times for 32, 64, and 128 nodes: (a) osu allgather, (b) osu allreduce, (c) osu bcast, and (d) osu gather.

ACiS

Fig. 4. Application performance and scalability comparison of GCN on a baseline CPU cluster (SKX) vs. ACiS.

2000 4000 6000 8000 10000
Message Size (Bytes)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

La
te

nc
y

(m
s)

MPI4py
Our Approach

Fig. 5. Latency comparison of Allgather op Allgatherv in MPI4py and ACiS.
Op is prefix sum. The X-axis shows the message size in bytes used for
Allgathers and the Y-axis shows the latency in milliseconds.

on MPI usage considered lists of applications constructed

based on application developers’ knowledge. The we take,

however, is based on an automated mining of a large collection

of code sources. More specifically, the mining is accomplished

by GitHub REST APIs. We use a database management system

to store the results and to answer queries. Another advantage

is that this approach provides support for a more complex

analysis of MPI usage, which is accomplished by user queries.

0

10

20

30

40

50

60

70

80

90

100

0

200

400

600

800

1000

1200

1400

Im
p

ro
v

em
en

t
(%

)

T
im

e
(m

s)

SKX Time (ms) Improvement (%) LoGcN Model

IS
-6

4
-t

1

L
U

-1
2

8
-t

1

M
G

-1
2

8
-t

1

S
P

-6
4

-t
1

m
in

iF
E

-6
4

- t
2

4

m
in

iF
E

-1
2

8
-t

2
4

m
in

iF
E

-6
4

-t
4

8

IS
-1

2
8

-t
1

L
U

-6
4
-t

1

M
G

-6
4

-t
1

S
P

-1
2
1

-t
1

m
in

iF
E

-6
4
-t

1

m
in

iF
E

-1
2
8

-t
1

m
in

iF
E

-1
2
8

-t
4
8

Fig. 6. Performance improvement of ACiS over original MPI implementation
on SKX cluster (64 and 128 nodes) for the NAS parallel benchmarks and
MINIFE. SKX time and error bars represent the time it takes on SKX cluster
and std for five runs, respectively.

VII. CONCLUSION

In this work, we propose a general-purpose, transparent,

framework for in-switch computing in reconfigurable devices

to provide application-level acceleration. We concentrate on

communication collectives and their combinations with each

other and with mapping functions. We find that the same basic

hardware substrate can be used for multiple extensions to basic

collectives: user definition, look-aside (context), and fusion

(including some level of control). We describe some of the

software support that enables transparency.

6

ACKNOWLEDGEMENTS

This work was supported, in part, by the National Science

Foundation through awards CCF-1919130, CCF-2151021, and

CCF-2326494; and by AMD and Intel both through donated

FPGAs, tools, and IP.

REFERENCES

[1] “ECP Proxy Applications: miniFE Catalog,” https://proxyapps.
exascaleproject.org/app/minife/.

[2] “NAS Parallel Benchmarks,” https://www.nas.nasa.gov/software/npb.
html.

[3] “OSU Micro-benchmarks.” [Online]. Available: http://mvapich.cse.ohio-
state.edu/benchmarks/

[4] G. Almàsi, P. Heidelberger, C. J. Archer, X. Martorell, C. C. Erway, J. E.
Moreira, B. Steinmacher-Burow, and Y. Zheng, “Optimization of MPI
collective communication on BlueGene/L systems,” in Proceedings of

the 19th annual international conference on Supercomputing (ICS’05),
2005, pp. 253–262.

[5] Arap, O. and Swany, M., “Offloading Collective Operations to Pro-
grammable Logic on a Zynq Cluster,” in High-Performance Intercon-

nects (HOTI), 2016 IEEE 24th Annual Symp. on, 2016, pp. 76–83.

[6] Intel, “FPGA Programmable Acceleration Card D5005,”
https://www.intel.com/content/www/us/en/programmable/products/
boards and kits/dev-kits/altera/intel-fpga-pac-d5005/overview.html
[Last accessed: April 29, 2021].

[7] Xilinx, “Alveo SmartNIC Accelerator Card,” https://www.xilinx.com/
products/boards-and-kits/alveo.html [Last accessed: April 29, 2021].

[8] Xilinx, “Alveo SN1000 Accelerator Card,” https://www.xilinx.com/
applications/data-center/network-acceleration/alveo-sn1000.html [Last
accessed: April 29, 2021].

[9] M. Bayatpour, N. Sarkauskas, H. Subramoni, J. M. Hashmi, and D. K.
Panda, “BluesMPI: Efficient MPI Non-blocking Alltoall Offloading
Designs on Modern BlueField Smart NICs,” in High Performance

Computing. Springer International Publishing, 2021, pp. 18–37.

[10] ——, “BluesMPI: Efficient MPI Non-blocking Alltoall Offloading De-
signs on Modern BlueField Smart NICs,” in High Performance Com-

puting. Springer International Publishing, 2021, pp. 18–37.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4:
Programming Protocol-Independent Packet Processors,” SIGCOMM

Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, 2014.

[12] A. Caulfield, E. Chung, A. Putnam, H. Angepat, J. Fowers, M. Hasel-
man, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Massengill,
K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou, and
D. Burger, “A cloud-scale acceleration architecture,” in 49th IEEE/ACM

Int. Symp. Microarchitecture, 2016, pp. 1–13.

[13] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman, M. Abeydeera,
L. Adams, H. Angepat, C. Boehn, D. Chiou, O. Firestein, A. Forin,
K. S. Gatlin, M. Ghandi, S. Heil, K. Holohan, A. El Husseini, T. Juhasz,
K. Kagi, R. K. Kovvuri, S. Lanka, F. van Megen, D. Mukhortov, P. Patel,
B. Perez, A. Rapsang, S. Reinhardt, B. Rouhani, A. Sapek, R. Seera,
S. Shekar, B. Sridharan, G. Weisz, L. Woods, P. Yi Xiao, D. Zhang,
R. Zhao, and D. Burger, “Serving dnns in real time at datacenter scale
with project brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8–20, 2018.

[14] L. Dalcin and Y.-L. L. Fang, “mpi4py: Status update after 12 years of
development,” Computing in Science and Engineering, vol. 23, no. 4,
pp. 47–54, 2021.

[15] H. T. Dang, M. Canini, F. Pedone, and R. Soulé, “Paxos made switch-y,”
SIGCOMM Comput. Commun. Rev., vol. 46, no. 2, p. 18–24, may
2016. [Online]. Available: https://doi.org/10.1145/2935634.2935638

[16] D. DeSensi, S. D. Girolamo, S. Ashkboos, S. Li, and T. Hoefler, “Flare:
Flexible in-network allreduce,” in Proceedings of the International

Conference for High Performance Computing, Networking, Storage and

Analysis, ser. SC ’21, 2021.

[17] A. Faraj, S. Kumar, B. Smith, A. Mamidala, and J. Gunnels, “MPI col-
lective communications on the blue gene/P supercomputer: Algorithms
and optimizations,” Proceedings - Symposium on the High Performance

Interconnects, Hot Interconnects, pp. 63–72, 2009.

[18] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh,
M. Andrewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung,
H. K. Chandrappa, S. Chaturmohta, M. Humphrey, J. Lavier,
N. Lam, F. Liu, K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel,
T. Sapre, M. Shaw, G. Silva, M. Sivakumar, N. Srivastava,
A. Verma, Q. Zuhair, D. Bansal, D. Burger, K. Vaid, D. A.
Maltz, and A. Greenberg, “Azure accelerated networking: SmartNICs
in the public cloud,” in 15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 18). Renton, WA:
USENIX Association, Apr. 2018, pp. 51–66. [Online]. Available:
https://www.usenix.org/conference/nsdi18/presentation/firestone

[19] R. L. Graham and et al., “Scalable Hierarchical Aggregation Protocol
(SHArP): A Hardware Architecture for Efficient Data Reduction,” in
2016 Workshop on Communication Optimizations in HPC, 2016.

[20] R. L. Graham, L. Levi, D. Burredy, G. Bloch, G. Shainer, D. Cho,
G. Elias, D. Klein, J. Ladd, O. Maor, A. Marelli, V. Petrov, E. Romlet,
Y. Qin, and I. Zemah, “Scalable hierarchical aggregation and reduc-
tion protocol (sharp)tm streaming-aggregation hardware design and
evaluation,” in High Performance Computing, P. Sadayappan, B. L.
Chamberlain, G. Juckeland, and H. Ltaief, Eds. Cham: Springer
International Publishing, 2020, pp. 41–59.

[21] A. Guo, T. Geng, Y. Zhang, P. Haghi, C. Wu, C. Tan, Y. Lin,
A. Li, and M. Herbordt, “A Framework for Neural Network
Inference on FPGA-Centric SmartNICs,” in International Confer-

ence on Field-Programmable Logic and Applications, 2022, dOI:
10.1109/FPL57034.2022.00071.

[22] ——, “FCsN: A FPGA-Centric SmartNIC Framework for
Neural Networks,” in 30th IEEE International Symposium on

Field-Programmable Custom Computing Machines, 2022, dOI:
10.1109/FCCM53951.2022.9786193.

[23] A. Guo, Y. Hao, C. Wu, P. Haghi, Z. Pan, M. Si, D. Tao, A. Li, M. Her-
bordt, and T. Geng, “Software-hardware co-design of heterogeneous
smartnic system for recommendation models inference and training,”
in ICS 2023: International Conference on Supercomputing, 2023, dOI
= 10.1145/3577193.3593724.

[24] P. Haghi, “ACIS: smart switches with application-level acceleration,”
Ph.D. dissertation, Department of Electrical and Computer Engineering,
Boston University, 2023.

[25] P. Haghi, T. Geng, A. Guo, T. Wang, and M. Herbordt, “FP-AMG:
FPGA-Based Acceleration Framework for Algebraic Multigrid Solvers,”
in 28th IEEE International Symposium on Field-Programmable Custom

Computing Machines, 2020, dOI: 10.1109/ FCCM48280.2020.00028.

[26] ——, “Reconfigurable Compute-in-the-Network FPGA Assistant for
High-Level Collective Support with Distributed Matrix Multiply Case
Study,” in IEEE Conference on Field Programmable Technology, 2020.

[27] P. Haghi, A. Guo, T. Geng, A. Skjellum, and M. Herbordt, “Workload
Imbalance in HPC Applications: Effect on Performance of In-Network
Processing,” in IEEE High Performance Extreme Computing Confer-

ence, 2021, doi: 10.1109/HPEC49654.2021.9622847.

[28] P. Haghi, A. Guo, Q. Xiong, C. Yang, T. Geng, J. Broaddus, R. Marshall,
D. Schafer, A. Skjellum, and M. Herbordt, “Reconfigurable switches
for high performance and flexible MPI collectives,” Concurrency and

Computation: Practice and Experience, vol. 34, no. 2, 2022, doi:
10.1002/cpe.6769.

[29] P. Haghi, W. Krska, C. Tan, T. Geng, P. Chen, C. Greenwood, A. Guo,
T. Hines, C. Wu, A. Li, A. Skjellum, and M. Herbordt, “FLASH:
FPGA-Accelerated Smart Switches with GCN Case Study,” in 37th

ACM International Conference on Supercomputing (ICS), 2023, dOI =
10.1145/3577193.3593739.

[30] P. Haghi, R. Marshall, A. Skjellum, and M. Herbordt, “A Survey of
Potential MPI Complex Collectives: Large-Scale Mining and Analysis
of HPC Applications,” 2023.

[31] P. Haghi, C. Tan, A. Guo, C. Wu, D. Liu, A. Li, A. Skjel-
lum, T. Geng, and M. Herbordt, “Smartfuse: Reconfigurable smart
switches to accelerate fused collectives in hpc applications,” in 38th

ACM International Conference on Supercomputing (ICS), 2024, dOI:
10.1145/3650200.3656616.

[32] S. Handagala, M. Herbordt, and M. Leeser, “OCT: The Open Cloud
FPGA Testbed,” in 31st International Conference on Field Pro-

grammable Logic and Applications (FPL), 2021, doi: TBD.

[33] S. Handagala, M. Leeser, K. Patle, and M. Zink, “Network Attached
FPGAs in the Open Cloud Testbed (OCT),” in IEEE INFOCOM 2022 -

IEEE Conference on Computer Communications Workshops (INFOCOM

WKSHPS), 2022, pp. 1–6.

7

[34] Z. He, D. Korolija, and G. Alonso, “Easynet: 100 gbps network for
hls,” in 2021 31st International Conference on Field-Programmable

Logic and Applications (FPL). Los Alamitos, CA, USA: IEEE
Computer Society, sep 2021, pp. 197–203. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/FPL53798.2021.00040

[35] T. Hoefler, T. Schneider, and A. Lumsdaine, “The effect of network noise
on large-scale collective communications.” Parallel Processing Letters,
vol. 19, pp. 573–593, 12 2009.

[36] S. Ibanez, G. Antichi, G. Brebner, and N. NcKeown, “Event-Driven
Packet Processing,” in 18th ACM Workshop on Hot Topics in Networks,
2019.

[37] Inventec, “FPGA SmartNIC C5020X,” https://ebg.inventec.com/en/
product/Accessories/Smart\%20NIC\%20Card/Inventec\%20FPGA\
%20SmartNIC\%20C5020X [Last accessed: April 29, 2021].

[38] M. Jasny, L. Thostrup, T. Ziegler, and C. Binnig, “P4db - the case for
in-network oltp,” in Proceedings of the 2022 International Conference

on Management of Data, ser. SIGMOD ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1375–1389. [Online].
Available: https://doi.org/10.1145/3514221.3517825

[39] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and
I. Stoica, “Netcache: Balancing key-value stores with fast in-network
caching,” in Proceedings of the 26th Symposium on Operating

Systems Principles, ser. SOSP ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 121–136. [Online]. Available:
https://doi.org/10.1145/3132747.3132764

[40] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proceedings of the Interna-

tional Symposium on Code Generation and Optimization: Feedback-

Directed and Runtime Optimization, ser. CGO ’04. USA: IEEE
Computer Society, 2004, p. 75.

[41] B. Li, K. Tan, L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng, and
E. Chen, “Clicknp: Highly flexible and high performance network pro-
cessing with reconfigurable hardware,” in Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communica-

tion, 2016.

[42] Y. Li, I.-J. Liu, Y. Yuan, D. Chen, A. Schwing, and J. Huang, “Accel-
erating distributed reinforcement learning with in-switch computing,”
in Proceedings of the 46th International Symposium on Computer

Architecture, 2019, p. 279–291.

[43] ——, “Accelerating Distributed Reinforcement learning with In-Switch
Computing,” in 2019 ACM/IEEE 46th Annual International Symposium

on Computer Architecture (ISCA), 2019, pp. 279–291.

[44] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya,
“Incbricks: Toward in-network computation with an in-network cache,”
SIGARCH Comput. Archit. News, vol. 45, no. 1, p. 795–809, apr 2017.
[Online]. Available: https://doi.org/10.1145/3093337.3037731

[45] S. Liu, Q. Wang, J. Zhang, Q. Lin, Y. Liu, M. Xu, R. C. C. Chueng,
and J. He, “Netreduce: Rdma-compatible in-network reduction for
distributed DNN training acceleration,” CoRR, vol. abs/2009.09736,
2020. [Online]. Available: https://arxiv.org/abs/2009.09736

[46] Mellanox, “Innova-2 Flex Open Programmable SmartNIC,” https://www.
mellanox.com/files/doc-2020/pb-innova-2-flex.pdf [Last accessed: April
29, 2021].

[47] O. Michel, R. Bifulco, G. Rétvári, and S. Schmid, “The programmable
data plane: Abstractions, architectures, algorithms, and applications,”
ACM Comput. Surv., vol. 54, no. 4, 2021.

[48] T. Morgan, “Intel’s best dpu will be commercially available – someday,”
The Next Platform, vol. August 31, 2021, 2021.

[49] Napatech, “FPGA acceleration cards,” https://www.napatech.com/
products/ [Last accessed: April 29, 2021].

[50] P4 Team, “Web page for P4 Opensource Programming Language,”
https://opennetworking.org/p4/, accessed 10/30/2022.

[51] T. Perry, “Does the Repurposing of Sun Microsystems’ Slogan Honor
History, or Step on It?” IEEE Spectrum), no. 30 July, 2019.

[52] R.L. Graham, et al., “Scalable Hierarchical Aggregation Protocol
(SHArP): A Hardware Architecture for Efficient Data Reduction,” in
First International Workshop on Communication Optimizations in HPC

(COMHPC), 2016.

[53] G. Sankaran, J. Chung, and R. Kettimuthu, “Leveraging In-Network
Computing and Programmable Switches for Streaming Analysis of
Scientific Data,” in IEEE NetSoft, 2021, pp. 293–297.

[54] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krish-
namurthy, M. Moshref, D. Ports, and P. Richtarik, “Scaling distributed
machine learning with In-Network aggregation,” in 18th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI 21),
2021, pp. 785–808.

[55] A. Shukla, K. N. Hudemann, A. Hecker, and S. Schmid, “Runtime
verification of p4 switches with reinforcement learning,” in Workshop

on Network Meets AI & ML, 2019.
[56] Silicom, “FPGA SmartNIC N5010 Series,” https://www.silicom-

usa.com/pr/fpga-based-cards/fpga-intel-based/fpga-intel-stratix-
based/silicom-fpga-smartnic-n5010 series/ [Last accessed: April
29, 2021].

[57] A. Skjellum and et al, “ExaMPI: A Modern Design and Implementation
to Accelerate Message Passing Interface Innovation,” Communications

in Computer and Information Science, vol. 1087 CCIS, pp. 153–169,
2020.

[58] A. Skjellum, M. Rüfenacht, N. Sultana, D. Schafer, I. Laguna, and
K. Mohror, “Exampi: A modern design and implementation to accelerate
message passing interface innovation,” in High Performance Computing,
J. L. Crespo-Mariño and E. Meneses-Rojas, Eds. Cham: Springer
International Publishing, 2020, pp. 153–169.

[59] D. Stanzione, B. Barth, N. Gaffney, K. Gaither, C. Hempel, T. Minyard,
S. Mehringer, E. Wernert, H. Tufo, D. Panda, and P. Teller, “Stampede
2: The Evolution of an XSEDE Supercomputer,” in Practice and

Experience in Advanced Research Computing on Sustainability, Success

and Impact, 2017.
[60] T. Swamy, A. Rucker, M. Shahbaz, I. Gaur, and K. Olukotun, “Taurus:

A data plane architecture for per-packet ml,” in Proceedings of the 27th

ACM International Conference on Architectural Support for Program-

ming Languages and Operating Systems, ser. ASPLOS 2022, 2022, p.
1099–1114.

[61] K. D. Underwood, J. Coffman, R. Larsen, K. S. Hemmert, B. W. Barrett,
R. Brightwell, and M. Levenhagen, “Enabling flexible collective com-
munication offload with triggered operations,” in IEEE 19th Symposium

on High Performance Interconnects, 2011, pp. 35–42.
[62] F. L. Verdi and M. Chiesa, “Heavy hitter detection on multi-pipeline

switches,” in Symp. on Architectures for Networking and Communica-

tions Systems, 2022.
[63] Xilinx, “XUP Vitis Network Example (VNx),” https://github.com/Xilinx/

xup\ vitis\ network\ example, 2023.
[64] Q. Xiong, C. Yang, R. Patel, T. Geng, A. Skjellum, and M. Herbordt,

“GhostSZ: A Transparent SZ Lossy Compression Framework with
FPGAs,” in 2019 IEEE 27th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), 2019, pp. 258–
266, doi: 10.1109/FCCM.2019.00042.

[65] H. Yoshida, “How is Data Ops Related to Data Centric Computing?” Hi-
tachi Blog, https:// community.hitachivantara.com/ blogs/hubert-yoshida/
2020/10/14/ how-is-data-ops-related-to-data-centric-computing, 2020.

8

