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ABSTRACT

Strategic aggregation and utilization of electric vehicle batteries as

energy reservoirs to optimize and smoothen power grid demand

is highly bene�cial to smart and connected communities, particu-

larly large o�ce buildings, which often provide charging access to

their employees as part of facilities. Strategic aggregation involves

optimizing vehicle charging and discharging to reduce the overall

energy bought during peak use (i.e., when energy is more expen-

sive) and the building’s net peak demand, which is monitored over

an extended period (e.g., a month). This problem entails making

sequential decisions under exogenous uncertainty and involves

delayed and sparse rewards, a continuous action space, and the

complexity of ensuring generalization across diverse conditions.

Existing modeling paradigms, e.g., single-shot mixed integer linear

programming (MILP), and algorithmic approaches, e.g., heuristic-

based strategies, fall short in addressing real-time decision-making

under dynamic conditions, and traditional reinforcement learning

(RL) models struggle with large state-action spaces, multi-agent

settings, and the need for long-term reward optimization. To ad-

dress these challenges, we introduce a novel RL framework that

combines the Deep Deterministic Policy Gradient approach (DDPG)

with action masking and e�cient MILP-driven policy guidance. Our

approach balances the exploration of continuous action spaces to

meet user charging demands. Using real-world data from a major

electric vehicle manufacturer, we show that our approach compre-

hensively outperforms many well-established baselines and several

scalable heuristic approaches, achieving signi�cant cost savings

while meeting all charging requirements. Our results show that

the proposed approach is one of the �rst scalable and general ap-

proaches to solving the V2B energy management challenge.
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1 INTRODUCTION

The concept of vehicle-to-building (V2B) charging [7, 12] leverages

the ability of battery electric vehicles (EVs) to operate as both en-

ergy consumers and temporary storage units [24]. V2B systems are

particularly relevant in large o�ce buildings, where EVs can be

aggregated to optimize energy consumption and reduce peak power

demand. By strategically controlling the charging and discharging

cycles of EVs, these systems ensure that vehicles meet users’ ex-

pected state-of-charge (SoC) requirements while minimizing the

energy bought during peak time-of-use (ToU) periods [25, 30] and

reducing the building’s peak power demand over a billing cycle.

Implementing this optimization process in practice becomes com-

plex due to the heterogeneity of charging infrastructures [17], the

uncertainty of EV arrival and departure times, and the need for a

careful balance between energy cost savings and ensuring that the

expected �nal state of charge (SoC) is kept close to user expectation.

Additionally, aligning V2B frameworks with complex electricity

pricing policies, including both energy and demand charges, adds

to the challenge [26, 28]. While prior work has largely modeled this

problem as a single-shot mixed-integer linear program [1, 3, 8, 14],

such approaches fail to capture the intricacies of real-time decision-

making in dynamic environments.

This sequential decision process can be modeled as a Markov

Decision Process (MDP); however, solving the MDP presents sev-

eral di�culties, including delayed and sparse rewards, a continuous



Figure 1: EVs and bidirectional chargers at the research site.

action space, and the need for e�ective long-term decision-making

under uncertainty. To address these challenges, we propose a novel

approach to solve this problem that combines the Deep Determin-

istic Policy Gradient (DDPG) with two key enhancements: action

masking and policy guidance through a mixed-integer linear pro-

gram (MILP). The DDPG algorithm allows us to optimize continu-

ous action spaces while accounting for uncertainties in EV arrival

times, SoC requirements, and �uctuating building energy demands.

By leveraging action masking, we adjust neural network actions

during training using domain-speci�c knowledge, limiting explo-

ration and guiding the RL agent toward more e�cient and feasible

policies. The MILP component provides policy guidance during

training, steering the RL agent toward near-optimal solutions and

enhancing convergence in complex environments. Our approach

demonstrates strong generalization across diverse conditions and

o�ers a scalable solution for V2B energy management. Our team

includes a large EV manufacturing company that has access to a

building with �fteen heterogeneous chargers ( Figure 1 shows some

of the chargers), and we utilize the real-world charging patterns

and building energy data to validate our approach, demonstrating

its e�ectiveness in minimizing monthly energy bills over 9 months

(May 2023 - Jan 2024). The summary of our contributions is as

follows:

• Modeling the V2B problem as an MDP with continuous

action space: We model the V2B problem as a Markov Deci-

sion Process (MDP) that captures the dynamics of EV SoC levels,

varying arrival and departure times, and time-dependent elec-

tricity pricing. This formulation addresses delayed and sparse

rewards, continuous action spaces, and long-term goals to reduce

the monthly peak demand charge and energy costs.

• Solving the V2B sequential decision-making problem: We

present a reinforcement learning framework based on the Deep

Deterministic Policy Gradient (DDPG). We combine DDPG with

i) action masking that leverages domain knowledge and the struc-

ture of the V2B problem and ii) policy guidance based on solving

a deterministic MILP to aid the learning of the optimal policy.

• Validating with real-world data: We validate our proposed

approach using real-world data from a major electric vehicle

manufacturer. The model achieved signi�cant cost savings over

nine months (May 2023–January 2024), meeting all user charging

demands. Our approach outperforms heuristics and prior work.

• Ablation Study: We perform a detailed ablation study to assess

the impact of individual techniques, which help us demonstrate

the model’s e�ectiveness.

2 PROBLEM FORMULATION

Charger and Time Intervals: Consider the building has # het-

erogeneous chargers C = {�1,�2, . . . �# }. Each charger �8 has

limits on the charging rate, minimum �<8=
8 and maximum �<0G

8 ;

�<8=
8 < 0 implies the charger�8 is bi-directional and can discharge

and �<8=
8 = 0 represents a unidirectional charger with no dis-

charging. We assume that all chargers are designed to be able

to charge at maximum rates simultaneously, i.e.,
∑8=#
8=1 �<0G

8 <

maximum rated capacity of the building. The planning horizon is

one billing period, usually a month, which we divide into equal-

sized �xed time intervals T = {)1,)2, . . . )4=3 }, where)9−)9−1 = X

(we use X = 0.25 hours). The choice of X is user-speci�c and provides

a stable decision epoch, preventing rapid changes in the charging

rate.

Charging Power: Let us assume that the function P : C × T →

ℜ speci�es the power consumed by the charger �8 at time )9 . If

the power is zero, the charger is not active, and if the power is

negative, the charger discharges, acting as an energy source. Note

that by construction % (�8 ,)9 ) ∈ [�
<8=
8 ,�<0G

8 ]. Let us also assume

that function B : T → ℜ+ speci�es the average building power

consumed in X time interval. Given the charger and the building

power consumption, we can calculate the total cost for the billing

period. The parts of the total cost are based on the property type,

time of day, and state of the power grid and are based upon the

rules and regulations set by the local transmission system operator

(TSO) and distribution system operator (DSO). These parts include

energy expenses for building power and charging, which vary with

peak and o�-peak hours, as well as demand charges based on the

peak power draw over a longer-term period.

Let the price of the energy consumed is given by \� : T → ℜ+

(in $/kWh). In practice, the Time-of-Use (TOU) electricity rates do

not vary continuously and are rather divided into two parts each

day, i.e., a peak and a non-peak period. Then, the total cost of the en-

ergy consumed is Θ� (P) =
∑9=4=3

9=1

(

∑8=#
8=1 (% (�8 ,)9 )) + B()9 )

)

×

\� ()9 ) × X . E�ectively, Θ� is a function of charging power P =

{% (�8 ,)9 ) |�8 ∈ C,)9 ∈ T }.

Demand Charge: The demand charge is calculated using the maxi-

mum (peak) power consumed during any time interval in the billing

period, with the demand price denoted as \� (in $/kW). Let %<0G
=

max
9=4=3
9=1 (

∑8=#
8=1 % (�8 ,)9 )) + B()9 ) denote the maximum power

consumed. The demand charge is given byΘ� (P) = \� ×%
<0G ×X ,

which is a function of charging power P. Hence, the total cost of

energy bought from the power grid isΘ� (P)+Θ� (P). To minimize

the cost, we must reduce the net power usage when the cost \� is

high and manage the power peaks to ensure %<0G remains as low

as possible. Often, the demand charge is levied to ensure that the

industrial buildings do not put excess burden on the power grid.

In our problem, we use estimates of peak power and denoted it by

%̂<0G . It is important to note that the demand charge is typically

applied during peak hours of the TOU electricity rate, as re�ected

in our formulation.



Electric Vehicle Sessions: Assume that during the billing period

T , a set of electric vehicles, denoted as V , are serviced at the

building. Each EV+ is characterized by its arrival timeA : V → T

and departure time D : V → T . Note that if the same vehicle

arrives more than once, we will treat it as a separate session. If the

EV arrives between time slots [)8−1,)8 ], we consider its e�ective

arrival time asA(+ ) = )8 . Similarly, if the vehicle departs between

[)9 ,)9+1], we consider its e�ective departure time as D(+ ) = )9 .

EV sessions are contiguous, i.e., EV is expected to remain at the site

between A(+ ) and D(+ ), for ∀+ ∈ V . For each + , we know the

initial state of charge SOC� : V →ℜ+ and the required �nal state

of charge (measured as a percentage of the battery capacity) SOC' :

V → ℜ+ upon arrival. SOC<8= : V → ℜ+ is the minimum

allowed SoC for the car i.e., the car cannot be discharged below this

value, and SOC<0G : V → ℜ+ is the maximum allowed SoC for

the car. The minimum andmaximum bounds are speci�ed by the EV

manufacturer, considering the impact of charging and discharging

on battery health. CAP : V → ℜ+ denotes the vehicle’s battery

capacity in kWh. We track the current SoC of the EV using SOC,

where SOC : V × T → ℜ+ and it is de�ned later.

Charger Assignment: We de�ne an EV assignment function [ :

V → C, where (+ ∈ V) [ (+ ) = �8 indicates the charger assigned

to EV + . Correspondingly, we also maintain a charger-EV occu-

pancy function q : C × T → V , where q (�8 ,)9 ) = + , representing

the connection of charger �8 with EV + at time )9 . The corre-

lation of these two functions can be expressed as q ([ (+ ),)9 ) =

+ , s.t. A(+ ) f )9 f D(+ ) indicating that if EV + is assigned to

charger �8 through the function [, then at any time slot within its

stay duration, it is con�rmed that EV + is connected to charger �8 .

If no EV is connected to the charger at time )9 , the function may

return a ∅ denoting an inactive state, expressed as q (�8 ,)9 ) = ∅ em-

phasizing the dynamic nature of the connection function. Note that

two vehicles cannot be connected to a charger simultaneously. We

consider a �rst-in, �rst-out policy that assigns EVs to bidirectional

chargers �rst. A comparison of other approaches is in Table 5 in

the appendix. We also maintain that once assigned to a charger, a

vehicle is connected to it until departure. For charging the EVs, we

approximate a linear charging pro�le as in prior work [23], and the

SoC is updated at time slot )9 using the following equation:

SOC (+ ,)9+1) = SOC (+ ,)9 ) +
% ([ (+ ),)9 )×X

CAP (+ )
(1)

Feasibility: The set Feasible indicates the feasible solutions that

satisfy the following constraints:

∀�8 ∈ C,∀)9 ∈ T : �<8=
8 f % (�8 ,)9 ) f �<0G

8 (2)

∀�8 ∈ C,∀)9 ∈ T ,∀+ ∈ V : SOC (+ ,)9 ) g SOC<8= (+ ) (3)

∀�8 ∈ C,∀)9 ∈ T ,∀+ ∈ V : SOC (+ ,)9 ) f SOC<0G (+ ) (4)

∀)9 ∈ T :
∑

�8 ∈C % (�8 ,)9 ) + B()9 ) g 0 (5)

Here, Constraint (2) guarantees a valid charging action range, Con-

straints (3 and 4) ensures that each EV’s SoC remains within an

acceptable range, and Constraint (5) ensures that discharging power

does not exceed building power.

Objectives: One of our objectives for the V2B problem is to mini-

mize the total cost over the billing period, incorporating the Time-

Of-Use (TOU) electricity rates and demand charges. This objective

is expressed as:

min
([,P) ∈Feasible

(Θ� (P) + Θ� (P)) (6)

The second objective ensures that vehicles are charged to their

requirement, SOC' , by the time they leave.

min
([,P)∈Feasible

∑

+ ∈V max(SOC' (+ ) − SOC (+ ,D(+ )), 0) (7)

The inner max function ensures EV users’ energy requirements are

met, even if overcharging occurs. However, in practical scenarios,

short stays may make meeting the SoC requirement impossible. To

address this, we reformulate the objectives into a multi-weighted

framework. The optimal charger assignment and actions are then

determined by optimizing these combined objectives.

3 RELATED WORK

We highlight four major challenges of solving the V2B problem,

namely: 1) the uncertainty of vehicles and SoC requirements; 2)

Time-Of-Use(TOU) pricing, demand charge, and long-term rewards;

3) Heterogeneous chargers and continuous action spaces; and 4)

Tracking real-world states and transitions. Below, we brie�y cover

prior work to tackle these challenges. A more detailed description of

prior work is presented in Table 4 of the appendix.

Uncertainty of vehicles and SoC requirements.Meta-heuristics

and Model Predictive Control (MPC) has been used to solve the

EV charging process, focusing on energy cost and user fairness in

single-site or vehicle-to-grid (V2G) systems [1, 3, 8, 14]. Studies by

Richardson et al. analyze EV charging strategies’ impact on grid sta-

bility, relevant to V2B systems [20]. Wang et al. proposed a demand

response framework for optimizing V2B systems amidst dynamic

energy pricing [26]. Additionally, O’Connell et al. utilized Mixed

Integer Linear Programming (MILP) to integrate renewable energy

sources into grids [16]. However, many of these methods focus on

unidirectional chargers and fail to fully account for all exogenous

sources of uncertainty (e.g., uncertain arrival and departure times).

Time of use pricing, demand charge, and long-term rewards.

Optimizing V2B is hard due to the lengths of billing periods. While

prior work (barring some exceptions [8]) optimize and plan for

single day horizons [1, 13, 21], they fail to work for longer periods.

Heterogeneous chargers and continuous action spaces. In

practice, buildings develop EV infrastructure gradually, leading to

heterogeneous chargers and a more complex action space. While

some prior work addresses charger heterogeneity [15, 29], it often

neglects long-term rewards (i.e., limit planning to a single day)

or fails to account for demand charge, missing the key real-world

constraint in the V2B problem. Tracking real-world state and

transition. Existing solutions validate their approach using sim-

ulations with limited interface with the real world (barring some

exceptions [8]), thereby making simplistic assumptions that limit

deployment.

4 OUR APPROACH

In this section, we discuss the di�erent components in our frame-

work, shown in Figure 2a.

4.1 Markov Decision Process Model

We model the V2B problem as the following MDP.
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Figure 2: (a) Our framework relies on daily samples and an estimated monthly peak power. We use RL, i.e., DDPG, and extend

it with policy guidance and action masking, to learn a near-optimal policy. (b) At inference time, the model ingests data of

connected cars, charger states, building power, and the estimated monthly peak power to make decisions.

State. The complete state space for the problem can be described

using features that provide historical, current, and future estima-

tion at a given time )9 , which includes parameters for each vehicle,

such as the current SoC, required SoC, departure time, and battery

capacity for each EV, along with SoC boundaries across all chargers.

Additionally, the current building power, time slot, day of the week,

past historical building power, and long-term peak power estima-

tion value are included, resulting in approximately 100 features. We

leverage domain-speci�c knowledge to abstract key information

from these features, reducing the state space to the 37 essential

state elements.

These features are: 1) The current time slot, )9 . 2) The cur-

rent building power, denoted as �()9 ). 3) The power gap between

the current building power and the estimated peak power for the

billing period, given by %̂<0G ()9 )−�()9 ), where %̂
<0G ()9 ) indicates

the estimated peak power at )9 , initialized from a value derived

from training data. This gap aids the RL model in estimating the

optimal peak power for demand charge reduction. 4) The mean

peak building power over the previous 7 days, ` (�� ()9 )), where

�� ()9 ) represents the list of peak building power for the previ-

ous 7 days. 5) The variance of the peak building power over the

previous 7 days, f2 (�� ()9 )), helps inform the model about the

future building power use. 6) The day of the week for the current

time slot, )9 , which helps the model distinguish daily patterns and

enhance generalization. 7) The number of EV arrivals up to time

slot )9 , represented as |{+ |+ ∈ V, �(+ ) f )9 }| for tracking EV

arrival status. 8) The energy needed by each EV connected to a

charger at time slot )9 , given by [KWHR (�8 ,)9 )]�8 ∈C , and is ini-

tialized to 0. This represents the energy gap between required SoC

(SOC' ) and current SoC (SOC) of the EV + = q (�8 ,) ( 9)), de�ned

as KWHR (�8 ,)9 ) = (SOC
' (+ ) − SOC (+ ,)9 )) ×CAP(+ ). 9) The re-

maining time until the departure of each EV connected to the charg-

ers is given by [g' (�8 ,)9 )]�8 ∈C , and is set to 0 when no cars are

connected. Each term is computed as g' (�8 ,)9 ) = D(q (�8 ,)9 ))−)9 .

Actions.We de�ne the set of actions A, which includes all ac-

tions at each time slot)9 with)8 ∈ T . In this MDP,A is continuous

and speci�es the power of all chargers at each time slot )9 , where

�()9 ) = [% (�8 ,)9 )]�8 ∈C .

State Transition. States are updated based on actions and EV

arrivals/departures at each time slot. To simulate these transitions,

we designed an environment simulator that provides and updates

states. The state transition function is given as: Trans(( ()9−1)

�()9−1)) ↦→ ( ()9 ), with the following steps:

(1) Initialize the estimated peak power, %̂<0G ()0), which can be de-

rived fromhistorical data (detailed in Section 4) , and update it by

%̂<0G ()9 ) = max(%̂<0G ()9−1), B()9−1) +
∑

�8 ∈C % (�8 ,)9−1)),

which updates the estimated peak power depending on the

previous estimate and the last peak power.

(2) Update SoC of EVs connected to all chargers: SOC (q (Ci, Tj), Tj)

using action �()9−1) according to Equation (1).

(3) Update the EV charger assignment q (�8 ,)9 ) and [ (+ ) by �rst

releasing chargers with departing EVs in the current time slot

)9 and then assigning new arrival EVs to idle chargers.

(4) Update the energy requirement of all EVs connected to a charger:

[KWHR (�8 ,)9 )]�8 ∈C by based on EV’s current SoCs.

(5) Update the remaining time of all EVs connected to chargers:

[g' (�8 ,)9 )]�8 ∈C at time slot )9 .

Reward.We de�ne the function Reward : S × A → ℜ, where

Reward (( ()9 ), �()9 )) evaluates the reward for actions taken in a

speci�c state, focusing on minimizing the total bill while satisfying

SoC requirements. We express reward as _( · r1 + _� · r2 + _� · r3
where, r1 =

∑

�8 ∈C max(0,min(KWHR (�8 ,)9 ), % (�8 ,)9 ) ×X)), r2 =

−% (�8 ,)9 ) ·X ·\� ()9 ), and r3 = −max(0,B()9 ) +
∑

�8 ∈C % (�8 ,)9 ) −

%̂<0G ()9 )) · \� . In this reward structure, r1 promotes actions that

charge EVs to reach their required SoC, as intended in Equation (7),

while r2 penalizes the energy cost for the charging actions taken.

The third component, r3, penalizes the increase in demand charges

if peak power increases, aligning with our objective in Eq. (6). These

functions use three coe�cients, _( , _� , and _� to balance trade-o�s.



4.2 Reinforcement Learning Approach

In this section, we describe the entire reinforcement learning pipeline.

We introduce the network structure, discuss how we use a simula-

tor to gather state features and describe the di�erent techniques,

such as action masking and policy guidance, used to improve the

performance of the V2B problem.

To improve training e�ciency, we address the challenge of long

state-action sequences by splitting the monthly dataset into daily

episodes. This allows the model to capture variations across dif-

ferent weekdays and learn more e�ectively from shorter episodes,

adapting more quickly to daily changes. By incorporating estimated

monthly peak power into the state features and reward function,

the approach still accounts for monthly demand charges, helping to

minimize long-term costs while staying aligned with our objective.

4.2.1 Enhanced Deep Deterministic Policy Gradient. Our approach

based on the DDPG framework [11] uses an actor network for

continuous actions. During training, we interact with the simu-

lator that provides state abstractions and transitions. To improve

RL performance in handling the limitations associated with large

continuous action spaces and long-term reward optimization, we in-

troduce action masking and policy guidance techniques. Details of

the enhanced approach are in Algorithm 2 in the appendix. Action

masking, denoted as Mask(( ()9 ), �()9 )), re�nes the raw actions

generated by the actor network by enforcing action validity and

utilizing domain-speci�c knowledge, thereby improving policy per-

formance. Additionally, policy guidance incorporates the MILP

solver discussed earlier to provide optimal actions based on current

and future information. These optimal actions are stochastically

introduced during RL training into the replay bu�er (i.e., tossing

a biased coin) to mix high-quality actions given a deterministic

trajectory with exploratory actions).

4.2.2 Action Masking. Action masking ensures that the policy ac-

tions generated by the actor network are feasible during DDPG

training. Findings from [4, 6] con�rm that di�erentiable action

masking does not interfere with the policy gradient backpropaga-

tion process. As a result, the learning process remains e�ective,

while the imposed constraints on the action space prevent the

policy from exploring invalid actions, thereby improving training

e�ciency and optimizing resource usage.

This procedure takes the RL raw action �()9 ), an array of charg-

ing power [% (�8 ,)9 )]�8 ∈C for all chargers, processes it through

the following masking steps, and outputs the masked actions �′.

Before starting the procedure, we need to obtain the following state

features: the remaining power needed to reach the required SoC

for all connected EVs (KWHR), the time remaining for each EV

(g' ), and the maximum (�max) and minimum (�min) power of all

chargers (line 1 in Algorithm 1). Also, for our case, since we work

with both unidirectional and bidirectional, we denote uniIdx and

biIdx as the indices for unidirectional and bidirectional chargers,

respectively. All of the masking techniques referenced below are

from Algorithm 1.

• Mask 1.We set the charging power % (�8 ,)9 ) of charger �8 to 0

if no EV is connected, i.e., g' (q (�8 ,)9 )) = 0. (line 2)

• Mask 2. Overcharging unidirectional chargers is not bene�cial

since excess energy cannot be discharged. Thus, we limit the

Algorithm 1: Action Masking: Mask(( ()9 ), �()9 )).

Input: state: ( ()9 ), action: �()9 )

Output:Masked action: �′

1 Initializing: KWHR ← [KWHR (�8 ,)9 ) ]�8 ∈C;

g' ← [g' (q (�8 ,)9 ) ) ]�8 ∈C; n ← 10−5;

�<0G ← [�<0G
8 ]�8 ∈C; �<8= ← [�<8=

8 ]�8 ∈C

// Mask 1: Set action = 0 if no car is connected

2 �′ ← g'

g'+n
× �()9 )

// Mask 2: Stop charging when required SoC is reached for

uni-directional chargers

3 �′C<? ← �′; �′ [uniIdx] ← min(�′C<? ,
KWHR

X ) [uniIdx]

// Mask 3: Enforce charging to the req. SoC before departure.

4 KW()9 ) ←
KWHR−(g'−1)×�<0G ×X

X

KW()9 ) ← min(KW()9 ),�
<0G ) ; �′ ← max(�′,KW()9 ) )

// Mask 4: Bidirectional chargers discharge to req. SoC by departure.

5 KW∗ ()9 ) ←
KWHR−(g'−1)×�<8=×X

X

KW∗ ()9 ) ← max(KW∗
C ,�

<8= )

6 �′C<? ← �′; �′ [biIdx] ← min(�′C<? ,KW
∗
C ) [biIdx]

// Mask 5: Power improvement strategy

7 powerGap← B()9 ) − %̂<0G ()9 )

canIncrease← ReLU
(

min

(

KWHR

X ,�<0G
)

− �′
)

8 toImprove← min (ReLU(powerGap −
∑

�′ ),
∑

canIncrease)

9 �′ ← �′ +
toImprove×canIncrease
∑

(canIncrease)+n

// Mask 6: Do not discharge below building load

10 toImprove← max(−B()9 ) −
∑

(�′ ), 0)

negAction← ReLU(�′ × −1) × −1

11 �′ ← �′ +
toImprove×negAction
∑

(negAction)+n

charging power to ensure the SoC of EVs connected to a unidi-

rectional charger remains within their required SoC. For each

connected EV, the actions are masked to the minimum of the cur-

rent charging power and the power needed to reach its required

SoC
(

KWHR

X

)

(line 3).

• Mask 3. If necessary, we want to adjust actions such that it

forces charging to the required SoC before departure to minimize

missing SoC, as in Equation (7). We compute the critical power

KW∗ ()9 ), which is the minimum power required for all charg-

ers at time )9 to reach the required SoC of the connected EVs

before departing (assuming maximum power �<0G is utilized

in subsequent time slots). The raw action is adjusted if it falls

below this value, especially in time slots leading up to the EV’s

departure (line 4).

• Mask 4. Thismask is symmetrical toMask 3 for force discharging.

Overcharging bidirectional EVs is only advantageous if excess

energy can be discharged during peak hours, but there is no

bene�t to overcharging just before departure. Using this mask, we

force discharge EVs connected to bidirectional chargers, which

have excess energy, and they reach the required SoC by departure.

Here,KW∗ ()9 ) denotes the minimum power to discharge for all

chargers�8 ∈ C at time)9 to guarantee EV can reduce to required

SoC when departing (assuming the maximum discharging power

�<8= is utilized subsequently) (lines 5, 6).



• Mask 5.We increase charging power while ensuring the masked

action stays within the estimated peak power %̂<0G ()9 ). This

aims to charge EVs as much as possible towards their required

SoC without raising demand charges, thereby avoiding forced

charging just before departure, which could elevate peak power.

We calculate the “power gap” between estimated peak power and

current building power, %̂<0G ()9 ) − B()9 ). If the current power

sum (B()9−1) +
∑

�8 ∈C % (�8 ,)9−1)) is below this “power gap”,

we boost the current actions using the available “power” gap,

constrained by min

(

KWHR

X
,�<0G

)

. (lines 7 to 9).

• Mask 6. We adjust the discharging power to prevent cumula-

tively discharging below the current building power B()9 ), to

satisfy Constraint 5 by reducing the discharging power based on

the current actions (lines 10 to 11).

All of the action masking procedures utilize array computations and

di�erentiable operations, such as ReLU [19] andmaximum/minimum

operations, and the PyTorch framework [18].

4.2.3 Policy Guidance with MILP Solver. Note that for a �xed sam-

ple, i.e., a �xed set of EV arrivals and departures, the V2B problem

can be modeled as a single-shot mathematical program, i.e., a mixed-

integer linear program (MILP), which can solved e�ciently (at least,

for our problem size) to retrieve the optimal actions. The objective

of the MILP is maximizing the multi-objective weighted sum of the

total rewards (detailed in Equations 6, (7)), and the other properties

of the V2B problem can be encoded as constraints. The �xed sam-

ple of arrivals and departures can be extracted from historical data.

Naturally, this modeling paradigm does not solve the V2B prob-

lem in general—EV arrivals and departures are not known ahead

of time—however, this strategy provides a set of optimal actions

that the learning module can learn to imitate. For our use case, the

MILP problem can be solved reasonably fast. For example, for a

planning horizon of a day with 15 cars, the problem size averages

800 variables and 1400 constraints and takes 0.05 seconds to solve.

We integrate a MILP solver based on CPLEX [2] to solve the

above V2B problem, this solver as a policy guidance sub-routine [10]

into the RL training process which feed with current state and the

future events to provide optimal next optimal charging action. Dur-

ing training, the MILP solver is stochastically triggered to generate

optimal actions based on the current state. These state-action tran-

sitions are added to the replay bu�er with a prede�ned coe�cient,

'%� (see Algorithm 2 in the appendix). The next optimal action

is obtained using MILP (S(Tj), remainEpisode), which accounts for

remaining events like EV arrivals, SoC requirements, and building

power. By blending MILP and RL actor network actions during

training, the RL agent explores a more e�ective action space, im-

proving performance in handling large continuous action spaces

and maximizing long-term reward.

4.2.4 Actor-Critic Network Structure. Both the actor and critic net-

works are fully connected, having two hidden layers with 96 neu-

rons each. Both feature a ReLU activation layer at the end. The critic

network outputs a single Q-value estimate, while the actor network

outputs the action, which represents the charging power of each

charger. To enhance convergence and improve generalization, we

normalize all state variables to be within [0, 1] before feeding them

into neural networks. Time slot )9 is normalized by division with

the number of time slots in a day ( 24
X
), while power-related variables

such as building power B()9 ), estimated peak power %̂<0G ()9 ) are

scaled by their respective statistical values from training data. Fur-

thermore, we normalize the energy capacity ��% (+ ) of each car

by division with the maximum capacity among EVs,max(��% (+ )).

For the action �()9 ) = [% (�8 ,)9 )]�8 ∈C , we constrain the output

within the range [−1, 1] using the tanh activation function. It is

�nally translated into the charging power range [�<8=
8 ,�<0G

8 ] by

scaling the value using a constant factor.

4.2.5 Heuristics and Action Post Processing. To enhance the ease

of learning in this complex decision space, we use the RL model

on weekdays and the peak hours of TOU price within each billing

period (for both training and inference). For o�-peak hours and

weekends, we use a heuristic based on the least laxity task sched-

uling algorithm (described in Section 5) for o�-peak hours and

weekends to ensure EVs achieve the required SoC before depar-

ture, calculating the minimum charge needed for each time slot.

O�-peak hours o�er lower electricity prices, allowing for higher EV

charging rates, and are excluded from demand charge calculations,

making heuristics e�ective for optimization. Similarly, weekends

see fewer EV arrivals and lower power demand, with TSOs ex-

cluding them from demand charge assessments. Following the EV

manufacturer guidelines, we limit charging to SoC boundaries by

clipping the actions of the learned policy within [(>�min, (>�max]

through post-processing to satisfy Constraints (3) and (4)

4.3 Inference

During execution, our RL-based policy, which is a trained actor

network with the action masking procedure, operates at X time

intervals to determine the charging power for all chargers. At each

time slot, the state features are generated from data captured from

the environment, including charger status (connected EV’s current

SoC, expected departure time, and SoC), the building’s current

power and charging rate limits. While we use the estimated peak

power %̂<0G as the state feature based on training samples, as shown

in Figure 2b, it can be replaced by any data-driven forecasting or

prediction model. Then, we input all the normalized state features,

as described in Section 4.1, into the trained RL model to get the

charging actions for the next time interval.

5 EXPERIMENTS AND ANALYSIS

To demonstrate the performance of our proposed approach, we

use data from our Nissan’s research laboratory. We evaluate our

approach against several baselines in terms of total bill and peak

shaving (demand charge savings).

Data Collection We collected real-world data from Nissan’s re-

search laboratory in Santa Clara, California, including building

power, EV charger usage, and EV telemetry, over a nine-month

period from May 2023 to January 2024. To model the distributions

of EV arrivals, SoC requirements, and building power �uctuations,

we used Poisson distribution based on historical data. Character-

istics of the datasets are shown in Appendix A.2. The number of

EVs arriving at the o�ce on weekdays varies daily, illustrating the

inherent uncertainties. Arrival and departure hours relative to SoC

are depicted in Figure 4 in the appendix, which also presents the



distribution of peak power draw and corresponding hours. Main

environment parameters are provided in Table 8 in the appendix.

We sampled 1000 billing episodes for each month from May 2023

to January 2024.

Downsampling.We varied the number of training samples and

found that exceeding a certain limit increased computational de-

mands andworsened performance (see ablation study in Section 5.2).

To mitigate this, we applied k-means clustering [5] with : = 5 based

on the optimal demand charge from the MILP solution, selecting

60 training samples and 50 testing samples per cluster to ensure

exclusivity. This approach is further evaluated in the ablation study.

The key characteristics of the training and testing data are shown

in Table 7 in the appendix.

Estimated Peak Power. To enhance training e�cacy, we split

the monthly dataset into daily episodes for the model to learn

from varying weekday conditions. We include a monthly peak

power estimate for each month as an input feature derived from

optimal action sequences generated by the MILP solver, using the

lower bound of the 99% con�dence interval from training data as a

conservative demand charge estimate. This input feature is further

tuned during RL training.

Hyperparameter Tuning. Hyperparameter tuning is performed

on the parameters outlined in Table 6 in the Appendix, which also

shows the parameters of the best models selected for each of the

nine months. To evaluate the model’s performance, we employ a

3-fold cross-validation approach, dividing the 60 monthly training

samples into 40 samples for training and 20 samples for evaluation.

Baseline Approaches. To evaluate the performance of our RL

approach, we compare it with various methods, including an op-

timal oracle solution, a real-world charging procedure (baseline

approach), and several proposed heuristic approaches. We provide

brief descriptions of the baselines here and present the detailed

descriptions in Appendix A.3.

• OptimalMILP Solver (MILP):Wemodel deterministic sequences

of EV arrivals and departures and solve the problem using the

MILP formulation with IBM ILOG CPLEX Optimization Stu-

dio [2]. The results serve as an upper bound for comparison,

as they utilize an oracle for optimality.

• Fast Charge (FC): This approach simulates current real-world

charging procedures, charging all connected EVs as quickly as

possible to SOC<0G .

• Trickle Charging (Trickle): The trickle charging approach

utilizes the trickle charging rate, de�ned as theminimum required

charge at each time slot: % (�8 ,)9 ) = KWHR (�8 ,)9 )/g
' (�8 ,)9 ),

to charge all EVs until they reach their required SoC.

• Trickle Least Laxity First (T-LLF): We de�ne the Trickle LLF al-

gorithm (detailed in the Appendix) based on the Least Laxity First

approach, a dynamic priority-driven method for scheduling mul-

tiprocessor real-time tasks [9]. In EV charging, we de�ne laxity as

the di�erence between the remaining time before departure and

the time required to reach the desired SoC at a constant charging

rate [27]. For an EV connected to charger �8 at time slot )9 , the

laxity value is computed as (D(+ ) −)9 ) −KWHR (�8 ,)9 )/�
<0G
8 ,

with q (�8 ,)9 ) is the EV connected to �8 . At each time slot, we

compute the “power gap” (as %̂<0G ()9 ) − B()9 )), using the esti-

mated peak power and the current building power. This power

gap is allocated to all EVs by distributing the trickling charger

rate to those prioritized by their laxity.

• Trickle Early Deadline First (T-EDF): We propose the Trickle

EDF algorithm in a similar manner to Trickle LLF, with the only

di�erence being the prioritization method. Trickle EDF follows

the Early Deadline First approach (based on time of departure of

an EV), which was originally designed as a dynamic scheduling

algorithm for real-time systems [22].

• Charge First Least Laxity First (CF-LLF): We compute the

available “power gap”, as in Trickle LLF. Then we calculate the

sum of the trickle charging rates for all EVs at the current time

slot; if this sum is less than the available “power gap”, we have

capacity for overcharging. We �rst assign the charging rate for

all EVs to be their trickle charging rates, and then, we charge

EVs connected to bi-directional chargers to reach their maxi-

mum SoC, following the reverse order of their laxity until the

power gap is consumed. If the trickle sum exceeds the power gap,

bidirectional EVs are discharged, also based on reverse laxity, to

�ll the negative gap before resuming the trickle charging. See

Algorithm 4 in the appendix.

• Charge First Deadline First (CF-EDF): This follows the same

procedure as Charge First LLF but utilizes a di�erent prioritiza-

tion metric, focusing on the remaining time before EV departure.

5.1 Results

We evaluate all approaches using two metrics: 1) Peak Shaving: It

is the di�erence in demand charge between (i) the building’s power

usage (without any charging) and (ii) by adding charging the EVs

under the respective policies. Positive values indicate that the policy

reduced the demand charge by controlling the charging actions. 2)

Total Bill: The sum of electricity cost and demand charge over the

billing period, computed by Eq. (6). Note that missing SoC—the

energy shortfall between required and actual SoC at departure for

each EV—is a key metric in the V2B problem. Our RL model, with

action masking, applies force charging and discharging in Mask

2 and Mask 3 to ensure all EVs reach the required SoC before

departure, minimizing missing SoC. For fairness, we apply these

force procedures across all proposed heuristics, so wewill not report

this metric separately, as missing SoC is minimized for all EVs.

We assess the RL model’s long-term performance from May

2023 to January 2024, comparing it against baseline approaches

on 50 testing samples. Table 1 compares the total bill over nine

months across di�erent policies. While MILP o�ers an oracle-based

optimal solution, it is impractical for real-world use and serves as

a performance upper bound. The results show that the trained RL

model consistently achieves the lowest total bills from May 2023

to January 2024 (except June 2023), outperforming other real-time

policies in eight of the nine months and signi�cantly reducing

costs compared to the real-world Fast Charge procedure as detailed

in Table 1. Table 2 shows the peak shaving achieved by di�erent

policies. Our RL approach achieves the highest peak shaving in eight

months, barring June. Additionally, heuristic approaches using the

First Charge logic, like First Charge LLF or EDF, consistently result

in relatively lower total bills and demand charges compared to other

heuristics. This indicates that the First Charge approach is e�ective



Table 1: Total bill of test set, best values are bold. MILP shows the optimal solution given an oracle input. Lower is better.

Policy MAY JUN JULY AUG SEP OCT NOV DEC JAN

MILP 6201.1±50 6713.3±61 7371.0±40 9308.9±51 7231.0±36 7640.6±66 6625.9±42 6079.8±54 6495.1±55

RL 6222.6±26 6857.1±122 7392.2±51 9363.3±81 7243.0±24 7696.3±71 6654.9±61 6243.7±158 6635.0±80

CF-LLF 6245.9±32 6843.4±42 7396.8±26 9435.8±47 7284.1±41 7742.1±48 6675.9±32 6261.8±99 6646.3±81

CF-EDF 6247.6±34 6849.6±48 7399.0±28 9436.1±47 7289.5±48 7747.6±49 6676.3±31 6276.6±87 6639.9±69

T-LLF 6310.7±66 6920.0±75 7432.6±34 9537.5±52 7326.9±48 7800.1±48 6796.9±46 6344.5±132 6670.3±79

T-EDF 6326.6±58 6920.0±56 7455.4±34 9543.0±54 7364.5±48 7819.7±57 6809.7±42 6356.4±88 6673.2±60

Trickle 6333.8±44 6955.6±46 7506.0±37 9570.8±53 7402.1±47 7844.1±60 6842.9±44 6393.1±60 6706.8±53

FC 6308.7±50 6968.6±72 7537.3±83 9541.7±61 7403.6±81 7804.0±69 6813.0±70 6646.9±144 6706.4±77

Table 2: Peak shaving on test set, best values in bold. MILP shows the optimal solution given an oracle input. Higher is better.

Policy MAY JUN JULY AUG SEP OCT NOV DEC JAN

MILP 52.4±46 147.0±59 19.1±32 194.6±58 24.8±31 94.5±67 120.5±52 103.9±49 77.9±59

RL 31.7±28 3.8±61 -1.7±46 140.3±97 13.1±14 39.8±72 92.6±67 -59.2±152 -61.2±77

CF-LLF 8.3±34 17.4±43 -6.3±21 67.9±41 -28.0±28 -6.5±38 71.1±37 -77.2±92 -72.4±83

CF-EDF 6.5±33 11.2±50 -8.5±24 67.5±41 -33.4±34 -12.0±40 70.7±38 -91.9±81 -65.9±68

T-LLF -56.7±62 -59.2±73 -42.1±40 -33.9±40 -70.9±42 -64.6±41 -50.1±38 -160.2±126 -96.6±76

T-EDF -72.6±54 -59.3±53 -64.9±30 -39.4±41 -108.5±38 -84.2±52 -62.8±37 -172.1±82 -99.5±58

Trickle -79.8±39 -94.9±46 -115.5±36 -67.1±34 -146.1±38 -108.6±48 -96.1±36 -208.8±53 -133.2±49

FC -57.1±46 -113.7±70 -151.3±85 -40.8±42 -155.1±73 -76.0±59 -70.8±72 -473.5±138 -140.3±76

Table 3: Ablation results for �nal total bill on three months. Lower is better.

RL RL\500 RL\C RL\F RL\E RL\P RL\A Random\A

20471.9±137 20494.8±174 20511.6±184 20594.1±181 21130.2±214 21157.0±204 21273.7±209 21627.3±180

in balancing the charging and discharging process, o�ering better

overall performance across all heuristics.

5.2 Ablation Study

We evaluate the contributions of key techniques in our approach

through ablation. For the ablation studies, we trained RL models

on monthly samples of three months, May to July 2023, and tested

their performance on the total bill. The ablations explored are: 1)

RL\500 , RL training with more (500) training samples. 2)RL\C , RL

training using 60 randomly selected samples from 1000 generated

samples. 3) RL\F , RL models trained using the complete set of 100

state features de�ned in Section 4.1. 4) RL\E, RL training where the

monthly estimated peak power is set to 0, removing the in�uence

of long-term peak power estimation. 5) RL\P, RL training without

policy guidance. 6) RL\A, RL training without action masking,

except for forced charging and discharging (Masks 2 and 3), which

are retained to minimize missed SoC. 7)Random\A , where actions

are randomly selected instead of using a trained actor network,

followed by action masking. We present the sum of the monthly

total bills from May to July 2023 for all approaches in the ablation

study in Table 3 and Appendix A.3. Next, we discuss the signi�cance

of each ablated feature.

Downsampling.We evaluate the impact of downsampling us-

ing k-means clustering to generate 60 training samples from a pool

of 1000. The RL\500 approach, which uses 500 samples, showed no

improvement in performance but increased computational burden

during training. We also tested RL\C , where samples were ran-

domly selected instead of clustered, resulting in a performance drop.

These �ndings con�rm that our downsampling method maintains

RL performance while improving e�ciency.

State abstraction. We then examine the RL\F approach, which

performs worse, suggesting that condensing state features with

domain-speci�c knowledge improves training and leads to better

outcomes.

Policy guidance. The RL\P approach, which removes policy

guidance, results in decreased performance, highlighting its impor-

tance in optimizing actions during training. This guidance narrows

down the action exploration space, directing the model toward

better solutions.

Long-term prediction. The RL\E approach shows worse re-

sults, highlighting the importance of accurate long-term peak power

estimation during training. This value is used in action masking to

improve the charging actions without increasing the monthly peak

power and in�uences the reward function by penalizing actions

that raise peak power. When set to 0, the RL model fails to converge

to a good global optimum, emphasizing the critical role of peak

power estimation in achieving optimal performance.



Action Masking. Training without action masking procedure

in RL\A leads to a signi�cant performance drop, demonstrating

its importance in improving RL performance. This also highlights

the challenge of training RL models with 15 chargers in a continu-

ous action space. Action masking incorporates heuristics to guide

actions, resulting in signi�cant improvements.

RL actor network. To assess the impact of the actor network,

we replaced it with a random policy in the Random\A approach.

It generates random charging actions before passing through the

action masking. The poor performance shows that action masking

alone is insu�cient, emphasizing the critical role of the actor net-

work in achieving optimal outcomes. Despite all proposed heuristics

(except Fast Charge) adhering to action masking constraints, in-

cluding forced charging and power improvements, the RL approach

consistently delivers better results, underscoring the importance of

the actor network.

6 CONCLUSION

We propose an RL-based approach to address V2B challenges in

smart buildings by optimizing charging power for mixed-mode EV

chargers. The goal is to minimize overall costs, including energy

bills and demand charges, while ensuring EVs reach their required

SoC. Our solution addresses key challenges such as multi-agent

decision-making, centralized control of up to 15 chargers, and con-

tinuous charging power adjustments, all aimed at minimizing the

total energy bill over a month. We evaluate our approach against

several heuristic algorithms in simulated V2B scenarios using real-

world data from an EV manufacturer. Results show that our trained

models e�ectively manage online EV charging, lowering monthly

total bills while meeting SoC requirements.
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A APPENDIX

A.1 Related Work

We provide a more detailed review of prior work here. Table 4

describes the key papers and summarizes their gaps.

Uncertainty of vehicles and SoC requirements. Prior work has

taken Mukherjee and Gupta de�nes this taking into consideration

di�erent mobility aspects such as the arrival/departure time of an

EV at/from a charging station, trip history of EVs, and unplanned

departure of EVs [14]. Empirical studies, such as those by Richard-

son et al., have analyzed EV charging strategies and their impact

on grid stability, which are closely related to V2B systems [20].

The challenges of optimizing V2B systems, especially given the

dynamic nature of energy pricing and vehicle usage patterns, have

also been addressed by Wang et al., who proposed a demand re-

sponse framework for smart grids [26]. Additionally, O’Connell

et al. applied optimization algorithms, such as Mixed Integer Linear

Programming (MILP), to integrate renewable energy sources into

grid systems [16]. Other approaches, including meta-heuristics and

Model Predictive Control (MPC), have been explored to optimize

the smart EV charging process for electric vehicles (EVs), focusing

on energy cost and user fairness in single-site or vehicle-to-grid

(V2G) systems [1, 3, 8, 14]. However, many of these methods focus

on unidirectional chargers and fail to fully account for uncertainty

including, vehicle arrivals and departures [14].

Time of use pricing, demand charge, and long-term rewards.

Optimizing V2B is a complex problem, made more complex when

the lengths of billing periods set by TSOs are considered. Several

approaches [1, 13, 21] only optimize and plan for single-day hori-

zons. Lee et al. are able to achieve one-month planning horizons

while considering demand charge [8]. However, they assume a

homogeneous set of chargers. Thus preventing them from fully

realizing the e�ect of EVs on potential savings.

Heterogeneous chargers and continuous action spaces. Ap-

proaches that solve EV charging without considering the ability

of EVs to discharge ignore even more potential savings. How-

ever, addressing this introduces further complexity to the system.

Narayanan et al. works around the limitations of charger homo-

geneity by using Deep RL [15]. They consider SoC requirements

and address the mobility-aware needs of EVs. However, their ap-

proach does not consider long-term rewards, instead limiting their

planning to a single day. Improving upon these initial approaches,

Zhang et al. investigated federated RL for EV charger control, aim-

ing to maximize user bene�ts [29], and minimize electricity prices.

Their approach explores the continuous action space of charging

power and extends their planning horizon to an entire week. While

their approach includes both discharging and charging actions, they

fail to capture the idea of demand charge into their problem, which

is critical in the industrial context.

Tracking real-world state and transition. Existing approaches

validate their approaches using simulations that have limited in-

terface with the real world. Lee et al. utilizes an existing Adaptive

Charging Network (ACN) EV charging testbed along with a mobile

application to capture EV telemetry and charger behavior [8]. Thus,

they capture the complexity of real charging systems, including

battery charging behaviors.
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Figure 3: (Top) Arrival counts per day of the week across 8

months.Most of the cars arrive duringWednesday and Friday.

(Bottom) Peak building draw per day of the week across 8

months. Mondays and Fridays typically exhibit the highest

and lowest power draws.
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Figure 4: (Top) Distribution of EV hours and SoC for both ar-

rivals and departures across 8 months. (Bottom) Distribution

of peak building power draw against the hours of day it was

drawn and the TOU rates across the day. The majority of the

car arrivals and departure occur within high peak pricing

times and all of the peak power draw happens during peak

pricing time.

A.2 Complementary Figures

The characteristics of the training set are shown in Figure 3 and Fig-

ure 4. Figure 3 show the variations in arrival counts (top) and peak

building draw (bottom) across the di�erent days of the week across

8 months. Most cars arrive on Wednesdays and Fridays while the

peak building draw is the least on Fridays. Figure 4 (top) show

distributions of car arrivals and departures hours against the EVs

arrival SoC and required SoC upon departure. Figure 4 (bottom)

show the distribution of peak power draw and the hour of day.

The line in red signi�es the TOU rates across the day. All of the

cars arrive within peak hours, while the majority of them leave

within the peak hours. Finally, all o�-the-peak power draws occur

at peak hours. The intersection of these arrivals, departures, and

peak power draw hours represents the potential space that our

policy can operate on.



Table 4: Comparison of state-of-the-art approaches for EV charging problem with our approach.

Reference Approach Objective Action Space Planning
Horizon

Discharge Mobility Req.
SoC

Demand
Charge

Ardakanian et al. [1] Distributed control
algorithm

EV charging Fair-
ness Allocation

Continuous power
rate of 2 chargers

Single day

Deilami et al. [3] Rule-based control Minimize energy
cost and grid energy
losses

Continuous power
rate

Permanent

Lee et al. [8] Scheduling algo-
rithm

Minimize demand
charge, total load
variation, and ca-
pacity distribution
fairness

Continuous power
rate of 80 chargers

Onemonth ✓ ✓

Mocanu et al. [13] Deep Q-learning,
Deep Policy Gradi-
ent

Minimize building
energy cost

Boolean decision for
turn on/o� 3 devices

Single day ✓

Sadeghianpourhamami
et al. [21]

RL: o�-policy value-
iteration

Minimize power
consumption and
un�nished charging

Boolean decision
(charge or not) on
50 charger stations

Single day ✓ ✓

Narayanan et al. [15] Deep RL: PPO Minimize energy
bill and satisfy user
QoS

Continuous power
rate of an EV and a
HVAC

Single day ✓ ✓ ✓

Zhang et al. [29] Federated RL: Soft
Actor and Critic

Maximize EV user
bene�ts and electric-
ity prices

Continuous power
rate of 3 chargers

One week ✓ ✓ ✓

Our Approach DDPG with action
masking and policy
guidance

Minimize demand
charge, electricity
cost and missing
SoC

Continuous power
rate of 15 chargers

Onemonth ✓ ✓ ✓ ✓

Environment Simulator.We process these training data into

input samples for our digital twin/environment simulator.Wemodel

a digital twin for the target environment and provide several in-

terfaces that allow both simulated and real-world components to

leverage our proposed approach. This allows us to investigate how

any action or decision can potentially impact the real world. There

are two main decisions that must be taken when solving the V2B

charging problem. (1) charger assignments and (2) charger actions.

Table 5: Charger Assignment and tiebreaker comparisons

with an MILP policy. Assigning to Bidirectional chargers

�rst and then breaking ties by assigining them to the EV that

departs later results in the lowest bill. Lower is better.

Assignment Tie Breaker Average Monthly Bill ($)

Bidirectional Departure 7037.178±957.869

Bidirectional Capacity 7037.180±958.867

Bidirectional Random 7037.647±958.656

Random Random 7038.770±971.310

Random Departure 7039.723±968.603

Random Capacity 7040.216±966.708

Unidirectional Random 7122.884±981.666

Unidirectional Departure 7123.066±981.620

Unidirectional Capacity 7123.073±981.612

Charger assignment. We consider a �rst-in, �rst-out policy

that assigns EVs to bidirectional chargers �rst, breaking ties as-

signing to later departing cars; a comparison of di�erent policy

combinations is shown in Table 5. We observe that bidirectional

charging assignments outperform all other policies. Tie-breaking

strategies that prioritize later-departing vehicles show a marginal

advantage. While these assignment policies could be further opti-

mized, we chose to follow this heuristic and focus on the second

decision problem: determining charger actions. Charger actions.

We provide several policies with our simulator to compare our

proposed approach. Charger action policies receive a state of the

environment for a particular time and generate actions based on

this.

A.3 Additional Details on the Approach

Our proposed approach, as outlined in Algorithm 2, is based on

the DDPG algorithm [11], which utilizes an actor network to gen-

erate actions. Tuples of state, action, reward, and next state are

stored as transitions in the replay bu�er (lines 9 to 12). During

training, we interact with the environment simulator. We provide

input from the training dataset. Table 7 shows the characteristics

of this dataset. The environment simulator abstracts state features

for the RL models and manages state transitions based on the func-

tion described in Section 4.1. In each training iteration, we batch

state transitions from the replay bu�er for model training (line 13).

Speci�cally, DDPG maintains target networks for both the actor

and critic, which are used to generate the next state and compute

Q-values essential for calculating the critic loss during training.

The critic network is trained using gradient descent by minimizing

the mean squared error between predicted Q-values and target Q-

values derived from the Bellman equation (lines 14-16). The critic

learns Q-values for state-action pairs, which are then used to train

the actor network through a policy gradient approach (lines 17 and

18). The updates to the target networks are delayed to stabilize the

training process (lines 18-19).

To improve RL performance in handling the limitations asso-

ciated with large continuous action spaces and long-term reward

optimization, we introduce action masking and policy guidance



Algorithm 2: Improved DDPG with Action Masking and

Policy Guidance.

Input: Initial policy parameters for actor network Z0 , critic

parameters Z2 , target network parameters Z ′0, Z
′
2

Training parameters: actionNoise, '%� , bu�erSize, batchSize,

maximum iterations:" , training steps: trainStep; target network

update steps: updateStep

Output: Trained policy cZ0
1 Initialize replay bu�er BF; step← 0

2 for 1 to" do

3 Input a sample into simulator to generate initial state B0

4 for each time slot)9 ∈ T do

// Introducing policy guidance stochastically.

5 randomValue← A0=3><�4CF44= (0, 1)

6 if randomValue f '%� then

7 Get action �()9 ) by rerunning the MILP solver:

�()9 ) ← MILP (( ()9 ), remainEpisode)

8 else

9 Get masked action using current policy, actionNoise:

10 �()9 ) ← Mask
(

( ()9 ), c (( ()9 ) |Z0 ) ) + actionNoise
)

11 State transition ( ()9+1 ) ← Trans (( ()9 ), �()9 ) )

12 Get the action reward ' ()9 ) ← Reward (( ()9 ), �()9 ) )

13 Store transition (( ()9 ), �()9 ), ' ()9 ), ( ()9+1 ) ) in BF

14 if step mod trainStep == 0 then

15 Sample batch (( ()8 ), �()8 ), ' ()8 ), ( ()8+1 ) from BF

16 Get masked actions using target actor network:

17 �()8+1 ) ← Mask (( ()8+1 ), c
′ (( ()8+1 ) |Z

′
0 ) )

18 Set target ~8 ← ' ()9 ) + W&
′ (( ()8+1 ), �()8+1 ) |Z

′
2 )

19 Update critic network by minimizing the loss:

! ← 1
#

∑

8 (~8 − & (( ()8 ), �()8 ) |Z2 ) )
2

20 Get masked actions �()8 ) at ( ()8 ) using actor

network: �()8 ) ← Mask (( ()8 ), c (( ()8 ) |Z0 ) )

21 Update the actor policy using policy gradient:

22 ∇Z0 � ←
1
#

∑

8 ∇0& (( ()8 ), �()8 ) |Z2 ) |∇Z0c (B |Z0 ) |( ()8 )
23 if step mod updateStep == 0 then

24 Update the target networks: Z ′0 ← gZ0 + (1 − g )Z
′
0 ;

Z ′2 ← gZ2 + (1 − g )Z
′
2

25 step← step + 1

techniques. Action masking, denoted asMask(( ()9 ), �()9 )), re�nes

the raw actions generated by the actor network by enforcing action

validity and utilizing domain-speci�c knowledge, thereby improv-

ing policy performance (lines 9, 14, 17). Meanwhile, policy guidance

incorporates the MILP solver to provide optimal actions through

MILP (( ()9 ), remainEpisode), based on current and future informa-

tion (lines 5-9). These optimal actions are stochastically introduced

during RL training into the replay bu�er, mixing high-quality ac-

tions with the raw RL actions to enhance the training transition

quality and guide the RL training in a bene�cial direction.

A.4 Complementary Experimental Results

We evaluate our approach on an environment with the parameters

shown in Table 8. We use the same parameters across hyperparam-

eter tuning, training, evaluation, and comparison.

Additional Details on Hyper-Parameter Tuning: This method-

ology enables us to monitor and assess the RL model’s performance

Table 6: Hyperparameters and selected values.

Parameter Description Range

Actor network Number of units at each layer [96, 96]

Critic network Number of units at each layer [96, 96]

� Discount factor for future reward 1

Actor&Critic

learning rate

Learning rate for updating actor

and critic networks

10−5, 10−3

bu�erSize Batch size for fetching transitions

from replay bu�er

64

batchSize Size of the replay bu�er 106

actionNoise Noise added during action explo-

ration

normal(0,0.2)

'%� Probability to introduce policy guid-

ance

0.5 or 0.7

_( , _� , _� Penalty coe�cients for SoC require-

ment, bill cost, and demand charge

1,1, 3

Random seed Random seed for actor and critic

network initialization

0-5

Adjustment of

%̂<0G
Lower bound of the 99% con�dence

interval for the optimal monthly

peak power based on training data

Increased

by 0%, 5%,

10%

trainStep,

updateStep

Training steps and steps per update

of target networks

5, 5

throughout the training process. An early stopping procedure is

implemented, terminating training if the total reward on the 20

evaluation samples does not improve after a speci�ed number of

iterations. Finally, we select the optimal combination of hyperpa-

rameters based on the results from the 3-fold cross-validation. The

new RL model is then trained using the full set of training samples

with the identi�ed best parameter combination. Finally, we test the

trained 9 RL models on 50 unseen monthly samples for each month

from May 2023 to January 2024 to evaluate their generalization

performance. Table 6 show selected values for each hyperparameter

after tuning.

Algorithm 3: Trickle Charging with Least Laxity First.

Input: Set of EVs+ , chargers C, time slots C

Output: Charging schedule for each EV

1 for each time slot)9 ∈ T do

2 for each EV q (�8 ,)9 ) connected to chargers C do

3 Compute laxity: ! (q (�8 ,)9 ) ) =

(D (q (�8 ,)9 ) ) − C ) − KWHR (�8 ,)9 )/�
8
<0G .

4 Compute power gap: %̂ = %̂<0G ()9 ) − B()9 ) ;

5 Sort EVs by laxity: ! (q (�8 ,)9 ) ) in ascending order;

6 Initialize [% (�8 ,)9 ) ]�8 ∈C as 0;

7 for each EV q (�8 ,)9 ) sorted by laxity do

8 if %̂ > 0 then

9 Set trickle charging rate:

% (�8 ,)9 ) = min(KWHR (�8 ,)9 )/g
' (�8 ,)9 ), %̂ ) ;

10 %̂ ← %̂ − % (�8 ,)9 ) ;

Heuristics: Algorithm 4 and Algorithm 3 show the exact algo-

rithms used for Charge First LLF and Trickle LLF, respectively.

Ablation results: Finally, Table 3 shows a breakdown of the abla-

tion results per month.



Table 7: Training and testing data information for each month.

Month
Training (60 Samples) Testing (50 Samples)

Car Arrival

Number (per

day)

Monthly Peak

Building Load

(kW)

Daily Peak

Building load

(kW)

Estimated

peak

power

(kW)

Number

of Week-

days

Car Arrival

Number (per

day)

Monthly Peak

Building Load

(kW)

Daily Peak

Building Load

(kW)

MAY 9.35 ± 2.19 125.89 ± 1.72 96.22 ± 13.76 119 22 9.31 ± 2.2 125.62 ± 1.65 96.18 ± 13.73

JUN 11.4 ± 2.53 141.04 ± 1.83 109.86 ± 14.0 125 21 11.49 ± 2.51 140.34 ± 2.21 109.75 ± 13.97

JUL 10.86 ± 2.45 148.08 ± 1.57 111.79 ± 35.39 145 20 10.97 ± 2.4 148.12 ± 1.72 111.94 ± 35.49

AUG 6.87 ± 1.97 221.02 ± 3.86 160.5 ± 27.92 202 23 6.92 ± 1.93 221.17 ± 3.77 160.69 ± 28.14

SEP 14.99 ± 2.9 145.91 ± 1.48 127.2 ± 11.86 143 20 14.94 ± 2.88 146.23 ± 1.08 127.2 ± 11.85

OCT 14.55 ± 2.91 186.54 ± 1.72 118.58 ± 30.12 174 21 14.54 ± 2.86 185.17 ± 2.77 118.5 ± 30.13

NOV 9.59 ± 2.31 144.9 ± 3.28 113.09 ± 19.18 130 19 9.57 ± 2.29 144.2 ± 2.92 113.09 ± 19.2

DEC 20.36 ± 3.4 116.49 ± 2.25 98.72 ± 8.0 104 16 20.32 ± 3.35 116.33 ± 2.01 98.69 ± 7.95

JAN 13.62 ± 2.73 137.77 ± 2.47 91.56 ± 19.46 127 21 13.53 ± 2.76 137.64 ± 2.5 91.72 ± 19.47

Table 8: Simulation Parameters.

Parameter Value

C 15 chargers (5 bi-directional, 10 uni-directional)

C8
<8=,C

8
<0G [-20 kW, 20 kW] for bi-directional, [0, 20 kW] for uni-

directional chargers

X Time interval: 0.25 hours

\� , \� ()9 ) 9.62 $/kW (Demand), 0.11271 $/kWh (o�-peak), 0.1466

$/kWh (peak: 6 a.m.-10 p.m.)

��% (+ ) EV battery capacity: 40 or 62 kWh

SOC<8= (+ ) ,

SOC<0G (+ )

Minimum and maximum SoC: 0% and 90% of capacity

Table 9: Month-wise ablation results for total bill. Lower is

better.

Policy MAY JUN JULY Total

RL 6222.6 6857.0 7392.2 20471.0

RL\500 6225.08 6875.12 7394.59 20,494.79

RL\E 6464.49 7033.71 7631.95 21,130.15

RL\A 6377.01 7174.84 7721.81 21,273.66

RL\C 6223.4 6895.8 7392.45 20,511.65

RL\F 6230.39 6968.64 7395.07 20,594.10

Random\A 6532.59 7250.97 7843.72 21,627.28

Algorithm 4: Charge First with Least Laxity First.

Input: Set of EVs+ , chargers C, time slots C

Output: Charging schedule for each EV

1 for each time slot)9 ∈ T do

2 for each EV q (�8 ,)9 ) connected to C do

3 Compute laxity: ! (q (�8 ,)9 ) ) =

(D (q (�8 ,)9 ) ) − )9 ) − KWHR (�8 ,)9 )/�
8
<0G .

4 Compute power gap: %̂ = %̂<0G ()9 ) − B()9 ) ;

5 Compute sum of trickle rates:

( =

∑

8 KWHR (�8 ,)9 )/g
' (�8 ,)9 ) ;

6 if ( < %̂ then // Overcharging EVs for future discharging

7 for each EV q (�8 ,)9 ) connected to C do

8 Set trickle rate:

% (�8 ,)9 ) ← KWHR (�8 ,)9 )/g
' (�8 ,)9 ) ;

9 %̂ ← %̂ − ( ;

10 for each EV+ = q (�8 ,)9 ) connected to bi-directional

chargers in reverse laxity order do

11 Charge to maximum SoC: % (�8 ,)9 ) ←

min

(

�<0G
8 ,

(SOC<0G (+ )−SOC (+ ,)9 ) )×��% (+ )

�C , %̂
)

;

12 %̂ ← %̂ − % (�8 ,)9 ) ;

13 else // Discharging EVs to increase power gap

14 while %̂ g ( and not all EVs connected to bi-directional

chargers are considered do

15 for each+ = q (�8 ,)9 ) connected to bi-directional

chargers in reverse laxity order do

16 if ($� (+ ,)9 ) > SOC' (+ ) then

17 % (�8 ,)9 ) ←

max

(

�<8=
8 ,

(SOC' (+ )−SOC (+ ,)9 ) )×��% (+ )

X

)

;

18 %̂ ← %̂ − % (�8 ,)9 ) ;

19 for each+ = q (�8 ,)9 ) connected to chargers sorted by

reverse laxity do

20 Set trickle rate:

% (�8 ,)9 ) ← min

(

KWHR (�8 ,)9 )/g
' (�8 ,)9 ), %̂

)

;

21 %̂ ← %̂ − % (�8 ,)9 ) ;
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