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ABSTRACT

In this study, we conduct an experimental investigation into the dynamic
response of two hollow cylindrical cantilever beams that are sealed with
plastic caps at the end and are subjected to vortex-induced vibrations.
We conducted experiments using two polycarbonate cylinders with mass
ratios of 0.761 and 0.922 and damping ratios of 0.037 and 0.045,
respectively. Motion analysis was performed using two high-speed
cameras, and motion tracking was facilitated by UV lights for better
image quality. Our findings indicate that the IL: CF frequency ratios
conform to the conventional 2:1 frequency ratio. However, we also
observed 1:1 and 3:1 frequency ratios at low and high reduced velocities.
These were accompanied by predominantly small positive and negative
lift coefticients in phase with velocity values. The amplitude response
aligns with previous literature, although our study shows that the in-line
amplitudes reach higher values due to the cylinders’ low mass and
damping ratios. We observed that at reduced velocities below 3, one of
the cylinders showed higher in-line amplitudes than cross-flow.
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INTRODUCTION

Vortex-induced vibration (VIV) is a common issue seen in many marine
structures, including offshore risers, offshore platform legs, cables, wind
turbines, and others. When interacting with fluid, vortices form behind
them. These vortices produce a low-pressure region, resulting in
fluctuating hydrodynamic forces, hence VIV. When vibrations are not
monitored or considered during the design process, they can cause
fatigue, downtime in operations, and even catastrophic failures.
Previously, VIV of rigid bodies has been studied extensively. Review
papers such as Bearman (1984), Sarpkaya (2004), Williamson and
Govardhan (2004) discuss the fundamental nature of VIV, and recent
studies such as Bearman (2011), Liu et al. (2020), and Aktosun et al.
(2024) discuss the effects of combined in-line and cross-flow motions on
this complex dynamical system.

In VIV, the system depends mainly on two parameters: the mass ratio
(m*), which is defined as the cylinder’s mass divided by the displaced
fluid mass and the damping ratio (Khalak & Williamson, 1997; Pan et
al., 2007). Khalak and Williamson (1997) explored low mass and
damping ratio cylinders in the cross-flow direction, discovering the

upper and lower VIV response branches. Later, Khalak and Williamson
(1999) introduced a map of vortex modes with dimensionless amplitude,
where the response amplitude is normalized by the cylinder diameter as
a function of the normalized velocity. Govardhan and Williamson (2000)
then studied the cross-flow VIV of an elastically mounted rigid cylinder
in a fluid flow to gain more in-depth insights into these modes. Later,
Flemming and Williamson (2005) looked at the in-line and the cross-
flow directions where the cylinder was pivoted and added a third axis to
the map of modes, concluding that the in-line direction is an important
aspect of the overall emerging vortex modes. Moreover, because the
cylinder was pivoted, they concluded that the observed response
branches exist in different parameter spaces where the upper branch with
the higher cross-flow motion corresponds to different vortex formation
modes and forces, suggesting the fluid-structure interaction along the
spanwise direction is very complex.

In this work, we use circular hollow cylinders with low mass and
damping ratios and conduct experiments in a recirculating flow channel.
Unlike Flemming and Williamson (2005), the cylinders are hollow
(sealed with plastic caps at the end) and are directly fixed to the top of
the tank with a clamp mechanism without using a thin, flexible pin. The
system's oscillating mass and natural frequencies are equal in both in-
line and cross-flow directions. Motion is captured using high-speed
cameras under UV lights and then analyzed using motion tracking for
post-processing.

MATERIALS AND METHODS

The experiments were conducted in a newly built recirculating water
tank located in the Fluid-Structure Interactions and Nonlinear Dynamics
(FSINLD) laboratory at the University of Hawai'i Manoa. The test
cylinder is fixed from the top, keeping the other end free. Current is
simulated by generating a uniform flow in the testing section, where the
cylinder is partially submerged. In the experiments, the flow speed is
first increased systematically, and the cylinder's motion is captured using
high-speed cameras for further analysis.

The working principle of the small recirculating tank is simple. It houses
a turbine connected to a motor, as shown in Figure 1. The turbine creates
a flow by pushing the water that passes through it in one direction. In
this direction, the water passes through a flow straightener before being
directed through a shorter but finer flow straightener following a 180°
curve in the tank. The measured flow speeds across the length and width
using a flowmeter confirm the uniform flow conditions. The finer flow
straightener is made of a 15cm long honeycomb structure of straws with



the purpose of creating a uniform flow and eliminating turbulences
created by the turbine or the tank’s curve. The test section starts after this
flow straightener and is roughly 55cm long with a 20 x 20 cm cross-
section. A second 180° curve leads the water back through the turbine.
Figure la illustrates the experimental setup with the test cylinder, and
Figure 1b shows the sketch of the whole tank along with the flow
straightener and cylinder location. The test cylinders are painted black
and marked with white dots along the length in both in-line and cross-
flow directions for easy tracking, as illustrated in Figure 1a. The white
markers were placed 2 cm apart, and each marker was comprised of
around 15-20 pixels. High-speed cameras tracked the motion in both in-
line and cross-flow directions with a frame rate of 240Hz. High-speed
cameras were placed orthogonal to each other for easy post-processing.
After the videos are recorded for varying flow speeds, motion is analyzed
using ProAnalyst motion tracking software.
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Figure 1. (a) Sketch of the experimental setup. (b) Sketch of circulating
flow tank.

Experiments

Figure 2 shows the detailed experimental setup, in which the cylinders
are placed downstream in the tank and attached to a clamp mechanism
at the top. The bottom of each cylinder was kept close to the bottom of
the tank (~ 2mm) to reduce the boundary effect. The top of the tank was
closed with an acrylic lid to reduce the wave formations. The cylinder is
fixed in position within the test section by a 3D-printed clamping system
above the surface on an opening in the flow tank’s lid. Since the cylinder
is partly submerged, there are different characteristic heights such as H,,
which describes the overall water depth; H,, which describes the height
of the submerged part of the tested cylinder and therefore defines the
effective length; Hy represents the length of the cylinder’s free end from
the point of fixation to the end. H, describes the total length of the

cylinder, and Hy stands for the resulting height between the tank bottom
and the cylinder. Table 1 shows all the relevant dimensions of the tank.
The cylinders’ natural frequencies were tested using pluck tests in air
and water. Since the tested cylinders have symmetrical cross-sections,
the natural frequency is the same in either direction. The damping ratios
for two cylinders, Cylinder A and Cylinder B, are estimated to be 0.037
and 0.045, respectively.

Figure 2. Experimental setup in the tank’s test section with the clamp
mechanism.

Table 1. Dimensions in the tank.

Abbreviation | Dimension (cm)
Ly 130.5
L, 54.9
Ly 36
w; 50.8
w, 20
Ws 10
H, 20
H, 19.6
Hj 23.5
H, 30.5
Hs 0.2

The flow speed in the experiments varied between 0.05 and 1 m/s. Due
to a lack of movement at lower speeds and bubble formations at higher
speeds, only motion at flow speeds up to 0.71m/s was analyzed. The
test cylinders are made of extruded polycarbonate with a known elastic
modulus of 2.38 GPa. Cylinder’s mass ratio, m*, is defined by the ratio
of the moving mass of the system (Mg s¢em ), Which is the weight of the
cylinder from its fixed point to its free end over the mass of the fluid
displaced by the partly submerged cylinder (Mg;spiaceq) (Khalak &
Williamson, 1997). The test cylinders have an estimated mass ratio of
0.761 and 0.922, which is close to the critical mass ratio of 0.54. This is
important because it is known that the synchronization between shedding
and vibration frequencies hinges significantly on the fluctuation in
hydrodynamic mass. Maintaining a low mass ratio typically leads to
broader lock-in regions (Govardhan & Williamson, 2000; Sumer &
Fredsoe, 2006; Vikestad, 1998).

To describe the flow around the body and calculate the hydrodynamic
coefficients later on, the Reynolds number, Re = UD /v, is calculated for
each flow speed, where v represents the kinematic viscosity of the water.



This results in theoretical Reynolds numbers between 336 and 4767 for
the ‘Cylinder A’ and between 224 and 3178 for the ‘Cylinder B” which
has a smaller outer diameter as shown in Table 2. Assuming a Strouhal
number (St) of 0.22, the theoretical frequencies at which shedding occurs
(fy = StU/D) range from 1.83 Hz to 26.03 Hz for Cylinder A and from
2.75 Hz to 39.05 Hz for Cylinder B.

Table 2. Test dimensions and characteristics

Cylinder A Cylinder B

Outer-Diameter (mm) 6 4
Inner-Diameter (mm) 4 2
Material Polycarbonate Polycarbonate
Reynolds number (Re) 336 to 4767 224103178
Total length (H;) 308 mm 305.5 mm
Total weight 6.61g 353g
E-modulus 2.38 GPa 2.38 GPa
Aspect Ratio (H,/D) 32.67 49
Mass Ratio (m*) 0.761 0.922
Damping Ratio ({) 0.037 0.045
Theoretical f, 1.83 tI({)Z26‘O3 2.75 t0 39.05 Hz

Air 25.8 Hz 16.08 Hz
Natural frequency Water 738 1y 1054 iz

Table 2 presents all relevant dimensions and characteristics of the tested
cylinders. Here, the aspect ratio is defined by the ratio of the submerged
cylinder length (effective cylinder length) over the cylinder’s outer
diameter.

Motion analysis

Motion tracking is carried out using the ProAnalyst software, which
operates with a subpixel level of precision by tracing the center point of
apixel bulb within a search box (E. D. Gedikli, 2017). During the process
of image analysis, a number of filter layers were applied to guarantee
that the markers are visible and of a quality that allows them to be
tracked. A threshold operation was the primary filter that was applied,
and it was used to set all of the image pixels that were below the
threshold to black (zero), while all of the image pixels that were above
the threshold were set to white (255). As a result of the different lighting
conditions in the room, the threshold value was slightly different in each
instance.

In addition, a new motion-tracking setup was developed to enhance the
visibility of the markers where UV black lights were utilized in
conjunction with UV white paint to reactivate the ultraviolet light. The
objective of this strategy was to diminish the visual disturbances that
were brought by potential bubbles at high speeds while simultaneously
enhancing the brightness of the tracking points. However, we decided to
eliminate high-speed responses due to concerns that a large number of
bubble formations could affect motion.

Another important challenge was that even though the two cameras were
operated using the same remote, some of the resulting video data did not
end up being perfectly synchronized during the experiments. As a result,
the two signals still needed to be synchronized for motion analysis. The
biggest challenge here was the oscillation frequency in both directions
was not the same as the fundamental feature of the VIV and varied

significantly as the flow speed varied. Hence, we developed a simple
time-delay algorithm that delays one signal and correlates with the other.
More specifically, to synchronize two signals depicting the same motion
from different perspectives, we first identify common features in both
signals, such as peaks or valleys. After calculating the time delay
between these features to determine the synchronization offset, we apply
a time delay to each signal, moving it forward or backward on the
calculated offset (Li et al., 2020). Following that, we visually evaluate
the synchronization and adjust the time delay as needed to achieve
optimal signal alignment, allowing for precise analysis and comparison.
Then, the motion in the in-line direction is plotted against the cross-flow
motion to illustrate the resulting Lissajous shape, as illustrated in Figures
4 and S.

RESULTS AND DISCUSSION

Figure 3 shows the amplitude and frequency response map obtained from
experiments. The top image represents the normalized in-line amplitude
response, the center image represents the normalized cross-flow
amplitude response, and the bottom image represents the normalized
frequency versus normalized reduced velocity.
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Figure 3. Top image: Non-dimensional in-line amplitude response (A4%)
vs. normalized reduced velocity (U*). Center image: Non-dimensional
cross-flow amplitude response (Aj) vs. normalized reduced velocity
(U*). Bottom image: Normalized frequency (f* =f, /fy) vs.
normalized reduced velocity (U™).

The normalized reduced velocity is established as the ratio of the flow
speed to the product of the cylinder's diameter and its first mode natural
frequency (U* =U/fyD). f, is the vortex shedding frequency.
Additionally, we use the concept of true reduced velocity for
hydrodynamic force calculations, wherein the oscillation frequency
replaces the natural frequency in the calculation. This reduced velocity
(V. = U/fD) allows for flexibility in defining the flow-induced motion
concerning the oscillation frequency. Specifically, in the in-line



direction, the true reduced velocity is denoted as V., = U/f, D, while in
the cross-flow direction, it is represented as V., = U/f,D. Sometimes
this distinction is preferable since it facilitates a more comprehensive
understanding of the structural response to varying flow conditions in
different directions. Y-axes in the bottom image in Figure 3 represents
the normalized oscillation frequency (f*) where the oscillation
frequency in the respective direction is normalized with the first mode
natural frequency of the cylinder (f* = f;,, /fn)-

It's important to note that our analysis only extended to a flow speed of
0.71 m/s, leading to a limited response map for Cylinder A. To fully
explore the VIV phenomenon, we conducted a second set of experiments
using Cylinder B (see Table 2), which has a smaller mass and
comparable mass damping ratio. This cylinder is specifically chosen to
capture the complete VIV range across normalized reduced velocities.
It's worth noting that the smaller mass cylinder also played a crucial role
in having the peak amplitude observed in the system response in the in-
line direction. Throughout our observations, we identified Initial (1),
Upper (U), and Lower (L) branch regimes. Notably, while the response
amplitudes and branches resembled those observed in Flemming and
Williamson (2005), they resulted in a wider and higher amplitude
response region. This variation can be attributed to disparities in mass
and damping ratios, which resulted in wider VIV regions (Flemming &
Williamson, 2005; Sumer & Fredsoe, 2006). This phenomenon is
particularly pronounced when the mass ratio approaches the critical
value of 0.54, as highlighted by Govardhan and Williamson (2004).
Below this critical threshold, there is no decoherence region, and VIV
manifests across all velocities beyond the initial lock-in point.
Additionally, the frequency ratio followed the classic Strouhal frequency
line (f,) in the lower branch but deviated as the reduced velocity
increased, as illustrated in the bottom image of Figure 3.

In Figure 3, the in-line amplitude response analysis shows that Cylinder
A peaks around a normalized reduced velocity of 6.3. However, due to
its slightly stiffer nature, the traditional amplitude-drop response isn’t
observed. Consequently, it’s highly probable that the response would
reach its maximum at slightly higher reduced velocities if we could
conduct tests at even higher flow speeds. Conversely, Cylinder B
demonstrates all three traditional response branches. The initial branch
is observed at reduced velocities below 5.71, the upper branch coincides
with reduced velocities between 5.71 and 10.28, and the lower branch
appears at reduced velocities of 11.20 and higher. In the cross-flow
direction, the cylinder reaches a normalized amplitude of 1.5, and in the
in-line direction, it reaches a maximum amplitude of ~0.7, which is
generally in line with observations of Flemming and Williamson (2005)
although we reached much higher amplitude responses in the in-line
direction. This is interesting because the total mass-damping ratio in their
system is much lower than the current study, although the mass ratio in
this work is much lower than the mass ratio they used. In addition, having
a very low mass ratio resulted in a wider upper branch region, which
resulted in a large response region between the normalized reduced
velocities of 5.71 and 10.28. It is worth noting that at lower reduced
velocities (U™ < 4), the in-line response may either surpass the cross-
flow response or be comparable, as demonstrated by Cylinder A,
although this phenomenon wasn’t observed for Cylinder B. So, the onset
conditions of this is unknown and still a research question which will be
further investigated in the future. Yet, this finding is intriguing and aligns
with similar results reported for bending-dominated cylinders (E. D.
Gedikli, 2017; E. Gedikli et al., 2018).

Figures 4 and 5 illustrate the selected phase space patterns (Lissajous
pattern) for 0.25 seconds of data for clarity. This demonstrates that as the
flow speed increased, the cylinder's response amplitude increased, and
the in-line contribution to the overall response became significant. More

specifically, Cylinder A starts oscillating with a figure-eight pattern at
around a reduced velocity of 3 and continues to oscillate with the same
pattern as the flow speed increases, reaching a cross-flow amplitude of
1.2 and an inline amplitude of 0.6. In the meantime, Cylinder B exhibits
a figure-eight motion pattern in the upper-branch region, which is
distinguished by persistent oscillation and relatively high cross-flow
amplitudes. The observed behavior continues until the reduced velocity
value of 11, beyond which a clear phase portrait is no longer observable,
as depicted in Figure 5.
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Figure 4. Lissajous shapes for Cylinder A for selected normalized
reduced velocities. Motion represents the point at the far free end. Flow
is from left to right.
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Figure 5. Lissajous shapes for Cylinder B for selected normalized
reduced velocities. Motion represents the point at the far free end. Flow
is from left to right.

Figures 6 and 7 show example motion time histories in in-line and cross-
flow directions (top image) alongside frequency responses in the in-line
(bottom left image) and cross-flow (bottom right image) directions.
Figure 6 shows the response at normalized reduced velocity of 6.71 for
Cylinder A where in-line frequency is twice the cross-flow frequency.
Similarly, Figure 7 shows the Cylinder B’s dynamic response at
normalized reduced velocity of 6.86 where again in-line frequency is
twice the cross-flow oscillation frequency. As a result, harmonic
oscillations are evident in both directions despite the presence of a 1:1
in-line frequency component, which is not particularly significant.

Table 3 presents the frequencies of the cylinder’s oscillation in both the
cross-flow and in-line directions, along with the corresponding in-line to
cross-flow frequency ratios (fi;. /fcr). It is important to highlight that the
cylinder’s motion predominantly oscillated in the in-line direction and
was greater than that observed in the cross-flow direction at flow speeds
below 0.3 m/s for Cylinder A. Consequently, the response in the in-line
direction exhibited a more periodic behavior. In contrast, the motion in
the cross-flow direction was quasi-periodic at lower speeds. As a result,
both Cylinder A and Cylinder B generally exhibited dominant 2:1 in-line
to cross-flow frequency ratios throughout the study. At the lowest
reduced velocity of 1.92 for Cylinder A, the cylinder oscillated with 3:1



in-line to cross-flow frequency, and that ratio decreased as the reduced
velocity increased, eventually settling at a 2:1 in-line to cross-flow
frequency ratio after the reduced velocity of three. Gedikli et al. (2018)
observed similar responses in low reduced velocities of bending-
dominated flexible cylinder experiments undergoing VIV. Another
important observation is that, between normalized reduced velocities of
11.20 and 16.22, the in-line frequency of the Cylinder B was close to
three times that of the cross-flow frequency, rather than the expected
doubling. Interestingly, this coincided with the onset of the lower branch
region and persisted throughout the lower branch for all subsequent
normalized reduced velocities. At low normalized reduced velocities, the
N/A values signify motion characterized by an absence of steady
response or non-harmonic motion, where no apparent dominant
frequency is discernible.
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Figure 6. Top: Motion time history of Cylinder A in in-line (black line),
and cross-flow (red-dashed line) directions at U* = 6.71. Bottom Left:
In-line frequency component. Bottom Right: Cross-flow frequency
component.
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Figure 7. Top: Motion time history of Cylinder B in in-line (black line),
and cross-flow (red-dashed line) directions at U* = 6.86. Bottom Left:

In-line frequency component. Bottom Right: Cross-flow frequency
component.

Table 3. Oscillation frequencies in in-line and cross-flow directions for
Cylinder A and Cylinder B at varying normalized reduced velocities.

Cylinder A Cylinder B

U fIL fCF fIL ur fIL fCF fIL
[fer [fer
(=) | H2) | (Hz) | () = (Hz) | (Hz) | ()
048 | NJA | NA [ NA| 114 | NA | NA [ NA
096 | NJA | NA [ NA| 229 | NA| 6 [NA
L73 | NA | NA [ NA | 411 N/A | 8.06 | N/A
1.92 [ 1671 | 557 | 3.00 | 457 [ 17.66 | 8.83 | 2.00
240 | 1740 | 746 [ 233 | 571 | 1740 | 8.66 | 2.01
288 | 1826 | 7.97 [ 229 | 686 | 18.60 | 9.34 | 1.99
297 | 1826 | 874 [ 209 | 7.08 [ 19.89 | 9.94 | 2.00
336 | 1826 | 9.17 [ 1.99 [ 800 | 2091 | 1046 | 2.00
3.55(19.03 | 951 [ 200 | 846 | 21.60 | 10.80 | 2.00
374 [ 1989 | 994 [ 2.00 | 891 |[22.80 | 11.31 | 2.02
3.93 [ 20.66 | 1037 [ 1.99 | 937 | 24.00 | 12.00 | 2.00
432 | 21.34 | 10.63 | 2.01 | 1028 | 2520 | 12.51 | 2.01
470 | 2229 | 11.14 [ 2.00 | 11.20 | 50.06 | 15.17 | 3.30
5.08 | 2374 | 1191 [ 1.99 | 1211 | 49.46 | 1586 | 3.12
537 | 2529 | 12.69 | 1.99 | 12.80 | 49.37 | 16.46 | 3.00
6.14 | 2657 | 13.29 [ 2.00 | 14.63 | 49.03 | 16.63 | 2.95
623 | 27.77 | 13.89 | 2.00 | 14.85 | 48.77 | 16.89 | 2.89
6.52 | 29.06 | 1449 [ 2.01 | 1554 | 48.60 | 17.06 | 2.85
6.71 [ 2991 | 1491 [ 2.01 | 16.00 | 4843 | 17.40 | 2.78
6.81 | 31.03 | 1551 [ 2.00 | 16.22 | 4826 | 17.66 | 2.73

Fluid Force Estimates and Motion Hydrodynamics

In order to gain a deeper insight into the hydrodynamic characteristics of
the test cylinder, we employ a method wherein we estimate the total lift
and drag forces. This estimation is based on applying the equation of
motion typically used for a cantilever beam under sinusoidal loading
conditions, while assuming minimal body motions, as in Gedikli and
Dahl (2017) and Seyed-Aghazadeh and Modarres-Sadeghi (2016). This
approach provides a practical means to estimate hydrodynamic forces
when direct measurement isn't viable. However, its effectiveness greatly
depends on accurately modeling the structural characteristics of the
cylinder and making reasonable assumptions about its motion.
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where Fj, represents the estimated drag force, F; represents the lift force.
The variables x and y denote the in-line and cross-flow displacements
with respect to time, respectively. Additionally, m represents the mass
per length of the cylinder, E stands for the modulus of elasticity, I



represents the area moment of inertia, t denotes time, and z represents
the spanwise spatial dimension.

Then, we use the estimated forces to derive lift and drag coefficients. Lift
coefficient (C;) and drag coefficient (Cp) is described as,
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where p represents the flow density, U represents the flow speed, D
represents the diameter of the cylinder, and L represents the cylinder’s
effective length (H,). Once the lift and drag coefficients are estimated,
we use them to estimate hydrodynamic force coefficients. To calculate
the hydrodynamic force coefficients acting on a cylinder subjected to
specific motions, we assume that the hydrodynamic lift force
experienced by the moving cylinder is essentially a phase-shifted
sinusoidal function. This approach allows us to separate the force into
two distinct components. First, there is the non-dimensional force,
denoted as CL,, which is proportional to the cylinder's velocity and has
the greatest influence on the structure's excitation. Second, there is a
force associated with the cylinder's acceleration, known as CL,, which
essentially determines the system's effective mass (Sarpkaya, 1979).
These components are calculated by taking the inner product of the lift
coefficient and the velocity and acceleration of the cylinder, as described
more in detail in Smogeli (2009) and Gedikli and Dahl (2014).
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where T is the window length for the inner product, C; is the estimated
lift force, and y and y represent the velocity and acceleration values,
respectively. One can also derive the added mass coefficient in the cross-
flow direction, Cm,,, using the lift coefficient in phase with acceleration,
and added mass in the in-line direction, C,,,, using the drag coefficient
in phase with acceleration as:
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It is important to keep in mind that these added mass coefficients
represent the added mass at a specific reduced velocity and amplitude.
This means that it is possible to determine the varying added mass along
the length of the cylinder by varying these non-dimensional parameters
that define the Cm,, and Cm,.

Figures 8 and 9 present the specific hydrodynamic force coefficients for
the cylinder's far-free endpoint in both in-line and cross-flow directions.
The top figures in Figure 8 and Figure 9 represent C;, and Cp, values,
and the bottom figure represents C;,, and Cp, values as a function of
normalized reduced velocity for Cylinder A (blue triangles) and Cylinder
B (red circles). Among these hydrodynamic coefficients, the lift
coefficient in phase with the velocity, C;  indicates whether energy is

being transferred from the fluid to the structure or vice versa. If €y is
positive, the system is generally receiving energy from the moving fluid,
effectively causing it to vibrate, whereas if it is negative, the fluid is
damping the system (Gopalkrishnan, 1993). Similarly, Cp,, illustrates in-
line motions from free vibration when the coefficient is positive, while a
negative coefficient indicates net energy transfer from the body to the
fluid, indicating a forced vibration system. If these values are close to
zero, energy is balanced between the fluid and the cylinder, hence free
vibration. C;, and Cp, describe the effective added mass forces in the
system (including potential flow added mass and effects of vortex
formation in the wake of the cylinder).

Figures 8 and 9 indicate that the C;,, and Cp,, values for both Cylinder A
and Cylinder B remain close to zero throughout all the reduced
velocities, suggesting free vibrations. However, there are some minor
fluctuations between negative and positive values. C;, and Cp, values
take on all positive values across all the reduced velocities. Moreover,
for reduced velocity less than 3, C;, and Cp, values decrease towards
higher reduced velocities and then start to increase towards the Upper
branch region. For Cylinder B, C;, and Cp, values first increase in the
Initial branch region, then fluctuate at higher values throughout the
Upper branch region (between the normalized reduced velocities of 5.71
and 10.28), and then drop significantly in the Lower branch region.

Because (;, and Cp, values are positive for both cylinders,
corresponding added mass values in both in-line and cross-flow
directions are all negative. Moreover, added mass values in the cross-
flow direction for “Cylinder A” increase in negative amplitudes after the
reduced velocity of 2.97 as the normalized reduced velocity increases,
reducing the effective mass of the system. For Cylinder B, added mass
values in cross-flow directions are comparable to Cylinder A in the
Initial and Upper Branch regions. In the Upper Branch region, added
mass in the in-line direction increases, moving towards a positive
direction, although it never takes a positive value.
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Figure 8. C;, and C;,, over normalized reduced velocity U*.

As aresult, at higher reduced velocities in the Upper Branch region, the
impact of added mass appears to be more pronounced, with larger
negative values observed in the cross-flow direction compared to the in-
line direction. This suggests that negative added mass could potentially
alter the frequency characteristics of the oscillations by shifting the
natural frequency of the cylinder, potentially leading to larger



oscillations. It should be noted that we derived the total force using
Euler-Bernoulli beam equations and assumed a force-motion balance.
The motion response data used to estimate the forces encompass
potential added mass and fluid effects. Therefore, while the results may
lack precision, they offer a general understanding of the overall response.
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Figure 9. Cp, and Cp,, over normalized reduced velocity U*.

Table 4. Added mass coefficients for cross-flow and in-line directions at
varying reduced velocities for Cylinder A and Cylinder B.

Cylinder A Cylinder B
U Cmy Cn, U Cmy Cn,
0.48 N/A N/A 1.14 N/A N/A
0.96 N/A N/A 2.29 -11.55 N/A
1.73 N/A N/A 4.11 -0.73 N/A
1.92 -11.21 -0.88 4.57 -0.47 -0.65
2.40 -5.74 -0.90 5.71 -0.53 -0.69
2.88 -0.76 -0.84 6.86 -0.57 -0.76
2.97 -0.53 -0.56 7.08 -0.64 -0.73
3.36 -0.42 -0.54 8.00 -0.63 -0.63
3.55 -0.49 -0.57 8.46 -0.64 -0.60
3.74 -0.52 -0.60 8.91 -0.64 -0.59
3.93 -0.55 -0.67 9.37 -0.70 -0.55
4.32 -0.56 -0.63 10.28 -0.71 -0.50
4.70 -0.60 -0.64 11.20 -0.72 -0.08
5.08 -0.62 -0.58 12.11 -0.73 -0.10
5.37 -0.70 -0.55 12.80 -0.78 -0.11
6.14 -0.75 -0.60 14.63 -0.76 -0.11
6.23 -0.77 -0.62 14.85 -0.77 -0.10
6.52 -0.84 -0.60 15.54 -0.80 -0.11
6.71 -0.79 -0.55 16.00 -0.66 -0.11
6.81 -1.05 -0.54 16.22 -0.65 -0.14

CONCLUSION

In this work, two polycarbonate cylinders with low mass and damping
ratios were subjected to VIV experiments in a recirculating water tank.
Motion analysis was performed using high-speed cameras, and the
results were analyzed to understand the cylinders' dynamic response to
varying flow conditions.

The findings of this work are consistent with previous research,
highlighting the importance of parameters such as mass and damping
ratios in VIV analysis. Notably, the study showed intriguing deviations
from conventional frequency ratios, highlighting the complexities of
VIV phenomena. The experimental setup includes a fixed hollow
cylinder to the tank, which improves motion analysis over previous
methods. The use of UV lights and high-speed cameras also enhances
visibility and precision.

Significant findings from our study include the observation of
conventional IL: CF frequency ratios alongside deviations such as 1:1
and 3:1 frequency ratios at specific reduced velocities in different
response branches. Moreover, the amplitude response, particularly in the
in-line direction, reached higher values due to the cylinders’ low mass
and damping ratios. The smaller mass cylinder showcased a wider and
higher amplitude response region, indicating a broader lock-in region. In
addition, Cylinder A exhibited larger in-line oscillations than the cross-
flow directions at reduced velocities lower than 3.

The analysis of hydrodynamic coefficients provided further information
about fluid-structure interactions. Lift and drag force estimation, along
with lift and drag coefficients, provide a better understanding of the
cylinder's behavior under different flow conditions. For example, the
added mass coefficients increase in the negative direction in the Upper
Branch region and drop suddenly in the Lower Branch region at higher
reduced velocities. This suggests that the effective added mass drops at
large amplitudes, which may result in even larger responses. Another
motivation for this work was to see if we could have a broader lock-in
region, especially for structural optimization and potential energy
harvesting applications. This is crucial, as broader lock-in regions offer
the potential for harnessing more energy from the flow-induced
vibrations, thus enhancing the efficiency of energy harvesting systems.

Future research endeavors should focus on expanding the scope of
experiments to include a broader range of cylinder configurations and
mass ratios. Additionally, investigating the onset conditions of in-line
response surpassing cross-flow response at lower reduced velocities
presents an intriguing avenue for further exploration. By deepening our
understanding of VIV phenomena and its implications for structural
optimization and energy harvesting, we can pave the way for more
efficient and resilient marine structures and renewable energy systems.
Another important point is that, future experiments with strain gauges
and force sensors will yield more reliable data on the forces acting on the
cylinder.
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