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ABSTRACT

Progressive visual analytics enable data scientists to efficiently
explore large datasets and examine progressive results with low la-
tency. Most progressive visualization frameworks use a progressive
query processing module that controls the quality of the results
and then feeds these results into a visualization module. The goal is
to avoid poor-quality progressive results which could mislead data
scientists. This method misses some optimization opportunities as
it improves the quality of the intermediate result while ignoring
how this result affects the final visualization. This work presents
a work-in-progress quality-aware progressive visualization input
control component, named QPV. The key idea of the proposed
framework is to integrate the visualization module into the pro-
gressive query results so that the quality control takes into account
the final visualization. With limited computational resources, QPV
solves an optimization problem to allocate resources and alleviate
the misleading effects in the progressive plots.
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1 INTRODUCTION

Progressive data processing is a popular tool for data scientists to
explore large datasets [2, 4, 9, 17, 18]. It splits large datasets into
multiple small batches and progressively processes each data batch.
Each progressive round finishes quickly to keep users engaged
and active. Users often examine the progressive results by visualiz-
ing them. Without further processing, the progressive results can
be visualized into scatterplot [1] and line chart [16]. Choropleth
map [14, 15], bar chart [11], pie chart [8, 17], trendline [13] and
heatmap [3, 6, 13]. Users observe the progressive results to start fur-
ther processing or make decisions on the currently running query.
Poor-quality progressive results might negatively impact further
analyses and mislead data scientists, leading to cognitive biases [12].
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Therefore, producing progressive results with good quality is the
most important task in progressive processing frameworks.

Most frameworks define result quality as the similarity between
the progressive results and the complete results [1-4, 13, 17]. We
divide existing frameworks into three categories based on qual-
ity control strategies. Frameworks in the first category [2-4, 9]
optimize the progressive input before query processing based on
pre-defined input computation goals, such as the data distribution
of the progressive inputs or preference score function. Frameworks
in the second category [1, 13, 18] optimize the progressive results
during query processing until the results satisfy the desired qual-
ity bound, such as error bound or specific sampling condition. A
recently proposed progressive join framework, named QP [17],
considers both progressive input and output and belongs to the third
category. It batches and partitions the progressive input following
the same strategies as the first categorized frameworks. The output
control of QPF temporarily hides some results in memory from
the current round to keep the output progressive results having a
similar result distribution to the estimated complete result.

In progressive visualization, result quality always links to the
values used to produce the plot. Existing frameworks aim to com-
pute good estimated aggregated values to the complete results and
evaluate the accuracy of estimations [3, 5, 6, 11, 13]. The progressive
results are considered as samples of the complete results. Statistical
methods, such as confidence intervals, are commonly used metrics
to evaluate the accuracy of progressive results. However, when the
aggregation query includes a GroupBy clause and the user is look-
ing for rankings among the groups, the user might still be confused.
Because the confidence intervals of different groups might overlap,
the user cannot determine the exact rankings.

Consider a sociologist who wants to analyze the usage of social
media in the United States. The sociologist applies a progressive
spatial join query on the Tweets dataset and US-States dataset and
visualizes the results in the choropleth map shown in Figure 1. The
Tweets dataset contains a set of tweet objects and each object has a
spatial point attribute as the posted location. The US-States dataset
consists of polygons and each polygon represents the geographical
boundaries of a state. The progressive results are choropleth maps
with five classes based on the number of tweets in each state. After
10 seconds, the system produces 10% of the results. The confidence
intervals of several states in adjacent classes overlap with each
other so that the system cannot assign them to a single class. There-
fore, the system visualizes them with unsure colors. In this example,
we apply two different input control strategies. The downside re-
sults are computed based on a regular progressive input builder
and the upside results are computed based on our proposed QPV.
QPV analyzes the misleading information in the visualizations and
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Figure 1: Progressively joining Tweets dataset with US-State dataset. The downside progressive results are computed from the
regular progressive input control method. The upper progressive results are computed from our proposed method QPV. Note:
The joined US-State dataset contains Washington, D.C. and 48 states.

computes a better progressive resource allocation plan. Intuitively,
QPV controls the system to process more data in the unsure classes
area. As we can see in Figure 1, the area of polygons with unsure
classes is reduced sooner in the QPV’s progressive results than the
baseline method’s progressive results.

To alleviate the misleading effects, we can try to shrink the
confidence intervals that overlap with others in the next round. A
sampling algorithm [7], RapidSampling, also considers a similar
approach to shrink the confidence intervals and make the trends of
the aggregation values clearer. However, this algorithm is designed
for aggregation in a single dataset and cannot be applied to input
control for multiple datasets and progressive processing control.

In this work, we propose a quality-aware progressive visualization
input control component named QPV, which allocates computation
resources for the next progressive computation round based on
visualization results of the current round. QPV can be integrated
into the existing framework to replace its input control component.
We consider the groups with uncertainty visualization in the plots
as the target groups. For example, bars with overlapping heights in
the bar chart and the classes with unsure colors in the choropleth
map. After each progressive join computation, QPV collects the sta-
tistics of the inputs and outputs and estimates the input data sizes
for the target groups. With bounded computation resources, QPV
solves an optimization problem to allocate the resources wisely so
that the misleading effects can be reduced in the next round.

2 PROGRESSIVE JOIN VISUALIZATION
FRAMEWORK OVERVIEW

Considering big data scenarios, most progressive frameworks [2,
4, 17] are designed for distributed settings. Figure 2 shows two
types of distributed progressive join visualization frameworks. The
first adopts the quality-aware progressive visualization QPV as the
progressive input builder (Figure 2 (a)). The second uses the regular
progressive input builder (Figure 2 (b)). In this section, we introduce
how these two types of progressive input builders work.
Framework overview. We summarize four common compo-
nents from the existing frameworks, which are progressive input
builder in orange and black, partitioners in blue, processors in
green, and progressive output builder represented as a visualization
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Figure 2: Different progressive join visualization
frameworks which adopt the QPV as progressive input
builder (a) and the regular progressive input builder (b).

box. Given the input datasets, join query, and parameters such as
the number of progressive rounds and partitions, partitioners load
input datasets and send partitioned inputs to processors. The pro-
cessors process the join query and send progressive results to the
progressive output result builder. In visualization frameworks, the
results are plots drawn from progressive join results. The progres-
sive output result builder constructs progressive plots and returns
them to the user.

The regular input control component. Regular progressive
input builders decide the size of progressive input before the query
processing based on batching strategies such as equal-size batching.
Frameworks partition the input data based on the join key and
make sure the progressive inputs have a similar data distribution
to the whole dataset. In Figure 2 (b), the size ratio of the input
batch size for each partition is the same. When processors finish
the computation and the plot is returned to the user, the framework
starts the next progressive round. To evaluate the quality of the
progressive results, we can compute the confidence intervals based
on different statistical methods [3, 5, 6, 11, 13].

The quality-aware progressive visualization QPV. Based on
plot type and join query, we extract the target groups with overlap-
ping confidence intervals and contain the misleading information
in the progressive plots. We summarize two types of misleading
information. The first type relates to the ranking in the plot, such as
assigning the colors in choropleth maps and heatmaps. The second
type relates to the ranking in the input join query, such as plotting
top-k. QPV takes the input and output statistics of the target groups



to compute input batch sizes for all partitions in the next round.
Different from the regular input control component, QPV combines
the information from the plot of the current round to allocate the
computation resources for the next progressive round.

3 PROGRESSIVE INPUT BUILDER

QPV solves an optimization problem to allocate the computation
resources for the next progressive round. The resources refer to
the number of input items in each partition. The goal is to allocate
more resources to compute more results from the uncertainty areas.

3.1 Confidence Interval Computation

Each progressive round produces part of the complete results and
the progressive results can be viewed as samples of the complete
results. In each round, we compute the confidence intervals of
the aggregated values as the quality measurement and also draw
the confidence intervals in the plots returned to users. We apply
Hoeffding’s Inequality to compute the confidence intervals.

Estimated Aggregation Results. In the following, we intro-
duce the estimation analysis for joining two datasets. Assume we
join dataset S with dataset R, group the results based on GroupBy
keys, and return the estimated aggregation value of each group in
the complete join results. We also assume the GroupBy keys are
only in dataset S and the number of GroupBy keys is g. Then, there
will be g aggregation results {cy, ..., ¢4} in each round. Based on the
ratio of the total input size to the processed input size, we estimate
the aggregation values of the complete results {Cy, ..., Cg}:

Cj=cj - (ISjl-IRI)/(ISn, | - Rnl), 1
The |Ry| is the processed input size up to the current round in
dataset R, |Sp,| is the processed input size of group j to the current
round in dataset S, |R| is the total input size in dataset R, and
|Sj] is the total input size of group j in dataset S. Since dataset S
contains the GroupBy key and dataset R does not have, therefore,
the estimation statistics of the two datasets are slightly different.
The estimation method in Equation 1 is extended from the ripple
joins [5] to include the GroupBy clause.

Confidence interval computation. We apply Hoeffding’s
bound, which is a distribution-free bound, to compute the confi-
dence interval of the estimations. The Hoeffding’s theorem states
that with probability at least 1 — ¢,

|c; = E[C)]| < (b — aj)y/(log(2/e))/2n = t, 2)

where ¢ is the error bound of estimations, C; is the estimated av-
erage value computed based on Equation 1, E[C;] is the expected
value of the average value which is the average value of the com-
plete results, a; and b; is the lower and upper bound of the GroupBy
key j’s value, and n is the sample size which is the join result size
in group j. For COUNT aggregation, b — a is 1. For SUM and AVG
aggregation, the values of a and b should consider the value bound
of the GroupBy key j. Let t represent the right side of Equation 2,
the confidence interval (CI) of the estimated aggregation value is
[Cj —t,Cj +t] and the length of CI is 2t.

3.2 Progressive Input Size Computation

In this subsection, we introduce definitions to define the computa-
tion resources allocation problem.

Assume there are h join keys K={kq, ...,k } in the two joined
datasets S and R and n processors P={Pj, ..., P,} in the system, we
divide the join keys K into n disjoint sets and let each processor
handle one partitioned subset from each dataset.

Given an integer d as the size of the processing unit, we split
each S; into |S;|/d equal-size processing units. We further divide the
|Si|/d processing units into y input batches, where y is the number
of progressive rounds. For example, a partition contains 100 items,
the size of the processing unit is 5, and the number of progressive
rounds is 10. Each partition contains 100/5=20 processing units and
each input batch contains 20/10=2 processing units. We consider
the computation resources as the number of processing units B
in each progressive round. The computation resources allocation
problem is to decide how many input batches from each partition
to process in the next round.

Assume there are ¢ GroupBy keys G={g1, ..., gq}. The progres-
sive plots are constructed based on the estimated aggregation values
{C1, ...,Cq} computed by Equation 1. GroupBy keys are visualiza-
tion units, such as the bars in bar charts, the polygons in choropleth
maps, and the pixels in heatmaps. Although the join keys in one
partition are disjoint with the join keys in other partitions, the
GroupBy keys of different partitions are not disjoint.

For each estimated aggregation value C;, we compute its confi-
dence interval by Equation 2. The choropleth maps and heatmaps
rely on the ranking of the aggregation values to assign the color.
However, if the groups have overlapping confidence intervals, we
do not know how to rank them. We refer to them as target groups
and their visualizations as uncertainty areas in the plots.

Assume there are m target groups 7 C G, where 7 ={g1, ..., gm }.
We first define the uncertainty of each group and compute the load-
ing factor, which represents the necessity of a group to return more
results in the next batch. The uncertainty of a group j comes from
two aspects: the length of the confidence interval of the estimated
aggregated value (computed by Equation 2) and the size of visual-
ization unit Vis; in the plot. The area of polygons and pixels is the
visualization unit for choropleth maps and heatmaps. The height
of bar is the size of the visualization unit for bar charts.

DEFINITION 1 (UNCERTAINTY un;j AND LOADING FACTOR Ifj). We
define the uncertainty un; and loading factor lf; as follows:
un;
25:1 un;
DEFINITION 2 (RESULT RATE RR; ;). For partition i, given aggrega-
tion values of the target groups {Ci 1, ..., Cim} and {|Sn, | .... |Sn; |}
and |Ry, ;| as the amount of data has been processed, the result rate of
group j in partition i is RR; j = Ci,j/(|5n,«,j| . |Rn,i|).

®)

unj =tj - Visj, and Ifj =

DEFINITION 3 (LOADING SCORE LS;). Given loading factors{lfi, ..., lfm}

and result rates {RR; 1, ..., RR; m}, the loading score of partition i is
LS; = ;”:1 (lf, . RRi’j).

Given a set of result tuples with the same join key k, GroupBy
keys of different result tuples might be different. If a result tuple
has join key k and GroupBy key g, we say k is linked to g.

DEFINITION 4 (DIVERSITY SCORE Div;). The diversity score of the
join keys in partition i for group j is:

the number of join keys linked to group j

4

Div; j =
" the total number of join keys



Given loading factors{1fi, ..., fm} and diversity score {Div; 1, ..., Divi m },

the diversity score of partition i is Div; = ¥, (If; - Div ;).

Given the progressive results computed from partition i and
the target groups 7, we compute the score s; as its “contribution”
to return more results in 7. s; consists of loading score LS; and
diversity score Div;, where sj=A-LS;+(1—21)-Div;. The A (0 < 1 < 1)
is a weight factor to tune importance between LS; and Div;. Next,
we formally define the computation resource allocation problem.

DEFINITION 5 (COMPUTATION RESOURCES ALLOCATION PROBLEM).
Given n partitions P={P1, ..., Py}, progressive visualization results,
m target groups T ={g1, ..., gm}, importance factor A, the number of
available input batches y, and the computation resources B, the goal
of QPV is to find the optimal solution to allocate B processing units
to P which maximizes the overall score of all the partitions:

n

max E SiXj

i=1

n
s.t. Z xi < Bandxj € {0,1...,y},
i=1
si=A-LS;+ (1 -A) - Div;
The output of the computation resources allocation problem is n
integer numbers {xj, ..., x, }, where each x; represents the number
of processing units of partition i in the next progressive round.

3.3 Preliminary Experimental Results

We designed two algorithms for QPV. The first algorithm detects
the target groups. It ranks the estimation objects in descending
order, where each estimation object consists of an estimation and
confidence intervals. For each object in the class boundary, the
algorithm finds the objects whose confidence interval overlaps with
the confidence interval of the boundary object. The overlapping
objects are in the target groups.

The second algorithm solves the resource allocation problem.
The algorithm sorts the partitions in descending order based on the
partition score and greedily selects the partitions with the largest
score until reaching the budget B. To avoid loading inputs only from
a few partitions, we also set an empirical limit on the maximum
number of batches to process in each progressive round.

Figure 3 shows a set of preliminary experiment results. In this
experiment, we use QPV and the regular input control component
to process a progressive equi-join query on the samples of eBird
dataset [10] and the USCities dataset. The eBird dataset contains 5
million records and the USCities dataset contains information about
cities and states from 51 U.S. states. The number of progressive
rounds is 20. The progressive results are choropleth maps. We plot
the ratio of the uncertainty area in each progressive map (similar
to the example in Figure 1). The x-axis shows the progressive rate
and the y-axis shows the ratio of uncertainty area. In Figure 3, we
demonstrate that the ratio of the uncertainty area in the map is
smaller by applying QPV.

3.4 Future Works

QPV is work-in-progress. We will expend it in the following aspects:
1. Input Parameters: We will support other types of plots that
rely on aggregation queries, such as bar charts. The current visu-
alization groups are decided based on GroupBy keys. In addition
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Figure 3: Compare the total uncertainty area ratio (%) in
choropleth maps computed by QPV and baseline method.

to one group key, we will also consider multi-attribute clustering
and algorithm-based clustering. 2. Problem Settings: The current
resource allocation problem assumes the join partitions and aggre-
gation groups are fixed. We will also consider dynamic updates to
the partitions so that the workloads of all partitions are balanced. 3.
Solutions to the Problem: The solution to the current problem is a
simple greedy algorithm based on the partition score. We will refine
the solution to incorporate the new problem settings. We will also
consider other statistical methods to compute the confidence inter-
vals of the estimated aggregation values. The Hoeffding’s bound
is quite wide when the data range is wide. A wide confidence in-
terval might overlap with multiple groups so that multiple groups
will be added to the target groups. 4. Evaluations: We will verify
QPV with real-world datasets and join queries. In addition, we are
looking for other input control methods to compare with QPV.
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