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We consider a formulation of the Brans-Dicke theory in Jordan’s frame for Bianchi-I spacetime
within the framework of loop quantum gravity. The robustness of singularity resolutions due to the
quantum effects is explicitly verified in the context of two quantization schemes typically used in
the literature. We present an exploration of the effects of quantum geometry on the background
dynamics, which is also illustrated through some explicit numerical examples and showing the
absence of the singularity.

I. INTRODUCTION

Loop quantum gravity (LQG) is a candidate of quan-
tum gravity theory, which takes the premise of gravity as
a manifestation of geometry of spacetime and systemati-
cally constructs a theory of quantum Riemanian geome-
try with rigor (see, e.g., Ref. [1] for a recent review). LQG
stands out as a non-perturbative background indepen-
dent approach to quantize gravity [2]. At its depth, this
theory brings out a fundamental discreteness at Planck
scale wherein the underlying geometric observables, such
as areas of physical surfaces and volumes of physical re-
gions, are discrete in nature [3–6]. At present, the studies
in cosmology and black holes provide ones of the major
avenues for applying and testing the ideas of the theory.
The absence of the possibility to design a table top ex-
periment, other than thought experiment, can be easily
understood from the energy scale involved in LQG, which
is beyond the reach of present day technology. However,
it is feasible to apply LQG against observational physics
in the context of cosmology, which serves a great purpose
here. In fact, the early Universe is a great laboratory for
this purpose, so it is relevant to investigate this epoch in
this framework.
Loop quantum cosmology (LQC) is an application of

LQG techniques to the symmetry reduced spacetime and
for an homogeneous spacetime in particular [7]. In LQC
the Big Bang singularity is resolved in the sense that it
is replaced by a quantum bounce, across which physi-
cal macroscopic observables, such as energy density and
curvature, which diverge at the Big Bang singularity
in classical general relativity (GR), now all remain fi-
nite. This non-divergent behavior owes to the fact that
the effective quantities in this scenario depends on the
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fundamental discrete parameters of the theory, in par-
ticular, on the fundamental area gap, whose smallest
eigenvalue is nonzero [8–10]. LQC produces a contract-
ing Friedmann-Lemâıtre-Robertson-Walker (FLRW) uni-
verse that bounces back to an expanding one, thus, avoid-
ing the occurrence of a singularity. This is achieved
without adding any nontrivial matter component, un-
like in the case of classical or matter bounces (see, e.g.,
Refs. [11, 12]). This quantum bounce occurs purely due
to quantum geometric effects, a novel repulsive effective
force that is manifest in the quantum corrected Fried-
mann and Raychaudhuri equations. Also, it is to be
noted that in all the different classes of spacetimes per-
mitting different sets of symmetries [13], including the
Bianchi and Gowdy models, the singularity is resolved
in the framework of LQC [14–19] (for reviews, see also
Refs. [20–24]).

An important issue that appears in the bouncing
scenario is the possible instability in the growth of
anisotropic density during the contracting phase. During
contraction, the contribution from anisotropic stresses
to the Friedmann equation grows much faster than the
energy density of the usual fields, like radiation, bary-
onic matter and cold dark matter. Once the ratio of
the anisotropic stresses to the total energy density be-
comes comparable to one, it is not possible any longer
to assume that the background spacetime is approxi-
mately isotropic, and this ratio can even become larger
than unity, eventually meeting an anisotropic collapse.
When considering inhomogeneities, the situation is even
more sensitive, since the ratio of the anisotropic stresses
to the total energy density becoming larger than unity
in this context can indicate the onset of the conjec-
tured Belinski-Khalatnikov-Lifshitz (BKL) chaotic insta-
bility [25]. As it is well known, due to the high sensitiv-
ity of the dynamics to the initial conditions (neighboring
points following very different dynamics), this scenario
can lead to the loss of predictivity. In this case, the large
anisotropies impact the density fluctuations in a highly
inhomogeneous way, spoiling the prediction of a nearly
isotropic cosmic microwave background (CMB) [26, 27].
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This can be avoided, for example, in some situations
when the nearly scale-invariant perturbations are gen-
erated after the bounce [28]. Furthermore, in the special
case of the Bianchi type I model [29], it was shown that
isotropization is an attractor, which makes this scenario
a natural choice to investigate viable candidates. This is
especially promising in the case of LQC, where we can
analyze the Bianchi I background in a bouncing scenario
driven by modifications to the Einstein equations in the
high energy regime. Great efforts have been devoted to-
wards understanding the quantum corrected dynamics of
anisotropic spacetime starting with the Einstein-Hilbert
action (see, for example, the Refs. [30–36]).

A natural question to ask is what it will happen when
one goes beyond the Einstein-Hilbert action. One of
the salient features of this theory is all the geometri-
cal quantities, such as distance, area and volume can
be constructed from the knowledge of the metric. The
metric and, hence, the geometry of the spacetime, be-
ing a dynamical quantity determined by the distribution
of matter and energy. These fundamental properties of
the theory remain intact beyond the minimally coupled
Einstein-Hilbert action. This motivates us to consider
an action with a non-minimal coupling term and to find
the corresponding quantum corrected dynamics. As an
example toward this goal, we consider the Brans-Dicke
theory (BDT). In particular, the techniques of LQG are
not limited to a particular action. Based on the loop
quantization, some aspects of its implementation in the
context of the BDT has been explored for the FLRW
spacetime [37–39], and the presence of a quantum bounce
is shown in both the Jordan and Einstein frames. Partic-
ularly, an anisotropic Bianchi-I spacetime was considered
in LQC in Ref. [40], where a bounce dynamics was shown
to emerge. One of the prime focus of the present paper
is to formulate the quantum corrected effective dynamics
of BDT in homogeneous and anisotropic Bianchi-I space-
time in the Jordan frame, whose study is still missing in
the literature, as far as we are aware of. This is a crucial
step towards establishing and checking the robustness of
the major results of loop quantization in spacetimes with
different symmetries and different theories of gravity. In
particular, we aim to ultimately check the robustness of
the singularity resolution and the consistency of the ef-
fective dynamics.

This paper is organized as follows. In Sec. II, we re-
view the Hamiltonian formulation of BDT and present
the complete constraint analysis and the associated Lie
algebra. Following this, we cast the theory in connection
formulation, the Asthekar variables, which is suitable for
employing the loop quantization program. Our main re-
sults starts from Sec. III, where we present the symmetry
reduction of the constraints. As one of our prime focus is
to formulate the quantum corrected dynamics of BDT in
Bianchi-I spacetime. In Sec. IV we project the full BDT
dynamics in Bianchi-I spacetime at the classical level be-
fore quantization. The classical dynamics is found by
taking the Poisson flow of the phase-space variables with

the scalar Hamiltonian constraint. In Sec. V, we find the
quantum corrected dynamics using two alternative and
complementary µ̄ quantization schemes which have been
considered in the literature in other contexts. In Sec. VI,
we discuss the dynamics of the Brans-Dicke theory for
Bianchi LQC models in the two quantization schemes
considered in this paper. Our final considerations and
conclusions are presented in Sec. VII. Throughout this
work, we will adopt the convention MPl = 1, where
MPl =

1
8πG is the reduced Planck mass.

II. HAMILTONIAN FORMULATION OF

BRANS-DICKE THEORY AND CONSTRAINT

ANALYSIS

The action for the Brans-Dicke theory is given by

SBDT =
1

2

∫

d4x
√−g

(

ϕR− É

ϕ
gµν∂µϕ∂νϕ

)

, (2.1)

where R is the Ricci scalar, gµν is the metric and g is its
determinant, the scalar field ϕ is the Brans-Dicke (BD)
scalar and É is a coupling constant. The equations of
motion are obtained by varying the action, Eq. (2.1),
independently, with respect to the metric gµν and the
scalar field ϕ, which, in natural units, give, respectively,

ϕGµν = ∇µ∇νϕ− gµν2ϕ+

+
É

ϕ

[

∂µϕ∂νϕ− 1

2
gµν(∇ϕ)2

]

, (2.2)

R +
2É

ϕ
2ϕ− w

ϕ2
(∂µϕ)∂

µϕ = 0, (2.3)

where Rµν is the Ricci tensor and Gµν ≡ Rµν − 1
2gµνR is

the Einstein tensor. However, the present format of co-
variant formulations of the theory is not suitable for loop
quantization. In the Lagrangian formulation, space and
time are treated on equal footing, but the construction
of the canonical formula demands splitting of spacetime
into space and time. It is the Arnowitt-Deser-Misner
(ADM) formalism [41–43] with the 3 + 1 decomposition
that comes to rescue the description in terms of the first-
order Hamilton’s equation of the phase space variables.
In brief, this can be achieved by decomposing the space-
time manifold endowed with a metric, designated by the
pair (M, gµν), into (Σ,R), where Σ represents the spatial
three-dimensional hypersurface and R stands for the real
valued time. Algebraically, it is represented by splitting
the metric as

qµν = gµν − nµnν , (2.4)

where qµν is the intrinsic spatial metric that defines the
hypersurface Σ and nµ is the normal vector to the hy-
persurface, with the property nµn

ν = −1.
A careful observation of the splitting of the metric into

its intrinsic spatial metric qµν and the normal vector nµ
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to the hypersurface naturally leads to two notions of cur-
vature [44]: the intrinsic curvature, R, purely defined
in terms of commutator of covariant derivatives strictly
sitting on the three-dimensional hypersurface, and the
extrinsic curvature, K, defined in terms of the covariant
derivative of the normal vector to the hypersurface. Due
to the Gauss-Codazzi equation [44], a relation between
the two is given in an elegant way,

R = KabK
ab −K2 +R+

2√−g
∂µ(

√−gnµK)

− 2

N
√
q
∂a(

√
qqab∂bN). (2.5)

The set of corresponding conjugate momenta, in terms
of the newly defined geometrical objects, for the BDT
action given by Eq. (2.1), are

pab ≡ ¶L
¶q̇ab

=

√
q

2

[

ϕ(Kab −Kqab)− qab

N
(ϕ̇−N c∂cϕ)

]

,

(2.6)

Ã ≡ ¶L
¶ϕ̇

= −√
q

[

K − w

Nϕ
(ϕ̇−N c∂cϕ)

]

, (2.7)

pN (x) ≡ ¶L
¶N(x)

= 0, (2.8)

pa(x) ≡
¶L

¶Ṅa(x)
= 0. (2.9)

Thus, given the Lagrangian, the Hamiltonian can be ob-
tained by the Legendre transformation,

Htotal =

∫

Σ

d3x
√
q(q̇abp

ab + ϕ̇Ã − L(qab, q̇ab)),

(2.10)

which can be cast in the form

Htotal =

∫

Σ

d3xNa
[

−2Dbpab + Ã∂aϕ
]

+

∫

Σ

d3xN

{

2√
qϕ

[

pabp
ab − 1

2
p2 +

(p− Ãϕ)2

2(3 + 2É)

]

+

√
q

2

[

−ϕR+
w

ϕ
(Daϕ)D

aϕ+ 2DaD
aϕ

]}

.

(2.11)

In terms of the Asthekar variables, with the dense-
tized triads Ea

i ≡ √
eeai , curvature tensor F i

ab ≡ ∂[aA
i
b] +

ϵiklA
k
l A

k
b , with the Yang-Mills connection Ai

a ≡ Γi
a+µKi

a,
the constraints of the BDT in the Yang-Mills phase space

read

Gi = DaE
a
i ≈ 0, (2.12)

Va =
1

µ
F i
abE

b
i ≈ 0, (2.13)

H =
ϕ

2

[

F j
ab −

(

µ2 +
1

ϕ2

)

ϵjmnK̃
m
a K̃n

b

]

ϵjklE
a
kE

b
l√

q

+
1

3 + 2É

[

(K̃i
aE

a
i )

2

ϕ
√
q

+
K̃i

aE
a
i√

q
Π+

Π2ϕ√
q

]

≈ 0,

(2.14)

which are the Gauss, diffeomorphism and scalar con-
straints, respectively. In the above expressions, µ is the
Barbero-Immirzi parameter and K̃i

a = ebiK̃Kab with

K̃ab = ϕKab +
qab

2N
(ϕ̇−N c∂cϕ). (2.15)

In Eqs. (2.12)-(2.14), the symbol “≈ 0” indicates that the
constraints hold only on the shell (hypersurface). Thus,
the total Hamiltonian of BDT can be expressed as

Ctotal =

∫

d3x(NaVa +NH+ GiN
i). (2.16)

III. SYMMETRY REDUCTION OF BDT FOR

THE BIANCHI I MODEL

The Bianchi Class A model, in general, represents all
possible homogeneous spacetimes with different degrees
of symmetry. The four-dimensional Bianchi spacetime
has a topology of the Σ × R, where the intrinsic met-
ric qab defined on the spatial manifold Σ is homogeneous
with three-dimensional symmetry group that is simply
transitive. The symmetry of the spatial hypersurface is
determined by the Killing vectors. Essentially, the killing
vector fields give the direction along which Lie dragging
the metric does not change the metric [45]. The fiducial
triads and co-triads, denoted, respectively, by e̊ai and e̊ia,

satisfy the relations e̊ai e̊
i
b = ¶ab and e̊ai e̊

j
a = ¶ji . The ge-

ometry of Bianchi I, which is one of the simplest types of
Bianchi Class A model, is such that it admits the universe
to have different scale factors in each principal direction,
but with zero spatial curvature.
It is to be noted that a fiducial triad is introduced here

at each point of the spatial manifold to carry out the inte-
gration as Σ is non-compact and they commute with the

killing vector fields denoted by À̊ai , [̊ei, À̊j ]
a = 0. The un-

derlying structure of the spatial hypersurface is dictated
by the commutator relations, given by [̊ei, e̊j ]

a = Ck
ij e̊

a
k.

The values of the structure constants Ck
ij completely de-

fine all the symmetry of the spatial sector. The Bianchi
I model considered in this work is specified by Ci

jk = 0.
To be specific, the Bianchi I hypersurface Σ is flat and,
therefore, Γi

a = 0. Also, the homogeneity implies the con-
tribution to the Hamiltonian from the spatial derivative
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is identically zero. This, in turn, it greatly simplifies the
expression of the curvature tensor. The diagonal Bianchi
I universe in terms of the Asthekar variables and dense-
tized triads are parameterized by

Ai
a = c̃iV

−1/3
o e̊ai , (3.1)

Eb
j = pjV

−2/3
o

√
qe̊bj , (3.2)

where there is no summation over indexes i or j. Let
us note that Bianchi I is a homogeneous but anisotropic
spacetime. Therefore, c̃i and pj only depend on time.
Also, with the information that there is no spatial cur-
vature for Bianchi I, Γi

a = 0, we shall show that the only
constraint that survives off-shell is the Hamiltonian con-
straint. Below, we investigate the Gauss, diffeomorphism
and Hamiltonian constraints in the given context.
The Gauss constraint is

Gi = DaE
a
i , (3.3)

which is identically zero because Bianchi-I is a homoge-
neous and, therefore, the derivative with respect to spa-
tial coordinate vanishes identically. The diffeomorphism
constraint is

Va =
1

µ
F i
abE

b
i =

1

µ
ϵiklA

k
aA

l
bE

b
i ∝ ϵikl¶

l
i. (3.4)

Therefore, the diffeomorphism constraints vanish identi-
cally for the Bianchi I model. Thus, we are only left with
the scalar (or Hamiltonian) constraint, which is given by

H =
ϕ

2

[

F j
ab −

(

µ2 +
1

ϕ2

)

ϵjmnK̃
m
a K̃n

b

]

ϵjklE
a
kE

b
l√

q

+
1

3 + 2É

[

(K̃i
aE

a
i )

2

ϕ
√
q

+ 2
(K̃i

aE
a
i )Ãφ√
q

+
Ã2
φ√
q

]

+
É

2ϕ

√
q(Daϕ)D

aϕ+
√
qDaD

aϕ. (3.5)

Now, substituting the curvature tensor, F j
ab = ϵikl(Γ

k
a +

µK̃k
a )(Γ

l
b+µK̃l

b), due to the fact that Bianchi I is spatially
flat, we find that Γk

a = 0 and, hence, we are left with

F j
ab = µ2ϵjklK̃

k
a K̃

l
b. (3.6)

We also notice that

ϵjklϵjmnE
a
kE

b
l K̃

m
a K̃n

b = 2Ea
mEb

nK̃
m
[a K̃

n
b], (3.7)

where [a, b] ≡ (ab − ba)/2 denotes the antisymmetriza-
tion, with which, the expression for H can be further
reduced to

H = − 1

ϕ
√
q

[

Ea
mEb

nK̃
m
[a K̃

n
b]+

− 1

(3 + 2É)

(

K̃i
aE

a
i + Ãφϕ

)2
]

. (3.8)

In the limiting case of É → ∞ and ϕ being a constant, the
scalar constraint of the BDT gets reduced to the scalar
constraint of Einstein’s GR in the vacuum.

The next important step is to cast the theory in terms
of the Asthekar’s variables. The canonical structure is
given by

{Ai
a(x), E

b
j (y)} = µ¶ij¶

b
a¶(x− y). (3.9)

It is to be noted that the Bianchi-I spacetime is non-
compact and in order to carry out the integrations, we
consider a fiducial volume V0. Evaluating each term of
the Hamiltonian individually by using the parameteriza-
tion of Eq. (3.1), we have

Ea
mEb

nK̃
m
[a K̃

n
b] =

q̊

µ2l60
(c̃1c̃2p1p2 + c̃2p2c̃3p3

+ c̃1p1c̃3p3) , (3.10)

K̃i
aE

a
i =

√
q̊

µl30
(c̃1p1 + c̃2p2 + c̃3p3). (3.11)

Now, combining all the terms and using that
√
q =√

q̊
√
p1p2p3/l

3
0 in Eq. (3.8), we find

H = −
√
q̊

l30

1√
p1p2p3

1

µ2ϕ

[

c̃1c̃2p1p2 + c̃2p2c̃3p3 + c̃1p1c̃3p3

− 1

´
(c̃1p1 + c̃2p2 + c̃3p3 + µÃφϕ)

2
]

, (3.12)

where we have redefined the conjugate momentum cor-
responding to the scalar field as Ãφ ≡ pφ

√
q̊/l30 and

´ = 3+2É. The smeared Hamiltonian is obtained by in-
tegrating the symmetry reduced Hamiltonian, Eq. (3.12),
over the fiducial volume V0, leading to

CH =

∫

d3xNH

= − N√
p1p2p3

1

µ2ϕ

[

c̃1c̃2p1p2 + c̃2p2c̃3p3 + c̃1p1c̃3p3

− 1

´
(c̃1p1 + c̃2p2 + c̃3p3 + µÃφϕ)

2
]

, (3.13)

where we have used that
∫

d3x
√
q̊ = l30. The Poisson flow

of a Dirac observable Ȯ = {O, CH} with the Hamiltonian
gives the equation of motion.

IV. CLASSICAL DYNAMICS OF BDT IN

BIANCHI-I MODEL

The symplectic structure of the complete phase space
in terms of the new variables reads

{c̃I , pJ} = µ¶IJ , (4.1)

{ϕ, Ãφ} = 1. (4.2)

The dynamics is given by the Poisson flow of the variable
with the smeared Hamiltonian. Then, the equations of
motion for cI and its conjugate variables pI are

˙̃cI = µ ¶IJ
¶CH

¶pJ
, (4.3)

ṗI = −µ ¶IJ
¶CH

¶c̃J
, (4.4)
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whereas the equations of motion for ϕ and its conjugate
variable Ãφ are

ϕ̇ =
¶CH

¶Ãφ
, (4.5)

Ã̇φ = −¶CH

¶ϕ
. (4.6)

The cosmic time interval can be written as dt = Ndt′,
whereas the time variable t′ will be determined by the
choice of the lapse function N . In this work, we choose
N =

√
p1p2p3, then we have

dt =
√
p1p2p3dt

′. (4.7)

Using the Hamiltonian constraint, Eq. (3.13), we can
now derive the equations of motion. These will be ob-
tained with respect to the time t′ using Eq. (4.7). From
Eq. (4.3), we obtain the following equations of motion for
the cI variables,

c̃′I = − c̃I
µϕ

[

c̃JpJ + c̃KpK

− 2

´
(c̃IpI + c̃JpJ + c̃KpK + µÃφϕ)

]

,

(4.8)

where ′ refers to the derivative with respect to t′. Simi-
larly, from Eq. (4.4), we obtain the equations of motion
for the conjugate variables pI ,

p′I =
pI
µϕ

[

c̃JpJ + c̃KpK

− 2

´
(c̃IpI + c̃JpJ + c̃KpK + µÃφϕ)

]

.

(4.9)

Finally, from Eqs. (4.5) and (4.6), respectively, the equa-
tions of motion for the BD scalar field ϕ and its conjugate
momentum Ãφ are given by

ϕ′ =
2

´µ
(c̃1p1 + c̃2p2 + c̃3p3 + µÃφϕ) , (4.10)

Ã′
φ = − 1

µ2ϕ2

{

(c̃1p1c̃2p2 + c̃2p2c̃3p3 + c̃1p1c̃3p3)

− 1

´

[

(c̃1p1 + c̃2p2 + c̃3p3)
2 − (ϕµÃφ)

2
]

}

. (4.11)

The set of Eqs. (4.8)-(4.11) completely specifies the dy-
namics of BDT in the Bianchi-I spacetime at the classical
level. Also, even at the level of equations of motion, it is
straightforward to see that in the limit É → ∞ and con-
stant ϕ, the equations of motion for the Einstein-Hilbert
action are recovered [45].

V. QUANTUM CORRECTED DYNAMICS OF

BDT IN BIANCHI-I SPACETIME

The quantum corrected effective dynamics of LQC
have been studied in detail in [46], which incorporate

the leading-order quantum geometric effects [47]. These
effective models work very well in comparison with the
full quantum dynamics of LQC even in the deep quan-
tum regime [20], especially for the states that are sharply
peaked on a classical trajectory at late times [48]. In the
homogeneous and isotropic FLRW universe, it is obtained
by the replacement c → sin (µc) /µ, where c denotes the
conjugate momentum of the area operator p (∝ a2, where
a is the expansion factor of the universe), and the lattice
spacing, µ, is called the polymerization parameter. Dif-
ferent choices of the parameter µ give rise to different
schemes of quantization with distinct effective dynamics.
The expectation is that this would act as an ultraviolet
regulator and mitigate the initial singularity [49, 50].

In the literature, various choices of µ have been con-
sidered [20, 51]. In the original scheme, the area gap
was implemented as a kinematic feature on the comoving
frame, which is equivalent to introducing a fixed lattice
of constant spacing. On the other hand, the improved
scheme is equivalent to introducing the minimum area
eigenvalue on the physical frame, in contrast to the origi-
nal. In this paper we shall adopt two different µ̄ schemes
in order to explore different aspects of the model. We de-
nominate them as µ̄ type A and B, to be denoted as µ̄A

and µ̄B , respectively, for our purpose. Next, we describe
these two quantization schemes in more details.

A. The µ̄A quantization scheme

The µ̄A scheme, proposed in Ref. [52], for the homoge-
neous and anisotropic Bianchi I model is specified by

µ̄I =

√

∆

pI
, (5.1)

where ∆ = 4Ã
√
3µl2Pl is the area gap in the full theory of

LQC.

Clearly, when pI k ∆, we have µ̄I → 0, and expect
that the quantum effects are very small, and the classical
limit is obtained. However, near the singular point, pI ≃
0, we have µ̄I k 1, such that the quantum effects are
expected to be very large. In the following, we shall
consider whether such effects are larger enough such that
the spacetime singularity that used to appear at pI = 0
will now be regulated in the current setup.

Returning to our model under investigation, from
Eq. (3.13), the quantum deformed Hamiltonian con-
straint becomes
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Ceff = − 1

µ2ϕ

[

sin(µ̄1c̃1)

µ̄1
p1

sin(µ̄2c̃2)

µ̄2
p2 +

sin(µ̄2c̃2)

µ̄2
p2

sin(µ̄3c̃3)

µ̄3
p3 +

sin(µ̄3c̃3)

µ̄3
p3

sin(µ̄1c̃1)

µ̄1
p1

]

+
1

´µ2ϕ

[

sin(µ̄1c̃1)

µ̄1
p1 +

sin(µ̄2c̃2)

µ̄2
p2 +

sin(µ̄3c̃3)

µ̄3
p3 + µÃφϕ

]2

+
P 2
Φ

2
. (5.2)

In order to study the effective theory of loop quantum
Brans-Dicke cosmology, we also want to know the effect
of matter fields on the dynamical evolution. Hence, we
have included in Eq. (5.2) an extra massless scalar mat-
ter field Φ, with constant conjugate momenta PΦ, which

acts as a clock and has energy density Ä = P 2
Φ/(2p1p2p3).

Quantum corrected equations of motion for the symme-
try reduced connection parameterized by c̃ for the µ̄A

scheme given by Eq. (5.1) are given by

c̃′I = − 1

µϕ

[

3 sin(µ̄I c̃I)

2µ̄I
− cI cos(µ̄I c̃I)

2

]{

sin(µ̄J c̃J)

µ̄J
pJ +

sin(µ̄K c̃K)

µ̄K
pK

− 2

´

[

sin(µ̄I c̃I)

µ̄I
pI +

sin(µ̄J c̃J)

µ̄J
pJ +

sin(µ̄K c̃K)

µ̄K
pK + µÃφϕ

]}

+ µpJpK

(

Ä+ pI
∂Ä

∂pI

)

. (5.3)

For other choices of schemes for µ̄I , the change will be
in the terms between the first square brackets. Similarly,
quantum corrected equations of motion for the symmetry
reduced densetized triads parameterized by pI are given
by

p′I =
pI
ϕµ

cos(µ̄I c̃I)

{

sin(µ̄J c̃J)

µ̄J
pJ +

sin(µ̄K c̃K)

µ̄K
pK

− 2

´

[

sin(µ̄I c̃I)

µ̄I
pI +

sin(µ̄J c̃J)

µ̄J
pJ

+
sin(µ̄K c̃K)

µ̄K
pK + µÃφϕ

]}

. (5.4)

Finally, the equations of motion for ϕ and its conjugate
momentum Ãφ read

ϕ′ =
2

µ´

[ sin(c̃1µ̄1)

µ̄1
p1 +

sin(c̃2µ̄2)

µ̄2
p2 +

sin(c̃3µ̄3)

µ̄3
p3

+ µÃφϕ
]

, (5.5)

Ã′
φ = − 1

µ2ϕ2

{

sin(µ̄1c̃1)

µ̄1
p1

sin(µ̄2c̃2)

µ̄2
p2

+
sin(µ̄2c̃2)

µ̄2
p2

sin(µ̄3c̃3)

µ̄3
p3 +

sin(µ̄1c̃1)

µ̄1
p1

sin(µ̄3c̃3)

µ̄3
p3

+
(µÃφϕ)

2

´

− 1

´

(

sin(c̃1µ̄1)

µ̄1
p1 +

sin(c̃2µ̄2)

µ̄2
p2 +

sin(c̃3µ̄3)

µ̄3
p3

)2
}

.

(5.6)

The set of Eqs. (5.3)-(5.6) completely define the quan-
tum corrected dynamics of the gravitational sector of the

Bianchi-I spacetime for BDT in the Jordan’s frame in µ̄A

scheme. At this point, we can compute the average Hub-
ble parameter H for the quantum Bianchi-I spacetime,

H ≡ H1 +H2 +H3

3
, (5.7)

where we have defined the average scale factor as a =√
a1a2a3, pI = aJaK l20 for non repeated indexes I, J, K

and HI = ȧI/aI . The average Hubble parameter reads

H =
1

6µϕ
√
p1p2p3

{[

sin(µ̄2c̃2)

µ̄2
p2 +

sin(µ̄3c̃3)

µ̄3
p3

]

cos(µ̄1c̃1)

+

[

sin(µ̄1c̃1)

µ̄1
p1 +

sin(µ̄3c̃3)

µ̄3
p3

]

cos(µ̄2c̃2)

+

[

sin(µ̄2c̃2)

µ̄2
p2 +

sin(µ̄1c̃1)

µ̄1
p1

]

cos(µ̄3c̃3)

}

− 1

6
√
p1p2p3

ϕ̇

ϕ
[cos(µ̄1c̃1) + cos(µ̄2c̃2) + cos(µ̄3c̃3)] ,

(5.8)

where
√
p1p2p3 comes from Eq. (4.7). It should be

noted that at each point of the evolution of the uni-
verse dictated by Eq. (5.8), the condition for non-singular
quantum bounce, H = 0, holds when we impose that
p1, p2, p3 ̸= 0 simultaneously. One can notice from
Eq. (5.8) that this condition will be satisfied only for
cos(µ̄I c̃I) = 0 for I = 1, 2, 3. However, this is a stringent
condition as c̃I are all independent and one can not guar-
antee all of them to be zero simultaneously. In order to
guarantee that a non-singular behavior happens indeed,
we now follow the perspective of Ref. [36].
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Defining

GI(t
′) = pI

sin(µ̄I c̃I)

µ̄I
, (5.9)

and using Eqs. (5.3)-(5.4), one can show that

G′
I(t

′) = µ cos(µ̄I c̃I)p1p2p3

(

Ä+ pI
∂Ä

∂pI

)

. (5.10)

Now setting the quantum effective constraint, Eq. (5.2),
to zero, one obtains

µ2p1p2p3Äeff = G1G2 + G2G3 + G1G3, (5.11)

where we have used Eq. (5.5) and defined the effective
energy density as

Äeff =
´ϕ̇2

4
+ Äϕ. (5.12)

Now, one remembers that Ä = P 2
Φ/(2p1p2p3) is the energy

density for a massless scalar field, then PΦ is a constant

of motion. Therefore, the term
(

Ä+ pI
∂ρ
∂pI

)

in Eq. (5.10)

vanishes, which means that GI are constants. For con-
stant GI , from Eq. (5.9), given that the sines have a max-
imum value of unit, it sets a lower bound on pI ,

pI g (|G|
√
∆)2/3. (5.13)

This is to say that the results of Ref. [36] also hold
in the present case of BDT, provided that Ä → Äeff .

Then Eq. (5.13) shows that all scale factors are bounded
from below, which proves that a non singular behavior is
present.

B. The µ̄B quantization scheme

In order to express the average Hubble parameter
in a closed form and to see the singularity resolution
more directly, the use of the alternative µ̄B quantization
scheme becomes more appropriate. In the µ̄B quantiza-
tion scheme, we have that [40]

µ̄I =

√

∆ pI
pJpK

, (5.14)

where I, J and K are non repeated indexes.

More explicilty, we begin by rewriting Eq. (5.5) as

ϕ̇2 =
4

µ2´2(p1p2p3)

[

p1 sin(c̃1µ̄1)

µ̄1
+

p2 sin(c̃2µ̄2)

µ̄2

+
p3 sin(c̃3µ̄3)

µ̄3
+ µÃφϕ

]2

, (5.15)

which is now written with respect to the cosmic time t.
Now setting once again the quantum effective Hamilto-
nian constraint, Eq. (5.2), to zero, one obtains

− 1

µ2ϕ

[

sin(µ̄1c̃1)

µ̄1
p1

sin(µ̄2c̃2)

µ̄2
p2 +

sin(µ̄2c̃2)

µ̄2
p2

sin(µ̄3c̃3)

µ̄3
p3 +

sin(µ̄3c̃3)

µ̄3
p3

sin(µ̄1c̃1)

µ̄1
p1

]

+
1

´µ2ϕ

[

sin(µ̄1c̃1)

µ̄1
p1 +

sin(µ̄2c̃2)

µ̄2
p2 +

sin(µ̄3c̃3)

µ̄3
p3 + µÃφϕ

]2

+ p1p2p3Ä = 0. (5.16)

Note that in the second line of the above equation the
term in the square brackets can be written in terms of
Eq. (5.15), then one obtains

´ϕ̇2

4ϕ
+ Ä =

1

µ2ϕ

[

sin(µ̄1c̃1) sin(µ̄2c̃2)

µ̄1µ̄2p3

+
sin(µ̄2c̃2) sin(µ̄3c̃3)

µ̄2µ̄3p1
+

sin(µ̄3c̃3) sin(µ̄1c̃1)

µ̄1µ̄3p2

]

.

(5.17)

At this point, we apply the aforementioned alternative
scheme, given by Eq. (5.14), in Eq. (5.17), which can now
be suitably written such as to define an effective energy

density Äeff as

Äeff
Äc

=
µ2∆

3

(

´ϕ̇2

4
+ Äϕ

)

=
1

3

[

sin(µ̄1c̃1) sin(µ̄2c̃2) + sin(µ̄2c̃2) sin(µ̄3c̃3)

+ sin(µ̄1c̃1) sin(µ̄3c̃3)
]

. (5.18)

Therefore, the effective energy density Äeff , already de-
fined by Eq. (5.12), is bounded from above by its maxi-
mal value Äc, given by Äc = 3/(µ2∆). These results are
in agreement with Ref. [53] in the isotropic limit.
Now, a maximal value of energy density implies a min-

imum value of spatial volume. Therefore, initializing the
universe with a contracting phase, a big bounce is pre-
dicted in this scenario. This confirms the removal of an
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initial singularity in the framework of LQG owing to the
fact that geometry is quantized and there exists a non-
zero minimal area. Starting with an initially contract-
ing phase, in a classical setup, the collapse is inevitable.
Thus, once again, through this analysis we conclude that
quantum geometric effects at the Planck scale provide
repulsive forces and replace the big bang singularity by a

non-singular quantum bounce even beyond GR, with the
non-trivial spacetime, the Bianchi I universe.

For completeness, let us now write a closed form of the
Friedmann equation and that can be derived using the
current scheme. From Eqs. (5.8) and (5.15), we obtain
that

(

H +
ϕ̇

2ϕ

)2

=

{

1

6µ
√
∆ϕ

[sin(c̃1µ̄1) cos(c̃2µ̄2) + sin(c̃2µ̄2) cos(c̃1µ̄1) + sin(c̃1µ̄1) cos(c̃3µ̄3) + sin(c̃3µ̄3) cos(c̃1µ̄1)+

+ sin(c̃2µ̄2) cos(c̃3µ̄3) + sin(c̃3µ̄3) cos(c̃2µ̄2)] +
ϕ̇

2ϕ

[

1− cos(c̃1µ̄1) + cos(c̃2µ̄2) + cos(c̃3µ̄3)

3

]

}2

. (5.19)

Inspired by Eq. (5.18), we define the directional effective energy density in the I-direction as

Ä
(I)
eff =

3 sin2(c̃I µ̄I)

µ2∆
. (5.20)

Using this definition, Eq. (5.19) can now be expressed as

(

H +
ϕ̇

2ϕ

)2

=







1

6ϕ





√

√

√

√

1

3
Ä
(1)
eff

(

1− Ä
(2)
eff

Äc

)

+

√

√

√

√

1

3
Ä
(2)
eff

(

1− Ä
(1)
eff

Äc

)

+

√

√

√

√

1

3
Ä
(1)
eff

(

1− Ä
(3)
eff

Äc

)

+

+

√

√

√

√

1

3
Ä
(3)
eff

(

1− Ä
(1)
eff

Äc

)

+

√

√

√

√

1

3
Ä
(2)
eff

(

1− Ä
(3)
eff

Äc

)

+

√

√

√

√

1

3
Ä
(3)
eff

(

1− Ä
(2)
eff

Äc

)





+
ϕ̇

2ϕ



1− 1

3





√

1− Ä
(1)
eff

Äc
+

√

1− Ä
(2)
eff

Äc
+

√

1− Ä
(3)
eff

Äc















2

. (5.21)

The above equation reduces to the isotropic BD the-
ory [53] in the limit where the directional effective en-
ergy densities are equal. Also, the effective Friedmann
equation of LQC is recovered for ϕ = 1, when Äeff → Ä.

VI. DYNAMICS OF THE MODELS

In this section we present the results for the effective
dynamics of the models considered in this work. We show
the evolution of the scale factor and Hubble parameter
for Bianchi LQC and BD Bianchi LQC models in each
quantization scheme that has been discussed in the pre-
vious section.

In Figs. 1 and 2 we show the results for the directional
scale factor aI , I = 1, 2, 3, in a Bianchi-I LQC model for
the µ̄A and µ̄B schemes, given by Eqs. (5.1) and (5.14),
respectively, with the parameters described in the figure
captions. In Figs. 1(a) and 2(a), we show the results for
the pure Bianchi LQC, while in Figs. 1(b) and 2(b) we
have the corresponding results in the context of BDT.

The initial conditions considered, which are described in
the figure caption, are set at the contracting pre-bounce
phase and at an instant we denote by t = 0 (as will be
the case for all the results presented in this Section). We
can see from the figure that the behavior of the scale
factor differs in each direction, as expected for Bianchi
spacetimes. Especially, the behavior of a1 is very dif-
ferent from a2 and a3 in both models considered. This
type of dynamics is consistent with a Kasner-like phase,
i.e., expansion followed by contraction in one direction
and contraction followed by expansion in the others. It
is important to observe that even though there appears
contraction in one of the directions, we have checked ex-
plicitly that it never reaches zero (e.g., reaches a singu-
larity) in that direction, but it reaches a nonnull value at
very large times and then increases. The results shown
in Figs. 1 and 2 are in agreement with the overall be-
havior obtained in Refs. [36] and [54] for the standard
(non-BD, i.e. Einstein-Hilbert) Bianchi LQC case. From
the numerical studies that we have performed, we have
also verified that the inclusion of a massless scalar field
does not change the results of the vacuum case signifi-
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cantly, although the exact behavior can depend on the
initial conditions and on the choice of matter.

a1(t)

a2 (t)

a3 (t)

0.0 0.5 1.0 1.5 2.0
2.0

2.5

3.0

3.5

4.0

4.5

MPl t

a
I

(a)

a1(t)

a2 (t)

a3 (t)

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

MPl t

a
I

(b)

FIG. 1. The directional scale factors aI , I = 1, 2, 3, in a
Bianchi-I LQC model (panel a) and for the BD Bianchi-I LQC
model (panel b), for the initial conditions c1 = 0.6, c2 = −3.0,
c3 = 5.5, p1 = 9, p2 = 9.0001, p3 = 8.9999, and for the BD
Bianchi-I LQC model, with the BD initial conditions φ = 1,
pφ = 0 and for ω = 0.1 for the BD parameter. Both plots
correspond to the µ̄A scheme.

Besides of checking the behavior of the scale factor in
each direction, the important quantity to investigate, in
order to analyze the effective cosmological dynamics in
these models, is the average scale factor and the aver-
age Hubble parameter (where the average is taken with
respect to the three directions).
We show in Fig. 3 the behavior of the average scale

factor for the Bianchi LQC (+BD) in the two quantiza-
tion schemes. We can see that the evolution is differ-
ent in each scheme, as previously predicted in the work
of Ref. [54]. By comparing the results within the same
quantization scheme, we can see that the slopes of the
curves are different depending on whether the model is

a1(t)

a2 (t)

a3 (t)

0 1 2 3 4 5
1

2

3

4

5

6

MPl t

a
I

(a)

a1(t)

a2 (t)

a3 (t)

0 1 2 3 4 5
0

2

4

6

8

10

MPl t

a
I

(b)

FIG. 2. The directional scale factors aI , I = 1, 2, 3, in a
Bianchi-I LQC model (panel a) and for the BD Bianchi-I LQC
model (panel b), for the initial conditions c1 = −10, c2 = −15,
c3 = 20, p1 = 9, p2 = 9.00001, p3 = 8.99999, and for the BD
Bianchi-I LQC model, with the BD initial conditions φ = 1,
pφ = 0 and for ω = 0.1 for the BD parameter. Both plots
correspond to the µ̄B scheme.

in the context of the Brans-Dicke theory or not. In or-
der to further investigate the dynamics in each case, it is
worth to investigate the evolution of the Hubble param-
eter.
In Fig. 4, we present the evolution of the Hubble pa-

rameter in each model considered. For the models in the
context of the µ̄A-scheme, we can observe the presence of
a single bounce. On the other hand, the curves represent-
ing the models in the µ̄B-scheme crosses the value H = 0
more than once. By comparing each curve within the
same quantization scheme, it becomes clear how the BD
parameters affect the effective dynamics of the models.
It is also possible to verify that the green (dashed) curve
in Fig. 4, representing the dynamics of BD Bianchi LQC
in the µ̄A-scheme, shows an overall behavior consistent
with the results obtained in Ref. [39].
We conclude that, for the representative parameters

and initial conditions considered, all the results ob-
tained consistently show that a bounce occurs around
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a
LQC+Bianchi,μAscheme
a
LQC+Bianchi+BD,μAscheme
a
LQC+Bianchi,μB scheme
a
LQC+Bianchi+BD,μBscheme

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
2

3

4

5

6

MPl t

a

FIG. 3. The mean scale factor a. The initial conditions for
Bianchi-I LQC model are c1 = 0.6, c2 = −3.0, c3 = 5.5,
p1 = 9, p2 = 9.0001, p3 = 8.9999, whereas for the BD Bianchi-
I LQC model we used the same ones with the addition of
φ = 1 and pφ = 0. We chose the value ω = 0.1 for the BD
parameter.

H
LQC+Bianchi,μA scheme

H
LQC+Bianchi+BD,μAscheme

H
LQC+Bianchi,μBscheme

H
LQC+Bianchi+BD,μBscheme

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-1.0

-0.5

0.0

0.5

1.0

MPl t

H
/M

P
l

FIG. 4. The mean Hubble parameters H. The initial con-
ditions for Bianchi-I LQC model are c1 = 0.6, c2 = −3.0,
c3 = 5.5, p1 = 9, p2 = 9.0001, p3 = 8.9999, whereas for the
BD Bianchi-I LQC model we used the same ones with the
addition of φ = 1 and pφ = 0. We chose the value ω = 0.1 for
the BD parameter.

t ∼ 0.1/Mpl, although the precise instant varies little
within each model. The results present a behavior con-
sistent with the ones previously obtained in the literature
(for Bianchi LQC or BD LQC) in the respective limits.
Although the detailed dynamics varies with the quanti-
zation scheme and the choice of initial conditions, the
avoidance of the singularity is verified for all the cases
considered.

In this section we did not include the presence of stiff
matter since we verified that it does not change the gen-
eral results presented here, as the qualitative behavior
shown in the figures remains the same. We have also
explicitly verified that the values of the parameters and
initial conditions chosen are quite generic in the sense
that, by changing them to other reasonable values, we

obtain the same generic behavior, such that main con-
clusions and results discussed above are maintained.

VII. CONCLUSIONS

In this paper we have derived the quantum-corrected
effective background dynamics for BDT in the Bianchi I
model in the Jordan’s frame in the framework of LQG.
We have cast the theory in terms of the Yang-Mills phase
space variables suitable for loop quantization and we have
presented the quantum-corrected effective dynamics that
resolve the spacetime singularity. The quantization is
made by considering two different schemes, as given by
Eqs. (5.1) and (5.14), respectively. The former set pro-
vides lower bounds on the scale factor, Eq. (5.13), prov-
ing the existence of a non-singular quantum behavior of
spacetime. On the other hand, the latter scheme gives us
an upper bound to the effective energy density, i.e., the
critical density Äc, implying a minimal value of spatial
volume. Additionally, we have also derived the quantum
corrected Friedmann equation for this model inspired by
the idea of a directional energy density. We have explic-
itly shown that the effective dynamics of the Bianchi I
universe must undergo a smooth transition from a con-
tracting phase to a expanding phase through the quan-
tum bounce. Our analytical results, therefore, show ro-
bustness of the singularity resolution and the consistency
of the effective dynamics beyond general relativity.
As a perspective of future study in the context of the

model here studied, it would be of interest to explore any
possible observational features it might lead and that can
be detected in the forthcoming CMB experiments. An
extension of the analysis like the one performed in ear-
lier studies in the context of LQC for homogeneous and
isotropic models [55–59] would be of interest. Likewise,
the analysis of the perturbations in the model presented
here and the possibility of an inflationary phase following
the quantum bounce could be eventually done. Concern-
ing any possible observational signatures in LQC scenar-
ios with an anisotropic background, one can mention, for
instance, the work of Ref. [28], where an analysis of the
possible observational features in such models was per-
formed. Hence, an extension of such analysis of perturba-
tions in the context of the BDT anisotropic LQC will be
necessary in order to elaborate the observable predictions
of the model. Issues related to particle production due
to the bounce can also be important [60–68] and their
analysis and consequences in the context of anisotropic
loop quantum BDT would be worthwhile to be pursued
in the future as well.
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R. G. Clowes, D. Hutsemékers, J. P. Kochappan,
A. M. Lopez, L. Liu and N. C. M. Martens, et al. Is
the observable Universe consistent with the cosmological
principle?, Class. Quant. Grav. 40, no.9, 094001 (2023)
doi:10.1088/1361-6382/acbefc [arXiv:2207.05765 [astro-
ph.CO]].

[27] S. Yeung and M. C. Chu, Directional variations
of cosmological parameters from the Planck CMB
data, Phys. Rev. D 105, no.8, 083508 (2022)
doi:10.1103/PhysRevD.105.083508 [arXiv:2201.03799
[astro-ph.CO]].

[28] I. Agullo, J. Olmedo and E. Wilson-Ewing, Observa-
tional constraints on anisotropies for bouncing alterna-
tives to inflation, JCAP 10, 045 (2022) doi:10.1088/1475-
7516/2022/10/045 [arXiv:2206.04037 [astro-ph.CO]].

[29] H. Amirhashchi, Probing dark energy in the scope
of a Bianchi type I spacetime, Phys. Rev. D 97,
no.6, 063515 (2018) doi:10.1103/PhysRevD.97.063515
[arXiv:1712.02072 [astro-ph.CO]].

[30] M. Motaharfar, P. Singh, E. Thareja, Classicality
and uniqueness in the loop quantization of Bianchi
I spacetimes, Phys. Rev. D109, no.8, 086013 (2024)
doi:10.1103/PhysRevD.109.086013 [arXiv:2311.08465
[gr-qc]].

[31] A. M. McNamara, S. Saini, and P. Singh, Novel rela-
tionship between shear and energy density at the bounce
in nonsingular Bianchi I spacetimes, Phys. Rev. D107,
no. 2, 026003 (2023) doi:10.1103/PhysRevD.107.026003
[arXiv:2210.07257 [gr-qc]]

[32] A. Corichi and E. Montoya, Loop quantum cosmology
of Bianchi IX: Effective dynamics, Class. Quant. Grav.
34, no.5, 054001 (2017) doi:10.1088/1361-6382/aa54c5
[arXiv:1502.02342 [gr-qc]].
Refs. [30–36]).

[33] P. Singh and E. Wilson-Ewing, Quantization ambigu-
ities and bounds on geometric scalars in anisotropic
loop quantum cosmology, Class. Quant. Grav. 31,
035010 (2014) doi:10.1088/0264-9381/31/3/035010
[arXiv:1310.6728 [gr-qc]].

[34] Y. F. Cai, R. Brandenberger and P. Peter, Anisotropy
in a Nonsingular Bounce, Class. Quant. Grav.
30, 075019 (2013) doi:10.1088/0264-9381/30/7/075019
[arXiv:1301.4703 [gr-qc]].

[35] B. Gupt and P. Singh, Contrasting features of
anisotropic loop quantum cosmologies: The Role of
spatial curvature, Phys. Rev. D 85, 044011 (2012)
doi:10.1103/PhysRevD.85.044011 [arXiv:1109.6636 [gr-
qc]].

[36] D. W. Chiou and K. Vandersloot, The Behavior of non-
linear anisotropies in bouncing Bianchi I models of loop
quantum cosmology, Phys. Rev. D 76, 084015 (2007)
doi:10.1103/PhysRevD.76.084015 [arXiv:0707.2548 [gr-
qc]].

[37] Y. Han, Loop quantum cosmological dynamics of scalar-
tensor theory in the Jordan frame, Phys. Rev. D 100,
no.12, 123541 (2019) doi:10.1103/PhysRevD.100.123541
[arXiv:1911.01128 [gr-qc]].

[38] S. Song, C. Zhang and Y. Ma, Alternative dynamics in
loop quantum Brans-Dicke cosmology, Phys. Rev. D 102,
no.2, 024024 (2020) doi:10.1103/PhysRevD.102.024024
[arXiv:2004.09892 [gr-qc]].

[39] M. Artymowski, Y. Ma and X. Zhang, Comparison be-
tween Jordan and Einstein frames of Brans-Dicke grav-
ity a la loop quantum cosmology, Phys. Rev. D 88,

no.10, 104010 (2013) doi:10.1103/PhysRevD.88.104010
[arXiv:1309.3045 [gr-qc]].
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