
Fully Unconstrained Online Learning

Ashok Cutkosky
Boston University

ashok@cutkosky.com

Zakaria Mhammedi
Google Research

mhammedi@google.com

Abstract

We provide a technique for online convex optimization that obtains regret

G∥w⋆∥√T log(∥w⋆∥G√T) + ∥w⋆∥2 + G2 on G-Lipschitz losses for any com-

parison point w⋆ without knowing either G or ∥w⋆∥. Importantly, this matches

the optimal bound G∥w⋆∥√T available with such knowledge (up to logarithmic

factors), unless either ∥w⋆∥ or G is so large that even G∥w⋆∥√T is roughly linear
in T . Thus, at a high level it matches the optimal bound in all cases in which one
can achieve sublinear regret.

1 Unconstrained Online Learning

This paper provides new algorithms for online learning, which is a standard framework for the
design and analysis of iterative first-order optimization algorithms used throughout machine learning.
Specifically, we consider a variant of online learning often called “online convex optimization” [1, 2].
Formally, an online learning algorithm is designed to play a kind of “game” between the learning
algorithm and the environment, which we can describe using the following protocol:

Protocol 1. Online Learning/Online Convex Optimization.
Input: Convex domainW ¦ Rd, number of rounds T .
For t = 1, . . . , T :

1. Learner outputs wt ∈W .

2. Nature reveals loss vector gt ∈ ∂ℓt for some convex function ℓt ∶W → R to the learner.

3. Learner suffers loss ⟨gt, wtð.
The learner is evaluated with the regret 3Tt=1(ℓt(wt) − ℓt(w⋆)) against comparators w⋆ ∈ W . By

convexity, the regret is bounded by the linearized regret 3Tt=1⟨gt, wt −w⋆ð. Our goal is to ensure that
for all w⋆ ∈W simultaneously:

RegretT (w⋆) ∶= T

∑
t=1

⟨gt, wt −w⋆ð f®
goal

�O⎛⎜⎝∥w⋆∥
¿ÁÁÀ T

∑
t=1

∥gt∥2⎞⎟⎠ . (1)

Qualitatively, we consider a learner to be performing well if 1
T 3Tt=1(ℓt(wt) − ℓt(w⋆)) is very small,

usually going to zero as T → ∞. This indicates that the average loss of the learner is close to the
average loss of any chosen comparison point w⋆ ∈W . This property is called “sublinear regret”. The
bound (1) is unimprovable in general [3, 4, 5], and clearly implies sublinear regret.

Algorithms that achieve low regret are used in a variety of machine learning applications. Perhaps the
most famous such application is in the analysis of stochastic gradient descent, which achieves (1) for
appropriately tuned learning rate [6]. More generally, stochastic convex optimization can be reduced

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

to online learning via the online to batch conversion [7]. Roughly speaking, this result says that an
online learning algorithm that guarantees low regret can be immediately converted into a stochastic

convex optimization algorithm that converges at a rate of
E[RegretT (w⋆)]

T
, where w⋆ is the minimizer

of the objective. Online learning can also be used to solve non-convex optimization problems [8] and
can even be used to prove concentration inequalities [9, 10, 11, 12]. In all of these cases, achieving
the bound (1) produces methods that are optimal for their respective tasks. Thus, it is desirable to be
able to achieve (1) in as robust a manner as possible.

Our goal is to come as close as possible to achieving the bound (1) while requiring minimal prior
user knowledge about the loss sequence g1, . . . , gt and w⋆. In the past, several prior works have
achieved the bound (1) when given prior knowledge of either ∥w⋆∥ or maxt ∥gt∥ [13, 14, 15, 16,
17, 18, 19, 20, 21]. However, such knowledge is frequently unavailable. Instead, many problems
are “fully unconstrained” in the sense that we do not have any reasonable upper bounds on either∥w⋆∥ or maxt ∥gt∥. In particular, when considering the application to stochastic convex optimization,
the values for ∥w⋆∥ and maxt ∥gt∥ can be interpreted as knowledge of the correct learning rate for
stochastic gradient descent [6]. Thus, achieving the bound (1) with less prior knowledge roughly
corresponds to building algorithms that are able to achieve optimal convergence guarantees without
requiring manual hyperparameter tuning. For this reason, it is common to refer to such algorithms as
“parameter-free”. This paper focuses on this difficult but realistic setting.

Our new upper bound. Unfortunately, the bound (1) is actually unobtainable in general without
prior knowledge of either the magnitude ∥w⋆∥ or the value of maxt ∥gt∥ [18, 22]. Nevertheless, we
will obtain a new compromise bound. For any user-specified µ > 0, our method will achieve:

T

∑
t=1

⟨gt, wt −w⋆ð f �O⎛⎜⎝max
t∈[T]
∥gt∥2/µ + µ∥w⋆∥2 + ∥w⋆∥

¿ÁÁÀ T

∑
t=1

∥gt∥2⎞⎟⎠ . (2)

To dissect this compromise, let us consider the case ∥gt∥ = G for all t and µ = 1. In this situation,

our bound (2) is roughly G2
+ ∥w⋆∥2 + ∥w⋆∥G√T , while the “ideal” bound (1) is merely ∥w⋆∥G√T .

However, for our bound to be significantly worse than (1), we must have either G g ∥w⋆∥√T or∥w⋆∥ g G√T . In either case, we might expect that ∥w⋆∥G√T is roughly Ω(T) (assuming that
neither G nor ∥w⋆∥ is very small). So, intuitively the only cases in which our bound is worse than the
ideal bound are those for which the ideal bound is already rather large—the problem is in some sense
“too hard”.

Comparison with previous bounds Our bound (2) is not the first attempted compromise in our
fully unconstrained setting. Prior work [18, 23] instead provides the bound:

T

∑
t=1

⟨gt, wt −w⋆ð f �O⎛⎜⎝
1

µ

¿ÁÁÀmax
t′∈[T]

∥gt′∥ ⋅ T∑
t=1

∥gt∥ + µ2max
t∈[T]
∥gt∥∥w⋆∥3 + ∥w⋆∥

¿ÁÁÀ T

∑
t=1

∥gt∥2⎞⎟⎠ . (3)

In fact, readers familiar with this literature may be surprised that our bound is even possible; [18]
show that the bound (3) is optimal for the fully-unconstrained case. However, the lower-bound
provided by [18] actually has a small loophole; it only applies to algorithms that insist on a linear
dependence on maxt ∥gt∥. Our method avoids this lower bound by instead suffering a quadratic
dependence on maxt ∥gt∥.
While our new bound (2) does not uniformly improve the prior bound (3), it has several qualitative
differences that may be more appealing.

1. The bound (3) does not have the desirable property outlined above for our new bound; for ∥gt∥ = G,
it is possible for the bound (3) to be much greater than the ideal bound (1) even when (1) is small.

2. The dependency on the user-specified value µ is arguably more sensitive; in (3), decreasing µ

comes at a 1
µ
G
√
T cost while increasing gamma comes at an µ2∥w⋆∥3 cost. In contrast, in our

bound (3), the µ-dependencies are milder; G2/µ for decreasing µ (which does not depend on T)
and µ∥w⋆∥2 for increasing µ.

3. The previous compromise bound (3) has a term that depends on maxt ∥gt∥ (3Tt=1 ∥gt∥) rather

than 3Tt=1 ∥gt∥2. The dependence on the second power of ∥gt∥ is sometimes referred to as a

2

“second-order” bound and is known to imply constant regret in certain settings [1, 24] (so-called
“fast rates”).

4. Consider the case that both bounds are tuned with their respective “optimal” values for µ. Our

new bound would then reduce to Õ (∥w⋆∥√3Tt=1 ∥gt∥2 + ∥w⋆∥G), while the previous bound

would instead become Õ (∥w⋆∥√3Tt=1 ∥gt∥2 + ∥w⋆∥G2/3 (3Tt=1 ∥gt∥)1/3). Thus, our new bound

appears more desirable even with individually optimal tuning.

5. Our bound ensures that when w⋆ = 0, the dependence on T is O(1). This has a number of useful
consequences. For example, by running a separate instance of our algorithm for each dimension
of a d-dimensional problem, we can achieve:

T

∑
t=1

⟨gt, wt −w⋆ð f �O⎛⎜⎝
1

µ

d

∑
i=1

max
t∈[T]

g2t,i + µ∥w⋆∥22 + d

∑
i=1

∣w⋆,i∣
¿ÁÁÀ T

∑
t=1

g2t,i

⎞⎟⎠ .
Attempting this with the bound (3) would incur a more significant dependence on the dimension d.
More generally, this property means that our bound fits into the framework for “combining” regret
bounds of [25].

2 Notation

Throughout this paper, we useW to refer to a convex domain contained in R
d. Our results can in fact

be extended to Banach spaces relatively easily using the reduction techniques of [16], but we focus on
R
d here to keep things more familiar. We use ∥ ⋅ ∥ to indicate the Euclidean norm. Occasionally we

also make use of other norms—these will always be indicated by some subscript (e.g. ∥ ⋅ ∥t). We use

R≥0 to indicate the set of non-negative reals. For a convex function F over Rd, the Fenchel conjugate
of F is F ⋆(¹) = supx∈Rd⟨¹, xð − F (x). We occasionally make use of a “compressed sum” notation:

ga∶b ∶= 3bt=a gt. We use O to hide constant factors and �O to hide both constant and logarithmic factors.
All proofs not present in the main paper may be found in the appendix.

We will refer to the values gt provided to an online learning algorithm interchangeably as “gradients”,
“feedback” and “loss” values. We will refer to online learning algorithms occasionally as either
“learners” or just “algorithms”.

3 Overview of Approach

Our overall approach to achieve (2) is a sequence of reductions. As a first step, we observe that it
suffices to achieve our goal in the special caseW = R. Specifically, [16] Theorems 2 and 3 reduce the
generalW case toW = R case. We provide an explicit description of how to apply these reductions
in Section C. So, we focus our analysis on the caseW = R. Next, we reduce the problem to a variant
of the online learning protocol in which we also must contend with some potentially non-Lipschitz
regularization function (Section 3.1). Finally, we show how to achieve low regret in this special
regularized setting (Section 3.3).

3.1 Hints and Regularization

Our bound is achieved via a reduction to a variant of Protocol 1 with two changes. First, the learner is
provided with prior access to magnitude hints ht ∈ R that satisfy ∥gt∥ f ht. This notion of magnitude
hints is also a key ingredient in the previous bound (3). Our second change is that the loss is not only
the linear loss ⟨gt, wð, but a regularized non-linear loss ⟨gt, wð + atÈ(w) for some fixed function
È ∶W → R≥0 that we call a “regularizer”. Formally, this protocol variant is specified in Protocol 2.

3

Protocol 2. Regularized Online Learning with Magnitude Hints.
Input: Convex function È ∶W → R≥0.
For t = 1, . . . , T :

1. Nature reveals magnitude hint ht g ht−1 g 0 to the learner.

2. Learner outputs wt ∈W .

3. Nature reveals loss g̃t with ∥g̃t∥ f ht and at ∈ [0, µ] to the learner.

4. Learner suffers loss ⟨g̃t, wtð + atÈ(wt).
The learner is evaluated with the regularized regret 3Tt=1⟨g̃t, wt −w⋆ð + atÈ(wt) − atÈ(w⋆). The
goal is to obtain:

T

∑
t=1

⟨g̃t, wt −w⋆ð + atÈ(wt) − atÈ(w⋆) f®
goal

�O⎛⎜⎝∥w⋆∥
¿ÁÁÀh2T +

T

∑
t=1

∥g̃t∥2 + È(w⋆)
¿ÁÁÀµ2 +

T

∑
t=1

a2t

⎞⎟⎠ .
(4)

In the special case that È(w) = 0 (i.e. the at are irrelevant, or all 0), then various algorithms achieving
the desired bound (4) are available in the literature [18, 21, 23, 26]. We provide in Algorithm 3
a new algorithm for this situation that achieves the optimal logarithmic factors—there is in fact a
pareto-frontier of incomparable bounds that differ in the logarithmic factors. [26] provides the first
algorithm to reach this frontier, while our method can achieve all points on the frontier1. We include
this result because it is of some independent interest, but it not the major focus of our contributions.
Any of the prior work in this area would roughly suffice for our broader purposes; the difference is
only in the logarithmic terms.

Challenge of achieving (4). Achieving the bound (4) is challenging when ∥w⋆∥ is not known ahead
of time. To see why, let us briefly consider two potential solutions.

The most immediate approach might be to reduce Protocol 2 to the case in which at = 0 for all t
by replacing g̃t with g̃t + at∇È(wt), and then possibly modifying the magnitude hint ht in some
way to now be a bound on ∥g̃t∥. However, this approach is problematic because the expected bound

would now depend on 3Tt=1 ∥g̃t + at∇È(wt)∥2 rather than 3Tt=1 ∥g̃t∥2 and 3Tt=1 a2t . This means that
the naive regret bound would be very hard to interpret as wt would appear on both the left and right
hand sides of the inequality.

Another possibility is a follow-the-regularized leader/potential-based algorithm, making updates:

wt+1 = argmin
w∈W

Pt(w) + t

∑
i=1

⟨g̃i, wð + aiÈ(w), (5)

for some sequence of “potential functions” Pt ∶W → R. In fact, this approach can be very effective;
this is roughly the method employed by [27] for a similar problem. However, deriving the correct
potential Pt and proving the desired regret bound can be very difficult, and could easily require
separate analysis for each different possible È function. For example, [27]’s analysis specifically
applies to È(w) = ∥w∥2. There is other work on similar protocols using approximately this method,
such as [28, 29], that also requires particular analysis for each setting. Finally, even if the bound
can be achieved in general using this scheme, solving the optimization problem (5) may incur some
undesirable computational overhead, even for intuitively “simple” regularizers such as È(w) = ∥w∥2.
In fact, the method of [27] suffers from exactly this issue, which is why we provide an alternative
approach in Section 3.3, for the special case of interest thatW = R.

Re-parametrizing to achieve (4). In order to achieve the bound (4) in the special caseW = R,
we will employ a standard trick in convex optimization: re-parametrizing the objective as a convex
constraint using the fact that the epigraph of a convex function is convex. Instead of having our
learner output wt ∈W , we will output (xt, yt) ∈W ×R, but subject to the constraint that yt g È(xt).
We provide details of this approach in Section 3.3.

1It is likely that the approach of [26] in concert with the varying potentials of [20] would achieve all points
on the frontier as well, although our analysis takes a different direction using the centered mirror descent method
of [21].

4

With all of these technicalities introduced, we are ready to provide an outline of our method. The key
idea is to show that for a very peculiar choice of coefficients a1, . . . , aT and some simple clipping of
the gradients gt, we are able to achieve the following result.

Theorem 1. There exists an online learning algorithm that requires O(d) space and takes O(d) time

per update, takes as input scalar values µ, h1, and ϵ and ensures that for any sequence g1, g2, ⋅ ⋅ ⋅ ¢ R
d,

the outputs w1, w1, ⋅ ⋅ ⋅ ¢ R
d satisfy for all w⋆ and T :

T

∑
t=1

⟨gt, wt −w⋆ð f O ⎡⎢⎢⎢⎢⎣ϵG + ϵ
2µ +

G2

µ
log (e + G

h1
) + ∥w⋆∥

¿ÁÁÀV log(e + ∣w⋆∣√V log
2(T)

h1ϵ
)

+∥w⋆∥G log(e + ∥w⋆∥√V log
2(T)

h1ϵ
) + µ∥w⋆∥2 log(e + ∥w⋆∥2

ϵ2
log (e + G

h1
))] ,

where G =max(h1,maxt∈[T] ∥gt∥) and V = G2
+3Tt=1 ∥gt∥2.

Before proving this result, let us briefly unpack the algebra in the statement to see how it relates to
our originally stated bound (2). Notice that if we drop all the logarithmic terms, the bound becomes:

T

∑
t=1

⟨gt, wt −w⋆ð f Õ ⎡⎢⎢⎢⎢⎣ϵG + ϵ
2µ +

G2

µ
+ ∥w⋆∥

¿ÁÁÀ T

∑
t=1

∥gt∥2 + ∥w⋆∥G + µ∥w⋆∥2⎤⎥⎥⎥⎥⎦
Here if we should think of h1 and ϵ as conservative under-estimates of maxt ∥gt∥ and ∥w⋆∥. Notice
that decreasing h1 and ϵ only increases the terms inside the logarithms, so that in some sense
the algorithm is very robust to even extremely conservative under-estimation. When it holds that
h1 fmaxt ∥gt∥ and ϵ f ∥w⋆∥, then the above bound is exactly the previously stated equation (2).

3.2 Proof Sketch of Theorem 1

Let us suppose for now that we have access to an algorithm that achieves the bound (4) under
Protocol 2. Let us call it REG. In this section, we will detail how to use REG to achieve our desired
goal (2) under Protocol 1 withW = R: in this sketch, we treat all values as scalars, and never vectors.
Recall that it suffices to considerW = R to achieve the result in general. Given an output wt from
REG, we play wt and observe the gradient gt. We will then produce a modified gradient g̃t, a scalar at,
and a magnitude hint ht+1 to provide to REG such that g̃t and at satisfy the constraints of Protocol 2.
We will set È(w) = w2, and then by careful choice of g̃t, at, and ht+1, we will be able to establish
Theorem 1.

There are two key steps in our reduction. The first step is now a standard trick originally used
by [18, 23, 30] to reduce the original Protocol 1 to Protocol 2. The idea is as follows: let us set
ht =max(h1, ∣g1∣, . . . , ∣gt−1∣) for some given “initial value” h1 g 0. Notice that ht may be computed
before gt is revealed and that the value G specified in the theorem satisfies G = hT+1. Then, upon

receiving a gradient gt, we replace gt with the “clipped” gradient g̃t = (1 ' ht
∣gt∣) ⋅ gt. The clipped

gradient g̃t satisfies ∣g̃t∣ f ht by definition. We then pass g̃t in place of gt to an algorithm that interacts
with Protocol 2. It is then relatively straightforward to see that for all w⋆ ∈W :

T

∑
t=1

gt(wt −w⋆) f T

∑
t=1

g̃t(wt −w⋆) + T

∑
t=1

∣g̃t − gt∣∣w⋆∣ + T

∑
t=1

∣g̃t − gt∣∣wt∣,
f

T

∑
t=1

g̃t(wt −w⋆) + hT+1∣w⋆∣ + T

∑
t=1

(ht+1 − ht)∣wt∣.
At this point, prior work [18, 23] observed that if we could constrain ∣wt∣ to have some chosen
maximum value D, then the final summation above is at most hT+1D. By carefully choosing D
in tandem with an algorithm that achieve (4) in the case È(w) = 0, one can achieve the previous
“compromise” bound (3).

This is where our second key step (which is our main technical innovation) comes in. Instead of
explicitly enforcing ∣wt∣ fD, we will apply a “soft constraint” by adding a regularizer. Surprisingly,
we will add a very tiny amount of regularization and yet still achieve meaningful regret bounds.

5

Recall that we are assuming access to an algorithm that achieves the bound (4) when interacting with
Protocol 2. Let us set È(w) = w2. Then, observe that for any choices of a1, . . . , aT :

T

∑
t=1

gt(wt −w⋆) f T

∑
t=1

(g̃t(wt −w⋆) + atÈ(wt) − atÈ(w⋆)) + T

∑
t=1

∣g̃t − gt∣∣w⋆∣ +w2
⋆

T

∑
t=1

at

+

T

∑
t=1

(∣g̃t − gt∣∣wt∣ − atw2
t) ,

f

T

∑
t=1

(g̃t(wt −w⋆) + atÈ(wt) − atÈ(w⋆))
´¹¹¸¹¹¶

controlled by (4)

+hT+1∣w⋆∣ + w2
⋆

T

∑
t=1

at

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
needs small at

+

T

∑
t=1

((ht+1 − ht)∣wt∣ − atw2
t)

´¹¹¸¹¹¹¶
needs big at

.

From the above decomposition, we see that to make the overall regret small, we would like to choose

at such that 3Tt=1 at is small, but also at is large enough that 3Tt=1 ((ht+1 − ht)∣wt∣ − atw2
t) is also

small. It turns out that this is accomplished by the following choice for at:

at = µ ⋅
(ht+1 − ht)/ht+1

1 +3ti=1(hi+1 − hi)/hi+1 .
Here, µ is an arbitrary user-specified constant. Notice that the value of ht+1 is available immediately
after gt is revealed, so that it is possible to set this value of at. Moreover, it is clear that at ∈ [0, µ]
for all t.

Let us see how this value for at satisfies our desired properties. First, recall the bound log(p + q) −
log(q) g p

p+q
for any p, q > 0, which implies 3Tt=1 pt

∑
t
i=0

pi
f log (3Tt=1 pt/p0) for any sequence of

positive numbers p0, . . . , pT . From this, we have:

T

∑
t=1

at = µ
T

∑
t=1

(ht+1 − ht)/ht+1
1 +3ti=1(hi+1 − hi)/hi+1 ,

f µ log(1 + T

∑
t=1

(ht+1 − ht)/ht+1) ,
f µ log (1 + log (G/h1)) .

Thus, 3Tt=1 at is in fact doubly logarithmic in the ratio between h1 and hT+1 =max(h1,maxt ∣gt∣) =
G.

Next, let us check that at is “large enough” to make 3Tt=1(ht+1 − ht)∣wt∣ − atw2
t small. To this end,

observe that:

(ht+1 − ht)∣wt∣ − atw2
t f sup

X

(ht+1 − ht)X − atX2,

=
(ht+1 − ht)2

4at
,

=
ht+1(ht+1 − ht)

4µ
(1 + t

∑
i=1

(hi+1 − hi)/hi+1) ,
f
hT+1(ht+1 − ht)

4µ
(1 + T

∑
i=1

(hi+1 − hi)/hi+1) ,
=
G(ht+1 − ht)

4µ
(1 + log(G/h1)) ,

where we used that G = hT+1. Thus, we have:
T

∑
t=1

((ht+1 − ht)∣wt∣ − atw2
t) f G2

4µ
(1 + log(G/h1)) .

This shows that at is large enough that it is able to counteract the effect of3Tt=1(ht+1−ht)∣wt∣ (which
makes the regret large if ∣wt∣ is large). It is tempting to conclude that the regularizer is somehow
“implicitly constraining” wt to be small enough that the regret is bounded. However, it is difficult

6

to envision exactly what constraint is being enforced; notice that to make 3Tt=1(ht+1 − ht)∣wt∣ =�O(G2/µ) by applying some constraint ∣wt∣ f D, we would need to set D = �O(G/µ). However,
such an aggresive constraint would surely prevent us from achieving low regret for even relatively
moderate ∥w⋆∥ g G/µ. So, our regularization seems to be doing something more subtle than simply
applying a global constraint to the wt’s. Indeed, notice that in the case ∣gt∣ f h1 for all t, we actually
have at = 0 and so no constraint effect at all is enforced!

The final step we need to check is bounding 3Tt=1 g̃t(wt −w⋆) + atÈ(wt) − atÈ(w⋆). To this end,
we provide in Section 3.3 an algorithm that achieves the following bound, which is slightly weaker
than (4):

T

∑
t=1

(g̃t(wt −w⋆) + atÈ(wt) − atÈ(w⋆))
f O

⎡⎢⎢⎢⎢⎣ϵhT + ∣w⋆∣
¿ÁÁÀV log(e + ∣w⋆∣√V log

2(T)
h1ϵ

) + ∣w⋆∣hT log(e + ∣w⋆∣√V log
2(T)

h1ϵ
)

+ϵ2µ +w2
⋆

¿ÁÁÀS log(e + ∣w⋆∣2√S log
2(T)

µϵ2
) + ∥w⋆∥2µ log(e + ∣w⋆∣2

√
S log

2(T)
µϵ2

)⎤⎥⎥⎥⎥⎦ ,
where S = µ2 + µ3Tt=1 at. This bound is weaker than (4) due to the presence of S rather than

µ2 +3Tt=1 a2t . Nevertheless, by our bound on 3Tt=1 at, we have:

S f µ2 + µ2 log (1 + log (G/h1))
so that combining all of the above calculations we establish Theorem 1.

Thus, it remains to establish how we can achieve (4), or the slightly weaker (but sufficient) statement
above. We accomplish this next in Section 3.3.

3.3 Regularized Online Learning via Epigraph Constraints

Recall that our approach to obtaining (4) is to replace the regularization terms in the loss with
constraints. Formally, consider the following protocol:

Protocol 3. Epigraph-based Regularized Online Learning forW = R.
Input: Convex function È ∶ R→ R.
For t = 1, . . . , T :

1. Nature reveals magnitude hint ht g ht−1 to the learner.

2. Learner outputs (xt, yt) ∈ R ×R with yt g È(xt).
3. Nature reveals g̃t ∈ [−ht, ht] and at ∈ [0, µ] to the learner.

4. Learner suffers loss g̃txt + atyt.

The learner is evaluated with the linear regret 3Tt=1 gt(xt −w⋆) + at(yt − È(w⋆)). The goal is to
obtain:

T

∑
t=1

(g̃t(xt −w⋆) + at(yt − È(w⋆))) f®
goal

�O⎛⎜⎝∥w⋆∥
¿ÁÁÀh2T +

T

∑
t=1

g̃2t + È(w⋆)
¿ÁÁÀµ2 +

T

∑
t=1

a2t

⎞⎟⎠ . (6)

The key fact about this protocol is the observation that by setting wt = xt, the bound (6) immediately
implies (4). To see this, recall that È(w) g 0, at g 0, and yt g È(xt) = È(wt) so that:

T

∑
t=1

(⟨gt, wt −w⋆ð + atÈ(wt) − atÈ(w⋆)) f T

∑
t=1

(⟨gt, xt −w⋆ð + atyt − atÈ(w⋆)) .
So, to achieve (4) under Protocol 2, it suffices to achieve the bound (6) under Protocol 3.

There is one tempting approach that almost, but not quite, achieves this goal. One could employ
the “constraint-set reduction” developed in [16] that converts an algorithm that operates on the

7

“unconstrained” domain R
d
× R to one respecting the constraint y g È(x). In particular, it is

relatively straightforward to build an algorithm that achieves (6) without requiring yt g È(xt). This
unconstrained setting can be handled by the classic “coordinate-wise updates” trick in which we
run two instances of an algorithm achieving (4) in the special case that È(x) = 0, one of which will
output xt and receive feedback gt, and the other will output yt and receive feedback at. Then, by the
individual regret bounds on both coordinates, we would have:

T

∑
t=1

(gt(xt −w⋆) + at(yt − È(w⋆))) = T

∑
t=1

gt(xt −w⋆) + T

∑
t=1

at(yt − È(w⋆)),
f �O⎛⎜⎝∥w⋆∥

√
h2T +∑

t=1

g̃2t + È(w⋆)
¿ÁÁÀµ2 +

T

∑
T=1

a2t

⎞⎟⎠ .
Then, one might hope that applying the constraint-set reduction of [16] would allow us to apply
the constraintW without damaging the regret bound. Unfortunately, this reduction will modify the

feedback gt and at in such a way that3Tt=1 a2t could become much larger, which makes this approach
untenable in general.

Fortunately, it turns out that our particular usage will enforce some favorable conditions on at that
make the above strategy viable. Specifically, the choices of g̃t, ht and at described in Section 3.2
satisfy the condition that at = 0 unless ∥g̃t∥ = ht. By careful inspection of the constraint-set reduction,
it is possible to show that the above strategy achieves a slightly weaker version of (6):

T

∑
t=1

g̃t(xt −w⋆) + at(yt − È(w⋆)) f �O⎛⎜⎝∥w⋆∥
√
h2T +∑

t=1

g̃2t +È(w⋆)
¿ÁÁÀµ2 + µ

T

∑
T=1

at
⎞⎟⎠ . (7)

As detailed in Section 3.2, this weaker bound suffices for our eventual purposes. Nevertheless, for
the reader interested in a fully general solution, in Appendix H, we provide a method for achieving
(6) without restrictions. We do not employ it in our main development because it involves solving a
convex subproblem at each iteration and so may be less efficient in some settings. This technique
does however involve a small improvement to so-called “full-matrix” regret bounds [31], and so may
be of some independent interest.

4 Lower Bounds

In this section, we show that the result of Theorem 1 is tight. In fact, we show a stronger result
that generalizes our extra penalty term from G2/µ + µ∥w⋆∥2 to µÈ(∥w⋆∥) + µÈ⋆(G/µ) for any
symmetric convex function È, where È⋆(x) = supz xz −È(z) is the Fenchel conjugate of È. That is,
we provide a Pareto frontier of different lower bounds and Theorem 1 is but one point on this frontier.
In Appendix A we extend our upper-bound results to match any desired point on this frontier (up
to a logarithmic factor). . We also provide matching upper bounds (up to a logarithmic factor) in
Theorem 16, as well as more simplified

Theorem 2. Suppose È ∶ R → R is convex, symmetric, differentiable, non-negative, achieves its
minimum at È(0) = 0, and È(x) is strictly increasing for non-negative x. Further suppose that for
any X,Y,Z > 0, there is some Ä such that for all T g Ä ,

exp(T) − 1 gX√T∇È⋆(Y T)
XÈ⋆(Y TZ) g TZ

where È⋆(z) = sup zx − È(x) is the Fenchel conjugate of È. Let h1 > 0, µ > 0 and ϵ > 0 be given.

For any online learning algorithm A interacting with Protocol 1 withW = R, there is a T0 such
that for any T g T0, there is a sequence of gradients g1, . . . , gT and a w⋆ such that the outputs
w1, . . . , wT of A satisfy:

T

∑
t=1

gt(wt −w⋆) g ϵG + µ
8
È⋆(G/µ) + µ

4
È(w⋆) + G∣w⋆∣

4

¿ÁÁÀT log(1 + G∣w⋆∣√T
h1ϵ

),

8

where G =max(h1, g1, . . . , gT). In particular, with È(x) = x1+q for any q > 0, we can ensure:

T

∑
t=1

gt(wt −w⋆) g Ω⎡⎢⎢⎢⎢⎣ϵG +
G1+1/q

µ1/q
+ µ∣w⋆∣1+q +G∣w⋆∣

¿ÁÁÀT log(1 + G∣w⋆∣√T
h1ϵ

)⎤⎥⎥⎥⎥⎦ .
The conditions on È⋆ in this bound are relatively mild. The first condition says that the gradient ∇È⋆

should not grow exponentially fast. The second condition says that È⋆ should grow faster than some
linear function. So, any polynomial of degree greater than 1 satisfies these conditions.

We note that this lower bound leaves something to be desired in terms of the quantification of the
terms. Here, the value of G and ∥w⋆∥ depends on the algorithm A. This is a critical factor in the
proof; roughly speaking, the proof operates by providing the algorithm with a constant gradient
gt = h1 at every round. Then, if the iterates wt grow in some sense “quickly”, we “punish” the
algorithm with a very large negative gradient, which causes high regret if w⋆ = 0. Alternatively, if the
iterates do not grow quickly, then we show that the regret is large for some w⋆ k 1. This approach is
a common idiom for lower bounds in the fully unconstrained setting [18, 22].

However, a much better bound might be possible; ideally, it would hold that for any G and ∥w⋆∥ and
algorithm A, we can find a sequence of gradients gt that enforces our desired regret. Indeed, when
either ∥w⋆∥ or maxt ∥gt∥ is provided to the algorithm, the lower bounds available do take this form
[3, 5]. We leave as an open question whether it is possible to do so in our setting.

5 Discussion

We have provided a new online learning algorithm that achieves a near-optimal regret bound (2).
Our algorithm is “fully unconstrained”, or “fully parameter-free”, in the sense that we achieve a
near-optimal regret bound without requiring bounds on the gradients gt or the comparison point w⋆.
Prior work in this setting [18, 21, 22, 23, 26] achieve bounds that are technically incomparable, but
may be aesthetically less desirable, as detailed in the discussion following (3). Nevertheless, ideally
we would have a unified algorithm framework capturing both our old and new bounds. It is an open
question whether more careful choice of regularization in our approach could achieve this goal.

Our algorithm takes as input parameters ϵ, h1 and µ. All of these have a pleasingly small impact
on the regret bound. ϵ and h1 can be interpreted as very rough estimates of ∥w⋆∥ and G. As these
quantities go to zero, the regret bound increases only logarithmically. Moreover, these estimates

can be too high by a factor of
√
T while still maintaining Õ(∥w⋆∥G√T) regret. The quantity µ

represents an estimate of G/∥w⋆∥. As discussed in Section 1, this value does not appear in any term
that has a T -dependence in the regret bound and so also has a very mild impact on the regret.

While our bound has several intuitively desirable characteristics, it is missing one important property:
our bound suffers from an issue highlighted by [18] called the “range-ratio” problem. That is, the
bound depends on the ratioG/h1, which could be very large if the losses are rescaled by some arbitrary
large number without rescaling h1. This issue is at the heart of how we are able to sidestep the
lower-bound of [18], which appears to apply to all algorithms that do not suffer from the range-ratio
problem.

5.1 Other forms of Unconstrained Online Learning

Our results focus on the case that we have no prior bounds on the value of ∥w⋆∥ or ∥gt∥, and
our bounds eventually depend on maxt ∥gt∥. One might worry that this is too conservative in
some settings. For example, it might be that gt is known to be a random variable with bounded
mean ∥E[gt]∥ f G and variance Var(gt) f Ã2 for some known G and Ã. In this case, maxt ∥gt∥
might become large even though intuitively our regret should still depend only on G + Ã. This
is the setting considered by several prior work on online learning with unconstrained domains [9,
17, 32]. Under various assumptions, these results all achieve an in-expectation regret bound of

E[RegretT (w⋆)] f �O(∥w⋆∥(G + Ã)√T).
In fact, our results come close to this ideal even without knowledge of G. For example, [9, 17] study
the case of sub-exponential gt that satisfy sup∥a∥≤1E[exp(´⟨gt −E[gt], að)] f exp(´2Ã2/2) for all∣´∣ f 1/b for some b > 0. In this case, for 1-dimensional gt, we have E[maxt g

2
t] f �O(G2

+ Ã2), and

9

so in expectation we achieve �O(∥w⋆∥(G + Ã)√T +G2
+ Ã2

+ ∥w⋆∥2) (the extension from 1-d to
arbitrary dimensions can then be achieved via the black-box reduction of [16]). However, in the case
that gt has some heavy-tailed distribution such as studied by [32], it is less clear that our bounds
achieve the desired result out-of-the box. Discovering how to achieve this is an interesting direction
for future study.

5.2 Parameter-free Algorithms and Stochastic Convex Optimization

As discussed in the introduction, a common motivation for the study of online learning is its immediate
application to stochastic convex optimization through various online-to-batch conversions. The classic
conversion of [7], as well as a few more recent results [33, 34, 35, 36] all show that if gt is the output
of a stochastic gradient oracle for a convex function F , then for any w⋆ ∈ argminF :2

E [F (∑Tt=1wtT
) − F (w⋆)] f E[RegretT (w⋆)]

T

If ∥gt∥ f G with probability 1 (for an unknown G), our Theorem 1 immediately implies

E [F (∑Tt=1wtT
) − F (w⋆)] f �O (∥w⋆∥G√

T
+
G2/µ+µ∥w⋆∥2

T
). The first term is the optimal rate for stochas-

tic convex optimization that can be achieved via SGD with learning rate ¸ =
∥w⋆∥
G
√
T

if G and ∥w⋆∥
are known ahead of time, and the second term is a lower-order “penalty” for not having up-front
knowledge of these quantities.

Convergence results that match that of optimally tuned SGD are often called “parameter-free” (the
parameter in question is the learning rate). As mentioned in the introduction, there has been a long line
of works that attempt to achieve this goal by matching the regret bound (1), which can then be applied
to the stochastic setting via an online-to-batch conversion. More recent work on parameter-free
optimization has considered the stochastic case [37, 38], or deterministic case [39] directly without
passing through a general regret bound. Many of these algorithms have shown significant empirical
promise, even for non-convex deep learning tasks [38, 39, 40, 41, 42]. Almost all of these results
require apriori knowledge of the value G3

To place our results in this context, let us focus on the case of a knownG value. In this case, [37] show
that by eschewing regret analysis and focusing specifically on the stochastic setting, it is possible
to achieve a high-probability guarantee that improves upon the logarithmic factors achieved by our
result, and so there seems to be something lost by focusing on regret bounds. However, in a surprising
counterpoint, [44] shows that if one is interested in an in-expectation result, then there is actually no
way to improve upon the logarithmic factors achieved via online-to-batch conversion when applied to
parameter-free regret bounds. Thus, our in-expectation stochastic convergence rate is optimal even
up to logarithmic factors, while we also do not require prior knowledge of G.

Finally, let us evaluate the optimality of our bound in the stochastic setting while accounting for
the fact that our methods do not get to know either G or ∥w⋆∥. Here, we can again make use of the
lower bounds developed by [44]. Consider the class of stochastic convex optimization objectives with
Lipschitz constant G between 1 and L and ∥w⋆∥ ∈ [1,R]. The “price of adaptivity” as defined by
[44] is the maximum over this class of the ratio between the convergence guarantee of an algorithm
that does not know ∥w⋆∥ and G with respect to the minimax optimal convergence guarantee for

an algorithm that does know these values (which is RG/√T). We achieve a price of adaptivity of�O(1 +max(L,R)/√T). The best-known lower bound for this class is Ω(1 +min(L,R)/√T) [44].
Thus, there is a gap here—although we provide matching lower bounds for the online setting, it is
possible that in the stochastic setting, one can improve our bounds. That said, the stochastic lower
bound is derived for algorithms that are given the ranges [1, L] and [1,R]. Our algorithm does not
use this information and it is also plausible that without such knowledge the lower bound itself would
improve.

Acknowledgements

AC is supported by NSF grant number CCF-2211718.

2The difference between these conversions lies in where the stochastic gradients gt are computed.
3A few exceptions achieve the prior bound (3) [18, 21, 23, 43].

10

References

[1] Francesco Orabona. “A modern introduction to online learning”. In: arXiv preprint
arXiv:1912.13213 (2019).

[2] Elad Hazan. “Introduction to online convex optimization”. In: arXiv preprint arXiv:1909.05207
(2019).

[3] Jacob Abernethy, Peter L Bartlett, Alexander Rakhlin, and Ambuj Tewari. “Optimal strategies
and minimax lower bounds for online convex games”. In: Proceedings of the nineteenth annual
conference on computational learning theory. 2008, pp. 415–424.

[4] Brendan Mcmahan and Matthew Streeter. “No-regret algorithms for unconstrained online
convex optimization”. In: Advances in neural information processing systems. 2012, pp. 2402–
2410.

[5] Francesco Orabona. “Dimension-free exponentiated gradient”. In: Advances in Neural Infor-
mation Processing Systems. 2013, pp. 1806–1814.

[6] Martin Zinkevich. “Online Convex Programming and Generalized Infinitesimal Gradient
Ascent”. In: Proceedings of the 20th International Conference on Machine Learning (ICML-
03). 2003, pp. 928–936.

[7] Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. “On the generalization ability of
on-line learning algorithms”. In: Information Theory, IEEE Transactions on 50.9 (2004),
pp. 2050–2057.

[8] Ashok Cutkosky, Harsh Mehta, and Francesco Orabona. “Optimal Stochastic Non-smooth Non-
convex Optimization through Online-to-Non-convex Conversion”. In: International Conference
on Machine Learning (ICML). 2023.

[9] Kwang-Sung Jun and Francesco Orabona. “Parameter-free online convex optimization with
sub-exponential noise”. In: Conference on Learning Theory. PMLR. 2019, pp. 1802–1823.

[10] Zakaria Mhammedi. “Risk monotonicity in statistical learning”. In: Advances in Neural
Information Processing Systems 34 (2021), pp. 10732–10744.

[11] Francesco Orabona and Kwang-Sung Jun. “Tight concentrations and confidence sequences
from the regret of universal portfolio”. In: IEEE Transactions on Information Theory (2023).

[12] Gábor Lugosi and Gergely Neu. “Online-to-PAC conversions: Generalization bounds via regret
analysis”. In: arXiv preprint arXiv:2305.19674 (2023).

[13] Elad Hazan, Alexander Rakhlin, and Peter L Bartlett. “Adaptive online gradient descent”. In:
Advances in Neural Information Processing Systems. 2008, pp. 65–72.

[14] J. Duchi, E. Hazan, and Y. Singer. “Adaptive Subgradient Methods for Online Learning and
Stochastic Optimization”. In: Conference on Learning Theory (COLT). 2010, pp. 257–269.

[15] H. Brendan McMahan and Matthew Streeter. “Adaptive Bound Optimization for Online
Convex Optimization”. In: Proceedings of the 23rd Annual Conference on Learning Theory
(COLT). 2010, pp. 244–256.

[16] Ashok Cutkosky and Francesco Orabona. “Black-Box Reductions for Parameter-free Online
Learning in Banach Spaces”. In: Conference On Learning Theory. 2018, pp. 1493–1529.

[17] Dirk van der Hoeven. “User-specified local differential privacy in unconstrained adaptive
online learning”. In: Advances in Neural Information Processing Systems. 2019, pp. 14103–
14112.

[18] Zakaria Mhammedi and Wouter M Koolen. “Lipschitz and Comparator-Norm Adaptivity in
Online Learning”. In: Conference on Learning Theory (2020), pp. 2858–2887.

[19] Liyu Chen, Haipeng Luo, and Chen-Yu Wei. “Impossible tuning made possible: A new expert
algorithm and its applications”. In: Conference on Learning Theory. PMLR. 2021, pp. 1216–
1259.

[20] Zhiyu Zhang, Ashok Cutkosky, and Ioannis Paschalidis. “Pde-based optimal strategy for
unconstrained online learning”. In: International Conference on Machine Learning. PMLR.
2022, pp. 26085–26115.

[21] Andrew Jacobsen and Ashok Cutkosky. “Parameter-free Mirror Descent”. In: Proceedings
of Thirty Fifth Conference on Learning Theory. Ed. by Po-Ling Loh and Maxim Raginsky.
Vol. 178. Proceedings of Machine Learning Research. PMLR, 2022, pp. 4160–4211.

[22] Ashok Cutkosky and Kwabena Boahen. “Online Learning Without Prior Information”. In:
Conference on Learning Theory. 2017, pp. 643–677.

11

[23] Ashok Cutkosky. “Artificial Constraints and Hints for Unbounded Online Learning”. In:
Proceedings of the Thirty-Second Conference on Learning Theory. 2019, pp. 874–894.

[24] Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. “Smoothness, low noise and fast rates”.
In: Advances in neural information processing systems. 2010, pp. 2199–2207.

[25] Ashok Cutkosky. “Combining Online Learning Guarantees”. In: Proceedings of the Thirty-
Second Conference on Learning Theory. 2019, pp. 895–913.

[26] Zhiyu Zhang, Heng Yang, Ashok Cutkosky, and Ioannis Ch Paschalidis. “Improving Adaptive
Online Learning Using Refined Discretization”. In: arXiv preprint arXiv:2309.16044 (2023).

[27] Andrew Jacobsen and Ashok Cutkosky. “Unconstrained online learning with unbounded
losses”. In: International Conference on Machine Learning. PMLR. 2023, pp. 14590–14630.

[28] Jack J Mayo, Hédi Hadiji, and Tim van Erven. “Scale-free unconstrained online learning for
curved losses”. In: Conference on Learning Theory. PMLR. 2022, pp. 4464–4497.

[29] Gergely Neu and Nneka Okolo. “Dealing With Unbounded Gradients in Stochastic Saddle-
point Optimization”. In: Proceedings of the 41st International Conference on Machine Learn-
ing. PMLR. 2024, pp. 37508–37530.

[30] Zakaria Mhammedi, Wouter M Koolen, and Tim Van Erven. “Lipschitz adaptivity with multiple
learning rates in online learning”. In: Conference on Learning Theory. PMLR. 2019, pp. 2490–
2511.

[31] Ashok Cutkosky. “Better full-matrix regret via parameter-free online learning”. In: Advances
in Neural Information Processing Systems 33 (2020), pp. 8836–8846.

[32] Jiujia Zhang and Ashok Cutkosky. “Parameter-free regret in high probability with heavy tails”.
In: Advances in Neural Information Processing Systems 35 (2022), pp. 8000–8012.

[33] Ashok Cutkosky. “Anytime Online-to-Batch, Optimism and Acceleration”. In: International
Conference on Machine Learning. 2019, pp. 1446–1454.

[34] Ali Kavis, Kfir Y Levy, Francis Bach, and Volkan Cevher. “UniXGrad: A Universal, Adap-
tive Algorithm with Optimal Guarantees for Constrained Optimization.” In: NeurIPS. 2019,
pp. 6257–6266.

[35] Aaron Defazio, Ashok Cutkosky, Harsh Mehta, and Konstantin Mishchenko. “When, Why
and How Much? Adaptive Learning Rate Scheduling by Refinement”. In: arXiv preprint
arXiv:2310.07831 (2023).

[36] Aaron Defazio, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, Ashok Cutkosky, et al.
“The Road Less Scheduled”. In: arXiv preprint arXiv:2405.15682 (2024).

[37] Yair Carmon and Oliver Hinder. “Making SGD Parameter-Free”. In: Conference on Learning
Theory (2022).

[38] Maor Ivgi, Oliver Hinder, and Yair Carmon. “Dog is sgd’s best friend: A parameter-free
dynamic step size schedule”. In: International Conference on Machine Learning. PMLR. 2023,
pp. 14465–14499.

[39] Aaron Defazio and Konstantin Mishchenko. “Learning-rate-free learning by d-adaptation”. In:
International Conference on Machine Learning. PMLR. 2023, pp. 7449–7479.

[40] Francesco Orabona and Tatiana Tommasi. “Training Deep Networks without Learning Rates
Through Coin Betting”. In: Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach,
CA, USA. 2017, pp. 2157–2167.

[41] Konstantin Mishchenko and Aaron Defazio. “Prodigy: An expeditiously adaptive parameter-
free learner”. In: arXiv preprint arXiv:2306.06101 (2023).

[42] Ashok Cutkosky, Aaron Defazio, and Harsh Mehta. “Mechanic: A Learning Rate Tuner”. In:
Advances in neural information processing systems 36 (2023).

[43] Zhiyu Zhang, Heng Yang, Ashok Cutkosky, and Ioannis C Paschalidis. “Improving adaptive
online learning using refined discretization”. In: International Conference on Algorithmic
Learning Theory. PMLR. 2024, pp. 1208–1233.

[44] Yair Carmon and Oliver Hinder. “The Price of Adaptivity in Stochastic Convex Optimization”.
In: arXiv preprint arXiv:2402.10898 (2024).

[45] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of convex analysis.
Springer Science & Business Media, 2004.

[46] Ashok Cutkosky and Tamas Sarlos. “Matrix-Free Preconditioning in Online Learning”. In:
International Conference on Machine Learning. 2019, pp. 1455–1464.

12

[47] Zakaria Mhammedi and Alexander Rakhlin. “Damped online Newton step for portfolio selec-
tion”. In: Conference on Learning Theory. PMLR. 2022, pp. 5561–5595.

[48] Zakaria Mhammedi and Khashayar Gatmiry. “Quasi-newton steps for efficient online exp-
concave optimization”. In: The Thirty Sixth Annual Conference on Learning Theory. PMLR.
2023, pp. 4473–4503.

[49] Khashayar Gatmiry and Zak Mhammedi. “Projection-Free Online Convex Optimization via
Efficient Newton Iterations”. In: Advances in Neural Information Processing Systems 36
(2024).

[50] Francesco Orabona and Dávid Pál. “Coin Betting and Parameter-Free Online Learning”. In:
Advances in Neural Information Processing Systems 29. Ed. by D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett. Curran Associates, Inc., 2016, pp. 577–585.

13

A Generalized Upper Bounds

In Theorem 1, we provide a bound that achieves the “ideal bound” of (1) with an extra penalty term of
roughlyG2/µ+µ∥w⋆∥2. It turns out that this penalty is but one point on a frontier of potential choices
that are all immediately accessible by simply changing È(w) from ∥w∥2 to any other symmetric
convex function, as outlined in the lower bounds of Section 4. Here we state formally that each of
these bounds is achievable. In particular, by setting È(w) = ∥w∥1+q for any q > 0, we have:

Theorem 3. There is an online learning algorithm that takes as input positive scalar values q, µ, h1,
and ϵ and ensures that for any sequence g1, g2, ⋅ ⋅ ⋅ ¢ R

d, the outputs w1, w1, ⋅ ⋅ ⋅ ¢ R
d satisfy for all

w⋆ and T :

T

∑
t=1

⟨gt, wt −w⋆ð f O ⎡⎢⎢⎢⎢⎣ϵG + ∥w⋆∣∣
¿ÁÁÀV log(e + ∥w⋆∥√V log

2(T)
h1ϵ

)
+∥w⋆∥G log(e + ∥w⋆∥√V log

2(T)
h1ϵ

)
+ϵ1+qµ + µ∥w⋆∥1+q log(e + ∥w⋆∥1+q

ϵ1+q
log (e + G

h1
)) + G1+1/q

µ1/q
log (1 + log (G

h1
))1/q] ,

where G =max(h1,maxt∈[T] ∥gt∥) and V = G2
+3Tt=1 ∥gt∥2.

Finally, it is also the case that the logarithmic terms in our bounds can be adjusted to remove the
T dependencies, at the cost of increasing the regret in the case w⋆ = 0. This is achieved simply by
adjusting the logarithmic factors achieved by the algorithm for regularized online learning (Protocol 2)
in a manner similar to other recent works in unconstrained online optimization [20, 21, 26]. Formally,
we can achieve:

Theorem 4. There is an online learning algorithm that takes as input positive scalar values q, µ, h1,
and ϵ and ensures that for any sequence g1, g2, ⋅ ⋅ ⋅ ¢ R

d, the outputs w1, w1, ⋅ ⋅ ⋅ ¢ R
d satisfy for all

w⋆ and T :

T

∑
t=1

⟨gt, wt −w⋆ð f O ⎡⎢⎢⎢⎢⎣ϵ
√
V + ∥w⋆∣∣

¿ÁÁÀV log(e + ∥w⋆∥
ϵ
) + ∥w⋆∥G log(e + ∥w⋆∥

ϵ
)

+ϵ1+qµ

√
log (1 + log (G

h1
)) + µ∥w⋆∥1+q log(e + ∥w⋆∥1+q

ϵ1+q
log (e + G

h1
))

+
G1+1/q

µ1/q
log (1 + log (G

h1
))1/q]

where G =max(h1,maxt ∥gt∥) and V = G2
+3Tt=1 ∥gt∥2.

Both of these results are immediate corollaries of Theorem 16.

14

B Proof of Lower Bound

We restate and prove Theorem 2.

Theorem 2. Suppose È ∶ R → R is convex, symmetric, differentiable, non-negative, achieves its
minimum at È(0) = 0, and È(x) is strictly increasing for non-negative x. Further suppose that for
any X,Y,Z > 0, there is some Ä such that for all T g Ä ,

exp(T) − 1 gX√T∇È⋆(Y T)
XÈ⋆(Y TZ) g TZ

where È⋆(z) = sup zx − È(x) is the Fenchel conjugate of È. Let h1 > 0, µ > 0 and ϵ > 0 be given.

For any online learning algorithm A interacting with Protocol 1 withW = R, there is a T0 such
that for any T g T0, there is a sequence of gradients g1, . . . , gT and a w⋆ such that the outputs
w1, . . . , wT of A satisfy:

T

∑
t=1

gt(wt −w⋆) g ϵG + µ
8
È⋆(G/µ) + µ

4
È(w⋆) + G∣w⋆∣

4

¿ÁÁÀT log(1 + G∣w⋆∣√T
h1ϵ

),
where G =max(h1, g1, . . . , gT). In particular, with È(x) = x1+q for any q > 0, we can ensure:

T

∑
t=1

gt(wt −w⋆) g Ω⎡⎢⎢⎢⎢⎣ϵG +
G1+1/q

µ1/q
+ µ∣w⋆∣1+q +G∣w⋆∣

¿ÁÁÀT log(1 + G∣w⋆∣√T
h1ϵ

)⎤⎥⎥⎥⎥⎦ .
Proof. First, let us define Èµ(x) = µÈ(x). Let ∇Èµ(x) and ∇È⋆µ(¹) indicate the derivatives of Èµ
and È⋆µ . The following properties are standard facts about the Fenchel conjugate (see e.g. [45]):

È⋆µ(¹) = µÈ⋆(¹/µ),
È⋆µ(0) = 0,
È⋆µ(x) g 0 for all x,

Èµ(x) = ∇Èµ(x) ⋅ x − È⋆µ(∇Èµ(x)),
È⋆µ(¹) = ∇È⋆µ(¹) ⋅ ¹ − Èµ(∇È⋆µ(¹)).

Moreover, ∇Èµ and ∇È⋆µ are inverses of each other and are odd functions, and È⋆µ(x) is strictly
increasing for non-negative x.

Next, observe that for any X,Y,X ′, Y ′, Z ′, there is a Ä such that for all T g Ä :

exp(T) − 1 gX√T∇È⋆(Y T), (8)

X ′È⋆(Y ′TZ ′) g TZ ′. (9)

To see this, observe that by assumption, there is a Ä1 such that (8) holds for all T g Ä1, and also a Ä2
such that (9) holds for all T g Ä2, so we may take Ä =max(Ä1, Ä2) to achieve both simultaneously.

From this, we see that there is some T0 such that for all T g T0:

exp (T) − 1 g 2
√
T

ϵ
∇È⋆(2Th1/µ) = 2

√
T

ϵ
∇È⋆µ(2Th1) (10)

Th1 f
µ

32ϵ
È⋆ (2Th1

µ
) = 1

32ϵ
È⋆µ(2Th1) (11)

We now construct the algorithm-dependent sequence g1, g2, . . . that satisfies the claim of the theorem.

1. Define g0 ← 0 and set t← 1.

2. Algorithm A outputs wt.

3. If wt < −2ϵ −∇È
⋆

µ(2h1(t − 1)), set gt ← −2(t − 1)h1 and for all k g 1 set gt+k ← 0.

4. Else gt ← h1.

15

5. Set t← t + 1 and go to Item 2.

Suppose that the condition in Item 3 has not been triggered for the first Ä iterations. Then, we have:

Ä

∑
t=1

wt ⋅ gt g −2ϵÄh1 −
1

2

Ä

∑
t=1

∇È⋆µ(2(t − 1)h1) ⋅ 2h1,
g −2ϵÄh1 −

1

2

Ä

∑
t=1

(È⋆µ(2th1) − È⋆µ(2(t − 1)h1)), (by convexity of È⋆µ)

= −2ϵÄh1 −
1

2
È⋆µ(2Äh1). (12)

Now, suppose that the condition in Item 3 is triggered at some iteration Ä + 1 g 1. Then G = 2Äh1
and with w⋆ = 0, we have:

T

∑
t=1

gt ⋅ (wt −w⋆) = Ä+1∑
t=1

gt ⋅wt,

= gÄ+1 ⋅wÄ+1 +
Ä

∑
t=1

wt ⋅ gt,

g 4ϵÄh1 +∇È
⋆

µ(2Äh1) ⋅ 2Äh1 − 2ϵÄh1 − 1

2
È⋆µ(2Äh1), (by (12))

= 2ϵÄh1 +∇È
⋆

µ(2Äh1) ⋅ 2Äh1 − Èµ(∇È⋆µ(2Äh1)) + Èµ(∇È⋆µ(2Äh1)) − 1

2
È⋆µ(2Äh1),

= 2ϵÄh1 + È
⋆

µ(2Äh1) + Èµ(∇È⋆µ(2Äh1)) − 1

2
È⋆µ(2Äh1),

g 2ϵÄh1 +
1

2
È⋆µ(2Äh1), (13)

= ϵG +
1

2
È⋆µ(G).

Therefore, overall we have for w⋆ = 0:

T

∑
t=1

gt ⋅ (wt −w⋆) g ϵG + µ
2
È⋆(G/µ) + µÈ(∣w⋆∣) + ∣w⋆∣G

¿ÁÁÀT log(1 + ∣w⋆∣G√T
h1ϵ

).
Alternatively, suppose the condition in Item 3 is never triggered. In this case, let us set w⋆ =
−2∇È⋆µ(2Th1) . Then, G = h1 and by (12) we have:

T

∑
t=1

gt ⋅ (wt −w⋆) g ∇È⋆µ(2Th1) ⋅ 2Th1 − 1

2
È⋆µ(2Th1) − 2ϵTh1.

Using that ∇È⋆µ(x) ⋅x g È⋆µ(x) by convexity of È⋆µ and ϕ⋆µ(0) = 0, the right-hand side of the previous
display can be bounded below by ():

∇È⋆µ(2Th1) ⋅ 2Th1 − 1

2
È⋆µ(2Th1) − 2ϵTh1 g 1

2
È⋆µ(2Th1),

g
1

4
È⋆µ(G) + 1

4
È⋆µ(2Th1) − 2ϵTh1.

Applying Eq. (11):

g
1

4
È⋆µ(G) + 8ϵTh1 − 2ϵTh1,

g
µ

4
È⋆(G/µ) + 6ϵTh1. (14)

16

Further, since È⋆⋆µ = Èµ , we have:

∇È⋆µ(2Th1) ⋅ 2Th1 − 1

2
È⋆µ(2Th1) = ∇È⋆µ(2Th1) ⋅ Th1 + 1

2
(∇È⋆µ(2Th1) ⋅ 2Th1 −È⋆µ(2Th1)) ,

= ∇È⋆µ(2Th1) ⋅ Th1 + 1

2
Èµ(∇È⋆µ(2Th1)),

= ∇È⋆µ(2Th1) ⋅ Th1 + 1

2
Èµ(−w⋆),

=
1

2
∣w⋆∣ ⋅ Th1 + µ

2
È(w⋆).

Finally, let us bound 1
2
∣w⋆∣ ⋅ g1∶T using our choice of w⋆. By definition, we have:

h1T = h1
√
T ⋅ T ,

= h1
√
T log(1 + (exp(T) − 1)),

applying Eq. (10):

g h1

¿ÁÁÁÀT log
⎛⎝1 +

2
√
T∇È⋆µ(2Th1)

ϵ

⎞⎠,
= h1

¿ÁÁÀT log(1 + ∣w⋆∣√T
ϵ
),

= G

¿ÁÁÀT log(1 + G∣w⋆∣√T
h1ϵ

). (15)

Therefore, combining Eq. (14) with Eq. (15):

∇È⋆µ(2Th1) ⋅ 2Th1 − 1

2
È⋆µ(2Th1) − 2ϵTh1

g
1

2
(µ
4
È⋆(G/µ) + 6ϵTh1) + 1

2

⎛⎜⎝
µ

2
È(w⋆) + G∣w⋆∣

2

¿ÁÁÀT log(1 + G∣w⋆∣√T
h1ϵ

) − 4ϵTh1⎞⎟⎠ ,

g 3ϵTh1 +
µ

8
È⋆(G/µ) + µ

4
È(w⋆) + G∣w⋆∣

4

¿ÁÁÀT log(1 + G∣w⋆∣√T
h1ϵ

),
g ϵG +

µ

8
È⋆(G/µ) + µ

4
È(w⋆) + G∣w⋆∣

4

¿ÁÁÀT log(1 + G∣w⋆∣√T
h1ϵ

).

C Reduction toW = R

As a first step in our algorithm design, we observe that the application of some known reductions
from [16] can significantly simplify our task. [16] show that to build an algorithm whose regret bound
depends on gt only through the norms ∥gt∥, it suffices to consider exclusively the caseW = R. We
provide the formal reduction in Algorithm 1, which ensures the following regret bound.

Theorem 5 ([16]). Algorithm 1 ensures that ∣gmagnitude
t ∣ f 2∥gt∥, and also for all w⋆ ∈W:

T

∑
t=1

⟨gt, wt −w⋆ð f 4∥w⋆∥
¿ÁÁÀ2

T

∑
t=1

∥gt∥2 + T

∑
t=1

g
magnitude
t (wmagnitude

t − ∥w⋆∥).

17

Algorithm 1 Reduction From GeneralW to R

Input: Convex domainW ¦ Rd, online learning algorithm A1D with domain R.
Initialize wdirection

1 = 0 ∈ Rd

for t = 1 . . . T do
Receive w

magnitude
t ∈ R from A1D.

Set ŵt = w
magnitude
t ⋅wdirection

t ∈ R
d.

Set wt = ΠW ŵ = argminw∈W ∥w − ŵ∥.
Output wt, receive feedback gt.

Set gunconstrained
t = gt + ∥gt∥ wt−ŵt∥wt−ŵt∥ .

Set wdirection
t+1 = Π∥w∥≤1wdirection

t −
gunconstrained
t√

2∑ti=1(gunconstrained
i

)2
.

Set g
magnitude
t = ⟨gunconstrained

t , wdirection
t ð ∈ R.

Send g
magnitude
t to A1D as the tth feedback.

end for

From Theorem 5, it is clear that to achieve low regret on W , we need only bound

3Tt=1 gmagnitude
t (wmagnitude

t − ∥w⋆∥), which is exactly the regret of a 1-dimensional learner. So, our
final results will be established by considering the case ofW = R, although we will define many
intermediate problems for general W as they may have other applications for which the general
setting is of interest.

D An Efficient Algorithm for Protocol 2 With Restricted (But Sufficient)

Assumptions

In this section, we describe our algorithm for Protocol 2 in the special case thatW = R and at = 0

whenever ∣g̃t∣ ≠ ht, where g̃t = (1 ' ht
∣gt∣) ⋅ gt. Our algorithm is in fact a reduction to the special case

that at = 0 for all t. This is an important special case that has actually also been previously considered
in the literature (see e.g. the discussion in Section 3.1), so we provide it as a separate Protocol below:

Protocol 4. Online Learning with Magnitude Hints.
Input: Convex domainW (recall that we focus onW = R).
For t = 1, . . . , T :

1. Nature reveals magnitude hint ht g ht−1 to the learner.

2. Learner outputs wt ∈W .

3. Nature reveals loss scalar gt with ∥gt∥ f ht to the learner.

4. Learner suffers loss ⟨gt, wtð.
The learner is evaluated with the regret 3Tt=1 gt(wt −w⋆). The goal is to obtain:

T

∑
t=1

⟨gt, wt −w⋆ð f®
goal

�O⎛⎜⎝∥w⋆∥
¿ÁÁÀh2T +

T

∑
t=1

∥gt∥2⎞⎟⎠ . (16)

In Section E, we provide an explicit algorithm (Algorithm 3) for Protocol 4 that suffices for our
purposes and achieves the bound (16). In the rest of this section, we take the existence of such an
algorithm as given, and use it to build our method for Protocol 2.

Our algorithm for Protocol 2 is given in Algorithm 2. The full regret bound is provided by Theorem 10.
However, before providing the general bound, which is somewhat technical, we provide two more
interpretable corollaries in order to provide a preview of what the method is capable of.

18

Corollary 6. For any ϵ with È(ϵ) > 0, there exists an algorithm for Protocol 2 such that for all t, the
outputs x1, . . . , xT satisfy:

T

∑
t=1

gt(xt − x⋆) + at(È(xt) −È(x⋆))
f O

⎡⎢⎢⎢⎢⎢⎣
ϵhT +È(ϵ)µ + ∣x⋆∣

¿ÁÁÁÀVg log
⎛⎝e +

∣x⋆∣√Vg log2(T)
h1ϵ

⎞⎠ + ∣x⋆∣hT log
⎛⎝e +

∣x⋆∣√Vg log2(T)
h1ϵ

⎞⎠
+È(x⋆)

¿ÁÁÀSa log(e + È(x⋆)
√
Sa log

2(T)
µÈ(ϵ)) + È(x⋆)µ log(e + È(x⋆)

√
Sa log

2(T)
µÈ(ϵ))⎤⎥⎥⎥⎥⎦

Where Vg = h
2
T +3Tt=1 g2t and Sa = µ

2
+ µ3Tt=1 at.

Proof. Apply Algorithm 2 with the BASE set to Algorithm 3 using p = 1/2. Then, in the notation of

Theorem 10, the regret bound of Theorem 11 shows thatA,B,C are allO(1)whileD isO(log2(T))
and p = 1/2. Set ϵx = ϵ and ϵÈ = È(ϵ). The result immediately follows.

Corollary 7. For any ϵ with È(ϵ) > 0, there exists an algorithm for Protocol 2 such that for all t, the
outputs x1, . . . , xT satisfy:

T

∑
t=1

gt(xt − x⋆) + at(È(xt) − È(x⋆))
f O

⎡⎢⎢⎢⎢⎣ϵ
√
Vg + È(ϵ)√Sa + ∣x⋆∣

¿ÁÁÀVg log(e + ∣x⋆∣
ϵ
) + ∣x⋆∣hT log(e + ∣x⋆∣

ϵ
)

+È(x⋆)
¿ÁÁÀSa log(e + È(x⋆)

È(ϵ)) + È(x⋆)µ log(e + È(x⋆)È(ϵ))
⎤⎥⎥⎥⎥⎦ ,

where Vg = h
2
T +3Tt=1 g2t and Sa = µ

2
+ µ3Tt=1 at.

Proof. Apply Algorithm 2 with the BASE set to Algorithm 3 using p = 0. Then, in the notation of
Theorem 10, the regret bound of Theorem 11 shows that A,B,C and D are all O(1) while p = 0.
Set ϵx = ϵ and ϵÈ = È(ϵ). The result immediately follows.

Lemma 8. Suppose È ∶ R → R is a convex function that achieves its minimum at 0. Let h > 0 and
µ > 0 be given and define the norm ∥(x, y)∥ = h2x2 + µ2y2 and the distance function S(x̂, ŷ) =
infy≥È(x) ∥(x, y) − (x̂, ŷ)∥. For any (x̂, ŷ), let (¶x, ¶y) be an arbitrary subgradient of S at (x̂, ŷ).
Then, ¶y f 0.

Proof. Throughout this proof, we will assume x̂ > 0. The proof is completely symmetric in the sign
of x̂.

First, we dispense with the case in which there is no projection: suppose ŷ g È(x̂). Then we must
have ŷ = y and x̂ = x and S(x̂, ŷ) = 0. Further, for any ỹ > ŷ, S(x̂, ỹ) = 0. However, if ¶y > 0, then
by definition of subgradient, we must have 0 = S(x̂, ỹ) g S(x̂, ŷ) + ¶y(ỹ − ŷ) > 0, which cannot be.
Therefore ¶y f 0. So, it remains to consider the case ŷ < È(x̂).
Define (x, y) = argminy≥È(x) ∥(x, y) − (x̂, ŷ)∥. Further, by [16, Theorem 4], we have:

(¶x, ¶y) = ⎛⎝ h2(x̂ − x)√
h2(x − x̂)2 + µ2(ŷ − y)2 ,

µ2(ŷ − y)√
h2(x − x̂)2 + µ2(ŷ − y)2

⎞⎠ .
Therefore, it suffices to show that ŷ f y.

To start, consider the case È(0) > ŷ. Then, we have ŷ < È(0) f È(x) f y as desired. So, in the
following we consider the remaining case È(0) f ŷ < È(x̂).

19

Algorithm 2 Algorithm for Protocol 2 (REG)

Input: Initial online learning algorithm BASE for Procotol 4 with domain R taking initialization
parameter ϵBASE. Non-negative convex function È. Parameters µ > 0, ϵx > 0 and ϵÈ > 0
Initialize two copies of BASE: BASEx with ϵBASE = ϵx and BASEy with ϵBASE = ϵÈ
for t = 1 . . . T do

Receive ht g ht−1 ∈ R
Send 3ht to BASEx as the tth magnitude hint.
Send 3µ to BASEy as the tth magnitude hint.
Get x̂t ∈ R from BASEx

Get ŷt ∈ R from BASEy .

Define the norm ∥(x, y)∥2t = h2tx2 + µ2y2, with dual norm ∥(g, a)∥2
⋆,t =

g2

h2

t

+
a2

µ2 .

Define St(x̂, ŷ) = inf ŷ≥È(x) ∥(x, y) − (x̂, ŷ)∥t.
Compute xt, yt = argminy≥È(x) ∥xt, yt) − (x̂, ŷ)∥t.
Receive feedback gt ∈ [−ht, ht], at ∈ [0, µ], such that at = 0 unless ∣gt∣ = ht.
Compute (¶xt , ¶yt) = ∥gt∥⋆,t∇St(x̂t, ŷt)
Send gt + ¶

x
t to BASEx as tth feedback.

Send at + ¶
y
t to BASEy as tth feedback.

end for

Observe that since È is convex, it must be continuous. Therefore, by intermediate value theorem
there must be some x̃ g 0 with È(x̃) = ŷ. Further, we have È(x̃) = ŷ < È(x̂), so that x̃ < x̂.

Now, by convexity, if x g x̃, we must È(x) g È(x̃) because È must be non-decreasing for positive x
since it achieves its minimum at 0. Therefore, y g È(x) g È(x̃) = ŷ and so we are done. So, let us
suppose x < x̃.

Further, suppose that ŷ > y. Then, observe that:

h2(x̃ − x̂)2 + µ2(max(y,È(x̃)) − ŷ)2 < h2(x − x̂)2 + µ2(y − ŷ)2,
so that the point (x̃,max(y,È(x̃))) would contradict the optimality of (x, y). Thus, it also cannot
be that ŷ > y and so we are done.

Lemma 9. Let h > 0 and µ > 0 be given and define the norm ∥(x, y)∥ = h2x2 + µ2y2 with
corresponding dual norm ∥ ⋅ ∥⋆. Let (g, a) be any point satisfying ∣g∣ f h, a ∈ [0, µ], and a = 0 unless∣g∣ = h. Let (¶x, ¶y) be any points satisfying ∥(¶x, ¶y)∥⋆ = ∥(g, a)∥⋆. Then,

∣¶x∣ f ∣g∣√2,
∣¶y ∣ f µ√2.

Proof. The dual norm ∥ ⋅ ∥⋆ is ∥(g, a)∥⋆ = g2

h2 +
a2

µ2 . So, we have:

(¶x)2
h2
+
(¶y)2
µ2

=
g2

h2
+
a2

µ2
f 2.

This immediately implies ∣¶y ∣ f µ√2. We also have

(¶x)2 f g2 + h2a2
µ2

.

Now, since a = 0 unless g2 = h2, this yields either ∣¶x∣ f ∣g∣ if ∣g∣ < h or ∣¶x∣ f√g2 + h2a2/µ2 = h√2
if ∣g∣ = h, so either way ∣¶x∣ f ∣g∣√2.

Theorem 10. Let A,B,CD, ϵ > 0, and p g 1, be given. Suppose that for any sequence z1, . . . , zT
and magnitude hints m1 f ⋅ ⋅ ⋅ fmT satisfying ∣zt∣ fmt, BASE outputs w1, . . . , wT and guarantees
regret:

T

∑
t=1

zt(wt − u) f ϵBASECm
2p
T Z

1/2−p
+A∣u∣

¿ÁÁÀZ log(e + D∣u∣Zp
m

2p
1 ϵBASE

) +B∣u∣hT log(e + D∣u∣Zp
m

2p
1 ϵBASE

)

20

for any u ∈ R, where Z =m2
T +3Tt=1 z2t .

Let ϵx, ϵÈ and µ be given non-negative inputs to Algorithm 2. Then, for any T , with Vg = h
2
T +3Tt=1 g2t

and Sa = µ
2
+ µ3Tt=1 at, Algorithm 2’s output sequence x̂1, . . . , x̂T guarantees:

T

∑
t=1

gt(x̂t − x⋆) + at(È(x̂t) −È(x⋆)) f
Cxϵxh

2p
T V

1/2−p
g +Ax∣x⋆∣

¿ÁÁÀVg log(e + Dx∣x⋆∣V pg
ϵxh

2p
1

) +Bx∣x⋆∣ log(e + Dx∣x⋆∣V pg
ϵxh

2p
1

)
+ CÈϵÈµ

2pS1/2−p
a +AÈÈ(x⋆)

¿ÁÁÀSa log(e + DÈÈ(x⋆)Spa
ϵÈµ2p

) +BÈÈ(x⋆) log(e + DÈÈ(x⋆)Spa
ϵÈµ2p

) ,
for any x⋆ ∈ R, where the constants in the above expression are given by:

Ax = 3A,

Bx = 3B,

Cx = 3C,

Dx =D,

AÈ =
1

2
+ 144A2,

BÈ = 144A
2
+ 24B,

CÈ = 3C

⎡⎢⎢⎢⎢⎣(144A
2
+ 24B) log (e + 12CD(1152pA2

+ 48pb)p) + 1

2
+
(2p + 1)(2 − 4p) 1−2p

1+2p

2

⎤⎥⎥⎥⎥⎦ ,
DÈ = 4D [1152A2p + 48pB]p .

Proof. First, observe that since (xt, yt) is the result of a projection to the domain y g È(x), it must
hold that yt g È(xt) for all t. Thus, since at > 0 and È is non-negative, we have for any x⋆:

gt(xt − x⋆) + at(È(x) − È(x⋆)) f gt(xt − x⋆) + at(yt − x⋆).
Therefore, it suffices to bound 3Tt=1 gt(xt − x⋆) + at(yt − x⋆), which we will now accomplish.

By [16, Theorem 3], we have for any x⋆ ∈ R

T

∑
t=1

gt(xt − x⋆) + at(yt − È(x⋆)) f T

∑
t=1

(gt + ¶xt)(x̂t − x⋆) + T

∑
t=1

(at + ¶yt)(ŷt − È(x⋆)),
and also ∥(¶xt , ¶yt)∥t,⋆ = ∥(gt, at)∥t,⋆ by [16, Proposition 1]. Therefore, by Lemma 9, we have∣gt + ¶xt ∣ f 3∣gt∣ f 3ht. Defining Vg = h

2
T +3Tt=1(gt + ¶xt)2, and by the guarantee of BASE, we have

for any x⋆:

T

∑
t=1

(gt + ¶xt)(x̂t − x⋆)
f C(3hT)2p [9h2T + T

∑
t=1

(gt + ¶xt)2]
1/2−p

ϵx

+A∣x⋆∣
¿ÁÁÁÀ[9h2T + T

∑
t=1

(gt + ¶xt)2] log⎛⎝e +
D∣x⋆∣ [9h2T +3Tt=1(gt + ¶xt)2]p(3h1)2pϵx

⎞⎠
+ 3BhT ∣x⋆∣ log⎛⎝e +

D∣x⋆∣ [9h2T +3Tt=1(gt + ¶xt)2]p(3h1)pϵx
⎞⎠

f 3Ch
2p
T V

1/2−p
g ϵx + 3A∣x⋆∣

¿ÁÁÀVg log(e + D∣x⋆∣V pg
h
2p
1 ϵx

) + 3BhT ∣x⋆∣ log(e + D∣x⋆∣V pg
h
2p
1 ϵx

)

21

Next, observe that by Lemma 9, ∣at + ¶yt ∣ f 3µ. We also have for any x⋆ ∈ R:

T

∑
t=1

(at + ¶yt)(ŷt − È(x⋆)) = 1

2

T

∑
t=1

(at + ¶yt)(yt − 2È(x⋆)) + 1

2

T

∑
t=1

(at + ¶yt)yt
=
1

2

T

∑
t=1

(at + ¶yt)(yt − 2È(x⋆)) + 1

2

T

∑
t=1

(at + ¶yt)(yt − 2y⋆) + y⋆ T

∑
t=1

(at + ¶yt)
Now, define Va = µ

2
+3Tt=1(at + ¶yt)2. By the guarantee of BASE applied twice, we have that for

any x⋆ ∈ R (È(x⋆) g 0 below represents the comparator for the regret of BASE):
T

∑
t=1

(at + ¶yt)(ŷt − È(x⋆))
f C(3µ)2p [9µ2 + T

∑
t=1

(at + ¶yt)2]
1/2−p

ϵÈ

+AÈ(x⋆)
¿ÁÁÁÀ(9µ2 + T

∑
t=1

(at + ¶yt)2) log⎛⎝e +
2DÈ(x⋆) [9µ2 +3Tt=1(at + ¶yt)2]p

32pµ2pϵÈ

⎞⎠
+ 3µBÈ(x⋆) log⎛⎝e +

2DÈ(x⋆) [9µ2 +3Tt=1(at + ¶yt)2]p
32pµ2pϵÈ

⎞⎠
+Ay⋆

¿ÁÁÁÀ(9µ2 + T

∑
t=1

(at + ¶yt)2) log⎛⎝e +
2Dy⋆ [9µ2 +3Tt=1(at + ¶yt)2]p

32pµ2pϵÈ

⎞⎠
+ 3µB∣y⋆∣ log⎛⎝e +

2Dy⋆ [9µ2 +3Tt=1(at + ¶yt)2]p
32pµ2pϵÈ

⎞⎠
+ y⋆

T

∑
t=1

(at + ¶yt)
f 3Cµ2pV 1/2−p

a ϵÈ + 3AÈ(x⋆)
¿ÁÁÀVa log(e + 2DÈ(x⋆)V pa

µ2pϵÈ
) + 3BÈ(x⋆) log(e + 2DÈ(x⋆)V pa

µ2pϵÈ
)

+ 3Ay⋆

¿ÁÁÀVa log(e + 2Dy⋆V
p
a

ϵÈ
) + 3µBy⋆ log(e + 2Dy⋆V

p
a

µ2pϵÈ
)

+ y⋆

T

∑
t=1

(at + ¶yt)
f 3Cµ2pV 1/2−p

a ϵÈ + 3A(È(x⋆) + y⋆)
¿ÁÁÀVa log(e + 2D(È(x⋆) + y⋆)V pa

µ2pϵÈ
)

+ 3B(È(x⋆) + y⋆) log(e + 2DÈ(x⋆)V pa
µ2pϵÈ

)
+ y⋆

T

∑
t=1

(at + ¶yt)
Now, we observe:

T

∑
t=1

(at + ¶yt) = 1

2µ

T

∑
t=1

[(at + ¶yt + µ)2 − µ2] − 1

2µ

T

∑
t=1

(at + ¶yt)2,
=

1

2µ

T

∑
t=1

[(at + ¶yt + µ)2 − µ2] + µ2 − 1

2µ
Va.

Next, we bound (at + ¶yt + µ)2 − µ2:(at + ¶yt + µ)2 − µ = a2t + (¶yt)2 + 2at¶yt + 2µat + 2µ¶yt ,
22

using ¶
y
t f 0 (from Lemma 8) amd ∣¶yt ∣ f µ√2 f 2µ (from Lemma 9):

f a2t + 2at¶
y
t + 2µat

using 0 f at f µ:

f 3µat,

so that we have (recalling that Sa = µ
2
+ µ3Tt=1 at:

y⋆

T

∑
t=1

(at + ¶yt) f − y⋆2µ Va + 3y⋆

2µ
Sa.

So, overall we have:

T

∑
t=1

(at + ¶yt)(ŷt −È(x⋆))
f 3Cµ2pV 1/2−p

a ϵÈ + 3A(È(x⋆) + y⋆)
¿ÁÁÀVa log(e + 2D(È(x⋆) + y⋆)V pa

µ2pϵÈ
)

+ 3B(È(x⋆) + y⋆) log(e + 2DÈ(x⋆)V pa
µ2pϵÈ

) − y⋆
2µ
Va +

3y⋆

2µ
Sa.

Since the above holds for any y⋆ g 0, we may write:

T

∑
t=1

(at + ¶yt)(ŷt − È(x⋆))
f inf
y⋆

sup
Va

⎡⎢⎢⎢⎢⎣3Cµ
2pV 1/2−p

a ϵÈ + 3A(È(x⋆) + y⋆)
¿ÁÁÀVa log(e + 2D(È(x⋆) + y⋆)V pa

µ2pϵÈ
)

+3B(È(x⋆) + y⋆) log(e + 2DÈ(x⋆)V pa
µ2pϵÈ

) − y⋆
2µ
Va +

3y⋆

2µ
Sa]

Now, applying Lemma 20 to bound the minimax expression above, we have:

T

∑
t=1

(at + ¶yt)(ŷt − È(x⋆)) f (12 + 144A2)È(x⋆)
¿ÁÁÀSa log(e + 4DÈ(x⋆)Spa

ϵÈµ2p
[1152A2p + 48pB]p)

+ µÈ(x⋆)(144A2
+ 24B) log(e + 4DÈ(x⋆)Spa

ϵÈµ2p
[1152A2p + 48pB]p)

+ 3Cµ2pS1/2−pϵÈ
⎡⎢⎢⎢⎢⎣(144A

2
+ 24B) log (e + 12CD(1152pA2

+ 48pb)p) + 1

2
+
(2p + 1)(2 − 4p) 1−2p

1+2p

2

⎤⎥⎥⎥⎥⎦
So, overall we achieve:

T

∑
t=1

gt(xt − x⋆) + at(yt −È(x⋆))
f 3Ch

2p
T V

1/2−p
g ϵx + 3A∣x⋆∣

¿ÁÁÀVg log(e + D∣x⋆∣V pg
h
2p
1 ϵx

) + 3BhT ∣x⋆∣ log(e + D∣x⋆∣V pg
h
2p
1 ϵx

)
+ (1

2
+ 144A2)È(x⋆)

¿ÁÁÀSa log(e + 4DÈ(x⋆)Spa
ϵÈµ2p

[1152A2p + 48pB]p)
+ µÈ(x⋆)(144A2

+ 24B) log(e + 4DÈ(x⋆)Spa
ϵÈµ2p

[1152A2p + 48pB]p)
+ 3Cµ2pS1/2−pϵÈ

⎡⎢⎢⎢⎢⎣(144A
2
+ 24B) log (e + 12CD(1152pA2

+ 48pb)p) + 1

2
+
(2p + 1)(2 − 4p) 1−2p

1+2p

2

⎤⎥⎥⎥⎥⎦ .

23

So, with:

Ax = 3A,

Bx = 3B,

Cx = 3C,

Dx =D,

AÈ =
1

2
+ 144A2,

BÈ = 144A
2
+ 24B,

CÈ = 3C

⎡⎢⎢⎢⎢⎣(144A
2
+ 24B) log (e + 12CD(1152pA2

+ 48pb)p) + 1

2
+
(2p + 1)(2 − 4p) 1−2p

1+2p

2

⎤⎥⎥⎥⎥⎦ ,
DÈ = 4D [1152A2p + 48pB]p ,

we have

T

∑
t=1

gt(xt − x⋆) + at(yt − È(x⋆))
f Cxϵxh

2p
T V

1/2−p
g +Ax∣x⋆∣

¿ÁÁÀVg log(e + Dx∣x⋆∣V pg
ϵxh

2p
1

) +Bx∣x⋆∣ log(e + Dx∣x⋆∣V pg
ϵxh

2p
1

) ,
+ CÈϵÈµ

2pS1/2−p
a +AÈÈ(x⋆)

¿ÁÁÀSa log(e + DÈÈ(x⋆)Spa
ϵÈµ2p

)
+BÈÈ(x⋆) log(e + DÈÈ(x⋆)Spa

ϵÈµ2p
) .

from which the conclusion follows.

E A Parameter-Free Algorithm With Optimal Log Factors for Protocol 4

In this section we quote an algorithm that obtains a performance guarantee suitable for use as BASE

in Theorem 10. We emphasize that the development in this section is only a very mild improvement
(affecting only logarithmic factors) on previous work: our key contribution is how to use this algorithm
to obtain better adaptivity to unknown Lipschitz constants.

In fact, algorithms satisfying the requirements of Theorem 10 up to logarithmic factors have been
described by several previous authors: see [18, 21, 23, 26]. Here, we provide a slightly improved
analysis of the algorithm of [21] which achieves tighter (and in fact optimal) logarithmic terms.

’

Theorem 11. Suppose g1, . . . , gT is any sequence of real numbers and 0 < h1 f ⋅ ⋅ ⋅ f hT is another
sequence of real numbers satisfying ∣gt∣ f ht. Then, if p = 1/2, Algorithm 3 guarantees for all u

T

∑
t=1

gt(wt − u) f 8hT ϵ + 6∣u∣
¿ÁÁÁÁÀ(h2T + T

∑
t=1

g2t) log⎛⎜⎝
∣u∣√3 +3Tt=1 g2t /h2t log2 (3 +3Tt=1 g2t /h2t)

ϵ
+ 1
⎞⎟⎠

+ 6∣u∣hT log
⎛⎜⎝
∣u∣√3 +3Tt=1 g2t /h2t log2 (3 +3Tt=1 g2t /h2t)

ϵ
+ 1
⎞⎟⎠ ,

24

Algorithm 3 1-Dimensional Learner for Protocol 4 (BASE)

Input: ϵ > 0, p ∈ [0,1/2]
Initialize h0 = 0, k = 3
if p = 1/2 then

Define constant c = 3
else

Define constant c = 1
end if
for t = 1 . . . T do

Receive ht g ht−1 ∈ R
Define Vt = h

2
t +3t−1i=1 g

2
i

if p = 1/2 then
Set ³t =

ϵ√
c+∑t−1i=1

g2
i
/h2

i
log2(c+∑t−1i=1

g2
i
/h2

i
)

else
Define ³t =

ϵ

(c+∑t−1i=1
g2
i
/h2

i
)p

end if

Define Θt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(∑t−1i=1 gi)2

4k2Vt
if ∣3t−1i=1 gi∣ f 2kVt

ht
∣∑t−1i=1 gi∣
kht

−
Vt
h2

t

otherwise

Output wt = −sign (3t−1i=1 gi)³t (exp(Θt) − 1)
Receive gt with ∣gt∣ f ht.

end for

while if p < 1/2 Algorithm 3 guarantees instead:

T

∑
t=1

gt(wt − u) f 4h
2p
T ϵ (3Tt=1 g2t)1/2−p

1 − 2p

+ 6∣u∣
¿ÁÁÁÀ(h2T + T

∑
t=1

g2t) log⎛⎝
∣u∣ (1 +3Tt=1 g2t /h2t)p

ϵ
+ 1
⎞⎠

+ 6∣u∣hT log
⎛⎝
∣u∣ (1 +3Tt=1 g2t /h2t)p

ϵ
+ 1
⎞⎠ .

Notice that the term log
2 (3 +3Tt=1 g2t /h2t) f log2(3 + T), and so we upper bound this term with a

constant for the purposes of use in Theorem 10. Further, the term 3Tt=1 g2t /h2t f 3Tt=1 g2t /h21, and so
the logarithmic terms always fit into the framework of Theorem 10.

Proof. Observe that Algorithm 3 is an instance of FTRL with regularizer:

Èt(w) = k+ ∣w∣

0
min
¸≤1/ht

[log(x/³t + 1)
¸

+ ¸Vt] dx.
That is,

wt = argmin
w

Èt+1(w) + t−1∑
i=1

giw.

In the “centered mirror descent” framework of [21] (their Algorithm 1), this corresponds to setting
φ(w) = 0. Further, [21] provides an analysis of this update for the particular family of regularizer
functions Èt we consider above in their Theorem 6. Although formally speaking, their Theorem
6 specifies a particular equation for ³t, inspection of the proof shows that most of their argument
applies so long as ³t is non-increasing. We reproduce this verification in Lemma 12, which yields:

T

∑
t=1

gt(wt − u) f ÈT (u) + T

∑
t=1

2³t√
Vt
.

25

Next, define hT+1 = 0 and gT+1 = 0 in order to define ³T+1 and ÈT+1 g ÈT . So, we can replace
ÈT (u) with ÈT+1(u) in the above expression. Next, to bound ÈT+1(u), we observe that:

ÈT+1(u) = k+ ∣u∣

0
min

¸≤1/hT+1
[log(x/³T+1 + 1)

¸
+ ¸VT+1] dx,

f k∣u∣ min
¸≤1/hT+1

[log(u/³T+1 + 1)
¸

+ ¸VT+1] .
Now, notice that if the minimizing ¸ of min¸≤1/hT+1 [log(u/³T+1+1)¸

+ ¸VT+1] occurs on the bound-

ary ¸ = 1/hT+1, then it must be that
log(u/³T+1+1)

¸
> ¸VT+1, since

log(u/³T+1+1)
¸

is decreasing

in ¸ and ¸VT+1 is increasing in ¸. Thus in this case min¸≤1/hT+1 [log(u/³T+1+1)¸
+ ¸VT+1] f

2hT log(u/³T+1 + 1). Alternatively, when the minimizing ¸ is not on the boundary we have

min¸≤1/hT+1 [log(u/³T+1+1)¸
+ ¸VT+1] = 2√VT+1 log(u/³T+1 + 1). So, in general we have:

ÈT+1(u) f 2k∣u∣√VT+1 log(∣u∣/³T+1 + 1) + 2k∣u∣hT log(∣u∣/³T+1 + 1).
So far this analysis is identical to that of [21], and has been agnostic to the value of ³t, so long as ³t
is non-increasing. Now, however, we come to the place at which we diverge in analysis: our choice
of ³t is slightly larger and so results in better logarithmic factors in È. The trade-off is that we need

to provide a fresh analysis of 3Tt=1 2³tg
2

t√
Vt

to show that this term is still controlled. We accomplish this

in Lemma 21 (for p = 1/2) and Lemma 22 (for p < 1/2). For p = 1/2, we then obtain:

T

∑
t=1

gt(wt − u) f 8hT ϵ + 2k∣u∣
¿ÁÁÁÁÀ(h2T + T

∑
t=1

g2t) log⎛⎜⎝
∣u∣√3 +3Tt=1 g2t /h2t log2 (3 +3Tt=1 g2t /h2t)

ϵ
+ 1
⎞⎟⎠

+ 2k∣u∣hT log
⎛⎜⎝
∣u∣√3 +3Tt=1 g2t /h2t log2 (3 +3Tt=1 g2t /h2t)

ϵ
+ 1
⎞⎟⎠ ,

while for p < 1/2 we obtain:

T

∑
t=1

gt(wt − u) f 4h
2p
T ϵ (3Tt=1 g2t)1/2−p

1 − 2p

+ 2k∣u∣
¿ÁÁÁÀ(h2T + T

∑
t=1

g2t) log⎛⎝
∣u∣ (1 +3Tt=1 g2t /h2t)p

ϵ
+ 1
⎞⎠

+ 2k∣u∣hT log
⎛⎝
∣u∣ (1 +3Tt=1 g2t /h2t)p

ϵ
+ 1
⎞⎠ .

The conclusion now follows by substituting in k = 3.

The following technical Lemma is lifted almost entirely from [21]. Unfortunately, this result was not
explicitly declared as a separate Lemma in the prior literature and is instead merely a subset of the
proof of a larger Theorem (specifically, Theorem 6 of [21]). So, we include the argument here for
completeness. The steps are nearly identical to the prior literature, with only very mild improvement
to some constants.

Lemma 12. Let g1, . . . , gT be an arbitrary sequence of scalars. Suppose 0 < h1 f ⋅ ⋅ ⋅ f hT is
non-decreasing sequence with ∣gt∣ f ht for all t, and let ³1 g ⋅ ⋅ ⋅ g ³T , be a non-increasing sequence.

Let k g 3. Set Vt = h
2
t +3t−1i=1 g

2
i and define

Èt(w) = k+ ∣w∣

0
min
¸≤1/ht

[log(x/³t + 1)
¸

+ ¸Vt] dx
wt = argmin

w
Èt(w) + t−1∑

i=1

giw.

26

Then for all u ∈ R:

T

∑
t=1

gt(wt − u) f ÈT (u) + T

∑
t=1

2³tg
2
t√

Vt
.

Proof. Define ÈT+1 = ÈT and letDf(a∣b) indicate the Bregman divergenceDf(a∣b) = f(a)−f(b)−
f ′(b)(a − b). Define ∆t(w) =DÈt+1(w∣w1). Then, by [21] Lemma 1, we have:

T

∑
t=1

gt(wt − u) f ÈT (u) + T

∑
t=1

gt(wt −wt+1) −DÈt(wt+1∣wt) −∆t(wt+1)
So, it suffices to establish that:

gt(wt −wt+1) −DÈt(wt+1∣wt) −∆t(wt+1) f 2³tgt√
Vt

(17)

Following the notation and argument of [21], define Ft(w) = log(w/³t + 1) and

Ψt(x) = k+ x

0
min
¸≤1/ht

[Ft(x)
¸
+ ¸Vt] dx

Then we have È(w) = Ψt(∥w∥) and elementary calculation yields:

Ψ′t(x) = { 2k
√
VtFt(x) if ht

√
Ft(x) f√Vt

khtFt(x) + kVt
ht

otherwise

Ψ′′t (x) = ⎧⎪⎪⎨⎪⎪⎩
k
√
Vt

(x+³t)
√
Ft(x)

if ht
√
Ft(x) f√Vt

kht
x+³t

otherwise

Ψ′′′t (x) = ⎧⎪⎪⎨⎪⎪⎩
−k
√
Vt(1+2Ft(x))

2(x+³t)2Ft(x)3/2 if ht
√
Ft(x) f√Vt

−kht
(x+³t)2 otherwise

Therefore, Ψt(x) g 0, Ψ′t(x) g 0, Ψ′′t (x) g 0 and Ψ′′′t (x) f 0. Further, if we define x0 = ³t(e − 1),
then for any > x0 we have

√
Ft(x) g 1√

Ft(x)
and:

−
Ψ′′′t (x)
Ψ′′t (x)2 f

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2k
√
Vt
(1√

Ft(x)
+ 2
√
Ft(x)) if ht

√
Ft(x) f√Vt

1
kht

otherwise

f

⎧⎪⎪⎨⎪⎪⎩
3
√
Ft(x)

2k
√
Vt

if ht
√
Ft(x) f√Vt

1
kht

otherwise

using k g 3:

f
1

2
min
⎛⎝
√

Ft(x)
Vt

,
1

ht

⎞⎠
Now, if we define Zt(x) = ∫ x0 min(√Ft(x)

Vt
, 1
ht
) dx, then we have

−
Ψ′′′t (x)
Ψ′′t (x)2 f

1

2
Z ′t(x)

Clearly Zt is convex, 1/ht Lipschitz, and achieves its minimum value of 0 at 0. Therefore, by [21]
Lemma 2, we have:

gt(wt −wt+1) −DÈt(wt+1∣wt) −Zt(∣wt+1∣)g2t f 2g2t
Ψ′′(x0) ,
f
2g2t (x0 + ³t)

k
√
Vt

,

=
2g2t³te

k
√
Vt

,

f
2g2t³t√
Vt

.

27

So, now if we could show that ∆t(w) g Zt(∣w∣)g2t , this would establish (17). In turn, since
∆t(w) = Ψt+1(∣w∣) −Ψt(∣w∣), it suffices to establish:

Ψ′t+1(x) −Ψ′t(x) g Z ′(x)g2t = g2t min
⎛⎝
√

Ft(x)
Vt

,
1

ht

⎞⎠ .
To this end, we compute:

Ψ′t+1(x) −Ψ′t(x) = k min
¸≤1/ht+1

[Ft+1(x)
¸

+ ¸Vt+1] − k min
¸≤1/ht

[Ft(x)
¸
+ ¸Vt] ,

g k min
¸≤1/ht

[Ft+1(x)
¸

+ ¸Vt+1] − k min
¸≤1/ht

[Ft(x)
¸
+ ¸Vt] .

Next, let us define ¶m = h
2
t+1 − h

2
t so that Vt+1 = Vt + ¶m + g

2
t . Then we have

Ft+1(x)
¸
+ ¸Vt+1 g

min¸′ [Ft+1(x)¸′
+ ¸′Vt] + ¸(¶m + g2t). Armed with this calculation, we proceed:

Ψ′t+1(x) −Ψ′t(x) g k(¶m + g2t)min

⎡⎢⎢⎢⎢⎣
√

Ft+1(x)
Vt+1

,
1

ht

⎤⎥⎥⎥⎥⎦ + k min
¸≤1/ht

[Ft+1(x)
¸

+ ¸Vt] − k min
¸≤1/ht

[Ft(x)
¸
+ ¸Vt] ,

now, since ³t g ³t+1, we have Ft+1 g Ft so that:

g k(¶m + g2t)min

⎡⎢⎢⎢⎢⎣
√

Ft+1(x)
Vt+1

,
1

ht

⎤⎥⎥⎥⎥⎦ .
Next, observe that

d

d¶m

¶m + g
2
t√

Vt + ¶m + g
2
t

=
¶2m + 2Vt + g

2
t

2(Vt + ¶m + g2t)3/2 g 0.
Therefore

¶m + g
2
t√

Vt+1
=

¶m + g
2
t√

Vt + ¶m + g
2
t

,

g
g2t√
Vt + g

2
t

,

g
g2t√
Vt

√
Vt

Vt + g
2
t

,

g
g2t√
Vt

¿ÁÁÀ h2t
h2t + g

2
t

,

g
g2t√
2Vt

.

This implies that

(¶m + g2t)
√

Ft(x)
Vt+1

g
g2t√
2

√
Ft(x)
Vt

.

So, altogether we have:

Ψ′t+1(x) −Ψ′t(x) g kg2t√
2
min

⎡⎢⎢⎢⎢⎣
√

Ft+1(x)
Vt

,
1

ht

⎤⎥⎥⎥⎥⎦ ,
g g2t min

⎡⎢⎢⎢⎢⎣
√

Ft+1(x)
Vt

,
1

ht

⎤⎥⎥⎥⎥⎦ ,
= Z ′t(x)g2t ,

as desired.

28

F Fully Unconstrained Learning via Regularization

In this section, we provide a formal description of how to achieve a fully unconstrained bound via
application of some peculiar regularization terms, as sketched in Section 3.2.

The goal is to ensure regret given by (4), restated below:

T

∑
t=1

gt(wt − u) + at(È(wt) −È(u)) f Õ⎛⎜⎝∣u∣
¿ÁÁÀh2T +

T

∑
t=1

g2t + È(u)
¿ÁÁÀµ2 +

T

∑
t=1

a2t

⎞⎟⎠ . (4)

In Section H, we will see how to obtain the bound (4) via a general technique for obtaining constrained
“full-matrix” regret bounds (which is of independent interest). However, this approach comes with a
mild computational overhead. To counteract this, in Section E, we provide an alternative approach
that has the same computational complexity as gradient descent, but achieves the slightly weaker
bound:

T

∑
t=1

gt(wt − u) + at(È(wt) − È(u)) f Õ⎛⎜⎝∣u∣
¿ÁÁÀh2T +

T

∑
t=1

g2t + È(u)
¿ÁÁÀµ2 + µ

T

∑
t=1

at
⎞⎟⎠ . (18)

Fortunately, (18) will also be sufficient for our purposes.

Armed with an algorithm that achieves (18), we are ready to describe our approach for fully uncon-
strained learning.

Corollary 13. There exists an online learning algorithm that requires O(d) space and takes O(d)
time per update, takes as input scalar values µ, h1, and ϵ and ensures that for any sequence
g1, g2, ⋅ ⋅ ⋅ ¢ R

d, the outputs w1, w1, ⋅ ⋅ ⋅ ¢ R
d satisfy for all w⋆ and T :

T

∑
t=1

⟨gt, wt −w⋆ð f O ⎡⎢⎢⎢⎢⎣ϵ
√
V + ∥w⋆∥

¿ÁÁÀV log(e + ∥w⋆∥
ϵ
) + ∥w⋆∥G log(e + ∥w⋆∥

ϵ
)

+ϵ2µ

√
log (e + log (e + G

h1
)) + G2

µ
log (e + G

h1
) + µw2

⋆
log(e + ∥w⋆∥2

ϵ2
log (e + G

h1
))⎤⎥⎥⎥⎦ .

where G = h1 +maxt ∥gt∥ and V = G2
+3Tt=1 ∥gt∥2.

Proof. Apply Algorithm 5 with q = 1, and REG set to Algorithm 2 using Algorithm 3 with p = 0
as BASE. The result in 1 dimension then follows from Theorem 16 and Corollary 6. Then by the
reduction from d-dimensional online learning to 1-dimensional online learning ([16] Theorem 2), the
result in high dimensions also follows.

Theorem 1. There exists an online learning algorithm that requires O(d) space and takes O(d) time

per update, takes as input scalar values µ, h1, and ϵ and ensures that for any sequence g1, g2, ⋅ ⋅ ⋅ ¢ R
d,

the outputs w1, w1, ⋅ ⋅ ⋅ ¢ R
d satisfy for all w⋆ and T :

T

∑
t=1

⟨gt, wt −w⋆ð f O ⎡⎢⎢⎢⎢⎣ϵG + ϵ
2µ +

G2

µ
log (e + G

h1
) + ∥w⋆∥

¿ÁÁÀV log(e + ∣w⋆∣√V log
2(T)

h1ϵ
)

+∥w⋆∥G log(e + ∥w⋆∥√V log
2(T)

h1ϵ
) + µ∥w⋆∥2 log(e + ∥w⋆∥2

ϵ2
log (e + G

h1
))] ,

where G =max(h1,maxt∈[T] ∥gt∥) and V = G2
+3Tt=1 ∥gt∥2.

Proof. Apply Algorithm 5 with q = 1, and REG set to Algorithm 2 using Algorithm 3 with p = 1/2
as BASE. The result in 1 dimension then follows from Theorem 16 and Corollary 6. Then by the
reduction from d-dimensional online learning to 1-dimensional online learning ([16] Theorem 2), the
result in high dimensions also follows.

29

Algorithm 4 Fully Unconstrained Learning in One Dimension

Input: Regularized learning algorithm REG with domain R. Parameter µ > 0, h1 > 0.
Initialize REG with parameters ϵ and µ.
for t = 1 . . . T do

Send ht to REG as the tth magnitude hint.
Get wt from REG.
Play wt, see feedback gt.
Set ht+1 =max(ht, ∣gt∣).
Set g̃t = clip[−ht,ht]gt
Set at = µ

(ht+1−ht)/ht+1
1+∑ti=1(hi+1−hi)/hi+1 .

Send g̃t, at, to REG as tth loss and regularization coefficient.
end for

Theorem 14. There exists an online learning algorithm that requires O(d) space and takes O(d)
time per update, takes as input scalar values µ, h1, and ϵ and a symmetric convex function È and
ensures that for any sequence g1, g2, ⋅ ⋅ ⋅ ¢ R

d, the outputs w1, w1, ⋅ ⋅ ⋅ ¢ R
d satisfy for all w⋆ and T :

T

∑
t=1

⟨gt, wt −w⋆ð f O ⎡⎢⎢⎢⎢⎣ϵG + ∥w⋆∣∣
¿ÁÁÀV log(e + ∥w⋆∥√V log

2(T)
h1ϵ

) + ∥w⋆∥G log(e + ∥w⋆∥√V log
2(T)

h1ϵ
)

+È(ϵ)µ + µÈ(∥w⋆∥) log(e + È(∥w⋆∥)
È(ϵ) log (e + G

h1
)) + µ log (1 + log (G

h1
))È⋆ (G

µ
[1 + log (G

h1
)])] ,

where È⋆(¹) = supw ¹w − È(w) is the Fenchel conjugate of È, G = max(h1,maxt ∥gt∥) and

V = G2
+3Tt=1 ∥gt∥2.

Proof. Apply Algorithm 5 with REG set to Algorithm 2 using Algorithm 3 with p = 1/2 as BASE.
The result in 1 dimension then follows from Theorem 16 and Corollary 6. Then by the reduction
from d-dimensional online learning to 1-dimensional online learning ([16] Theorem 2), the result in
high dimensions also follows.

Theorem 15. Suppose È is a symmetric convex function. Suppose that so long as ht g ∣g̃t∣, REG

ensures for some A,B,C,D, p, ϵ:

T

∑
t=1

g̃t(wt −w⋆) + at(È(wt) − È(w⋆))
f Cϵh

2p
T V

1/2−p
g +CÈ(ϵ)µ2pS1/2−p

a +A∣w⋆∣
¿ÁÁÀVg log(e + D∣x⋆∣V pg

h
2p
1 ϵ

)
+BhT ∣w⋆∣ log(e + D∣w⋆∣V pg

h
2p
1 ϵ

)
+AÈ(w⋆)

¿ÁÁÀSa log [e + DÈ(w⋆)
µ2pÈ(ϵ) Spa]

+ µBÈ(w⋆) log [e + DÈ(w⋆)
µ2pÈ(ϵ) Spa] ,

where Vg = h
2
T +3Tt=1 g̃2t and Sa = µ

2
+ µ3Tt=1 at. Then Algorithm 4 ensures:

Sa f µ
2
+ µ2 log (1 +min [log (hT

h1
) , T]) ,

Vg f h
2
T +

T

∑
t=1

g2t ,

30

and:

T

∑
t=1

gt(wt −w⋆) f Cϵh2pT V 1/2−p
g +CÈ(ϵ)µ2pS1/2−p

a +A∣w⋆∣
¿ÁÁÀVg log(e + D∣w⋆∣V pg

h
2p
1 ϵ

)
+BhT ∣w⋆∣ log(e + D∣w⋆∣V pg

h
2p
1 ϵ

)
+AÈ(w⋆)

¿ÁÁÀSa log [e + DÈ(w⋆)
µ2pÈ(ϵ) Spa]

+ µBÈ(w⋆) log [e + DÈ(w⋆)
µ2pÈ(ϵ) Spa]

+ hT ∣u∣ + È(w⋆)Sa
+ µ log (1 +min [log (hT

h1
) , T])È⋆ (hT

µ
[1 + log (hT

h1
)])

In the special case that È(x) =
∣x∣1+q
1+q

, we can replace the final term

µ log (1 +min [log (hT
h1

) , T])È⋆ (hT [1 + log (hTh1

)]) in the above expression by:

h
1+1/q
T [1 + log (hT

h1

)]1/q
(1 + 1/q)µ1/q .

Proof. We have:

T

∑
t=1

gt(wt − u)
=

T

∑
t=1

g̃t(wt − u) + at(È(wt) − È(u)) + atÈ(u) + (gt − g̃t)(wt − u) − atÈ(wt),
f È(u) T∑

t=1

at + ∣u∣ T∑
t=1

∣gt − g̃t∣ + T

∑
t=1

g̃t(wt − u) + at(È(wt) − È(u)),
+

T

∑
t=1

∣gt − g̃t∣∣wt∣ − atÈ(wt)
Observing that ∣gt − g̃t∣ = ht+1 − ht:
= È(u) T∑

t=1

at + ∣u∣ T∑
t=1

[ht+1 − ht] + T

∑
t=1

(ht+1 − ht)∣wt∣ − atÈ(wt) + T

∑
t=1

g̃t(wt − u) + at(È(wt) − È(u)).
Next, we will bound the terms3Tt=1 atÈ(u) and ∣u∣3Tt=1[∣gt∣−ht]+.. Moreover, ht = ht−1+[∣gt∣−ht]+,

so that ∣u∣3Tt=1 ∣gt − g̃t∣ f ∣u∣hT .

Further, notice that for any s0, s1, . . . , sT , 3Tt=1 log (st
∑
t
i=0

si
) f log(sT /s0), so that:

T

∑
t=1

at f µ log(1 + T

∑
t=1

ht+1 − ht

ht+1
)

Notice that [∣gt∣ − ht]+/ht+1 f 1, so we also have:

T

∑
t=1

ht+1 − ht

ht+1
fmin [log (hT

h1
) , T]

so that overall:

Sa = µ
2
+ µ

T

∑
t=1

at f µ
2
+ µ2 log (1 +min [log (hT

h1
) , T])

31

Next, we bound the terms (ht+1 − ht)∣wt∣ − atÈ(wt). Let È⋆(w) be the Fenchel conjugate of È.
Recall that È is symmetric so that È(wt) = È(∣wt∣). This also implies that È⋆ is symmetric and is
minimized at zero. Thus:

(ht+1 − ht)∣wt∣ − atÈ(wt) = (ht+1 − ht)∣wt∣ − atÈ(∣wt∣),
= atÈ

⋆ (ht+1 − ht
at

) ,
= atÈ

⋆ (ht+1
µ
[1 + t

∑
i=1

hi+1 − hi

hi+1
]) .

So, in general we have:

T

∑
t=1

(ht+1 − ht)∣wt∣ − atÈ(wt) f T

∑
t=1

atÈ
⋆ (ht+1

µ
[1 + t

∑
i=1

hi+1 − hi

hi+1
]) ,

f

T

∑
t=1

atÈ
⋆ (hT

µ
[1 + log (hT

h1
)]) ,

f µ log (1 +min [log (hT
h1
) , T])È⋆ (hT

µ
[1 + log (hT

h1
)]) .

In the special case that È(w) = ∣w∣1+q
1+q

, we have È⋆(h) = h1+1/q

1+1/q so that we can improve the logarithmic

factors and simplify the calculation:

atÈ
⋆ (ht+1 [1 + t

∑
i=1

hi+1 − hi

hi+1
]) = ath1+1/qt+1 [1 +3ti=1 hi+1−hihi+1

]1+1/q
(1 + 1/q)µ1+1/q ,

=

(ht+1 − ht)h1/qt+1 [1 +3ti=1 hi+1−hihi+1
]1/q

(1 + 1/q)µ1/q ,

=

(ht+1 − ht)h1/qt+1 [1 +3ti=1 hi+1−hihi+1
]1/q

(1 + 1/q)µ1/q ,

f

(ht+1 − ht)h1/qT [1 + log (hTh1

)]1/q
(1 + 1/q)µ1/q

T

∑
t=1

(ht+1 − ht)∣wt∣ − atÈ(wt) f h
1+1/q
T [1 + log (hT

h1

)]1/q
(1 + 1/q)µ1/q .

Finally, it is clear that ∣g̃t∣ f ht so the summation 3Tt=1 g̃t(wt − u) + at(È(wt) − È(u)) is controlled
by the regret bound of REG:

T

∑
t=1

g̃t(wt − u) + at(È(wt) − È(u)) f Cϵh2pT V 1/2−p
g +CÈ(ϵ)µ2pS1/2−p

a +A∣x⋆∣
¿ÁÁÀVg log(e + D∣x⋆∣V pg

h
2p
1 ϵ

)
+BhT ∣x⋆∣ log(e + D∣x⋆∣V pg

h
2p
1 ϵ

)
+AÈ(x⋆)

¿ÁÁÀSa log [e + DÈ(x⋆)
µ2pÈ(ϵ)Spa]

+ µBÈ(x⋆) log [e + DÈ(x⋆)
µ2pÈ(ϵ)Spa] .

32

Algorithm 5 Fully Unconstrained Learning

Input: Symmetric convex function È ∶ R → R with 0 = È(0). Scalars ϵ > 0, h1, µ > 0,
p ∈ [0,1/2].
Let REG be an instance of Algorithm 6 with input È, µ, p, ϵx = ϵ and ϵÈ = È(ϵ).
Set vector w⃗direction1 = 0
Send h1 to REG as the first magnitude hint.
for t = 1 . . . T do

// Apply reduction to 1-dimensional learning from [16] using adaptive gradient descent as
“direction learner”.
Let w

magnitude
t ∈ R be the tth output of REG.

Set w⃗t = w
magnitude
t ⋅ w⃗directiont

Play wt, see feedback gt.

Set w⃗directiont+1 = Π∥w∥≤1 [w⃗directiont −
gt√

2∑ti=1 ∥gi∥2
].

// Compute feedback for “magnitude learner”
Set g1dt = ⟨gt, dtð
// Apply our new fully unconstrained magnitude learner.
Set ht+1 =max(ht, ∣g1dt ∣).
Set g̃t = clip[−ht,ht]g

1d
t

Set at = µ
(ht+1−ht)/ht+1

1+∑ti=1(hi+1−hi)/hi+1 .

Send g̃t, at to REG as tth loss and regularization coefficient.
Send ht+1 to REG as the t + 1st magnitude hint.

end for

Finally, we also have:

Vg = h
2
T +

T

∑
t=1

g̃2t ,

f h2T +
T

∑
t=1

g2t .

F.1 Full Statement of Main Result in High Dimensions

Throughout this paper, we have considered the special case thatW = R. This suffices due to the
reductions of [16] as discussed in Section C. However, here we provide a more complete theorem and
algorithm for the caseW = Rd. The pseudocode is provided in Algorithm 5, and the regret bound is
stated in Theorem 16. Note that the regret bound follows essentially immediately from Theorem 15.

Theorem 16. There exists universal constants A, B, C, such that Algorithm 5 guarantees for all T :

T

∑
t=1

⟨gt, wt −w⋆ð f Cϵh2pT V 1/2−p
g +CÈ(ϵ)µ2pS1/2−p

a +A∥w⋆∥
¿ÁÁÀVg log(e + ∥w⋆∥V pg

h
2p
1 ϵ

)
+BhT ∥w⋆∥ log(e + ∥w⋆∥V pg

h
2p
1 ϵ

)
+AÈ(∥w⋆∥)

¿ÁÁÀSa log [e + È(∥w⋆∥)
µ2pÈ(ϵ) Spa]

+ µBÈ(∥w⋆∥) log [e + È(∥w⋆∥)
µ2pÈ(ϵ) Spa]

+ hT ∣u∣ + È(∥w⋆∥)Sa
+ µ log (1 +min [log (hT

h1
) , T])È⋆ (hT

µ
[1 + log (hT

h1
)])

33

where

Sa f µ
2
+ µ2 log (1 +min [log (hT

h1
) , T])

Vg f h
2
T +

T

∑
t=1

g2t

In the special case that È(x) =
∣x∣1+q
1+q

, we can replace the final term

µ log (1 +min [log (hT
h1

) , T])È⋆ (hT [1 + log (hTh1

)]) in the above expression by:

h
1+1/q
T [1 + log (hT

h1

)]1/q
(1 + 1/q)µ1/q .

Proof. Algorithm 5 is applying the dimension-free-to-one-dimension reduction provided by Theorem
2 of [16]. So overall the reduction tells us that the regret is bounded by

T

∑
t=1

⟨gt, wt −w⋆ð f T

∑
t=1

⟨g1dt , wmagnitudet − ∥w⋆∥ð + ∥w⋆∥ T∑
t=1

⟨gt, wdirectiont −w⋆/∥w⋆∥ð
In this case, the “direction” learner’s iterates wdirectiont are generated by standard adaptive gradient

descent [13], which guarantees the regret bound: 3Tt=1⟨gt, wdirectiont −w⋆/∥w⋆∥ð f 2√23Tt=1 ∥gt∥2.

For the first sum 3Tt=1⟨g1dt , wmagnitudet − ∥w⋆∥ð, notice that wmagnitude is simply an application of
Algorithm 4 using an instance of Algorithm 6 The first sum is bounded by application of Theorem 15,
noticing that ∣g1dt ∣ f ∥gt∥. So, putting the two bounds together we have the stated result.

G Technical Lemmas

Lemma 17. Let A, B, C, D, E be positive numbers and let e be the base of the natural logarithm.
Then:

sup
M

A
√
M log(e +DMC) +B log(e +DMC) −EM f (A2

E
+B) log⎛⎝e +D (2CA

2

E2
+
2CB

E
)C⎞⎠

Proof. First, by Young inequality xy f inf¼ x
2/2¼ + ¼y2/2, we have for all M :

M log(e +DMC) f M2E2

4A2
+
A2 log

2(e +DM2)
E2

Then using the identity
√
x + y f

√
x +
√
y:

sup
M

A
√
M log(e +DMC) +B log(e +DMC) −EM f sup

M

(A2

E
+B) log(e +DMC) − EM

2

Now, from first order optimality conditions we are looking for a solution to:

(A2

E
+B)DCMC−1

e +DMC
=
E

2

(A2

E
+B)DCMC−1

=
E

2
e +

E

2
DMC

Notice that for any M g 2CA2

E2 +
2CB
E

we have:

(A2

E
+B)CD f E

2
DM

(A2

E
+B)DCMC−1

f
E

2
DMC

(A2

E
+B)DCMC−1

<
E

2
e +

E

2
DMC

34

Therefore, the optimal value for M can be at most 2CA2

E2 +
2CB
E

. Now, notice that (A2

E
+B) log(e +

DMC) is strictly increasing in M . Thus, our quantity of interest is upper-bounded by substituting in

M = 2CA2

E2 +
2CB
E

into this increasing term:

sup
M

(A2

E
+B) log(e +DMC) −EM f (A2

E
+B) log⎛⎝e +D (2CA

2

E2
+
2CB

E
)C⎞⎠

Lemma 18. Let A, B < 1, C be positive numbers. Then:

sup
M

AMB
−CM = (BA

CB
)1/(1−B) (1 −B

B
)

Proof. We differentiate with respect to M :

ABMB−1
= C

M = (C
AB
)1/(B−1)

So, plugging in this optimal M value we have: supM AMB
−CM = (CB

BA
)1/(B−1) (1

B
− 1)

Lemma 19. Let A, B, C, D, E, F , G < 1 be positive numbers and let e be the base of the natural
logarithm. Then:

sup
M

A
√
M log (e +DMC) +B log (e +DMC) + FMG

−
EM

2

f (4A2

E
+B) log⎛⎝e +D (32CA

2

E2
+
8CB

E
)C⎞⎠ + (4

GGF

EG
)1/(1−G) (1 −G

G
)

When G = 0, the last term (4GGF
EG
)1/(1−G) (1

G
− 1) should be replaced with the limiting value F .

Proof. Notice that

sup
M

A
√
M log (e +DMC) +Blog (e +DMC) + FMG

−
EM

2

f sup
M

A
√
M log (e +DMC) +B log (e +DMC) − EM

4
+ sup

M

FMG
−
EM

4

The result now follows from Lemmas 17 and 18. Alternatively, if G = 0, clearly supM FMG
−
EM
4
=

F .

Lemma 20. Let È, A, B, C, D, F , S, µ, and p f 1/2 be positive numbers with S g µ2, and let e be
the base of the natural logarithm. Then:

inf
E

sup
V

A(È +E)
¿ÁÁÀV log(e + D(È +E)

µ2p
V p) +Bµ(È +E) log(e + D(È +E)

µ2p
V p) + Fµ2pV 1/2−p

−
EV

2µ
+
ES

2µ

f (1/2 + 16A2)È
√
S log (e + 2DÈSp

µ2p
(128pA2È + 16pB)p)

+ µÈ (16A2
+ 2B) log (e + 2DÈSp

µ2p
(128pA2È + 16pB)p)

+
⎛⎝(16A2

+ 2B) log (e + 2DF (128pA2
+ 16pB)p) + 1

2
+
(2p + 1)(2 − 4p) 1−2p

1+2p

2

⎞⎠µ2pFS1/2−p

35

Proof. By Lemma 19, we have:

sup
V

A(È +E)
¿ÁÁÀV log(e + D(È +E)

µ2p
Mp) +Bµ(È +E) log(e + D(È +E)

µ2p
Mp) + Fµ2pV 1/2−p

−
EV

2µ

f (4A2(È +E)2µ
E

+Bµ(È +E)) log(e + D(È +E)
µ2p

(32pµ2A2(È +E)2
E2

+
8pµ2B(È +E)

E
)p)

+ (41/2−p(1/2 − p)Fµ2p(E/µ)1/2−p)
2

1+2p 2p + 1

1 − 2p

= (4A2(È +E)2µ
E

+Bµ(È +E)) log(e +D(È +E)(32pA2(È +E)2
E2

+
8pB(È +E)

E
)p)

´¹¹¸¹¹¹¶
(∗)

+ µ
(2p + 1)(2 − 4p) 1−2p

1+2p

2
(F

E1/2−p)
2

1+2p

´¹¹¹¸¹¹¹¶
(∗∗)

Now, set:

E =max
⎡⎢⎢⎢⎣min

⎡⎢⎢⎢⎣È,
µÈ√
S

√
log (e + 2DÈSp

µ2p
(128pA2 + 16pB)p)⎤⎥⎥⎥⎦ ,

µ1+2pF

S
1+2p

2

⎤⎥⎥⎥⎦
We will bound the above expression by first considering (∗) and then (∗∗). Now, if E = È, we have:

(∗) = µÈ (16A2
+ 2B) log (e + 2DÈ (128pA2

+ 16pB)p)
recalling that S g µ2:

f µÈ (16A2
+ 2B) log (e + 2DÈSp

µ2p
(128pA2

+ 16pB)p)
Alternatively, if E = µÈ√

S

√
log (e + 2DÈSp

µ2p (128pA2 + 16pB)p), then we have E +È f 2È and so:

(∗) f (16A2È2µ

E
+ 2BµÈ) log(e + 2DÈ (128pA2È2

E2
+
16pBÈ

E
)p) (19)

Before we bound this expression, let us consider just the value inside the logarithm:

128pA2È2

E2
+
16pBÈ

E
f 128pA2È

S

µ2
+ 16pB

√
S

µ

now, since S g µ2:

f (128pA2È + 16pB) S
µ2

So, putting this back in the previous expression:

log(e + 2DÈ (128pA2È2

E2
+
16pBÈ

E
)p) f log (e + 2DÈSp

µ2p
(128pA2È + 16pB)p)

from which we conclude:

(∗) f 16A2È

√
S log (e + 2DÈSp

µ2p
(128pA2È + 16pB)p)

+ 2BµÈ log (e + 2DÈSp

µ2p
(128pA2È + 16pB)p)

36

Finally, let us consider the case E = µ1+2pF

S
1+2p

2

. To handle this situation, we will work with two more

subcases: either E f È or not. If E f È, then E + È f 2È. Therefore:

(∗) f (16A2È2µ

E
+ 2BµÈ) log(e + 2DÈ (128pA2È2

E2
+
16pBÈ

E
)p)

However, if E f È, then it must be that E g µÈ√
S

√
log (e + 2DÈSp

µ2p (128pA2 + 16pB)p). Thus by the

exact same analysis following equation (19), we again have

(∗) f 16A2È

√
S log (e + 2DÈSp

µ2p
(128pA2È + 16pB)p)

+ 2BµÈ log (e + 2DÈSp

µ2p
(128pA2È + 16pB)p)

So, for our final subcase we consider E = µ1+2pF

S
1+2p

2

and also E g È. Then E + È f 2E, which yields:

(∗) f µE(16A2
+ 2B) log (e + 2DE (128pA2

+ 16pB)p)
Since S g µ2, E f F and so:

f µF (16A2
+ 2B) log (e + 2DF (128pA2

+ 16pB)p)
So, in all cases we have:

(∗) f 16A2È

√
S log (e + 2DÈSp

µ2p
(128pA2È + 16pB)p)

+ µÈ (16A2
+ 2B) log (e + 2DÈSp

µ2p
(128pA2È + 16pB)p)

+ µF (16A2
+ 2B) log (e + 2DF (128pA2

+ 16pB)p)
Where the last term µF (16A2

+ 2B) log (e + 2DF (128pA2
+ 16pB)p) is only present if p ≠ 1/2.

Notice that we must have E g µ1+2pF

S
1+2p

2

. Therefore:

µ
F

2

1+2p

E
1−2p

1+2p

f µ2pFS1/2−p

(∗∗) f (2p + 1)(2 − 4p) 1−2p

1+2p

2
µ2pFS1/2−p

So, overall it holds that:

(∗) + (∗∗) f 16A2È

√
S log (e + 2DÈSp

µ2p
(128pA2È + 16pB)p)

+ µÈ (16A2
+ 2B) log (e + 2DÈSp

µ2p
(128pA2È + 16pB)p)

+ µF (16A2
+ 2B) log (e + 2DF (128pA2

+ 16pB)p)
+
(2p + 1)(2 − 4p) 1−2p

1+2p

2
µ2pFS1/2−p

To conclude, let us bound ES
2µ

. If E ≠
µ1+2pF

S
1+2p

2

, then it must be that E f

µÈ√
S

√
log (e + 2DÈSp

µ2p (128pA2 + 16pB)p). Therefore:

ES

2µ
f
È

2

√
S log (e + 2DÈSp

µ2p
(128pA2 + 16pB)p)

37

Alternatively, if E = µ1+2pF

S
1+2p

2

. In this case:

ES

2µ
=
µ2pFS1/2−p

2

So, combining all these facts, we have when p < 1/2:

inf
E

sup
V

A(È +E)
¿ÁÁÀV log(e + D(È +E)

µ2p
Mp) +Bµ(È +E) log(e + D(È +E)

µ2p
Mp) + Fµ2pV 1/2−p

−
EV

2µ
+
ES

2µ

f inf
E
(∗) + (∗∗) + ES

2µ

f 16A2È

√
S log (e + 2DÈSp

µ2p
(128pA2È + 16pB)p)

+ µÈ (16A2
+ 2B) log (e + 2DÈSp

µ2p
(128pA2È + 16pB)p)

+ µF (16A2
+ 2B) log (e + 2DF (128pA2

+ 16pB)p)
+
(2p + 1)(2 − 4p) 1−2p

1+2p

2
µ2pFS1/2−p

+
µ2pFS1/2−p

2
+
È

2

√
S log (e + 2DÈSp

µ2p
(128pA2 + 16pB)p)

grouping terms, and using µ f µ2pS1/2−p:

f (1/2 + 16A2)È
√
S log (e + 2DÈSp

µ2p
(128pA2È + 16pB)p)

+ µÈ (16A2
+ 2B) log (e + 2DÈSp

µ2p
(128pA2È + 16pB)p)

+
⎛⎝(16A2

+ 2B) log (e + 2DF (128pA2
+ 16pB)p) + 1

2
+
(2p + 1)(2 − 4p) 1−2p

1+2p

2

⎞⎠µ2pFS1/2−p

Lemma 21. Suppose g1, . . . , gt and 0 < h1 f h2 f ⋅ ⋅ ⋅ f hT are such that ∣gt∣ f ht for all t. Define
Vt = ch

2
t + g

2
1∶t−1. Define ³t =

ϵ√
c+∑t−1i=1

g2
i
/h2

i
log2(c+∑t−1i=1

g2
i
/h2

i
)

for some c g 3. Then:

T

∑
t=1

³tg
2
t√
Vt
f= 4ϵhT

Proof. Let 1 = Ä1, . . . , Äk f T be the set of indices such that hÄi+1 > 2hÄi and hÄi+1−1 f 2hÄi , with

Äk+1 defined equal to T + 1 for convenience. Note that this implies hÄk−i < hÄk/2i. Further, hÄk f hT ,

so overall we have for all i hÄk−i f hT /2i. We will show that

Äi+1−1

∑
t=Äi

³tg
2
t√
Vt
f 2ϵhÄi (20)

38

Once established, this implies:

T

∑
t=1

³tg
2
t√
Vt
=

k

∑
i=1

Äi+1−1

∑
t=Äi

³tg
2
t√
Vt

f 2ϵ
k

∑
i=1

hÄi

= 2ϵ
k−1

∑
i=0

hÄk−i

f 2ϵhT

k−1

∑
i=0

2−i

= 4ϵhT

So, to establish (20), we observe that for any t ∈ [Äi, Äi+1 − 1] we have

Vt g (c − 1)h2t + t

∑
j=Äi

g2j

g
c − 1

2
h2Äi+1−1 +

t

∑
j=Äi

g2j

and also:

³t f
ϵ√

c − 1 +3tj=Äi g2j /h2j log2 (c − 1 +3tj=Äi g2j /h2j)
f

ϵ√
c−1
2
+3tj=Äi g2j /h2Äi+1−1 log2 (c−12 +3tj=Äi g2j /h2Äi+1−1)

f
ϵhÄi+1−1√

c−1
2
h2Äi+1−1 +3tj=Äi g2j log2 (c−12 +3tj=Äi g2j /hÄi+1−1)

Combining these yields:

³tg
2
t√
Vt
f

ϵhÄi+1−1g
2
t(c−1

2
h2Äi+1−1 +3tj=Äi g2j) log2 (c−12 +3tj=Äi g2j /hÄi+1−1)

= ϵhÄi+1−1
g2t /h2Äi+1−1(c−1

2
+3tj=Äi g2j /h2Äi+1−1) log2 (c−12 +3tj=Äi g2j /hÄi+1−1)

using c g 3

f ϵhÄi+1−1
g2t /h2Äi+1−1(1 +3tj=Äi g2j /h2Äi+1−1) log2 (1 +3tj=Äi g2j /hÄi+1−1)

f 2ϵhÄi
g2t /h2Äi+1−1(1 +3tj=Äi g2j /h2Äi+1−1) log2 (1 +3tj=Äi g2j /hÄi+1−1)

So, now if we define xs = g
2
s+Äi−1

/h2Äi+1−1, then we have:

Äi+1−1

∑
t=Äi

f 2ϵhÄi

Äi+1−Äi

∑
s=1

xs(1 +3ss′=1 xs′) log2 (1 +3ss′=1 xs′)
And, by [1] Lemma 4.13:

Äi+1−Äi

∑
s=1

xs(1 +3ss′=1 xs′) log2 (1 +3ss′=1 xs′) f +
∑
τi+1−τi
s=1

xs

0

dx(1 + x) log2(1 + x)
=

−1

log(1 + x) ∣
∑
τi+1−τi
s=0

xs

0

f 1

So, in the end we have 3Äi+1−1t=Äi
f 2ϵhÄi as desired.

39

Lemma 22. Suppose g1, . . . , gt and 0 < h1 f h2 f ⋅ ⋅ ⋅ f hT are such that ∣gt∣ f ht for all t. Define
Vt = ch

2
t + g

2
1∶t−1. Define ³t =

ϵ

(c+∑t−1i=1
g2
i
/h2

i
)p for some c g 1 and p ∈ [0,1/2). Then:

T

∑
t=1

³tg
2
t√
Vt
f

2ϵh
2p
T
(3Tt=1 g2t)1/2−p
1 − 2p

Proof. Similar to the proof of Lemma 21, we have:

Vt g (c − 1)h2t + t

∑
j=1

g2j

g

t

∑
j=Äi

g2j

and also:

³t f
ϵ(3tj=1 g2j /h2j)p

f
ϵh

2p
t(3tj=1 g2j)p

Combining these yields:

³tg
2
t√
Vt
f

ϵh
2p
T g

2
t

(3tj=1 g2j)1/2+p
Further, by [1] Lemma 4.13 we have:

T

∑
t=1

g2t(3tj=1 g2j)1/2+p f +
∑
T
t=1 g

2

t

0

dx

x1/2+p

f

(3Tt=1 g2t)1/2−p
1/2 − p

from which the conclusion immediately follows.

H Regularized Regret via Full-Matrix Bound With Constraints

In this section, we provide an alternative approach to solving the “epigraph-based regularized regret”
game specified by Protocol 3. Our approach actually involves a generic improvement to the class of
so-called “full-matrix” regret bounds, and so may be of independent interest.

Specifically, we will provide an algorithm for online learning with “magnitude hints” (Protocol 4)
that ensures the regret bound:

T

∑
t=1

⟨gt, wt −w⋆ð f O⎛⎜⎝ϵhT+1 +
¿ÁÁÀd

T

∑
t=1

⟨gt, w⋆ð2 log(∥w⋆∥T /ϵ)⎞⎟⎠ . (21)

This type of bound is sometimes called a “full-matrix” bound as the term inside the square root can

be expressed as wT
⋆
Σw⋆ where Σ is the matrix of gradient outer products Σ = 3Tt=1 gtg⊺t . Bounds of

this form have appeared before in the literature. For the case thatW is an entire vector space, [16,
18] both provide full-matrix bounds. For the case in whichW is not an entire vector space, [31]
provides to our knowledge the only full-matrix bound. However, their algorithm suffers a suboptimal
logarithmic factor: the log(T) term appears outside rather than inside the square root. We provide a
method that fixes this issue.

However, before delving into the technical details of our approach, let us explain how achieving a
full-matrix bound allows us to solve Protocol 3. The argument is nearly immediate: observe that in
the 2-d game, we would have w⋆ ↦ (w⋆, È(w⋆)) and gt ↦ (g̃t, at). Then the bound (6) is immediate
from (21). So, without further ado, let us provide our bound and analysis.

40

H.1 Full Matrix Algorithm and Analysis

Assume thatW ¢ Rd is a closed convex set that contains the origin within its interior. Further, let Φbar

be a self-concordant barrier forW with parameter µ > 0. In this section, we present an algorithm that
achieves (21). The algorithm is Follow-The-Regularized-Leader (FTRL) with a specific regularizer
we define next.

Regularizers. For Σ ∈ Rd×d and Z,Ã, ε > 0, define the regularizer:

Φ(w;Σ, Z, Ã, ε) = sup
¼≥0

√
w⊺(Σ + ¼I)w ⋅X(w⊺(Σ + ¼I)we−¼Z ⋅ det(Ã−2Σ)

ε2
), (22)

where X(¹) ∶= W (¹)1/2 −W (¹)−1/2 and W is the Lambert function; W (x) is defined as the

principal solution to W (x)eW (x) = x.

Lemma 23. For any Σ ∈ Rd×d and Z, ε, Ã > 0, the Fenchel dual of the function Φ(⋅;Σ, Z, Ã, ε) in
(22) satisfies:

∀G ∈ Rd, Φ⋆(G;Σ, Z, Ã, ε) = inf
¼≥0

ε ⋅ exp(1
2
G⊺(Σ + ¼I)−1G + ¼Z

2
)√

det(Ã−2Σ) .

Proof. See [18].

FTRL. We will consider the FTRL algorithm with regularizer Φ(⋅;Σ, Z, Ã, ε) +Φbar(⋅), for some
choices of Σ, Z, Ã, and ε. To specify these choices, let

Ä(µ) =√2 ⋅ (1 − e 1

2γ
−

1

2) , (23)

for µ > 1. With this, and given the history of gradients g1, . . . , gt−1 up to round t − 1 and parameters
µ, Ã, ε > 0 and hint ht > 0, the algorithm outputs:

ŵt ∈ argmin
w∈Rd

⟨Gt−1, wð +Ψ(−w;Vt−1, ht, Ã, ε), (24)

where

Ψ(w;V,h, Ã, ε) ∶= Φ(w;Ã2I + µV, Ä(µ)2/h2, Ã, ε) +Φbar(−w), (25)

and

GÄ ∶=
Ä

∑
s=1

gs, and VÄ ∶=
Ä

∑
s=1

gsg
⊺

s . (26)

Remark 1 (Connection to Matrix-FreeGrad). We note that without the barrier term Φbar in (25),
the iterates in (24) can be computed in closed-form; in this case, the iterates exactly matches those
of the Matrix-FreeGrad algorithm by [18] for unconstrained Online Convex Optimization (the
connection to FTRL was not made explicit in [18]). The advantage of adding a barrier Φbar is that
it ensure that the iterates (ŵt) are always in the feasible set without requiring any sophisticated
constrained-to-unconstrained reductions that may lead to sub-optimal logarithmic terms in the regret
[46] (see Remark 2 in the sequel).

Lemma 24 (Monotocity of potential). Let Ã, ε > 0 and µ > 1 be given. For all gt ∈ R
d and ht > 0

such that ∥gt∥ f ht, we have

⟨gt, ŵtð f Ψ⋆(Gt−1;Vt−1, ht, Ã, ε) −Ψ⋆(Gt;Vt, ht, Ã, ε). (27)

where G↦ Ψ⋆(G;V,h, Ã, ε) denotes the Fenchel dual of w ↦ Ψ(w;V,h, Ã, ε).
The proof of the lemma is in Appendix H.3. By summing (27) over t and using Fenchel duality, we
obtain the following regret bound for the FTRL iterates in (24).

Theorem 25 (Regret with valid hints). Let Ã, ε > 0 and µ > 1 be given. The FTRL iterates (ŵt) in
(24) in response to any sequence (gt) such that ∥gt∥ f ht, for all t g 1, satisfy: for all T ∈ N and
w ∈ intW:

T

∑
t=1

⟨gt, wt −wð f ε +Φ⋆bar(0) +Φbar(w) +√QwT ln+ (det(Ã−2ΣT) ⋅QwT), (28)

41

where ln+(⋅) ∶= 0 (ln(⋅), ΣT = Ã2I + µVT , and

QwT ∶=max{w⊺ΣTw, 1
2
(h2T ∥w∥2
Ä(µ)2 ln(det(Ã−2ΣT)h2T ∥w∥2

ε2Ä(µ)2) +w⊺ΣTw)}. (29)

Remark 2 (Comparison to previous "full-matrix" bounds in the constrained setting). We note that by
having the O(logT) factor in (28) inside the square root, the bound in (28) improves on previous
"full-matrix" bounds in the constraint setting [46], which have the log factor outside.

H.2 Implementation Considerations

As stated in Remark 2, if we remove Φbar from the regularizer, then iterates in (24) match those
of Matrix-FreeGrad, which are available in closed-form. Unfortunately, in the presence of Φbar

(which ensures that the iterates are always in the feasible setW), the iterate ŵt in (24) no longer
admits a closed-form expression, and computing ŵt, for t ∈ [T], now requires solving a convex
optimization problem. This is not ideal from a computational perspective; most first-order OCO
algorithms require only O(d) operation per round. It might be possible (at least in the case whereW
is bounded) to efficiently approximate (ŵt) without solving an optimization problem at each step
and without sacrificing the regret by much using Newton steps such as in the recent works of [47, 48,
49]. We leave this investigation for future work.

H.3 Proof of Lemma 24

Proof. By Lemma 23, we have that for all V and h, Ψ⋆(⋅;V,h, Ã, ε) satisfies

Ψ⋆(G;V,h, Ã, ε) = inf
u∈Rd

Φ⋆(G − u;µV, Ä(µ)2/h2, Ã, ε) +Φ⋆
bar
(−u),

= inf
¼≥0,u∈Rd

ε ⋅ exp(1
2
(G − u)⊺(Ã2I + µV + ¼I)−1(G − u) + ¼Ä(µ)2

2h2)√
det(I + Ã−2µV) +Φ⋆

bar
(−u).

(30)

We will use this to prove (27).

Let (¼⋆, u⋆) ∈ R≥0×Rd be the minimizer in the problem Ψ⋆(Gt−1;Vt−1, ht, Ã, ε). With this notation,
we have

ŵt = argmin
w∈Rd

⟨Gt−1, wð +Ψ(−w;Vt−1, ht),
= argmax

w∈Rd
⟨Gt−1,−wð −Ψ(−w;Vt−1, ht),

= −argmax
v∈Rd

{⟨Gt−1, vð −Ψ(v;Vt−1, ht)} ,
= −∇Ψ⋆(Gt−1;Vt−1, ht, Ã, ε),

and so by Lemma 26,

= −(Ã2I + µVt−1 + ¼⋆I)−1(Gt−1 − u⋆) ⋅Φ⋆(Gt−1 − u⋆;Ã2I + µVt−1, Ä(µ)2/h2t , Ã, ε). (31)

Moving forward, we define

Gt−1,⋆ ∶= Gt−1 − u⋆ and Gt,⋆ ∶= Gt − u⋆.

To prove the lemmsa, it suffices to prove the stronger statement obtained by picking the sub-optimal
choice (¼,u) = (¼⋆, u⋆) for the problem Ψ⋆(Gt, Vt, ht, Ã, ε); that is,

⟨ŵt, gtð
f

ε ⋅ exp(1
2
G⊺t−1,⋆(Ã2I + µVt−1 + ¼⋆I)−1Gt−1,⋆ + ¼⋆Ä(µ)2

2h2

t

)√
det(I + Ã−2µVt−1) +Φ⋆

bar
(−u⋆)

−

ε ⋅ exp(1
2
G⊺t,⋆(Ã2I + µVt + ¼⋆I)−1Gt,⋆ + ¼⋆Ä(µ)2

2h2

t

)√
det(I + Ã−2µVt) −Φ⋆

bar
(−u⋆),

= Φ⋆(Gt−1,⋆;Ã2I + µVt−1, Ä(µ)2/h2t , Ã, ε) −Φ⋆(Gt,⋆;Ã2I + µVt, Ä(µ)2/h2t , Ã, ε),
42

and so dividing by Φ⋆(Gt−1,⋆;Ã2I + µVt−1, Ä(µ)2/h2t , Ã, ε) and using (31), this becomes

− gt ⋅ (Ã2I + µVt−1 + ¼⋆I)−1Gt−1,⋆
f 1 −

exp(1
2
G⊺t,⋆(Ã2I + µVt + ¼⋆I)−1Gt,⋆ + ¼⋆Ä(µ)2

2h2

t

−
1
2
ln det(I + Ã−2µVt))

exp(1
2
G⊺t−1,⋆(Ã2I + µVt−1 + ¼⋆I)−1Gt−1,⋆ + ¼⋆Ä(µ)2

2h2

t

−
1
2
ln det(I + Ã−2µVt−1)) .

Let us abbreviate Σ = Ã2I + µVt−1 +¼⋆I . The matrix determinant lemma and monotonicity of matrix
inverse give

ln
det(I + Ã−2µVt)
det(I + Ã−2µVt−1) = ln(1 + µg⊺t (Ã2I + µVt−1)−1gt) g ln(1 + µg⊺tΣ−1gt).

Then Sherman-Morrison gives

G⊺t,⋆(Ã2I + µVt + ¼⋆I)−1Gt,⋆ = G⊺t,⋆Σ−1Gt,⋆ − µ (g⊺tΣ−1Gt,⋆)2
1 + µg⊺tΣ

−1gt

and splitting off the last round Gt,⋆ = Gt−1,⋆ + gt gives

G⊺t,⋆(Ã2I + µVt + ¼⋆I)−1Gt,⋆ = G⊺t−1,⋆Σ−1Gt−1,⋆+2G⊺t−1,⋆Σ−1gt + g⊺tΣ−1gt − µ(g⊺tΣ−1Gt−1,⋆)2
1 + µg⊺tΣ

−1gt
.

All in all, it suffices to show

−g⊺tΣ
−1Gt−1,⋆ f 1 − exp

⎛⎝
2G⊺t−1,⋆Σ

−1gt + g
⊺

tΣ
−1gt − µ(g⊺tΣ−1Gt−1,⋆)2

2(1 + µg⊺tΣ−1gt) −
1

2
ln(1 + µg⊺tΣ−1gt)⎞⎠.

Introducing scalars r = g⊺tΣ
−1Gt−1,⋆ and z = g⊺tΣ

−1gt, this simplifies to

−r f 1 − exp(2r + z − µr2
2(1 + µz) − 1

2
ln(1 + µz))

Being a square, z g 0 is positive. In addition, optimality of ¼⋆ ensures that ∥Σ−1Gt−1,⋆∥ = Ä(µ)√
2ht

; this

follows from the fact that d
d¼

G⊺t−1,⋆(Ã2I + µV + ¼I)−1Gt−1,⋆∣
¼=¼⋆

= ∥Σ−1Gt−1,⋆∥2. In combination

with ∥gt∥ f ht, we find

∣r∣ f Ä(µ)/√2 = 1 − e 1

2γ
−

1

2 < 1. (32)

The above requirement may hence be further reorganized to

2r − µr2 f − z + (1 + µz)(ln(1 + µz) + 2 ln(1 + r)).
The convex right hand side is minimized subject to z g 0 at

z = max

⎧⎪⎪⎨⎪⎪⎩0,
e

1

γ
−1−2 ln(1+r)

− 1

µ

⎫⎪⎪⎬⎪⎪⎭
so it remains to show

2r − µr2 f

⎧⎪⎪⎨⎪⎪⎩
1
µ
− (1 + r)−2e 1

γ
−1, if 1

µ
− 1 g 2 ln(1 + r);

2 ln(1 + r), otherwise.
(33)

Note that by (32), we have 2 log(1 + r) g 1
µ
− 1, and so the condition in the previous display reduces

to the second case; that is,

2r − µr2 f 2 log(1 + r), ∀∣r∣ f 1 − e 1

2γ
−

1

2 , (34)

which is satisfied for the hardest case, where r = e
1

2γ
−

1

2 − 1.

43

H.4 Proof of Theorem 25

Proof. Fix w ∈ R
d. Using that Ψ⋆(G;V,h, Ã, ε) is decreasing in h, we can telescope (27) in

Lemma 24 to obtain

T

∑
t=1

g⊺t ŵt f Ψ⋆(0; 0, h1, Ã, ε) −Ψ⋆(GT ;VT , hT , Ã, ε)
By (30), we have Ψ⋆(0; 0, h1, Ã, ε) f ε +Φ⋆bar(0), yielding:

T

∑
t=1

g⊺t ŵt f ε +Φ
⋆

bar
(0) −Ψ⋆(GT ;VT , hT , Ã, ε),

f ε +Φ⋆
bar
(0) + inf

u∈Rd
⟨GT , uð +Ψ(−u;VT , hT , Ã, ε),

= ε +Φ⋆
bar
(0) + inf

u∈Rd
⟨GT , uð +Φ(−u;Ã2I + µVT , Ä(µ)2/h2T , Ã, ε) +Φbar(u),

f ε +Φ⋆
bar
(0) + ⟨GT , wð +Φ(−w;Ã2I + µVT , Ä(µ)2/h2T , Ã, ε) +Φbar(w), (setting u = w)

= ε +Φ⋆
bar
(0) + ⟨GT , wð + sup

¼≥0

√
w⊺(ΣT + ¼I)w ⋅X(w⊺(ΣT + ¼I)we−¼ZT ⋅ det(Ã−2ΣT)

ε2
)

+Φbar(w), (35)

where ΣT ∶= Ã
2I + µVT and ZT ∶= Ä(µ)2/h2T . Zero derivative of the above objective for ¼ occurs at

¼ =
ln
∥w∥2
ZT

2ZT
−
w⊺ΣTw

2 ∥w∥2 ,
and hence the optimum for ¼ is either at that point or at zero, whichever is higher, with the crossover

point at
∥w∥2
ZT

ln
∥w∥2
ZT
= w⊺ΣTw. Plugging that in, we find that for C ∶=

∥w∥2
ZT

ln
∥w∥2
ZT

, we have

sup
¼≥0

√
w⊺(ΣT + ¼I)w ⋅X(w⊺(ΣT + ¼I)we−¼ZT ⋅ det(Ã−2ΣT)

ε2
)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
1
2
(C +w⊺ΣTw) ⋅X⎛⎜⎝1

2
(C +w⊺ΣTw)e− ln

∥w∥2

ZT
2

+
ZTw

⊺
ΣTw

2∥w∥2 ⋅
det(Ã−2ΣT)

ε2

⎞⎟⎠, if C g w⊺ΣTw;

√
w⊺ΣTw ⋅X(w⊺ΣTw ⋅ det(Ã−2ΣT)ε2

), otherwise.

f

√
QwT ⋅X(det(Ã−2ΣT)ε2

QwT), (36)

where QwT ∶=max{w⊺ΣTw, 12(∥w∥2ZT
ln
∥w∥2
ZT
+w⊺ΣTw)}; in the last inequality, we used that X(¹)

is increasing to drop the exponential in its argument. Combining (36) with (35) and using that

X(¹) f√ln+(¹) (see Lemma 27), we obtain the desired bound.

H.5 Helper Lemmas for Full-Matrix Analysis

Lemma 26. LetW ¦ Rd and Y ¦ R. Further, let f ∶ X × Y → R be a differentiable function such
that for all x ∈ X , the problem infy∈Y f(x, y) has a unique minimizer y(x). Then,

∇xf(x, y(x)) = ∂xf(x, y(x)). (37)

Lemma 27. For ¹ g 0, defineX(¹) ∶= sup³ ³−eα2

2
−

1

2
ln ¹. ThenX(¹) = (W (¹))1/2−(W (¹))−1/2 =√

ln ¹ + o(1).
Proof. The fact that X(¹) = (W (¹))1/2 − (W (¹))−1/2 follows from [50, Lemma 18]. Recall that

sup
x

yx − ex = y ln y − y

44

Hence

X(¹) = sup
³

³ − e
α2

2
−

1

2
ln ¹

= sup
³

inf
¸
³ − ¸(³2

2
−
1

2
ln ¹) + ¸ ln¸ − ¸

= inf
¸

1

2¸
+
¸

2
ln ¹ + ¸ ln¸ − ¸

f min{√ln ¹ − 1 + 1
2
ln ln ¹√
ln ¹

,

√
¹

2
−

1√
¹
}

f

√
ln+ ¹

where we plugged in the sub-optimal choices ¸ = 1√
ln ¹

(this requires ¹ g 1) and ¸ = 1√
¹

. When we

stick in ¸ = 1√
ln(ee−2+¹)

we find

X(¹) f ln(ee−2 + ¹) + ln ¹ − ln(ln(ee−2 + ¹)) − 2
2
√
ln(ee−2 + ¹) f

√
ln(ee−2 + ¹)

Note that ee
−2

= 1.14492. This is less than 2, the value of ¹ where
√
¹/2−1/√¹ becomes positive.

I Complete Psuedocode for Regularized 1-Dimensional Learning

In Algorithm 6, we provide a self-contained implementation of an algorithm for regularized online
learning (Protocol 2). The algorithm is obtained by combing Algorithm 3 with Algorithm 2.

I.1 Efficient Projections for È(z) = z2
Our algorithms for regularized online learning via epigraphs (Protocol 3) require projections to the
set {y g È(x)}. While in general this projection may be expensive, for simple function È of interest,
such as È(z) = z2, this projection is relatively straightforward. In the following we provide a formula
for this projection that is easy to compute (if a little ungainly to look at).

Proposition 28. Let È ∶ R→ R be given by È(x) = x2. Define the norm ∥(x, y)∥2 = hx2 + µ2y2, the
function S(x̂, ŷ) = infy≥È(x) ∥(x, y) − (x̂, ŷ)∥, and the projection P (x̂, ŷ) = argminy≥È(x) ∥(x, y) −(x̂, ŷ)∥. Then for any ŷ < È(x̂), we have P (x̂, ŷ) = (x, y) with y = x2 and:

x =
21/3(G2

− 2µ2ŷ)
Z1/3 −

Z1/3

6 ⋅ 21/3µ2

with

Z = −108G2µ4x̂ + 2
√
2916G2µ8x̂2 + (6G2µ2 − 12µ4ŷ)3

Moreover, ∇S(x̂, ŷ) = (G2(x̂−x)√
G2(x−x̂)2+µ2(−̂y)2 ,

µ2(ŷ−y)√
G2(x−x̂)2+µ2(ŷ−y)2)

Proof. Since the (x, y) is on the boundary of the constraint, we clearly have y = x2. Note that(x, y) = argminy≥È(x) ∥(x, y) − (x̂, ŷ)∥2. Thus, by LaGrange multipliers, we have for some ¼:

2G2(x − x̂) = ¼È′(x) = 2¼x
2µ2(y − ŷ) = −¼

45

Algorithm 6 Regularized 1-dimensional learner (REG) for Protocol 2

Input: Non-negative convex function È ∶ R → R. Parameters µ > 0, p ∈ [0,1/2], ϵx > 0 and
ϵÈ > 0
Initialize k = 3.
if p = 1/2 then

Define constant c = 3
else

Define constant c = 1
end if
for t = 1 . . . T do

Receive ht g ht−1 ∈ R.
Set hxt = 3ht.
Set h

y
t = 3µ

Define V xt = 9h
2
t +3t−1i=1(gxi)2.

Define V
y
t = 9µ

2
+3t−1t=1(gyi)2

if p = 1/2 then
Set ³xt =

ϵ√
c+∑t−1i=1

(gx
i
)2/(hx

i
)2 log2(c+∑t−1i=1

(gx
i
)2/(hx

i
)2)

Set ³
y
t =

È(ϵ)√
c+∑t−1i=1

(gy
i
)2/(hy

i
)2 log2(c+∑t−1i=1

(gy
i
)2/(hy

i
)2)

else
Define ³xt =

ϵ

(c+∑t−1i=1
(gx
i
)2/(hx

i
)2)p

Define ³
y
t =

È(ϵ)
(c+∑t−1i=1

(gy
i
)2/(hy

i
)2)p

end if

Define Θxt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(∑t−1i=1 g

x
i)2

4k2V xt
if ∣3t−1i=1 g

x
i ∣ f 2kV xt

hxt
∣∑t−1i=1 g

x
i ∣

khxt
−

V xt
(hxt)2 otherwise

Define Θ
y
t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(∑t−1i=1 g

y

i
)2

4k2V
ψ
t

if ∣3t−1i=1 g
y
i ∣ f 2kV

y
t

h
y
t

∣∑t−1i=1 g
y

i
∣

kh
y
t

−
V
y
t

(hyt)2 otherwise

Set x̂t = −sign (3t−1i=1 g
x
i)³xt (exp(Θxt) − 1)

Set ŷt = −sign (3t−1i=1 g
y
i)³xt (exp(Θyt) − 1)

Define the norm ∥(x, y)∥2t = h2tx2 + µ2y2, with dual norm ∥(g, a)∥2
⋆,t =

g2

h2

t

+
a2

µ2 .

Define St(x̂, ŷ) = inf ŷ≥È(x̂) ∥(x, y) − (x̂, ŷ)∥t
Compute xt, yt = argminy≥È(x) ∥(xt, yt) − (x̂, ŷ)∥t.
Output wt = xt, receive feedback gt ∈ [−ht, ht], at ∈ [0, µ], such that at = 0 unless ∣gt∣ = ht.
Compute (¶xt , ¶yt) = ∥gt∥⋆,t ⋅ ∇St(x̂t, ŷt)
Set gxt = gt + ¶

x
t .

Set g
y
t = at + ¶

y
t .

end for

46

This implies:

x =
G2x̂

G2 − ¼

y = ŷ −
¼

2µ2

Moreover, we also must have y = x2, so that:

G4x̂2(G2 − ¼)2 = ŷ − G
2

2µ2
+
G2
− ¼

2µ2(G2
− ¼)3

2µ2
+ (ŷ − G2

2µ2
)(G2

− ¼)2 −G4x̂2 = 0

This is clearly a cubic equation in ¼, and so we can apply the cubic formula (via Mathematica) to
obtain the following result:

¼ =
2G2

3
+
2µ2ŷ

3
−
25/3G2µ2 + 211/3G2µ4ŷ + 211/3µ6ŷ2

Z2/3 −
Z2/3

9 ⋅ 25/3µ2

where

Z = −108G2µ4x̂ + 2
√
2916G2µ8x̂2 + (6G2µ2 − 12µ4ŷ)3

which yields:

x =
21/3(G2

− 2µ2ŷ)
Z1/3 −

Z1/3

6 ⋅ 21/3µ2

and y = x2.

The expression for ∇S(x̂, ŷ) follows directly from [16] Theorem 4.

47

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims do accurately reflect the paper’s contribution.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, see the discussion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

48

Justification: We provide a proof-sketch in the main paper and detailed proofs in the
appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

49

Answer: [NA]

Justification: This paper has only mathematical congtent. There are no experiments in this
paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This paper has only mathematical congtent. There are no experiments in this
paper.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

50

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper has only mathematical congtent. There are no experiments in this
paper.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper does conform to the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This paper provides a purely mathematical contribution. As such, it is subject
to the standard ethical concerns present for all mathematical papers, but no further ones.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

51

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper has only mathematical congtent. There are no experiments in this
paper.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper has only mathematical congtent. There are no experiments in this
paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

52

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper has only mathematical congtent. There are no experiments in this
paper.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper has only mathematical congtent. There are no experiments in this
paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper has only mathematical congtent. There are no experiments in this
paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

53

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

54

	Unconstrained Online Learning
	Notation
	Overview of Approach
	Hints and Regularization
	Proof Sketch of Theorem 1
	Regularized Online Learning via Epigraph Constraints

	Lower Bounds
	Discussion
	Other forms of Unconstrained Online Learning
	Parameter-free Algorithms and Stochastic Convex Optimization

	Generalized Upper Bounds
	Proof of Lower Bound
	Reduction to W=R
	An Efficient Algorithm for Protocol 2 With Restricted (But Sufficient) Assumptions
	A Parameter-Free Algorithm With Optimal Log Factors for Protocol 4
	Fully Unconstrained Learning via Regularization
	Full Statement of Main Result in High Dimensions

	Technical Lemmas
	Regularized Regret via Full-Matrix Bound With Constraints
	Full Matrix Algorithm and Analysis
	Implementation Considerations
	Proof of lem:monotonicity
	Proof of thm:hintregret
	Helper Lemmas for Full-Matrix Analysis

	Complete Psuedocode for Regularized 1-Dimensional Learning
	Efficient Projections for (z)=z2

