
Online Linear Regression in Dynamic Environments via Discounting

Andrew Jacobsen 1 Ashok Cutkosky 2

Abstract

We develop algorithms for online linear re-

gression which achieve optimal static and dy-

namic regret guarantees even in the complete

absence of prior knowledge. We present a

novel analysis showing that a discounted vari-

ant of the Vovk-Azoury-Warmuth forecaster

achieves dynamic regret of the form RT (u) ≤
O (d log(T) (√dP µT (u)T), where P

µ
T (u) is a

measure of variability of the comparator se-

quence, and show that the discount factor achiev-

ing this result can be learned on-the-fly. We show

that this result is optimal by providing a match-

ing lower bound. We also extend our results to

strongly-adaptive guarantees which hold over ev-

ery sub-interval [a, b] ⊆ [1, T] simultaneously.

1. Online Linear Regression

This paper presents new techniques and analyses for on-

line linear regression, a variant of the classic least-squares

regression problem tailored to streaming data (Azoury &

Warmuth, 2001; Vovk, 2001; Orabona et al., 2015; Foster

et al., 2016). Formally, consider T rounds of interaction

between a learner and an environment, in which learner’s

objective is to accurately predict some observable target

signal yt ∈ R before it’s revealed. On each round, a vec-

tor of features xt ∈ R
d is first revealed, representing the

context of the environment at the start of the round, and the

learner predicts ŷt = ⟨xt, wtð by means of a weight vec-

tor wt ∈ R
d. The signal yt ∈ R

d is then observed, and the

learner incurs a loss proportional to the prediction error,

ℓt(wt) = 1
2
(yt − ⟨xt, wtð)2. Since wt is allowed to depend

on xt, this protocol is sometimes referred to as improper

online regression, as the learner is able to make predictions

outside of the class of linear models. Indeed, since xt is

revealed before the learner must make their prediction, it is

1Department of Computing Science, University of Alberta,

Edmonton, Canada 2Department of Electrical and Computer En-
gineering, Boston University, Boston, Massachussetts. Corre-
spondence to: Andrew Jacobsen <ajjacobs@ualberta.ca>.

Proceedings of the 41
st International Conference on Machine

Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024
by the author(s).

always possible to make predictions ŷt = ft(xt) for any ar-

bitrary transformation ft ∶ R
d
→ R, for instance by setting

wt = ft(xt)xt/ ∥xt∥2.

The classical measure of the learner’s performance in this

setting is regret, the cumulative prediction error relative to

some fixed benchmark point u ∈ Rd:

RT (u) = T

∑
t=1

ℓt(wt) − ℓt(u).
Notice that this performance measure can only properly re-

flect prediction accuracy when there exists a fixed u ∈ Rd

which predicts well on average. For example, this may oc-

cur when when the (xt, yt) pairs are all generated i.i.d.

from some well-behaved distribution. However, in many

true streaming settings the data-generating distribution may

change over time due to changes in the environment. Dy-

namic regret attempts to model such settings by comparing

against a sequence of comparators u = (u1, . . . , uT):
RT (u) = T

∑
t=1

ℓt(wt) − ℓt(ut).
Notice that dynamic regret captures the usual notion of re-

gret (referred to as static regret) as a special case by set-

ting u1 = . . . = uT . Our goal in this work is to make fa-

vorable dynamic regret guarantees even in the complete

absence of any prior knowledge of the underlying data-

generating process. Naturally, because such an algorithm

leverages no prior knowledge, it necessarily must be adap-

tive to all problem-dependent quantities without requiring

any instance-specific hyperparameter tuning.

Contributions. In this work we achieve the goal laid

out above and develop the first algorithms for online linear

regression that require no prior knowledge about the data

stream, yet still make strong performance guarantees. In

particular, our contributions are as follows:

• We show that even in the absence of any boundedness

assumptions, a discounted variant of the VAW forecaster

with a well-chosen discount factor achieves dynamic

regret RT (u) ≤ O(d log (T) (√dP µT (u)T), where

P
µ
T (u) is a measure of variability of the comparator

sequence (i.e. the magnitude of P
µ
T (u) is related to

how drastically the comparator changes over time). We

1

Online Linear Regression in Dynamic Environments via Discounting

also obtain small-loss guarantees of the form RT (u) ≤
O(d log (T)(√dP µT (u)3Tt=1 ℓt(ut)), so that the algo-

rithm will automatically perform better on “easy” data

where the comparator has low loss.

• We provide a matching lower bound of the form

RT (u) ≥ Ω(d log (T) (√dTP µT (u)), demonstrating

optimality of the discounted VAW forecaster.

• We show that the discount factors required to obtain the

results in the first point can be learned on-the-fly, lead-

ing to algorithms that make guarantees matching our

lower bound. Moreover, we show how to extend our ap-

proach to achieve bounds of a similar form over every

sub-interval [a, b] ⊆ [1, T] simultaneously. These are

the first strongly-adaptive guarantees have been achieved

in the absence of all boundedness assumptions.

1.1. Related Works

Despite being a well-studied problem setting, there are

no prior works which approach online linear regression

with sufficient generality to be considered free from prior

knowledge. The closest works to our own are Vovk (2001);

Azoury & Warmuth (2001); Orabona et al. (2015); Mayo

et al. (2022), each of which consider the same improper

online learning setting as this work and present algorithms

that can be run in an unbounded domain (hence requiring

no prior knowledge about the comparator) and without any

prior knowledge of the data stream. Yet these works pro-

vide guarantees that only hold for static regret—the dy-

namic regret of the algorithms in these works may be ar-

bitrarily bad. In this sense, deploying any such algorithm

implicitly requires rather strong prior knowledge: that the

data-generating distribution is not changing over time.

A closely related problem setting which does account for

potential non-stationarity is the classic filtering problem

(Kalman, 1960; Simon, 2006; Kozdoba et al., 2019; Hazan

& Singh, 2022). This problem setting assumes that the yt
are generated from a dynamical system of a specific form,

and seeks to estimate the hidden state of the system. Thus,

these works revolve around strong structural assumptions

about the data-generating process from the outset. Simi-

larly, there is a large literature on adaptive filtering which

seeks to solve the filtering problem without a priori knowl-

edge of the system (Kivinen et al., 2006; Hazan et al., 2017;

2018; Rashidinejad et al., 2020; Tsiamis & Pappas, 2022;

Ghai et al., 2020), though these works still implicitly re-

quire prior knowledge that the underlying dynamical sys-

tem is from some specific class, as any performance guar-

antees may otherwise fail to hold.

Alternatively, there are several related problem settings that

one might hope to leverage results from, but these all in-

evitably require additional assumptions of some form to

be applied to the online linear regression problem. For

instance, many prior works develop algorithms for gen-

eral online regression settings that capture linear regres-

sion as a special case (Orabona et al., 2015; Luo et al.,

2016; Kotłowski, 2017; Kempka et al., 2019; Mhammedi

& Koolen, 2020). Even more generally, one might hope to

approach online linear regression via reduction to a more

general online convex optimization setting (Zhang et al.,

2018; Yuan & Lamperski, 2019; Zhao et al., 2020; Baby

et al., 2021; Baby & Wang, 2021; Luo et al., 2022; Ja-

cobsen & Cutkosky, 2022; Zhang et al., 2023; Zhao et al.,

2024). Unfortunately, all of these works require additional

boundedness assumptions on the losses such as Lipschitz-

ness or exp-concavity, both of which require a bounded do-

main in the context of losses ℓt(w) = 1
2
(yt − ⟨xt, wð)2.

Yet assuming a bounded domain amounts amounts to hav-

ing strong prior knowledge that the comparator sequence

u = (u1, . . . , uT) lies entirely within some bounded subset

W ⊂ Rd, which must be known and accounted for a priori

for the guarantees to hold.

One recent exception to the limitations mentioned above

is the work of Jacobsen & Cutkosky (2023). They de-

velop an approach that can be applied to any loss func-

tions satisfying ∥∇ℓt(w)∥ ≤ Gt + Lt ∥w∥ for some non-

negative constants Gt and Lt, and hence could be ap-

plied in our setting for Gt = ∣yt∣ ∥xt∥ and Lt = ∥xt∥2.

Their algorithm achieves a dynamic regret guarantee on

the order of O(M3/2√PTT) where M = maxt ∥ut∥ and

PT = 3Tt=2 ∥ut − ut−1∥. However, their approach fails to

achieve logarithmic regret against a fixed comparator, and

their approach requires prior knowledge of a Gmax ≥ Gt
and Lmax ≥ Lt for all t. Moreover their approach requires

O(dT log (T)) per-round computation, making it inappro-

priate for many of the long-running problems where non-

stationarity naturally emerges due to subtle changes in the

environment over time.

1.2. Notations

We define ℓ0(w) = ¼
2
∥w∥22, so that updates can be written

purely in terms of losses ℓt. Given a positive definite ma-

trix M , the weighted norm w.r.t M is ∥w∥M =√⟨w,Mwð.
For any sequence a1, a2, . . ., we denote amax = maxt ∣at∣.
Positive thresholding is denoted as [⋅]+ = max{⋅,0}. The

Bregman divergence w.r.t. a differentiable function È is

DÈ(x∣y) = È(x) − È(y) − ⟨∇È(y), x − yð. We denote a (

b = max{a, b} and a ' b = min{a, b}, [N] = {1, . . . ,N},
N = {0,1, . . .} denotes the natural numbers, and 1N is

the N -dimensional vector of ones. We use the short-hand

Clip[a,b](y) = (y(a)'b and the compressed sum notations

gi∶j = 3jt=i gt and ∥g∥2a∶b = 3bt=a ∥gt∥2. The N -dimensional

simplex is denoted ∆N . O(⋅) hides constant factors and

Ô(⋅) hides constant and log log factors.

2

Online Linear Regression in Dynamic Environments via Discounting

2. The Vovk-Azoury-Warmuth Forecaster

In the context of static regret, it is well known that the op-

timal strategy in our improper online linear regression set-

ting is the Vovk-Azoury-Warmuth (VAW) forecaster, dis-

covered independently by Azoury & Warmuth (2001) and

Vovk (2001). On each round, the standard VAW forecaster

sets

wt = (¼I + t

∑
s=1

xsx
⊺

s)
−1 t−1

∑
s=1

ysxs. (1)

The VAW forecaster is well-known for the following re-

gret guarantee (Azoury & Warmuth, 2001; Vovk, 2001;

Orabona et al., 2015).

Theorem 2.1. For any u ∈ Rd and any sequences (yt)Tt=1
in R and (xt)Tt=1 in R

d, the VAW forecaster guarantees

RT (u) ≤ ¼
2
∥u∥22 + dmaxt y

2
t

2
log
⎛⎝1 + 3

T
t=1 ∥xt∥22
¼d

⎞⎠ ,
Let us briefly pause to appreciate some of the subtleties of

this result, as it represents a very high standard of excel-

lence in online learning. First, note that the result holds

using no prior knowledge about the data — there are no

underlying assumptions about how the features xt or the

targets yt are distributed, the algorithm requires no specific

statistics or bounds such as ∣yt∣ ≤ Y or ∥xt∥ ≤X , and the al-

gorithm works in an unbounded domain — a relative rarity

in adversarial settings. Yet despite this incredible degree of

generality, the VAW forecaster boasts a strong logarithmic

regret guarantee, which can be shown to be optimal up to

constant factors (See, e.g., Cesa-Bianchi & Lugosi (2006,

Theorem 11.9)). Thus, the VAW forecaster achieves a har-

mony between theory and practice which is quite rare in

online learning, requiring no problem-specific information

or assumptions while still guaranteeing optimal regret.

However, a major caveat to the above discussion is that

these favorable properties hold only within the context of

static regret. The dynamic regret of the VAW forecaster can

be arbitrarily bad in general. To see why, let us consider the

simple case where d = 1 and xt = 1 for all t. In this case,

the VAW forecaster predicts ŷt = xtwt = (¼+ t)−13t−1s=1 ys,

which approximates an empirical average of the targets

observed up to round t. It is easy to see that any such

prediction strategy can fail when competing with a time-

varying comparator. For instance, if the first T /2 targets

are −1 but the second half are +1, the VAW forecaster will

quickly converge to predicting −1 in the first T /2 rounds,

but will be unable to quickly adapt after the change in the

latter T /2 rounds, leading to linear regret overall. In this

sense, the VAW forecaster actually implicitly requires quite

strong prior knowledge about the data: that it is, in some

sense, stationary. Because of this, its predictions can not be

trusted in the absence of prior knowledge, but rather only

when the practitioner knows they are dealing with data that

can be reasonably predicted using only a single fixed hy-

pothesis u ∈ Rd. In the next section, we will see that this

issue can be alleviated by incorporating a suitable recency

bias to the statistics of the VAW forecaster.

3. Dynamic Regret via Discounting

Despite making strong static regret guarantees, we saw in

the previous section that the standard VAW forecaster may

fail to attain low regret when competing against a time-

varying comparator. Loosely speaking, the problem is that

the VAW forecaster treats all time-steps as equally impor-

tant. Indeed, it can be shown that VAW forecaster can be

understood as updating

wt = arg min
w∈Rd

1

2
∥w∥2Λt

+

t−1

∑
s=1

ℓs(w),
where Λt = ¼I + xtx

⊺

t .1 The latter term 3t−1s=1 ℓs(w) forces

the VAW forecaster to choose a w which balances all of the

losses encountered so-far. Yet in dynamic scenarios, the

losses that contain the most-relevant information for pre-

dicting yt are typically the ones that have been observed the

most recently. In order to more closely track these recently-

observed losses, we make two modifications to the VAW

forecaster. First, we incorporate a forgetting or discount

factor µ in to the algorithm’s statistics, placing less empha-

sis on losses observed far in the past. Second, we allow the

update to additionally make use of a sequence of “predicted

labels” or “hints” �yt that are available before we commit to

ŷt. Intuitively, we would like our algorithm to do better

when �yt = yt. Later, we will provide some concrete ways

to set �yt that yield strong regret bounds.

The variant of the VAW forecaster described above is pro-

vided concretely in Algorithm 1. Observe that by un-

rolling the recursions for ¹t and Σt, the update wt =

Σ−1t [�ytxt + µ¹t] can be written in closed-form as

wt = (µt¼I + t

∑
s=1

µt−sxsx
⊺

s)
−1 [�ytxt + µ t−1∑

s=1

µt−1−sysxs] .
By setting µ = 1 and �yt = 0, the update precisely reduces to

Equation (1), so the discounted VAW forecaster is a strict

generalization of the standard VAW forecaster. Likewise,

the following theorem shows that Algorithm 1 obtains a

regret guarantee which captures Theorem 2.1 as a special

case. Proof can be found in Appendix A.2.

1The equivalence to Equation (1) is readily checked via the
first-order optimality condition, though this claim can also be de-
rived as a special case of a more general claim Proposition A.1
provided in the appendix.

3

Online Linear Regression in Dynamic Environments via Discounting

Algorithm 1: Discounted VAW Forecaster

Input ¼ > 0, µ ∈ (0,1]
Initialize w1 = 0, Σ0 = ¼I , ¹1 = 0

for t = 1 ∶ T do

Receive features xt ∈ R
d

Set Σt = xtx
⊺

t + µΣt−1, choose �yt ∈ R
Update wt = Σ

−1
t [�ytxt + µ¹t]

Predict ⟨xt, wtð and observe yt
Incur loss ℓt(wt) = 1

2
(yt − ⟨xt, wtð)2

Set ¹t+1 = ytxt + µ¹t
end

Theorem 3.1. Let ¼ > 0 and µ ∈ (0,1]. Then for any

sequence u = (u1, . . . , uT) in R
d, Algorithm 1 guarantees

dynamic regret RT (u) bounded above by

µ¼

2
∥u1∥22 + d2 max

t
(yt − �yt)2 log⎛⎝1 + 3

T
t=1 µ

T−t ∥xt∥22
¼d

⎞⎠
+ µ

T−1

∑
t=1

[F µt (ut+1) − F µt (ut)] + d2 log (1/µ) T∑
t=1

(yt − �yt)2
where F

µ
t (w) = µt ¼2 ∥w∥22 +3ts=1 µt−sℓs(w).

The regret decomposition obtained in Theorem 3.1 is ap-

pealing for two reasons. First, it captures Theorem 2.1 as a

special case: setting µ = 1, �yt = 0, and u1 = . . . = uT = u,

the last two terms of the bound evaluate to zero, so the re-

gret is bounded by ¼
2
∥u∥22+ d2 maxt y

2
t log (1 + ∑T

t=1∥xt∥22
¼d

) ,
which is precisely the guarantee promised by Theorem 2.1.

Second, the decomposition displays a clean separation of

concerns. The terms in the first line are the unavoidable

penalties associated with static regret, which are of course

also unavoidable here in the more general dynamic regret

setting. In the second line, any penalties incurred as a result

of a changing comparator sequence are captured entirely

by the variability term µ3Tt=1 F µt (ut+1) − F µt (ut), while

the term d log (1/µ)3Tt=1 1
2
(yt − �yt)2 represents a stability

penalty incurred due to discounting.

Intuitively, the terms in the second line represent a track-

ing/stability trade-off: against a volatile comparator se-

quence, we would ideally like to set the discount factor

µ to be small to control the variability penalty, yet this

will come at the expense of increasing the stability penalty

d log (1/µ)3Tt=1 1
2
(yt − �yt)2. In its current form, however,

this trade-off is still a bit mysterious. The variability term

µ3T−1t=1 F
µ
t (ut+1)−F µt (ut) is not necessarily monotonic as

a function of µ nor is it necessarily positive, making it dif-

ficult to meaningfully analyze or understand how it relates

to the stability penalty d
2
log (1/µ)3Tt=1(yt − �yt)2. If we

instead consider a modest upper bound on these terms we

can reveal a more explicit trade-off. We provide proof of a

slightly more general statement of the following lemma in

Appendix A.3.

Lemma 3.2. (simplified) Let ℓ0, ℓ1, . . . , ℓT be arbitrary

non-negative functions, µ ∈ (0,1), and F
µ
t (w) =

3ts=0 µt−sℓs(w). For all t, define

d̄
µ
t (u, v) = t

∑
s=0

µt−s

3ts′=0 µt−s′
[ℓs(u) − ℓs(v)]+

and P
µ
T (u) = 3T−1t=1 d̄

µ
t (ut+1, ut). Then for any VT ≥ 0,

µ
T−1

∑
t=1

[F µt (ut+1) − F µt (ut)] + log (1µ)VT
≤

µ

1 − µ
P
µ
T (u) + 1 − µ

µ
VT

The lemma bounds the variability term

µ3T−1t=1 [F µt (ut+1) − F µt (ut)] from Theorem 3.1 in

terms of a new one P
µ
T (u). To understand this new

measure of variability, for each t let us first define a

µ-exponentially-decaying distribution over time-steps s ≤ t

as p
µ
t (s) = µt−s

∑
t

s′=0
µt−s′

. Then, given µ we can express

P
µ
T (u) as

P
µ
T (u) = T−1∑

t=1

d̄
γ
t (ut+1,ut)³¹¹¹·¹¹¹µ

t

∑
s=0

p
µ
t (s)[ℓs(ut+1) − ℓs(ut)]+

=

T−1

∑
t=1

Es∼pγt
[(ℓs(ut+1) − ℓs(ut))+],

so each term of P
µ
T (u) is a measure of how different the

prediction errors of ut and ut+1 are on average across “re-

cent” losses. The quantity P
µ
T (u) can also be naively re-

lated to the more common measure of variability — the

path-length P
∥⋅∥
T = 3T−1t=1 ∥ut − ut+1∥— as follows:

P
µ
T (u) ≤ T−1∑

t=1

max
s
∥∇ℓs(ut+1)∥∥ut − ut+1∥

≤max
t,s
∥∇ℓs(ut)∥P ∥⋅∥T ≤ O (max

t
∥ut∥P ∥⋅∥T) .

Thus, P
µ
T (u) is proportional to the usual path-length.

Note that a multiplicative penalty of maxt ∥ut∥ is the

same worst-case penalty that appears in prior works, even

in bounded domains (Zhang et al., 2018; Jacobsen &

Cutkosky, 2022; Zhang et al., 2023; Zhao et al., 2024).

Letting ¸ = µ

1−µ
, Lemma 3.2 tells us that that latter terms of

Theorem 3.1 are bounded by

¸P
µ
T (u) + d

2¸

T

∑
t=1

(yt − �yt)2,
4

Online Linear Regression in Dynamic Environments via Discounting

a trade-off which can be optimized by choosing ¸ =√
d
2
∑

T
t=1(yt−�yt)2
P

γ

T
(u) to get

¸P
µ
T (u) + d

2¸

T

∑
t=1

(yt − �yt)2 = 2
¿ÁÁÀdP

µ
T (u) T∑

t=1

1

2
(yt − �yt)2.

This is very promising; as we will see in Section 3.2, a

penalty of this form is unavoidable in general. Plugging

this choice of ¸ back into ¸ = µ

1−µ
and solving for µ, we find

that the ideal choice of discount factor would be a µ ∈ [0,1]
satisfying

µ =

√
d
2 3Tt=1(yt − �yt)2√

d
2 3Tt=1(yt − �yt)2 +√P µT (u) .

Notice in particular that µ appears on both sides of the ex-

pression, and solving for this µ explicitly is non-trivial in

general. Nonetheless, the following theorem shows that a

discount factor satisfying the above expression always ex-

ists, and if it could somehow be provided to the discounted

VAW forecaster we would achieve dynamic regret match-

ing the lower bound in Section 3.2. Proof can be found in

Appendix A.5.

Theorem 3.3. For any sequences y1, . . . , yT and�y1, . . . ,�yT in R and any sequence u = (u1, . . . , uT) in R
d,

there is a discount factor µ∗ ∈ [0,1] satisfying

µ∗ =

√
d
2 3Tt=1(yt − �yt)2√

d
2 3Tt=1(yt − �yt)2 +√P µ∗T (u) (2)

with which the regret of Algorithm 1 is bounded above by

RT (u) ≤ O(dmax
t
(yt − �yt)2 log (T)

+

¿ÁÁÀdP
µ∗

T (u) T∑
t=1

(yt − �yt)2)
While this result is promising, it is important to note that it

still falls short of our desired goal of prior-knowledge-free

learning. Indeed, it seems that we require exceptionally

strong prior knowledge to choose the prescribed discount

factor µ∗ satisfying Equation (2). We will return to this

issue in Section 4 to show that this discount factor can be

learned on-the-fly, resulting in algorithms that are truly free

of prior knowledge.

Interestingly, the discount factor µ∗ in Theorem 3.3 can

help to shed some light on the variability measure P
µ∗

T (u).
Observe from the relation in Equation (2) that µ∗ can be

near zero only when P
µ∗

T (u) is very large relative to the

stability penalty, and likewise, if µ∗ is near 1 then P
µ∗

T (u)
must be inconsequentially small. In this sense, the P

µ∗

T (u)

corresponding to small µ∗ can be regarded as the worst-

case measures of variability. Yet as µ∗ approaches zero,

P
µ∗

T (u) approaches 3t−1t=1 [ℓt(ut+1) − ℓt(ut)]+, which can

be naturally related other standard measures of variability.

Indeed, this penalty is similar in spirit to the temporal vari-

ability 3T−1t=1 ∣ℓt+1(ut) − ℓt(ut)∣ studied in works such as

Campolongo & Orabona (2021); Besbes et al. (2015), and

can be related to the path-length3T−1t=1 ∥ut − ut+1∥ via con-

vexity of ℓt. In this sense, P
µ∗

T (u) can be thought of as a

relaxation of the more common measures of variability.

3.1. Small-loss Bounds via Self-confident Predictions

In the previous section, we saw that the discounted

VAW forecaster can achieve regret scaling as

O (√dP µ∗T (u)3Tt=1(yt − �yt)2), where �yt ∈ R is an

arbitrary “hint” available before observing the true yt. One

particularly interesting option is to use the learner’s own

prediction as a hint, �yt = ⟨xt, wtð. The reasoning is that any

learner achieving low dynamic regret must be predicting yt
reasonably well on average, so their own predictions would

naturally make for reasonable predicted labels �yt. Con-

cretely, observe that by choosing �yt = ⟨xt, wtð we would

have3Tt=1(yt−�yt)2 = 3Tt=1(yt−⟨xt, wtð)2 = 23Tt=1 ℓt(wt),
and hence for some µ ∈ [0,1] the guarantee in Theorem 3.3

would scale as

RT (u) = T

∑
t=1

ℓt(wt) − ℓt(ut) ≤ �O⎛⎜⎝
¿ÁÁÀdP

µ
T (u) T∑

t=1

ℓt(wt)⎞⎟⎠ ,
where the �O(⋅) hides the logarithmic factor. Now notice

that 3Tt=1 ℓt(wt) appears on both sides of this inequal-

ity. Solving for 3Tt=1 ℓt(wt), one finds that this implies

that

√
3Tt=1 ℓt(wt) ≤ O (√dP µT (u) +√3Tt=1 ℓt(ut)), so

plugging this back into the regret bound we have

RT (u) ≤ �O⎛⎜⎝P µT (u) +
¿ÁÁÀP

µ
T (u) T∑

t=1

ℓt(ut)⎞⎟⎠ .
Bounds of this form, sometimes called small-loss or L∗

bounds, are highly desirable because they naturally adapt to

the total loss of the comparator sequence, potentially lead-

ing to lower regret than more naive hint choices such as�yt = yt−1 or �yt = 0.

Unfortunately, the above argument does not quite go

through because the now the logarithmic penalty in

Theorem 3.3 scales as O (dmaxt(yt − �yt)2 log (T)) =
O (dmaxt ℓt(wt) log (T)), and this maxt ℓt(wt) could be

arbitrarily large. Fortunately, it turns out that this is-

sue can be remedied by a simple trust-region argument.

On each round, instead of directly using hints �yt =⟨xt, wtð, we can constrain these predictions to be close

5

Online Linear Regression in Dynamic Environments via Discounting

to some arbitrary reference point yRef
t . In particular, in

Lemma D.1 we show by clipping the learner’s predic-

tions to a suitable interval centered at yRef
t we can guar-

antee (yt − �yt)2 ≤ O (maxt(yt − yRef
t)2 ' ℓt(wt)). This

gives us the best-of-both-worlds: a similar self-bounding

argument to above still yields a small-loss penalty

O(√dP µT (u)3Tt=1 ℓt(ut)), while the logarithmic penalty

can be bounded as O (dmaxt(yt − yRef
t)2 log (T)) ≤

O(dmaxt y
2
t log (T)) by setting yRef

t = yt−1 or yRef
t =

0. The following theorem follows this above argument

through, demonstrating that the discounted VAW forecaster

can achieve small-loss bounds when using a well-chosen

discount factor.

Theorem 3.4. Let y
Ref
t ∈ R be an arbitrary reference

point and let Bt = [yRef
t − Mt, y

Ref
t + Mt] for Mt =

maxs<t ∣ys − yRef
s ∣. Suppose that we apply Algorithm 1 with

hints �yt = ClipBt
(⟨xt, wtð). Then for any sequence of

losses ℓ1, . . . , ℓT and any sequence u = (u1, . . . , uT) in

R
d, there is a µ○ ∈ [0,1] satisfying

µ○ =

√
d3Tt=1 ℓt(ut)√

d3Tt=1 ℓt(ut) +√P µ○T (u) . (3)

Moreover, running Algorithm 1 with discount µ○ (µmin for

µmin =
2d

2d+1
ensures regret bounded above by

RT (u) ≤ O(dP µmin

T (u) + dmax
t
(yt − yRef

t)2 log (T)
+

¿ÁÁÀdP
µ○

T (u) T∑
t=1

ℓt(ut)),

Notice that unlike the previous section, there are two dif-

ferent variability penalties, P
µ○

T (u) and P
µmin

T (u). The

first mirrors the measure encountered in the last section.

The other, P
µmin

T (u), is rather annoying; in high dimen-

sions µmin =
2d

2d+1
is generally quite large, so P

µmin

T (u)
may evaluate losses at irrelevant comparators that are far

away in time. Nevertheless, notice that this term satisfies

P
µmin

T (u) ≤ 3T−1t=1 maxs [ℓs(ut+1) − ℓs(ut)]+, a penalty

which we will show is unavoidable in general in Theo-

rem 3.5.

3.2. Dimension-dependent Lower Bound

In this section, we show that the regret penal-

ties observed in the previous sections are un-

avoidable without further assumptions. The fol-

lowing lower bound is proven in Appendix C.1.

Theorem 3.5. For any d, T ≥ 1 and P,Y > 0

such that dP ≤ 2TY 2, there is a sequence of losses

ℓt(w) = 1
2
(yt − ⟨xt, wð)2 and a comparator sequence

u = (u1, . . . , uT) satisfying maxt ∣yt∣ ≤ Y and

3T−1t=1 maxs [ℓs(ut+1) − ℓs(ut)]+ ≤ P such that

RT (u) ≥ Ω⎛⎜⎝dY 2 log (T) + dP +
¿ÁÁÀdP

T

∑
t=2

(yt − yt−1)2⎞⎟⎠ .
The key observation is that there is always a sequence

of losses such that 3Tt=1 ℓt(ut) = 0 can be ensured us-

ing only T /d different comparators. Indeed, letting the

features xt cycle through the standard basis vectors, for

any sub-interval [s, s + d] ⊆ [1, T] we can choose a sin-

gle u ∈ Rd such that ⟨xt, uð = yt for each t in the inter-

val. Then by sampling the yt randomly from {−Y Ã,Y Ã}
for some Ã ∈ [0,1], we can ensure variability of at most

O(TY 2Ã2/d) ≤ P but regret of at least Ω(TY 2Ã2) ≥
Ω(√dP [3Tt=1(yt − yt−1)2 (dP]).
Note that the condition dP ≤ 2TY 2 captures a natural re-

striction of the problem setting, in that for larger P the

vacuous lower bound RT (u) ≥ Ω(TY 2) can be con-

structed. Indeed, in the boundary case where dP = 2TY 2,

Theorem 3.5 tells us that there is a sequence such that

RT (u) ≥ Ω (√dPVT) = Ω (dP) = Ω (TY 2). Yet this

bound is achieved against any comparator sequence by the

algorithm that naively predicts 0 on every round: RT (u) =
3Tt=1 ℓt(0) − ℓt(ut) ≤ 3Tt=1 1

2
y2t ≤

1
2
TY 2. Hence, no lower

bound can exceed 1
2
TY 2, so it is sufficient to consider com-

parator sequences with variability bounded by P ≤ 2TY 2.

If we instead consider a more restricted problem setting

by assuming a bounded domain, then the losses ℓt(w) =
1
2
(yt − ⟨xt, wð)2 can be considered to be exp-concave. In

this setting, Baby & Wang (2021) have shown a lower

bound of

RT (u) ≥ Ω (Y 4/3d1/3T 1/3C2/3
T) , (4)

where CT = 3T−1t=1 ∥ut − ut−1∥1. A natural question is

whether similar results also hold in the unbounded setting,

and how they compare to our lower bound in Theorem 3.5.

Note that even in the exp-concave setting, the bound in

Equation (4) is not necessarily tight. Indeed, Baby & Wang

(2021) provide an algorithm which guarantees

RT (u) ≤ �O(Y 4/3d3.5T 1/3C2/3
T),

which does not match the lower bound w.r.t the dimension

d. In contrast, our lower bound in Theorem 3.5 matches

our upper bounds in all involved quantities (see Sections 3

and 4). Regardless, we also demonstrate in Appendix F.1

that the same �O(Y 4/3d3.5T 1/3C2/3
T) upper bound can be

attained, even in unbounded domains, using the strongly-

adaptive guarantees developed in Section 5.

6

Online Linear Regression in Dynamic Environments via Discounting

4. Learning the Optimal Discount Factor

Recall that our goal from the outset has been to design al-

gorithms that achieve favourable dynamic regret guaran-

tees using no prior knowledge. To this end, we showed

in Section 3 that the discounted VAW forecaster can

achieve dynamic regret guarantees of the form RT (u) ≤
O (√dP µT (u)T (d log (T)) where P

µ
T (u) is a certain

measure of variability of the comparator sequence, and in

Section 3.2 we showed that these penalties are unavoid-

able in general. However, these results hold under the as-

sumption that the learner chooses discount rates satisfying

special conditions (Equations (2) and (3)), either of which

would require exceptionally strong prior knowlege to en-

sure. Indeed, the learner would need to know the future!

In order to achieve our goal of learning in the complete ab-

sence of prior knowledge, we need to ensure that the learner

can adequately guess or learn these ideal discount factors

on-the-fly.

A common way to achieve runtime parameter-tuning of this

sort would be to run many instances of the algorithm for

different choices of µ in parallel, and combine the predic-

tions using a suitable meta-algorithm. In particular, sup-

pose we have a collection of algorithmsA1, . . . ,AN and on

each round we can query each Ai for a prediction y
(i)
t ∈ R.

Moreover, suppose we have a meta-algorithm AMeta which

tells us how to combine these predictions by outputting a

pt from the N -dimensional simplex ∆N . Then by pre-

dicting yt = 3Ni=1 ptiy(i)t , 2 for any benchmark sequence

u = (u1, . . . , uT) and any j ∈ [N] we have

RT (u) = T

∑
t=1

ℓt(yt) − ℓt(ut)
=

T

∑
t=1

ℓt(y(j)t) − ℓt(ut)
´¹¹¹¸¹¹¶

=∶R
Aj

T
(u)

+

T

∑
t=1

ℓt(yt) − ℓt(y(j)t)
´¹¹¸¹¹¶

=∶RMeta
T (ej)

where the last line observes that y
(j)
t = ⟨xt, w(j)t ð. Hence,

we may achieve our goal if we can ensure 1) that there is

a j ∈ [N] such that Aj uses a near-optimal discount factor

µj , and 2) we can provide a meta-algorithm which guar-

antees low regret RMeta
T (ej). We first investigate the latter

point, and return to the former in Theorems 4.2 and 4.3.

The obvious approach to bounding the meta-algorithm’s re-

gret would be to observe that the losses ℓt(yt) = 1
2
(yt−yt)2

are ³t-exp-concave for ³t =
1

2maxi ℓt(y(i)t)
(Lemma D.2),

which will allow us to apply an instance of the fixed-share

2Recall from the introduction that because the features xt are
provided at the start of the round, we can work directly in the

output space R if we so choose by setting wt = ytxt/ ∥xt∥
2
.

Hence, given y ∈ R we allow a slight abuse of notation by let-
ting ℓt(y) =

1

2
(yt − y)

2.

Algorithm 2: Range-clipped Meta-algorithm

Input Online learning algorithms A1, . . . ,AN ,

experts algorithm AMeta over the simplex ∆N .

Initialize AMeta,A1, . . . ,AN , and set M1 = 0

for t = 1 ∶ T do
Receive features xt
Choose reference point yRef

t

Define Bt = [yRef
t −Mt, y

Ref
t +Mt]

for i = 1, . . . ,N do
Send xt to Ai
Get prediction y

(i)
t = ⟨xt, w(i)t ð from Ai

Compute y
(i)
t = ClipBt

(y(i)t)
end

Get pt ∈∆N from AMeta

Predict yt = 3Ni=1 ptiy(i)t and observe yt
Update Mt+1 =Mt (∣yt − yRef

t ∣
Send ℓt(w) = 1

2
(yt − ⟨xt, wð)2 to Ai ∀i

Send ℓt(y(1)t), . . . , ℓt(y(N)t) to AMeta

end

algorithm (Cesa-Bianchi et al., 2012) to get:

RMeta
T (ej) ≤ O (log (NT)

³T+1
) ≤ O(max

t,i
ℓt(y(i)t) log (NT)),

as shown in Theorem E.1. However, just like in Section 3.1,

the term maxt,i ℓt(y(i)t) is hard to quantify and could be

be arbitrarily large in general. Fortunately the very same

clipping trick used in Section 3.1 also works here: instead

of having the meta-algorithm combine the raw predictions

y
(i)
t , we can simply clip the predictions to a trust-region

around a given reference point yRef
t . In Lemma D.3 we

show that the clipping strategy detailed in Algorithm 2 in-

curs only an additional constant penalty in the regret. Then,

using Lemma D.1, using these clipped predictions leads to

RMeta
T (ej) ≤ O(max

t
(yt − yRef

t)2 log (NT)).
Note that a penalty of a similar order is already present in

the regret of the VAW forecaster (e.g. Theorem 3.1) so this

result will be sufficient for our purposes. Overall, the fol-

lowing theorem formalizes the argument described above.

We provide a simplified statement here for brevity, but the

full statement and its proof can be found in Appendix D.4.

Theorem 4.1. (simplified) Let AMeta be the instance of

fixed-share characterized in Theorem E.1. Then for any

sequence u = (u1, . . . , uT) in R and any j ∈ [N], Algo-

rithm 2 guarantees

RT (u) ≤ Ô (RAj

T (u) +max
t
(yt − yRef

t)2 log (NT)) ,
where Ô(⋅) hides log log terms.

7

Online Linear Regression in Dynamic Environments via Discounting

A similar target-clipping strategy was recently used by

Mayo et al. (2022) to prove a static regret result for scale-

free unconstrained online regression. Theorem 4.1 general-

izes their approach by clipping to a trust-region of an arbi-

trary center yRef
t ∈ R, and offers a somewhat streamlined ar-

gument which does not appeal to probabilistic notions such

as mixibility.

Finally, with Theorem 4.1 in hand, we can achieve our

desired result by running Algorithm 2 with the base al-

gorithms Ai being instances of the discounted VAW fore-

caster with different discount factors µ. The following the-

orems show that for a well-chosen set of discount factors,

we can make guarantees that match the bounds attained un-

der oracle tuning of µ (Theorems 3.3 and 3.4), yet require

no prior knowledge of any sort. Proofs can be found in

Appendices D.5 and D.6 respectively.

Theorem 4.2. Let b > 1, ¸min = 2d, ¸max = dT , and for all

i ∈ N let ¸i = ¸minb
i
' ¸max, and construct the set of dis-

count factors Sµ = {µi = ¸i
1+¸i
∶ i ∈ N} ∪ {0} . For any µ in

Sµ , letAµ denote an instance of Algorithm 1 with discount

µ.3 LetAMeta be an instance of the algorithm characterized

in Theorem 4.1, and suppose we set y
Ref
t = �yt for all t. Then

for any u = (u1, . . . , uT) in R
d, Algorithm 2 guarantees

RT (u) ≤ O(dmax
t
(yt − yRef

t)2 log (T)
+ b

¿ÁÁÀdP
µ∗

T (u) T∑
t=1

(yt − �yt)2)
where µ∗ ∈ [0,1] satisfies Equation (2).

Theorem 4.3. Under the same conditions as Theo-

rem 4.2, suppose each Aµ sets hints �yt = y
µ
t =

ClipBt
(⟨, xt, wµt ð), where Bt = [yRef

t −Mt, y
Ref
t +Mt] and

Mt = maxs<t ∣ys − yRef
s ∣. Then for any u = (u1, . . . , uT) in

R
d, Algorithm 2 guarantees

RT (u) ≤ O(dP µmin

T (u) + dmax
t
(yt − yRef

t)2 log (T)
+ b

¿ÁÁÀdP
µ○

T (u) T∑
t=1

ℓt(ut))
where µmin =

2d
2d+1

and µ○ ∈ [0,1] satisfies Equation (3).

It is worth noting that Theorems 4.2 and 4.3 use knowl-

edge of the horizon T to construct the set of experts. All

of our results extend immediately to the unknown T set-

ting as well via the standard doubling trick (Cesa-Bianchi

3For brevity, here we refer to an algorithm that directly pre-
dicts �yt on every round as being an instance of the discounted
VAW forecaster with µ = 0. This terminology can be justified by
Remark A.2, but for our purposes here it’s sufficient to consider it
convenient alias.

& Lugosi, 2006), so for simplicity we treat T as part of the

problem setting rather than a potentially unknown property

of the data. An interesting direction for future development

would be to construct the set of experts in a more on-the-

fly way, so as to avoid using the doubling trick to adapt to

unknown T .

5. Strongly-Adaptive Guarantees

While our original goal was only to achieve dynamic re-

gret guarantees in the absence of prior knowledge, it turns

out that we can actually achieve an even stronger result:

dynamic regret guarantees that hold over every sub-interal[a, b] ⊆ [1, T] simultaneously. To our knowledge, strongly-

adaptive guarantees of this sort have previously only been

achieved under various boundedness assumptions (Baby

et al., 2021; Baby & Wang, 2022b;a; Jun et al., 2017;

Cutkosky, 2020; Daniely et al., 2015).

The results can be derived using the results in the previous

section. As shown in Appendix D.4, for any [s, Ä] ⊆ [1, T],
u = (us, . . . , uÄ), and µ ∈ Sµ , Algorithm 2 more generally

guarantees that

R[s,Ä](u) ≤ Ô (RAγ

[s,Ä](u) +max
t
(yt − yRef

t)2 log (NÄ)) ,
where R[s,Ä] denotes the regret over sub-interval [s, Ä] ⊆[1, T]. The only caveat is that the regret guarantees of the

discounted VAW forecaster only hold when the algorithm

begins learning on round s.4 However, suppose that for

each s ∈ [1, T] and each µ ∈ Sµ we define an algorithm

Aµ,s which uses discount µ but begins learning at time s.

Then for any [s, Ä] Lemma D.4 implies that there is aAµ,s

such that R
Aγ,s

[s,Ä](u) ≤ O(dmaxt(yt − yRef
t)2 log (Ä − s) +

b
√
dP

µ∗

[s,Ä](u)3Ät=s(yt − �yt)2). Plugging this back into the

previous display and choosing ∣Sµ ∣ ≤ O(log (T)), we have

N ≤ O(T log (T)) and an overall regret bound of

R[s,Ä](u) ≤ Ô⎛⎝dmax
t
(yt − �yt)2 log (T)

+ b

¿ÁÁÀdP
µ∗

[s,Ä](u) Ä

∑
t=s

(yt − �yt)2⎞⎠.
This is the essence of the Follow the Leading History algo-

rithm of Hazan & Seshadhri (2007; 2009).

While the above approach leads to a strongly-adaptive

guarantee, it would be excessively expensive in general,

4More generally, it can be seen from the analysis that if the
algorithm starts at time t = 1 and we try to bound the regret over
[s, Ä], then after telescoping the divergence terms we will end up
with a non-trivial term Dψs(us∣ws) which is hard to quantify in
general for s > 1 without further assumptions.

8

Online Linear Regression in Dynamic Environments via Discounting

since we’d now have O(T log (T)) total experts to update

on every round. We may instead lower this to O(log2(T))
experts using the geometric covering intervals of Daniely

et al. (2015); Veness et al. (2013). The idea is as follows:

instead of initializing a new instance of each Aµ on every

round s ∈ [T], we will construct a set of intervals S such

that any [s, Ä] ⊆ [1, T] can be covered using only a small

number of intervals from S. Then for each µ ∈ Sµ and

each I ∈ S, we can define an instance of the discounted

VAW forecaster Aµ,I which is run only during the interval

I . The geometric covering intervals are constructed in such

a way that 1) any round t can fall into at most O(log (T))
of the intervals, and 2) any [s, Ä] ⊆ [1, T] can be covered

using only O(log (Ä − s)) disjoint intervals from S. The

first property ensures that there at most O(log2(T)) active

experts on each round, while the second property implies

that there is a disjoint set of intervals I1, . . . , IK such that

R[s,Ä](u) = 3Ki=1RIi(u), so bounding each of these using

a similar argument to the above followed by an application

of Cauchy-Schwarz inequality yields

R[s,Ä](u) ≤ Ô(dmax
t
(yt − �yt)2 log2(T)

+ b

¿ÁÁÀdP
µ∗

[s,Ä](u) Ä

∑
t=s

(yt − �yt)2),
where P[s,Ä](u) is the total variability over the intervals

and we’ve used K log (T) ≤ O(log2(T)). Hence, overall

the penalty we incur for using the geometric covering is a

modest increase from log (T) to K log (T) ≤ O(log2(T))
in the leading term. Likewise, a similar argument holds for

our small-loss bounds. We provide a formal statement and

proof of these results in Appendix F.

6. Conclusion

In this paper, we designed algorithms for online linear re-

gression which achieve optimal dynamic regret guarantees,

even in the absence of all prior knowledge. We developed a

novel analysis of a discounted variant of the Vovk-Azoury-

Warmuth forecaster, showing that it can guarantee dynamic

regret of the form RT (u) ≤ O (d log (T) (√dP µT (u)T)
when equipped with an appropriate discount factor (Sec-

tion 3). We also provided a matching lower bound, demon-

strating that these penalties are unavoidable in general

(Section 3.2). We then showed that the ideal discount fac-

tors can be learned on-the-fly, resulting in algorithms that

can be applied with no prior knowledge yet still make op-

timal dynamic regret guarantees (Section 4) and strongly-

adaptive guarantees (Section 5). These are the first algo-

rithms for online linear regression that make meaningful

guarantees without making assumptions of any kind on the

underlying data.

An important direction for future work is to reduce the

computational complexity of the algorithms. Similar to the

traditional VAW forecaster, the approach developed here

can be infeasible for very high-dimensional features, re-

quiring roughly O(d2 log (T)) computation every round.

The d2 factor likely can be reduced by extending our anal-

ysis to use modern sketching techniques (Luo et al., 2016),

and the log (T) factor can possibly be reduced using simi-

lar techniques to the recent work of Lu & Hazan (2022).

Acknowledgements

We thank David Janz for valuable feedback on the initial

draft of this work. AJ was supported by an NSERC CGS-

D scholarship. AC acknowledges support from NSF grant

no. 2211718.

Impact Statement

This paper presents theoretical work that improves online

linear regression. We do not anticipate any significant neg-

ative societal consequences.

References

Azoury, K. S. and Warmuth, M. K. Relative loss bounds for

on-line density estimation with the exponential family of

distributions. Machine learning, 43:211–246, 2001.

Baby, D. and Wang, Y.-X. Optimal dynamic regret in exp-

concave online learning. In Proceedings of Thirty Fourth

Conference on Learning Theory. PMLR, 2021.

Baby, D. and Wang, Y.-X. Optimal dynamic regret in lqr

control. In Advances in Neural Information Processing

Systems, 2022a.

Baby, D. and Wang, Y.-X. Optimal dynamic regret in

proper online learning with strongly convex losses and

beyond. In Proceedings of The 25th International Con-

ference on Artificial Intelligence and Statistics. PMLR,

2022b.

Baby, D., Hasson, H., and Wang, Y. Dynamic regret for

strongly adaptive methods and optimality of online krr,

2021.

Besbes, O., Gur, Y., and Zeevi, A. Non-stationary stochas-

tic optimization. Operations Research, 2015.

Campolongo, N. and Orabona, F. A closer look at temporal

variability in dynamic online learning, 2021.

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning, and

games. Cambridge university press, 2006.

9

Online Linear Regression in Dynamic Environments via Discounting

Cesa-Bianchi, N., Gaillard, P., Lugosi, G., and Stoltz, G.

Mirror descent meets fixed share (and feels no regret).

Advances in Neural Information Processing Systems, 25,

2012.

Cutkosky, A. Parameter-free, dynamic, and strongly-

adaptive online learning. In Proceedings of the 37th In-

ternational Conference on Machine Learning, 2020.

Daniely, A., Gonen, A., and Shalev-Shwartz, S. Strongly

adaptive online learning. In Proceedings of the 32nd

International Conference on Machine Learning. PMLR,

2015.

Foster, D., Kale, S., and Karloff, H. Online sparse linear

regression. In 29th Annual Conference on Learning The-

ory. PMLR, 2016.

Gaillard, P., Gerchinovitz, S., Huard, M., and Stoltz, G.

Uniform regret bounds over R
d for the sequential lin-

ear regression problem with the square loss. In Proceed-

ings of the 30th International Conference on Algorithmic

Learning Theory. PMLR, 2019.

Ghai, U., Lee, H., Singh, K., Zhang, C., and Zhang, Y. No-

regret prediction in marginally stable systems. In Pro-

ceedings of Thirty Third Conference on Learning The-

ory. PMLR, 2020.

Hazan, E. Introduction to online convex optimization.

CoRR, abs/1909.05207, 2019.

Hazan, E. and Seshadhri, C. Adaptive algorithms for online

decision problems. In Electronic colloquium on compu-

tational complexity (ECCC), number 088, 2007.

Hazan, E. and Seshadhri, C. Efficient learning algorithms

for changing environments. In Proceedings of the 26th

Annual International Conference on Machine Learning,

2009.

Hazan, E. and Singh, K. Introduction to online nonstochas-

tic control, 2022.

Hazan, E., Singh, K., and Zhang, C. Learning linear dy-

namical systems via spectral filtering. Advances in Neu-

ral Information Processing Systems, 2017.

Hazan, E., Lee, H., Singh, K., Zhang, C., and Zhang,

Y. Spectral filtering for general linear dynamical sys-

tems. Advances in Neural Information Processing Sys-

tems, 2018.

Jacobsen, A. and Cutkosky, A. Parameter-free mirror de-

scent. In Proceedings of Thirty Fifth Conference on

Learning Theory. PMLR, 2022.

Jacobsen, A. and Cutkosky, A. Unconstrained online learn-

ing with unbounded losses. In International Conference

on Machine Learning (ICML). PMLR, 2023.

Jun, K.-S., Orabona, F., Wright, S., and Willett, R. Im-

proved Strongly Adaptive Online Learning using Coin

Betting. In Proceedings of the 20th International Con-

ference on Artificial Intelligence and Statistics. PMLR,

2017.

Kalman, R. E. A new approach to linear filtering and pre-

diction problems. Transactions of the ASME–Journal of

Basic Engineering, 1960.

Kempka, M., Kotlowski, W., and Warmuth, M. K. Adap-

tive scale-invariant online algorithms for learning linear

models. In Proceedings of the 36th International Con-

ference on Machine Learning. PMLR, 2019.

Kivinen, J., Warmuth, M., and Hassibi, B. The p-norm

generalization of the lms algorithm for adaptive filtering.

IEEE Transactions on Signal Processing, 2006.

Kotłowski, W. Scale-invariant unconstrained online learn-

ing. In Proceedings of the 28th International Conference

on Algorithmic Learning Theory. PMLR, 2017.

Kozdoba, M., Marecek, J., Tchrakian, T., and Mannor, S.

On-line learning of linear dynamical systems: Exponen-

tial forgetting in kalman filters. In Proceedings of the

AAAI Conference on Artificial Intelligence, 2019.

Lu, Z. and Hazan, E. Efficient adaptive regret minimiza-

tion, 2022.

Luo, H., Agarwal, A., Cesa-Bianchi, N., and Langford,

J. Efficient second order online learning by sketching.

In Advances in Neural Information Processing Systems,

2016.

Luo, H., Zhang, M., Zhao, P., and Zhou, Z.-H. Corralling a

larger band of bandits: A case study on switching regret

for linear bandits. In Proceedings of Thirty Fifth Confer-

ence on Learning Theory. PMLR, 2022.

Mayo, J. J., Hadiji, H., and van Erven, T. Scale-free un-

constrained online learning for curved losses. In Pro-

ceedings of Thirty Fifth Conference on Learning Theory,

2022.

Mhammedi, Z. and Koolen, W. M. Lipschitz and

comparator-norm adaptivity in online learning. In Aber-

nethy, J. and Agarwal, S. (eds.), Proceedings of Thirty

Third Conference on Learning Theory. PMLR, 2020.

Orabona, F., Crammer, K., and Cesa-Bianchi, N. A gener-

alized online mirror descent with applications to classi-

fication and regression. Mach. Learn., 2015.

10

Online Linear Regression in Dynamic Environments via Discounting

Rashidinejad, P., Jiao, J., and Russell, S. Slip: Learning to

predict in unknown dynamical systems with long-term

memory. In Advances in Neural Information Processing

Systems, 2020.

Simon, D. Optimal state estimation: Kalman, H infinity,

and nonlinear approaches. John Wiley & Sons, 2006.

Tsiamis, A. and Pappas, G. J. Online learning of the kalman

filter with logarithmic regret. IEEE Transactions on Au-

tomatic Control, 2022.

Veness, J., White, M., Bowling, M., and György, A. Parti-

tion tree weighting. In 2013 Data Compression Confer-

ence, 2013.

Vovk, V. Competitive on-line statistics. International Sta-

tistical Review, 2001.

Yuan, J. and Lamperski, A. G. Trading-off static and dy-

namic regret in online least-squares and beyond. CoRR,

abs/1909.03118, 2019.

Zhang, L., Lu, S., and Zhou, Z.-H. Adaptive online learn-

ing in dynamic environments. In Advances in Neural

Information Processing Systems, 2018.

Zhang, Z., Cutkosky, A., and Paschalidis, Y. Unconstrained

dynamic regret via sparse coding. In Advances in Neural

Information Processing Systems, 2023.

Zhao, P., Zhang, Y.-J., Zhang, L., and Zhou, Z.-H. Dy-

namic regret of convex and smooth functions. In Ad-

vances in Neural Information Processing Systems, 2020.

Zhao, P., Zhang, Y.-J., Zhang, L., and Zhou, Z.-H. Adap-

tivity and non-stationarity: Problem-dependent dynamic

regret for online convex optimization. Journal of Ma-

chine Learning Research, 2024.

11

Online Linear Regression in Dynamic Environments via Discounting

A. Proofs for Section 3 (Dynamic Regret via Discounting)

A.1. Equivalence to FTRL and Mirror Descent

We accomplish our analysis of the discounted VAW forecaster using the equivalence in the following proposition, proving

both optimistic FTRL and and optimistic mirror descent interpretations of the discounted VAW forecaster. Equation (6)

is perhaps the most natural interpretation of the update: it says that the discounted VAW forecaster chooses the w which

minimizes the discounted sum ht(w)+µℓt−1(w)+µ2ℓt−2(w)+ . . ., thus placing greater emphasis on the most-recent losses

and the hint function ht(w). However, it is not at all obvious how to analyze the dynamic regret of the discounted VAW

forecaster when interpreted in this FTRL-like form. Rather, the key to our results in this work is to instead approach the

analysis through the lens of the mirror descent update (Equation (7)). Interestingly, a similar mirror descent interpretation

was used in the seminal work of Azoury & Warmuth (2001), though they did not account for an arbitrary �yt and they did

not refer to the algorithm in terms of mirror descent.

Proposition A.1. (Discounted VAW Forecaster) Let µ ∈ (0,1], ¼ > 0, �y1 = 0, and �yt ∈ R for t > 1. Define ht(w) =
1
2
(�yt − ⟨xt, wð)2 and ℓ0(w) = ¼

2
∥w∥22. Recursively define Σt = xtx

⊺

t + µΣt−1 starting from Σ0 = ¼I , let Èt(w) = 1
2
∥w∥2Σt

and set w1 = arg min w∈Rd È1(w) = 0. Then the following are equivalent

Σ−1t [�ytxt + µ t−1∑
s=1

µt−1−sysxs] (5)

arg min
w∈Rd

ht(w) + µ t−1∑
s=0

µt−1−sℓs(s) (6)

arg min
w∈Rd

(µℓt−1 − µht−1 + ht)(w) + µDÈt−1
(w∣wt−1) (7)

Remark A.2. Note that with µ = 0, Equations (6) and (7) prescribe choosing any wt satisfying ⟨wt, xtð = �yt. The choice

is not unique, but nevertheless it will often be convenient to refer to an algorithm which greedily predicts �yt on each round

as an instance of Algorithm 1 with µ = 0.

Proof. The result follows by showing that Equations (6) and (7) are both equivalent to Equation (5). First consider the

former, Equation (6). From the first-order optimality condition we have

0 = ∇ht(wt) + µ t−1∑
s=0

µt−1−s∇ℓs(wt)
= −(�yt − ⟨xt, wtð)xt − µ t−1∑

s=1

µt−1−s(ys − ⟨xs, wtð)xs + µt¼wt,
where the last line recalls that we defined ℓ0(w) = ¼

2
∥w∥22. Hence,

(µt¼I + t

∑
s=1

µt−sxsx
⊺

s)wt = �ytxt + t

∑
s=1

µt−sysxs

Ô⇒ wt = (µt¼I + t

∑
s=1

µt−sxsx
⊺

s)
−1 [�ytxt + µ t−1∑

s=1

µt−1−sysxs]
= Σ−1t [�ytxt + µ t−1∑

s=1

µt−1−sysxs] ,
where the last line can be seen by unrolling the recursion for Σt.

Likewise, consider Equation (7). From the first-order optimality condition wt = arg min w∈Rd(µℓt−1 − µht−1 + ht)(w) +
µDÈt−1

(w∣wt), we have

0 = µ(∇ℓt−1(wt) −∇ht−1(wt)) +∇ht(wt) + µ [∇Èt−1(wt) −∇Èt−1(wt−1)]
= −µyt−1xt−1 + µ�yt−1xt−1 − �ytxt + xtx⊺twt + µΣt−1wt − µΣt−1wt−1
= −µyt−1xt−1 + µ�yt−1xt−1 − �ytxt +Σtwt − µΣt−1wt−1,

12

Online Linear Regression in Dynamic Environments via Discounting

where the last line observes that Σt = xtx
⊺

t + µΣt−1 by construction. Hence, re-arranging we have

Σtwt = �ytxt + µyt−1xt−1 − µ�yt−1xt−1 + µΣt−1wt−1
and unrolling the recursion:

= �ytxt + µyt−1xt−1 − µ�yt−1xt−1 + µ [�yt−1xt−1 + µyt−2xt−2 − µ�yt−2xt + µΣt−2wt−2]
= �ytxt + µyt−1xt−1 + µ2yt−2xt−2 − µ2�yt−2xt−2 + µ2Σt−2wt−2
= . . .

= �ytxt − µt−1�y1x1 + µ t−1∑
s=1

µt−1−sysxs

= �ytxt + µ t−1∑
s=1

µt−1−sysxs,

for �y1 = 0. Hence, applying Σ−1t to both sides we have

wt = Σ
−1
t [�ytxt + µ t−1∑

s=1

µt−1−sysxs]

A.2. Proof of Theorem 3.1

Theorem 3.1. Let ¼ > 0 and µ ∈ (0,1]. Then for any sequence u = (u1, . . . , uT) in R
d, Algorithm 1 guarantees dynamic

regret RT (u) bounded above by

µ¼

2
∥u1∥22 + d2 max

t
(yt − �yt)2 log⎛⎝1 + 3

T
t=1 µ

T−t ∥xt∥22
¼d

⎞⎠
+ µ

T−1

∑
t=1

[F µt (ut+1) − F µt (ut)] + d2 log (1/µ) T∑
t=1

(yt − �yt)2
where F

µ
t (w) = µt ¼2 ∥w∥22 +3ts=1 µt−sℓs(w).

Proof. Begin by applying the regret template provided by Lemma A.3:

RT (u) ≤ T

∑
t=1

DÈt
(ut∣wt) −DÈt+1

(ut∣wt+1) + T

∑
t=1

ht+1(ut) − ht(ut) + 1

2

T

∑
t=1

(yt − �yt)2 ∥xt∥2Σ−1t ,

bound the first two summations using Lemma A.4:

≤
µ¼

2
∥u1∥22 + hT+1(uT) + µ T−1∑

t=1

[F µt (ut+1) − F µt (ut)] + 1

2

T

∑
t=1

(yt − �yt)2 ∥xt∥2Σ−1t ,

and apply a discounted variant of the log-determinant lemma (Lemma G.2) to bound the final summation:

≤
µ¼

2
∥u1∥22 + hT+1(uT) + d2 max

t
(yt − �yt)2 log⎛⎝1 + 3

T
t=1 µ

T−t ∥xt∥22
¼d

⎞⎠
+ µ

T−1

∑
t=1

[F µt (ut+1) − F µt (ut)] + d2 log (1/µ) T∑
t=1

(yt − �yt)2
Finally, since the regret does not depend on hT+1(⋅) we may set hT+1(⋅) ≡ 0 in the analysis and hide constants to arrive at

the stated bound.

13

Online Linear Regression in Dynamic Environments via Discounting

A.2.1. PROOF OF LEMMA A.3

The following lemma provides the base regret decomposition that we use as a jumping-off point to prove Theorem 3.1. The

result follows using mostly standard mirror descent analysis, though with a bit of additional care to handle issues related

to the discounted regularizer.

Lemma A.3. Let µ ∈ (0,1]. Then for any sequence u = (u1, . . . , uT) in R
d, Algorithm 1 guarantees

RT (u) ≤ T

∑
t=1

DÈt
(ut∣wt) −DÈt+1

(ut∣wt+1)
+

T

∑
t=1

ht+1(ut) − ht(ut)
+

T

∑
t=1

1

2
(yt − �yt)2 ∥xt∥2Σ−1t

Proof. We will proceed following a mirror-descent-based analysis, and thus begin by exposing the terms (µℓt − µht +
ht+1)(wt+1) observed in the mirror-descent interpretation of the update (Equation (7)):

RT (u) = T

∑
t=1

ℓt(wt) − ℓt(ut)
=

T

∑
t=1

µ [ℓt(wt) − ℓt(ut)] + (1 − µ) T∑
t=1

ℓt(wt) − ℓt(ut)
=

T

∑
t=1

µ [(ℓt − ht)(wt) − (ℓt − ht)(ut)] + T

∑
t=1

µht(wt) − µht(ut)
+ (1 − µ) T∑

t=1

ℓt(wt) − ℓt(ut)
=

T

∑
t=1

µ [(ℓt − ht)(wt+1) − (ℓt − ht)(ut)] + T

∑
t=1

µht(wt) − µht(ut)
+ µ

T

∑
t=1

(ℓt − ht)(wt) − (ℓt − ht)(wt+1)
+ (1 − µ) T∑

t=1

ℓt(wt) − ℓt(ut)
=

T

∑
t=1

(µℓt − µht + ht+1)(wt+1) − (µℓt − µht + ht+1)(ut)
+

T

∑
t=1

µht(wt) − ht+1(wt+1) + T

∑
t=1

ht+1(ut) − µht(ut)
+ µ

T

∑
t=1

(ℓt − ht)(wt) − (ℓt − ht)(wt+1)
+ (1 − µ) T∑

t=1

ℓt(wt) − ℓt(ut)
14

Online Linear Regression in Dynamic Environments via Discounting

Re-arranging factors of µ from the second-line and observing that 3Tt=1 ht(wt) − ht+1(wt+1) = h1(w1) − hT+1(wT+1):
=

T

∑
t=1

(µℓt − µht + ht+1)(wt+1) − (µℓt − µht + ht+1)(ut)
+

T

∑
t=1

ht(wt) − ht+1(wt+1) + T

∑
t=1

−(1 − µ)ht(wt) + (1 − µ)ht(ut) + T

∑
t=1

ht+1(ut) − ht(ut)
+ µ

T

∑
t=1

(ℓt − ht)(wt) − (ℓt − ht)(wt+1)
+ (1 − µ) T∑

t=1

ℓt(wt) − ℓt(ut)
=

T

∑
t=1

(µℓt − µht + ht+1)(wt+1) − (µℓt − µht + ht+1)(ut)
+ h1(w1) − hT+1(wT+1) + T

∑
t=1

ht+1(ut) − ht(ut)
+ µ

T

∑
t=1

(ℓt − ht)(wt) − (ℓt − ht)(wt+1)
+ (1 − µ) T∑

t=1

(ℓt − ht)(wt) − (ℓt − ht)(ut) (8)

Moreover, from the first-order optimality condition wt+1 = arg min w∈Rd(µℓt − µht + ht+1)(w) + µDÈt
(w∣wt), we have

⟨∇(µℓt − µht + ht+1)(wt+1) + µ∇Èt(wt+1) − µ∇Èt(wt), wt+1 − utð ≤ 0
so re-arranging:

⟨∇(µℓt − µht + ht+1)(wt+1), wt+1 − utð ≤ µ ⟨∇Èt(wt) −∇Èt(wt+1), wt+1 − utð
= µDÈt

(ut∣wt) − µDÈt
(ut∣wt+1) − µDÈt

(wt+1∣wt),
where the last line uses the three-point relation for bregman divergences, ⟨∇f(w) −∇f(w′), w′ − uð = Df(u∣w) −
Df(u∣w′) −Df(w′∣w). Thus,

T

∑
t=1

(µℓt − µht + ht+1)(wt+1) − (µℓt − µht + ht+1)(ut)
(a)
=

T

∑
t=1

⟨∇(µℓt − µht + ht+1)(wt+1), wt+1 − utð −Dµℓt−µht+ht+1
(ut∣wt+1)

≤

T

∑
t=1

µDÈt
(ut∣wt) − µDÈt

(ut∣wt+1) − µDÈt
(wt+1∣wt) −Dµℓt−µht+ht+1

(ut∣wt+1)
(b)
=

T

∑
t=1

µDÈt
(ut∣wt) − µDÈt

(ut∣wt+1) −Dht+1
(ut∣wt+1) − µDÈt

(wt+1∣wt)
(c)
=

T

∑
t=1

µDÈt
(ut∣wt) −DÈt+1

(ut∣wt+1) − µDÈt
(wt+1∣wt)

=

T

∑
t=1

DÈt
(ut∣wt) −DÈt+1

(ut∣wt+1) − (1 − µ)DÈt
(ut∣wt) − µDÈt

(wt+1∣wt),
where (a) uses the definition of Bregman divergence to re-write f(w)− f(u) = ⟨∇f(w), w − uð−Df(u∣w), (b) observes

that µ(ℓt−ht)(w) = µ (12y2t − 1
2
�y2t + (�yt − yt) ⟨xt, wð), soDµℓt−µht+ht+1

(⋅∣⋅) =Dht+1
(⋅∣⋅) due to the invariance of Bregman

15

Online Linear Regression in Dynamic Environments via Discounting

divergences to linear terms, and (c) recalls that Σt+1 = xt+1x
⊺

t+1 + µΣt so that overall we have:

µDÈt
(ut∣wt+1) +Dht+1

(ut∣wt+1) = µ
2
∥ut −wt+1∥2Σt

+
1

2
⟨xt+1, ut −wt+1ð2

=
1

2
∥ut −wt+1∥2Σt+1

=DÈt+1
(ut∣wt+1).

Plugging this back into Equation (8), we have

RT (u) ≤ T

∑
t=1

DÈt
(ut∣wt) −DÈt+1

(ut∣wt+1)
+ h1(w1) − hT+1(wT+1) + T

∑
t=1

ht+1(ut) − ht(ut)
+ µ

T

∑
t=1

(ℓt − ht)(wt) − (ℓt − ht)(wt+1) −DÈt
(wt+1∣wt)

+ (1 − µ) T∑
t=1

(ℓt − ht)(wt) − (ℓt − ht)(ut) −DÈt
(ut∣wt+1).

Finally, observe that for any u, v ∈ Rd, (ℓt−ht)(u)−(ℓt−ht)(v) = (�yt−yt) ⟨xt, u − vð, so an application of Fenchel-Young

inequality yields

(ℓt − ht)(u) − (ℓt − ht)(v) −DÈt
(v∣u) = (�yt − yt) ⟨xt, u − vð − 1

2
∥u − v∥2Σt

≤
1

2
(yt − �yt)2 ∥xt∥2Σ−1t .

Applying this in the last two lines of the previous display yields

RT (u) ≤ T

∑
t=1

DÈt
(ut∣wt) −DÈt+1

(ut∣wt+1)
h1(w1) − hT+1(wT+1)´¹¹¹¸¹¹¶

≤0

+

T

∑
t=1

ht+1(ut) − ht(ut)

µ
T

∑
t=1

1

2
(yt − �yt)2 ∥xt∥2Σ−1t + (1 − µ)

T

∑
t=1

1

2
(yt − �yt)2 ∥xt∥2Σ−1t

≤

T

∑
t=1

DÈt
(ut∣wt) −DÈt+1

(ut∣wt+1)
+

T

∑
t=1

ht+1(ut) − ht(ut)
+

T

∑
t=1

1

2
(yt − �yt)2 ∥xt∥2Σ−1t

A.2.2. PROOF OF LEMMA A.4

The following lemma bounds the sum of divergence terms. Intuitively, the goal here is to remove all instances of wt from

the analysis, since in an unbounded domain any terms depending on wt will be hard to quantify and could be arbitrarily

large in general. Lemma A.4 shows how get rid of the wt-dependent terms left in the bound from Lemma A.3, such that

only dependencies on the comparators ut remain.

16

Online Linear Regression in Dynamic Environments via Discounting

Lemma A.4. Under the same conditions as Lemma A.3,

T

∑
t=1

DÈt
(ut∣wt) −DÈt+1

(ut∣wt+1) + T

∑
t=1

ht+1(ut) − ht(ut) ≤ µ¼
2
∥u1∥22 + hT+1(uT) + µ T−1∑

t=1

F
µ
t (ut+1) − F µt (ut).

where F
µ
t (w) = 3ts=0 µt−sℓs(w).

Proof. Observe that by Lemma G.1 we have Dℓt(u∣v) = 1
2
⟨xt, u − vð2 = Dht

(u∣v) for any u, v ∈ W . Hence, let-

ting F
µ
t (w) = 3ts=0 µt−sℓs(w) and F̂

µ
t (w) = ht(w) + µF µt−1(w), and recalling Èt(w) = 1

2
∥w∥2Σt

=
µt¼

2
∥w∥22 +

1
2 3ts=1 µt−s ⟨xs, wð2, we have DÈt

(u∣v) =DF̂
γ
t
(u∣v) for any u, v ∈∈ Rd. Thus:

T

∑
t=1

DÈt
(ut∣wt) −DÈt+1

(ut∣wt+1)
=DÈ1

(u1∣w1) −DÈT+1
(uT ∣wT+1) + T

∑
t=2

DÈt
(ut∣wt) −DÈt

(ut−1∣wt)
=DÈ1

(u1∣w1) −DÈT+1
(uT ∣wT+1) + T

∑
t=2

DF̂
γ
t
(ut∣wt) −DF̂

γ
t
(ut−1∣wt)

=DÈ1
(u1∣w1) −DÈT+1

(uT ∣wT+1) + T

∑
t=2

F̂
µ
t (ut) − F̂ µt (ut−1) − ⟨∇F̂ µt (wt), ut − ut−1⟩ .

Moreover, by Proposition A.1 we have

wt = arg min
w∈Rd

ht(w) + µ t−1∑
s=0

µt−1−sℓs(w) = arg min
w∈Rd

F̂
µ
t (w),

hence by convexity of F̂
µ
t and the first-order optimality condition we have ∇F̂

µ
t (wt) = 0, so overall we have

T

∑
t=1

DÈt
(ut∣wt) −DÈt

(ut∣wt+1) + T

∑
t=1

ht+1(ut) − ht(ut)
=DÈ1

(u1∣w1) −DÈT+1
(uT ∣wT+1) + T

∑
t=2

F̂
µ
t (ut) − F̂ µt (ut−1) + T

∑
t=1

ht+1(ut) − ht(ut)
=DÈ1

(u1∣w1) −DÈT+1
(uT ∣wT+1) + T

∑
t=2

[ht(ut) − ht(ut−1) + µF µt−1(ut) − µF µt−1(ut−1)] + T

∑
t=1

ht+1(ut) − ht(ut)
=DÈ1

(u1∣w1) −DÈT+1
(uT ∣wT+1) + µ T−1∑

t=1

F
µ
t (ut+1) − F µt (ut) + T

∑
t=2

ht+1(ut) − ht(ut−1) + h2(u1) − h1(u1)
=DÈ1

(u1∣w1) −DÈT+1
(uT ∣wT+1) + hT+1(uT) − h1(u1) + µ T−1∑

t=1

F
µ
t (ut+1) − F µt (ut).

Finally, observe that with w1 = 0 and �y1 = 0 we have

DÈ1
(u1∣w1) = È1(u1) − È1(0) − ⟨∇È1(0), u1ð = h1(u1) + µℓ0(u1) = h1(u1) + µ¼

2
∥u1∥22

so we can express the bound as the bound as

T

∑
t=1

DÈt
(ut∣wt) −DÈt

(ut∣wt+1) + T

∑
t=1

ht+1(ut) − ht(ut)
≤
µ¼

2
∥u1∥22 + hT+1(uT) + µ T−1∑

t=1

F
µ
t (ut+1) − F µt (ut).

17

Online Linear Regression in Dynamic Environments via Discounting

A.3. Proof of Lemma 3.2

The following lemma bounds the variability and stability terms from Theorem 3.1 to expose a more explicit trade-off in

terms of the discount factor µ.

Lemma 3.2. Let ℓ0, ℓ1, . . . , ℓT be arbitrary non-negative functions, 0 < µ ≤ ´ < 1, and F
µ
t (w) = 3ts=0 µt−sℓs(w). For all

t, define

d̄
´
t (u, v) = 1

3ts=0 ´t−s
t

∑
s=0

´t−s [ℓs(u) − ℓs(v)]+
and let P

´
T (u) = 3T−1t=1 d̄

´
t (ut+1, ut). Then for any VT ≥ 0,

µ
T−1

∑
t=1

[F µt (ut+1) − F µt (ut)] + log (1µ)VT ≤ ´

1 − ´
P
´
T (u) + 1 − µ

µ
VT

Proof. The first summation can be bounded as

µ
T−1

∑
t=1

[F µt (ut) − F µt (ut−1)] = µ T−1∑
t=1

t

∑
s=0

µt−s [ℓs(ut+1) − ℓs(ut)]
≤ µ

T−1

∑
t=1

t

∑
s=0

µt−s [ℓs(ut+1) − ℓs(ut)]+
≤ ´

T−1

∑
t=1

t

∑
s=0

3ts′=0 ´t−s′
3ts′=0 ´t−s′

´t−s [ℓs(ut+1) − ℓs(ut)]+
≤

´

1 − ´

T−1

∑
t=1

t

∑
s=0

´t−s

3ts′=0 ´t−s′
[ℓs(ut+1) − ℓs(ut)]+

=
´

1 − ´
P
´
T (u),

where the last inequality uses 3ts=0 ´t−s = 1−´t+1

1−´
≤

1
1−´

. Using this along with the elementary inequality log (x) ≤ x − 1,

for any VT ≥ 0 we have

µ
T−1

∑
t=1

[F µt (ut) − F µt (ut−1)] + log (1µ)VT ≤ ´

1 − ´
P
´
T (u) + (1µ − 1)VT

=
´

1 − ´
P
´
T (u) + 1 − µ

µ
VT

A.4. Existence of a Good Discount Factor

The following lemma establishes the existence of a discount factor that will lead to favorable tuning of the µ-dependent

terms in Lemma 3.2.

Lemma A.5. Let ℓ0, ℓ1, . . . be arbitrary non-negative functions, VT ≥ 0, denote d̄
µ
t (u, v) = ∑t

s=0 µ
t−s[ℓs(u)−ℓs(v)]+
∑

t
s=0 µ

t−s for

µ ∈ [0,1], and let P
µ
T (u) = 3T−1t=1 d̄

µ
t (ut+1, ut). Then there is a µ∗ ∈ [0,1] such that

µ∗ =

√
VT√

VT +
√
P
µ∗

T (u) .
Proof. First, notice that that any such µ with the stated property must be in [0,1] since

0 ≤

√
VT√

VT +
√
P
µ
T (u) ≤

√
VT√
VT
= 1.

18

Online Linear Regression in Dynamic Environments via Discounting

Next, observe that the condition can be equivalently expressed as follows:

µ =

√
VT√

VT +
√
P
µ
T (u)

⇐⇒

√
VT (1 − µ) = µ√P µT (u)

= µ

¿ÁÁÀT−1

∑
t=1

t

∑
s=0

µt−s

3ts=0 µt−s
[ℓs(ut+1) − ℓs(ut)]+

= µ

¿ÁÁÀT−1

∑
t=1

t

∑
s=0

µt−s

1 − µt+1
(1 − µ) [ℓs(ut+1) − ℓs(ut)]+

⇐⇒

√
VT (1 − µ) = µ

¿ÁÁÀT−1

∑
t=1

t

∑
s=0

µt−s

1 − µt+1
[ℓs(ut+1) − ℓs(ut)]+.

The quantity on the LHS begins at
√
VT (for µ = 0) and then decreases to 0 as a function of µ. Likewise, the RHS begins

at 0 (for µ = 0) and increases as a function of µ, approaching∞ as µ → 1. Hence, there must be some µ ∈ [0,1] at which

the two lines cross, and hence a µ ∈ [0,1] which satisfies the above relation, so there is a µ ∈ [0,1] such that

µ =

√
VT√

VT +
√
P
µ
T (u) .

A.5. Proof of Theorem 3.3

Now combining everything we’ve seen in the previous sections, we can easily prove the following bound for the discounted

VAW forecaster under oracle tuning of the discount factor.

Theorem 3.3. For any sequences y1, . . . , yT and �y1, . . . ,�yT in R and any sequence u = (u1, . . . , uT) in R
d, there is a

discount factor µ∗ ∈ [0,1] satisfying

µ∗ =

√
d
2 3Tt=1(yt − �yt)2√

d
2 3Tt=1(yt − �yt)2 +√P µ∗T (u) (2)

with which the regret of Algorithm 1 is bounded above by

RT (u) ≤ O(dmax
t
(yt − �yt)2 log (T)

+

¿ÁÁÀdP
µ∗

T (u) T∑
t=1

(yt − �yt)2)

Proof. Lemma A.5 shows that for any sequence u = (u1, . . . , uT), there is a µ∗ ∈ [0,1] such that

µ∗ =

√
d3Tt=1 1

2
(yt − �yt)2√

d3Tt=1 1
2
(yt − �yt)2 +√P µ∗T (u) ,

19

Online Linear Regression in Dynamic Environments via Discounting

so choosing µ = µ∗ and applying Theorem 3.1, we have

RT (u) ≤ µ∗¼
2
∥u1∥22 + d2 max

t
(yt − �yt)2 log⎛⎝1 + 3

T
t=1 ∥xt∥22
¼d

⎞⎠
+ µ∗

T−1

∑
t=1

[F µ∗t (ut+1) − F µ∗t (ut)] + d2 log (1/µ∗) T∑
t=1

(yt − �yt)2
(∗)
≤
¼

2
∥u1∥22 + d2 max

t
(yt − �yt)2 log⎛⎝1 + 3

T
t=1 ∥xt∥22
¼d

⎞⎠
+

µ∗

1 − µ∗
P
µ∗

T (u) + 1 − µ∗

µ∗
d

2

T

∑
t=1

(yt − �yt)2

=
¼

2
∥u1∥22 + d2 max

t
(yt − �yt)2 log⎛⎝1 + 3

T
t=1 ∥xt∥22
¼d

⎞⎠ +
¿ÁÁÀ2dP

µ∗

T (u) T∑
t=1

(yt − �yt)2

where (∗) uses Lemma 3.2 (with ´ = µ = µ∗). The stated result follows by hiding lower-order terms.

B. Proofs for Section 3.1 (Small-loss Bounds via Self-confident Predictions)

B.1. Proof of Theorem 3.4

We split the proof of Theorem 3.4 into two parts. The following lemma, proven in Appendix B.1.1, first derives an initial

regret template that does most of the heavy lifting. We will later re-use this template in the proof of Theorem 4.3 to avoid

repeating the argument. The high-level intuition is that choosing hints �yt ≈ ⟨xt, wtð leads to3Tt=1(yt −�yt)2 ≈ 3Tt=1 ℓt(wt),
which leads to a self-bounding argument that lets us replace3Tt=1(yt −�yt)2 with3Tt=1 ℓt(ut) in the regret bound. We defer

proof of the lemma to the next subsection, Appendix B.1.1.

Lemma B.1. Let y
Ref
t ∈ R be an arbitrary reference point, available at the start of round t, and let Bt ={y ∈ R ∶ yRef

t −Mt ≤ y ≤ y
Ref
t +Mt} for Mt = maxs<t ∣ys − yRef

s ∣. Suppose that we apply Algorithm 1 with hints �yt = yt ∶=
ClipBt

(⟨xt, wtð). Then for any sequence u = (u1, . . . , uT) in R
d and any µ, ´ ∈ [0,1] such that ´ ≥ µ ≥ µmin =

2d
2d+1

,

RT (u) ≤ µ¼ ∥u1∥22 + 4dmax
t
(yt − yRef

t)2 log⎛⎝1 + 3
T
t=1 µ

T−t ∥xt∥22
¼d

⎞⎠
+ 2

´

1 − ´
P
´
T (u) + 1 − µ

µ
2d

T

∑
t=1

ℓt(ut)
Now using this template, Theorem 3.4 is easily proven by plugging in the stated discount factor µ = µ○ (µmin

Theorem 3.4. Let y
Ref
t ∈ R be an arbitrary reference point and let Bt = [yRef

t −Mt, y
Ref
t +Mt] for Mt =maxs<t ∣ys − yRef

s ∣.
Suppose that we apply Algorithm 1 with hints �yt = ClipBt

(⟨xt, wtð). Then for any sequence of losses ℓ1, . . . , ℓT and any

sequence u = (u1, . . . , uT) in R
d, there is a µ○ ∈ [0,1] satisfying

µ○ =

√
d3Tt=1 ℓt(ut)√

d3Tt=1 ℓt(ut) +√P µ○T (u) . (3)

Moreover, running Algorithm 1 with discount µ○ (µmin for µmin =
2d

2d+1
ensures regret bounded above by

RT (u) ≤ O(dP µmin

T (u) + dmax
t
(yt − yRef

t)2 log (T)
+

¿ÁÁÀdP
µ○

T (u) T∑
t=1

ℓt(ut)),
20

Online Linear Regression in Dynamic Environments via Discounting

Proof. By Lemma B.1 (with ´ = µ), for any µ ≥ µmin =
2d

2d+1
, we have

RT (u) ≤ µ¼ ∥u1∥22 + 4dmax
t
(yt − yRef

t)2 log⎛⎝1 + 3
T
t=1 µ

T−t ∥xt∥22
¼d

⎞⎠
+ 2

µ

1 − µ
P
µ
T (u) + 1 − µ

µ
2d

T

∑
t=1

ℓt(ut).

Now by Lemma A.5, there is a µ○ ∈ [0,1] satisfying µ○ =

√
d∑T

t=1 ℓt(ut)√
d∑T

t=1 ℓt(ut)+
√
P

γ○

T
(u)

. If µ○ ≥ µmin, then for µ = µ○ (µmin, the

terms in the second line reduce to

2
µ○

1 − µ○
P
µ○

T (u) + 1 − µ○

µ○
2d

T

∑
t=1

ℓt(ut) = 4
¿ÁÁÀdP

µ○

T (u) T∑
t=1

ℓt(ut),
and otherwise for µ○ ≤ µmin we have

2
µmin

1 − µmin

P
µmin

T (u) + 1 − µmin

µmin

2d
T

∑
t=1

ℓt(ut) ≤ 2 µmin

1 − µmin

P
µmin

T (u) + 1 − µ○

µ○
2d

T

∑
t=1

ℓt(ut)
≤ 4dP

µmin

T (u) + 2
¿ÁÁÀdP

µ○

T (u) T∑
t=1

ℓt(ut),
so combining these two bounds and plugging back into the regret bound above, we have

RT (u) ≤ µ¼ ∥u1∥22 + 4dmax
t
(yt − yRef

t)2 log⎛⎝1 + 3
T
t=1 µ

T−t ∥xt∥22
¼d

⎞⎠
+ 4dP

µmin

T (u) + 4
¿ÁÁÀdP

µ○

T (u) T∑
t=1

ℓt(ut)
≤ O
⎛⎜⎝dP µmin

T (u) + dmax
t
(yt − yRef

t)2 log (T) +
¿ÁÁÀdP

µ○

T (u) T∑
t=1

ℓt(ut).⎞⎟⎠

B.1.1. PROOF OF LEMMA B.1

Lemma B.1. Let y
Ref
t ∈ R be an arbitrary reference point, available at the start of round t, and let Bt ={y ∈ R ∶ yRef

t −Mt ≤ y ≤ y
Ref
t +Mt} for Mt = maxs<t ∣ys − yRef

s ∣. Suppose that we apply Algorithm 1 with hints �yt = yt ∶=
ClipBt

(⟨xt, wtð). Then for any sequence u = (u1, . . . , uT) in R
d and any µ, ´ ∈ [0,1] such that ´ ≥ µ ≥ µmin =

2d
2d+1

,

RT (u) ≤ µ¼ ∥u1∥22 + 4dmax
t
(yt − yRef

t)2 log⎛⎝1 + 3
T
t=1 µ

T−t ∥xt∥22
¼d

⎞⎠
+ 2

´

1 − ´
P
´
T (u) + 1 − µ

µ
2d

T

∑
t=1

ℓt(ut)
21

Online Linear Regression in Dynamic Environments via Discounting

Proof. Applying Theorem 3.1 followed by Lemma 3.2, for any µ ∈ (0,1] and ´ ≥ µ we have

R
Aγ

T (u) ≤ µ¼2 ∥u1∥22 + d2 max
t
(yt − yt)2 log⎛⎝1 + 3

T
t=1 µ

T−t ∥xt∥22
¼d

⎞⎠
+ µ

T−1

∑
t=1

[F µt (ut+1) − F µt (ut)] + d2 log (1/µ) T∑
t=1

(yt − yt)2
≤
µ¼

2
∥u1∥22 + d2 max

t
(yt − yt)2 log⎛⎝1 + 3

T
t=1 µ

T−t ∥xt∥22
¼d

⎞⎠
+

´

1 − ´
P
´
T (u) + 1 − µ

µ

d

2

T

∑
t=1

(yt − yt)2,
Using Lemma D.1 we have

T

∑
t=1

(yt − yt)2 ≤ T

∑
t=1

[M2
t+1 −M

2
t + 2ℓt(wt)] ≤M2

T+1 + 2
T

∑
t=1

ℓt(wt),
so for any µ ≥ 2d

2d+1
, we have

1 − µ

µ

d

2

T

∑
t=1

(yt − yt)2 ≤ 1 − µ

µ
d [1

2
M2
T+1 +

T

∑
t=1

ℓt(wt)]
=
1 − µ

µ
d [1

2
M2
T+1 +

T

∑
t=1

ℓt(wt) − ℓt(ut) + T

∑
t=1

ℓt(ut)]
≤
1

4
M2
T+1 +

1

2

T

∑
t=1

ℓt(wt) − ℓt(ut) + 1 − µ

µ
d
T

∑
t=1

ℓt(ut),
where the final inequality uses µ ≥ 2d

2d+1
Ô⇒

1−µ

µ
≤

1
2d

and bounds
1−µ

µ
d3Tt=1 ℓt(wt) − ℓt(ut) ≤ 1

2 3Tt=1 ℓt(wt) − ℓt(ut)
(assuming 3Tt=1 ℓt(wt) − ℓt(ut) ≥ 0, which can be assumed without loss of generality since otherwise the stated bound

trivially holds). Plugging this back into the regret bound and re-arranging terms, we have

RT (u) ≤ µ¼
2
∥u1∥22 + d2 max

t
(yt − yt)2 log⎛⎝1 + 3

T
t=1 µ

T−t ∥xt∥22
¼d

⎞⎠
+

µ

1 − µ
P
µ
T (u) + 1

2
RT (u) + 1 − µ

µ

T

∑
t=1

ℓt(ut)
Ô⇒ RT (u) ≤ µ¼ ∥u1∥22 + 4dmax

t
(yt − yRef

t)2 log⎛⎝1 + 3
T
t=1 µ

T−t ∥xt∥22
¼d

⎞⎠
+ 2

´

1 − ´
P
´
T (u) + 1 − µ

µ
2d

T

∑
t=1

ℓt(ut),
where we’ve bounded maxt(yt − yt)2 ≤ 4MT+1 = 4maxt(yt − yRef

t)2 using Lemma D.1.

C. Proofs for Section 3.2 (Dimension-dependent Lower Bound)

C.1. Proof of Theorem 3.5

Theorem 3.5. For any d, T ≥ 1 and P,Y > 0 such that dP ≤ 2TY 2, there is a sequence of losses ℓt(w) = 1
2
(yt − ⟨xt, wð)2

and a comparator sequence u = (u1, . . . , uT) satisfying maxt ∣yt∣ ≤ Y and 3T−1t=1 maxs [ℓs(ut+1) − ℓs(ut)]+ ≤ P such

that

RT (u) ≥ Ω⎛⎜⎝dY 2 log (T) + dP +
¿ÁÁÀdP

T

∑
t=2

(yt − yt−1)2⎞⎟⎠ .
22

Online Linear Regression in Dynamic Environments via Discounting

Proof. First notice that the trivial comparator sequence with u1 = . . . = uT always satisfies

3Tt=2maxs [ℓs(ut+1) − ℓs(ut)]+ = 0 ≤ P , so we can always lower-bound the dynamic regret using the well-known

lower bound for the static regret in this setting (see, e.g., Vovk (2001); Gaillard et al. (2019); Mayo et al. (2022)). In

particular, for any u ∈W we have

sup
y1,...,yT

RT (u) ≥ Ω (dY 2 log (T)) (9)

Next, let Ã ∈ [0,1] and let Ã1, . . . , Ãt be a sequence of iid random variables drawn uniformly from {−Ã,Ã}, and let

yt = Y Ãt. Choose feature vectors xt which cycle through the standard basis vectors (e.g. define º(t) = t (mod d) + 1
and let xt = eº(t)). Now observe that the comparator sequence can always exactly fit a sequence y1, . . . , yT by set-

ting ut to satisfy ⟨xt, utð = ut,º(t) = yt. In particular, by letting �u1 = (y1, . . . , yd), �u2 = (yd+1, . . . , y2d), . . . ,�u⌈T /d, =(y⌈T /d,+1, . . . , yT ,0,0, . . .) we can set ut = �u⌈t/d, to guarantee ⟨xt, utð = yt on all rounds, while only changing the com-

parator ⌈T /d, times at most. From this, we have the following initial bound on the regret:

sup
y1,...,yT

RT (u) ≥ Ey [T∑
t=1

ℓt(wt) − ℓt(ut)]
≥ Ey [1

2
y2t +

1

2
⟨xt, wtð2 + yt ⟨xt, wtð]

≥
1

2
Ã2Y 2T, (10)

where the last line uses y2t = Y
2Ã2 and E [yt] = 0. Moreover, since the comparator changes only every d rounds, the

variability is bounded as

T−1

∑
t=1

max
s
[ℓs(ut+1) − ℓs(ut)]+ ≤ ⌈T /d,−1∑

i=1

max
s
[ℓs(�ui+1) − ℓs(�ui)]+ .

Observe that ℓs(�ui+1) − ℓs(�ui) can only be positive when ⟨xs,�uið = ys and ⟨xs,�ui+1ð = −ys, hence

T−1

∑
t=1

max
s
[ℓs(ut+1) − ℓs(ut)]+ ≤ ⌈T /d,−1∑

i=1

max
s
[ℓs(�ui+1) − ℓs(�ui)]+

≤

⌈T /d,−1
∑
i=1

1

2
(ys − (−ys))2

≤
2TY 2

d
Ã2.

Hence, setting Ã =
√

dP
2TY 2 ≤ 1 ensures 3T−1t=1 maxs [ℓs(ut+1) − ℓs(ut)]+ ≤ 2TY 2

d
Ã2 ≤ P , and the regret is bounded below

by

sup
y1,...,yT

RT (u) ≥ 1

2
Ã2Y 2T =

1

4
dP,

which we can further lower bound as:

=
1

4

√
dP ⋅ dP ≥

1

4

¿ÁÁÀdP ⋅ d
T−1

∑
t=1

max
s
[ℓs(ut+1) − ℓs(ut)]+

≥
1

4

¿ÁÁÀdP
T−1

∑
t=1

[ℓt(ut+1) − ℓt(ut)]+ = Ω⎛⎜⎝
¿ÁÁÀdP

T

∑
t=2

1

2
(yt − yt−1)2⎞⎟⎠ . (11)

Taken together with Equation (9), we have

RT (u) ≥ Ω (dY 2 log (T) (√dPVT)
where VT = dP (3Tt=2 1

2
(yt − yt−1)2.

23

Online Linear Regression in Dynamic Environments via Discounting

D. Proofs for Section 4 (Learning the Optimal Discount Factor)

D.1. Proof of Lemma D.1

The following lemma shows that by clipping our predictions to some crude “trust-region”, the loss of the clipped prediction

is at worst prortional to the maximal deviation of the true yt from the trust region. Intuitively, we can think of yRef as being

some data-dependent but already-observed quantity, such as yt−1.

Lemma D.1. Define Mt = maxs<t ∣ys − yRef
s ∣, Bt = {x ∈ R ∶ yRef

t −Mt ≤ x ≤ y
Ref
t +Mt}, and let yt = ClipBt

(⟨xt, wtð) for

some wt ∈ R
d. Then for any t we have

(yt − yt)2 ≤min{4M2
t+1,2ℓt(wt) +M2

t+1 −M
2
t }

Proof. First, observe that we always have

(yt − yt)2 = (yt − yRef
t + y

Ref
t − yt)2 ≤ 2 (yt − yRef

t)2 + 2 (yRef
t − yt)2 ≤ 2M2

t+1 + 2M
2
t ≤ 4M

2
t+1.

Next, observe that if ⟨xt, wtð = yt, then we trivially have (yt−yt)2 = (yt−⟨xt, wtð)2 = 2ℓt(wt). Otherwise, when ⟨xt, wtð ≠
yt, we have clipped yt to be a distance of Mt away from yRef

t and there are two cases to consider. If Sign (yt − yRef
t) ≠

Sign (yt − yRef
t), then the clipping operation yt = ClipBt

(⟨xt, wtð)moves us closer to yt, hence ∣yt − yt∣ ≤ ∣yt − ⟨xt, wtð∣. If

Sign (yt − yRef
t) = Sign (yt − yRef

t), then we precisely have ∣yt − yt∣ =Mt+1−Mt when yt ∉ Bt and ∣yt − yt∣ ≤ ∣yt − ⟨xt, wtð∣
when yt ∈ Bt. Hence, combining these cases we have

(yt − yt)2 ≤ (yt − ⟨wt, xtð)2 + (Mt+1 −Mt)2 ≤ 2ℓt(wt) +M2
t+1 −M

2
t ,

where we have used (u − l)2 ≤ u2 − l2 for u ≥ l ≥ 0. Hence, combining with the first display we have

(yt − yt)2 ≤min{4M2
t+1,M

2
t+1 −M

2
t + 2ℓt(wt)} .

D.2. Proof of Lemma D.2

The following lemma shows the following important property of the meta-learner’s losses: they are ³t-exp-concave with

³t =
1

2maxi ℓt(y(i)t)
in the domain Ŷt = {y = 3Ni=1 piy(i)t ∶ 3Ni=1 pi = 1}.

Lemma D.2. Let y(1), . . . , y(N) be arbitrary real numbers and let Ŷt = {y = 3Ni=1 piy(i) ∶ p ∈ RN≥0,3Ni=1 pi = 1}. Then

ℓt(y) = 1
2
(yt − y)2 is ³t-Exp-Concave on Ŷt for ³t ≤

1

2maxi ℓt(y(i)) .

Proof. Letting ft(y) = exp (−³tℓt(y)) we have for any y ∈ Ŷt:

f ′t(y) = [exp(−³t
2
(yt − y)2)]′ = exp(−³t

2
(yt − y)2)³t(yt − y)

f ′′t (y) = exp(−³t
2
(yt − y)2) [³2

t (yt − y)2 − ³t]
= exp(−³t

2
(yt − y)2) [2³2

t ℓt(y) − ³t]
Hence for ³t ≤

1
2maxi ℓt(y(i)) we have

f ′′t (y) ≤ exp(−³t
2
(yt − y)2)³t [2³tℓt(y) − 1] ≤ 0

so ft(y) = exp (−³tℓt(y)) is concave and ℓt is ³t-Exp-Concave over Ŷ for ³t ≤
1

2maxi ℓt(y(i)) .

24

Online Linear Regression in Dynamic Environments via Discounting

D.3. Regret of the Range-Clipped Meta-Algorithm

In this section we prove a simple result showing that the range-clipping reduction described by Algorithm 2 incurs only an

constant additional penalty. This lemma will be used to do most of the heavy-lifting in proving Theorem 4.1, which simply

applies the following lemma and then chooses a specific meta-algorithm for AMeta.

Lemma D.3. For any [a, b] ⊆ [1, T], sequence u = (ua, . . . , ub) in R, and j ∈ [N], Algorithm 2 guarantees

R[a,b](u) ≤ 1

2
max
t
(yt − yRef

t)2 +RAj

[a,b](u) +RMeta
[a,b](ej),

where R
Aj

[a,b](u) = 3bt=a ℓt(w(j)t) − ℓt(ut) is the dynamic regret Aj and RMeta
[a,b](ej) = 3bt=a ℓt(yt) − ℓt(y(j)t).

Proof. For ease of notation we let y
(i)
t = ⟨xt, w(i)t ⟩, where w

(i)
t is the output of algorithm Ai, and slightly abuse notation

by writing ℓt(y) = 1
2
(yt−y)2 for y ∈ R. Hence, we may write ℓt(wt) ≡ ℓt(y(i)t) interchangeably. Note that this equivalence

is valid in the improper online learning setting since the features are observed before the learner makes a prediction, as

discussed in the introduction.

Now, for for any j ∈ [N] we have

R[a,b](u) = b

∑
t=a

ℓt(yt) − ℓt(ut)
=

b

∑
t=a

ℓt(w(j)t) − ℓt(ut) + b

∑
t=a

ℓt(yt) − ℓt(w(j)t)
= R

Aj

[a,b](u) + b

∑
t=a

ℓt(yt) − ℓt (y(j)t) ,
where we have observed y

(j)
t = ⟨xt, w(j)t ⟩. Observe that by Lemma D.1 we have

ℓt(y(j)t) ≥ 1

2
M2
t −

1

2
M2
t+1 +

1

2
(yt − y(j)t)2

=
1

2
M2
t −

1

2
M2
t+1 + ℓt (y(j)t) ,

where Mt =maxs<t ∣ys − yRef
s ∣. Hence,

R[a,b](u) ≤ RAj

[a,b](u) + b

∑
t=a

ℓt(yt) − ℓt (y(j)t)
≤ R

Aj

[a,b](u) + b

∑
t=a

ℓt(yt) − ℓt (y(j)t)
+

b

∑
t=a

1

2
M2
t+1 −

1

2
M2
t

≤
1

2
M2
b+1 +R

Aj

[a,b](u) + b

∑
t=a

ℓt(yt) − ℓt (y(j)t)
´¹¹¹¸¹¹¶

=∶RMeta
[a,b]

(ej)

25

Online Linear Regression in Dynamic Environments via Discounting

D.4. Proof of Theorem 4.1

Theorem 4.1. Let AMeta be an instance of Algorithm 3 with ³t =
1

2maxt,i ℓt(y(i)t
)
, ´t+1 =

1
(e+t) log2(e+t)+1 and p1 = 1N /N .

Then for any sequence u = (u1, . . . , uT) in R and any j ∈ [N], Algorithm 2 guarantees

R[a,b](u) ≤ O (RAj

[a,b](u) +max
t
(yt − �yt)2 log (Nb log2(b))) ,

where R[a,b] denotes regret over the sub-interval [a, b].
Proof. The proof follows almost immediately using the regret guarantee of the range-clipped meta-algorithm (Lemma D.3),

from which we have

R[a,b](u) ≤ 1

2
max
t
(yt − �yt)2 +RAj

[a,b](u) +RMeta
[a,b](ej).

Now applying the guarantee of an appropriate instance of the fixed-share algorithm (Theorem E.1 with ³t =
1

2maxt,i ℓt(y(i)t
)
,

´t =
1

(e+t) log2(e+t)+1 , and p1 = 1N /N), we have

RMeta
[a,b](ej) ≤ 1

³b+1
[2 log(1

´b+1p1j
) + 1]

≤max
t,i

ℓt(y(i)t) [2 log (((e + b) log2(e + b) + 1)N) + 1]
≤ O (max

t
(yt − �yt)2 log (b log2(b)N)) ,

where the last line applies Lemma D.1 and hides constants. All together, we have

R[a,b](u) ≤ O (RAj

[a,b](u) +max
t
(yt − �yt)2 log (Nb log2(b))) .

D.5. Proof of Theorem 4.2

The proof of Theorem 4.2 follows by applying Theorem 4.1, and then showing that there exists a Aµ which attains the

desired bound. We first provide proof of the latter claim in Lemma D.4 for the sake of modularity. In particular, we will

also re-use this result to argue strongly-adaptive guarantees in Section 5. Proof of Theorem 4.2 is then easily proven at the

end of this section.

Lemma D.4. Let b > 1, ¸min = 2d, ¸max = dT , and define S¸ = {¸i = ¸minb
i
' ¸max ∶ i = 0,1, . . .} and Sµ ={µi = ¸i

1+¸i
∶ i = 0,1, . . .} ∪ {0}. For any µ in Sµ , let Aµ denote an instance of Algorithm 1 with discount µ. Then for

any u = (u1, . . . , uT) in R
d, there is a µ∗ ∈ [0,1] satisfying µ∗ =

√
d∑T

t=1
1

2
(yt−�yt)2√

d∑T
t=1

1

2
(yt−�yt)2+

√
P

γ∗

T
(u)

and a µ ∈ Sµ such that

R
Aγ

T (u) ≤ O⎛⎝dmax
t
(yt − �yt)2 log (T) + b

¿ÁÁÀdP
µ∗

T (u) T∑
t=1

(yt − �yt)2⎞⎠.
Proof. Denote VT =

d
2 3Tt=1(yt − �yt)2. By Lemma A.5, there exists a µ∗ ∈ [0,1] such that

µ∗ =

√
VT√

VT +
√
P
µ∗

T (u) .
Throughout the proof it will be convenient to work in terms of the related quantity ¸∗ = µ∗

1−µ∗
=
√

VT

P
γ

T
(u) . Let us first

suppose that 0 ≤ ¸∗ ≤ ¸min. In this case, we have

¸∗ =

¿ÁÁÀ VT

P
µ∗

T (u) ≤ ¸min Ô⇒

¿ÁÁÀ1

2

T

∑
t=1

(yt − �yt)2 ≤ ¸min

√
1

d
P
µ
T (u).

26

Online Linear Regression in Dynamic Environments via Discounting

Consider the algorithm A0 with µ = 0: in this case we have wt = arg min w∈Rd ht(w), so ⟨xt, wtð = �yt and the regret is

trivially

T

∑
t=1

ℓt(wA0

t) − ℓt(ut) ≤ T

∑
t=1

1

2
(yt − �yt)2

=

¿ÁÁÀ T

∑
t=1

1

2
(yt − �yt)2 T

∑
t=1

1

2
(yt − �yt)2

≤
¸min√
d

¿ÁÁÀP
µ∗

T (u) T∑
t=1

1

2
(yt − �yt)2

= 2

√
VTP

µ∗

T (u) (12)

for ¸min = 2d.

Otherwise, for ¸∗ ≥ ¸min, using Theorem 3.1 we have that for any µ ∈ Sµ ,

R
Aγ

T (u) ≤ µ¼2 ∥u1∥22 + d2 max
t
(yt − �yt)2 log⎛⎝1 + 3

T
t=1 µ

T−t ∥xt∥22
¼d

⎞⎠
+ µ

T−1

∑
t=1

[F µt (ut+1) − F µt (ut)] + log (1/µ)VT
(∗)
≤
µ¼

2
∥u1∥22 + d2 max

t
(yt − �yt)2 log⎛⎝1 + 3

T
t=1 µ

T−t ∥xt∥22
¼d

⎞⎠
+ ¸∗P

µ∗

T (u) + VT¸

where (∗) observes that ¸min =
µmin

1−µmin

≤ ¸∗ = µ∗

1−µ∗
Ô⇒ µmin ≤ µ

∗ and applies Lemma 3.2 (with ´ = µ∗) and substitutes

¸ = µ

1−µ
. If ¸∗ ≥ ¸max then choosing ¸ = ¸max = dT yields

VT

¸
=

d

2dT

T

∑
t=1

(yt − �yt)2 ≤ 1

2
max
t
(yt − �yt)2,

and otherwise, there is an ¸k in S¸ such that ¸k ≤ ¸
∗ ≤ b¸k, so choosing ¸ = ¸k yields

VT

¸k
≤ b

VT

¸∗
= b

√
P
µ∗

T (u)VT
Hence, overall we have that there is a µ ∈ Sµ such that

R
Aγ

T (u) ≤ µ¼2 ∥u1∥22 + 1

2
max
t
(yt − �yt)2 ⎡⎢⎢⎢⎢⎣d log

⎛⎝1 + 3
T
t=1 µ

T−t ∥xt∥22
¼d

⎞⎠ (1
⎤⎥⎥⎥⎥⎦ + ¸

∗P
µ∗

T (u) + bVT¸∗
=
µ¼

2
∥u1∥22 + 1

2
max
t
(yt − �yt)2 ⎡⎢⎢⎢⎢⎣d log

⎛⎝1 + 3
T
t=1 µ

T−t ∥xt∥22
¼d

⎞⎠ (1
⎤⎥⎥⎥⎥⎦ + (b + 1)

√
VTP

µ∗

T (u)
≤ O
⎛⎜⎝dmax

t
(yt − �yt)2 log (T) (b

¿ÁÁÀdP
µ∗

T (u) T∑
t=1

(yt − �yt)2⎞⎟⎠ .

With the previous lemma in hand, the proof of Theorem 4.2 follows easily. The theorem is re-stated for convenience.

27

Online Linear Regression in Dynamic Environments via Discounting

Theorem 4.2. Let b > 1, ¸min = 2d, ¸max = dT , and for all i ∈ N let ¸i = ¸minb
i
' ¸max, and construct the set of discount

factors Sµ = {µi = ¸i
1+¸i
∶ i ∈ N} ∪ {0} . For any µ in Sµ , let Aµ denote an instance of Algorithm 1 with discount µ.5 Let

AMeta be an instance of the algorithm characterized in Theorem 4.1, and suppose we set y
Ref
t = �yt for all t. Then for any

u = (u1, . . . , uT) in R
d, Algorithm 2 guarantees

RT (u) ≤ O(dmax
t
(yt − yRef

t)2 log (T)
+ b

¿ÁÁÀdP
µ∗

T (u) T∑
t=1

(yt − �yt)2)
where µ∗ ∈ [0,1] satisfies Equation (2).

Proof. Applying Theorem 4.1, for any sequence u = (u1, . . . , uT) in R
d and any µ ∈ Sµ we have

RT (u) ≤ Ô (RAγ

T (u) +max
t
(yt − yRef

t)2 log (NT))
≤ Ô (RAγ

T (u) +max
t
(yt − yRef

t)2 log (T)) , (13)

where the last line uses N = ∣Sµ ∣ = logb(¸max/¸min) ≤ O(logb(T)), then hides log(log) factors. Finally, by Lemma D.4,

there is indeed a µ∗ ∈ [0,1] satisfying µ∗ =

√
d∑T

t=1
1

2
(yt−�yt)2√

d∑T
t=1

1

2
(yt−�yt)2+

√
P

γ∗

T
(u)

and a µ ∈ Sµ such that

R
Aγ

T (u) ≤ O⎛⎜⎝dmax
t
(yt − �yt)2 log (T) + b

¿ÁÁÀdP
µ∗

T (u) T∑
t=1

(yt − �yt)2⎞⎟⎠ .
Plugging this back into Equation (13) and choosing yRef

t = �yt proves the result.

D.6. Proof of Theorem 4.3

As in Appendix D.5, the proof of Theorem 4.3 follows by applying Theorem 4.1 and then showing that there is a Aµ
attaining the desired regret bound. We first provide proof of the latter claim in Lemma D.5 for the sake of modularity, so

that we can use it when arguing strongly-adaptive guarantees in Section 5. Proof of Theorem 4.3 is proven at the end of

this section.

Lemma D.5. Under the same conditions as Lemma D.4, suppose each Aµ sets hints �yt = yµt = ClipBt
(⟨xt, wµt ð), where

Bt = [yRef
t −Mt, y

Ref
t +Mt] and Mt = maxs<t ∣ys − yRef

s ∣. Then for any u = (u1, . . . , uT) in W , there is a µ○ ∈ [0,1]
satisfying µ○ =

√
d∑T

t=1 ℓt(ut)√
d∑T

t=1 ℓt(ut)+
√
dP

γ○

T
(u)

and a µ ∈ Sµ such that

R
Aγ

T (u) ≤ O(dP µmin

T (u) + dmax
t
(yt − yRef

t)2 log (T)
+ b

¿ÁÁÀdP
µ○

T (u) T∑
t=1

ℓt(ut)),
where µmin =min{µ ∈ Sµ} = 2d

2d+1
.

5For brevity, here we refer to an algorithm that directly predicts �yt on every round as being an instance of the discounted VAW
forecaster with γ = 0. This terminology can be justified by Remark A.2, but for our purposes here it’s sufficient to consider it convenient
alias.

28

Online Linear Regression in Dynamic Environments via Discounting

Proof. Using Lemma B.1, for any u = (u1, . . . , uT), µ ∈ (0,1), and ´ ≥ µ ≥ µmin =
2d

2d+1
, we have

RT (u) ≤ µ¼ ∥u1∥22 + 4dmax
t
(yt − yRef

t)2 log⎛⎝1 + 3
T
t=1 µ

T−t ∥xt∥22
¼d

⎞⎠
+ 2

´

1 − ´
P
´
T (u) + 1 − µ

µ
2d

T

∑
t=1

ℓt(ut),
We will proceed by showing that there is a ´ and µ that suitably balances the summations in the last line. To this end, recall

that by Lemma A.5, there is a µ○ satisfying

µ○ =

√
d3Tt=1 ℓt(ut)√

d3Tt=1 ℓt(ut) +√P µ○T (u)
Denote ¸ = µ

1−µ
and ¸○ = µ○

1−µ○
=

√
d∑T

t=1 ℓt(ut)
P

γ○

T
(u) . If ¸○ ≥ ¸max =

µmax

1−µmax

, then we can take ´ = µ○ and µ = µmax to get

´

1 − ´
P
´
T (u) + µ

1 − µ
d
T

∑
t=1

ℓt(ut) = ¸○P µ○T (u) + d3Tt=1 ℓt(ut)¸max

=

¿ÁÁÀdP
µ○

T (u) T∑
t=1

ℓt(ut) + d3Tt=1 ℓt(ut)
¸max

≤

¿ÁÁÀdP
µ○

T (u) T∑
t=1

ℓt(ut) +max
t
ℓt(ut),

where the last line recalls ¸max = dT . Otherwise, if ¸○ ≤ ¸min =
µmin

1−µmin

= 2d, then taking ´ = µ = µmin yields

¸minP
µmin

T (u) + d3Tt=1 ℓt(ut)
¸min

≤ ¸minP
µmin

T (u) + d3Tt=1 ℓt(ut)
¸○

= 2dP
µmin

T (u) +
¿ÁÁÀdP

µ○

T (u) T∑
t=1

ℓt(ut).
Lastly, if ¸min ≤ ¸

○ ≤ ¸max, there is a ¸k =
µk

1−µk
∈ S¸ such that ¸k ≤ ¸

○ ≤ b¸k, so choosing ´ = µ○ and µ = µk yields

¸○P
µ○

T (u) + d3Tt=1 ℓt(ut)¸k
≤ ¸○P

µ○

T (u) + bd3Tt=1 ℓt(ut)¸○

= (b + 1)
¿ÁÁÀdP

µ○

T (u) T∑
t=1

ℓt(ut)
Combining the three cases, we have

2
´

1 − ´
P
´
T (u) + 1 − µ

µ
2d

T

∑
t=1

ℓt(ut) ≤ 4dP µmin

T (u) + 2max
t
ℓt(ut) + 2(b + 1)

¿ÁÁÀdP
µ○

T (u) T∑
t=1

ℓt(ut)

Hence, overall the regret can be bound as

R
Aγ

T (u) ≤ µ¼ ∥u1∥22 + dmax
t
(yt − yµt)2 log⎛⎝1 + 3

T
t=1 µ

T−t ∥xt∥22
¼d

⎞⎠
+ 4dP

µmin

T (u) + 2max
t
ℓt(ut) + 2(b + 1)

¿ÁÁÀdP
µ○

T (u) T∑
t=1

ℓt(ut)
≤ O
⎛⎜⎝dP µmin

T (u) + dmax
t
(yt − yRef

t)2 log (T) + b
¿ÁÁÀdP

µ○

T (u) T∑
t=1

ℓt(ut)⎞⎟⎠ ,

29

Online Linear Regression in Dynamic Environments via Discounting

where we’ve applied Lemma D.1 to bound maxt(yt − yµt)2 ≤ 4M2
T+1 = 4maxt(yt − yRef

t)2. Plugging this back into

Equation (14) proves the stated bound.

Now the proof of Theorem 4.3 follows by composing Theorem 4.1 and Lemma D.5. The theorem is restated below for

convenience.

Theorem 4.3. Under the same conditions as Theorem 4.2, suppose eachAµ sets hints �yt = yµt = ClipBt
(⟨, xt, wµt ð), where

Bt = [yRef
t −Mt, y

Ref
t +Mt] and Mt =maxs<t ∣ys − yRef

s ∣. Then for any u = (u1, . . . , uT) in R
d, Algorithm 2 guarantees

RT (u) ≤ O(dP µmin

T (u) + dmax
t
(yt − yRef

t)2 log (T)
+ b

¿ÁÁÀdP
µ○

T (u) T∑
t=1

ℓt(ut))
where µmin =

2d
2d+1

and µ○ ∈ [0,1] satisfies Equation (3).

Proof. As in the proof of Theorem 4.2, we apply Theorem 4.1, from which it follows that for any u = (u1, . . . , uT) in R
d

and any µ ∈ Sµ , the dynamic regret is bounded as

RT (u) ≤ Ô (RAγ

T (u) +max
t
(yt − yRef

t)2 log (NT))
≤ Ô (RAγ

T (u) +max
t
(yt − yRef

t)2 log (T)) , (14)

where the last line uses N = ∣Sµ ∣ = logb(¸max/¸min) ≤ O(logb(T)), then hides log(log) factors. And using Lemma D.5,

for any u = (u1, . . . , uT) there is a µ○ ∈ [0,1] satisfying µ○ =

√
d∑T

t=1 ℓt(ut)√
d∑T

t=1 ℓt(ut)+
√
P ○

T
(u)

and a µ ∈ Sµ such that

R
Aγ

T (u) ≤ O⎛⎜⎝dP µmin

T (u) + dmax
t
(yt − yRef

t)2 log (T) + b
¿ÁÁÀdP

µ○

T (u) T∑
t=1

ℓt(ut)⎞⎟⎠ ,
Plugging this back into Equation (14) completes the proof.

E. Adaptive Fixed-share

Algorithm 3: Adaptive Fixed-Share

Input Experts A1, . . . ,AN , p1 ∈∆N

for t = 1 ∶ T do

Get y
(i)
t from Ai for all i

Play yt = 3Ni=1 ptiy(i)t
Observe loss ℓt(y) = 1

2
(yt − y)2 and let ℓti = ℓt(y(i)t) for all i

Let qt+1,i =
pti exp(−³tℓti)

∑
N
j=1

ptj exp(−³tℓtj) for all i

Choose ´t+1 and set pt+1 = (1 − ´t+1)qt+1 + ´t+1p1
end

In this section, we provide for completeness analysis related to the fixed-share algorithm (Cesa-Bianchi et al., 2012)

with time-varying modulus. The following is a modest generalization of the analysis of Hazan (2019, Theorem 10.3).

Throughout this section we assume that the losses ℓt ∶ Ŷ → R are exp-concave in their domain.

Theorem E.1. For all t let ℓt be an ³t-Exp-Concave function and assume that ³t ≥ ³t+1 for all t. For all t, set ´t ≤
1

(e+t) log2(e+t)+1 . Then for any j ∈ [N] and any [a, b] ⊆ [1, T], Algorithm 3 guarantees

b

∑
t=a

ℓt(yt) − ℓt(y(j)t) ≤ 1

³b+1
[2 log(1

´b+1p1j
) + 1]

30

Online Linear Regression in Dynamic Environments via Discounting

Proof. The heavy lifting is done mostly using Lemma E.2, after which the proof follows by choosing the sequence of

mixing parameters ´t. Applying Lemma E.2 and observing the telescoping sum, we have

b

∑
t=a

ℓt(yt) − ℓt (y(j)t) ≤ b

∑
t=a

1

³t
log(1

ptj
) − 1

³t+1
log(1

pt+1,j
)

+

b

∑
t=a

1

³t
log (1

1 − ´t+1
)

+

b

∑
t=a

∣ 1

³t+1
−

1

³t
∣ log(1

´t+1p1j
)

=
1

³a
log(1

paj
) − 1

³b+1
log(1

pb+1,j
)

+

b

∑
t=a

1

³t
log (1

1 − ´t+1
)

+

b

∑
t=a

∣ 1

³t+1
−

1

³t
∣ log(1

´t+1p1j
) .

Now observe that with ´t+1 ≤
1

(e+t) log2(e+t)+1 , using the elementary inequality log (1 + y) ≤ y we have

log (1

1 − ´t+1
) = log (1 + ´t+1

1 − ´t+1
) ≤ ´t+1

1 − ´t+1
=

1(e + t) log2(e + t)
so for non-increasing ³t we have

b

∑
t=a

1

³t
log (1

1 − ´t+1
) ≤ b

∑
t=a

1

³t

1(e + t) log2(e + t)
≤

1

³b

b

∑
t=a

1(e + t) log2(e + t)
≤

1

³b
+

e+b

e

1

y log
2
y
dy

=
1

³b

−1

log (y)
RRRRRRRRRRR
e+b

y=e

≤
1

³b

and similarly,

b

∑
t=a

∣ 1

³t+1
−

1

³t
∣ log(1

´t+1p1j
) ≤ log(1

´b+1p1j
) b

∑
t=a

1

³t+1
−

1

³t

≤
1

³b+1
log(1

´b+1p1j
) ,

so overall we have

b

∑
t=a

ℓt(yt) − ℓt (y(j)t) ≤ 1

³a
log(1

paj
) − 1

³b+1
log(1

pb+1,j
) + log (1

´b+1p1j
) + 1

³b+1

=
1

³a
log(1

paj
) + log (pb+1,j

´b+1p1j
) + 1

³b+1

≤
1

³b+1
log(1(1 − ´a)qaj + ´ap1j) +

log (pb+1,j
´b+1p1j

) + 1
³b+1

≤
1

³b+1
[2 log(1

´b+1p1j
) + 1] ≤

31

Online Linear Regression in Dynamic Environments via Discounting

E.1. Proof of Lemma E.2

The following provides an initial one-step bound to work from, which we use in the proof of Theorem E.1.

Lemma E.2. For all t let ℓt be an ³t-Exp-Concave function. Then for any j ∈ [N], Algorithm 3 guarantees

ℓt(yt) − ℓt(y(j)t) ≤ 1

³t
log(1

ptj
) − 1

³t+1
log(1

pt+1,j
)

+
1

³t
log (1

1 − ´t+1
)

+ ∣ 1

³t+1
−

1

³t
∣ log(1

´t+1p1j
)

Proof. By ³t-Exp-Concavity of ℓt, we have that y ↦ exp (−³tℓt(y)) is concave. Hence, applying Jensen’s inequality:

exp (−³tℓt(yt)) ≥ N

∑
i=1

pti exp (−³tℓt (y(i)t)) = N

∑
i=1

pti exp (−³tℓti)

and taking the natural logarithm of both sides we have

−³tℓt(yt) ≥ log(N∑
i=1

pti exp (−³tℓti))
ℓt(yt) ≤ − 1

³t
log(N∑

i=1

pti exp (−³tℓti)) .

Hence, for any j ∈ [N] we have

ℓt(yt) − ℓt (y(j)t) ≤ − 1

³t
log(N∑

i=1

pti exp (−³tℓti)) − ℓtj
= −

1

³t
log(N∑

i=1

pti exp (−³tℓti)) + 1

³t
log (exp (−³tℓtj))

=
1

³t
log(exp (−³tℓtj)

3Ni=1 pti exp (−³tℓti))
=

1

³t
log(ptj exp (−³tℓtj)

ptj3Ni=1 pti exp (−³tℓti))
=

1

³t
[log(qt+1,j

ptj
)]

=
1

³t
[log(1

ptj
) − log(1

qt+1,j
)] .

32

Online Linear Regression in Dynamic Environments via Discounting

Adding and subtracting 1
³t+1

log (1
pt+1,j

),
ℓt(yt) − ℓt (y(j)t) ≤ 1

³t
log(1

ptj
) − 1

³t+1
log(1

pt+1,j
)

+
1

³t+1
log(1

pt+1,j
) − 1

³t
log(1

qt+1,j
)

=
1

³t
log(1

ptj
) − 1

³t+1
log(1

pt+1,j
)

+
1

³t
log(1

pt+1,j
) − 1

³t
log(1

qt+1,j
)

´¹¹¹¸¹¹¶
log(qt+1,j/pt+1,j)/³t

+ [1

³t+1
−

1

³t
] log(1

pt+1,j
)

recalling pt+1,j = (1 − ´t+1)qt+1,j + ´t+1p1j ,
=

1

³t
log(1

ptj
) − 1

³t+1
log(1

pt+1,j
)

+
1

³t
log(qt+1,j(1 − ´t+1)qt+1,j + ´t+1p1j)

+ [1

³t+1
−

1

³t
] log(1(1 − ´t+1)qt+1,j + ´t+1p1j)

≤
1

³t
log(1

ptj
) − 1

³t+1
log(1

pt+1,j
)

+
1

³t
log (1

1 − ´t+1
)

+ ∣ 1

³t+1
−

1

³t
∣ log(1

´t+1p1j
)

33

Online Linear Regression in Dynamic Environments via Discounting

F. Strongly-Adaptive Guarantees

In this section we provide a formal statement of the result sketched in Section 5. The result follows easily from the results

in Section 4, after borrowing the geometric covering intervals from Daniely et al. (2015).

Theorem F.1. Let Sµ be the set of discount factors defined in Theorem 4.2, let S denote a set of geometric covering

intervals over [1, T], and for each µ ∈ Sµ and I ∈ S, let Aµ,I be an instance of Algorithm 1 using discount µ and applied

during interval I (and predicts y
Ref
t for t ∉ I). LetAMeta be an instance of the meta-algorithm characterized in Theorem 4.1.

Then for any [s, Ä] ⊆ [1, T], there is a set of disjoint intervals I1, . . . , IK in S such that ∪Ki=1Ii = [s, Ä], and moreover, for

any u = (us, . . . , uÄ) Algorithm 2 with y
Ref
t = �yt guarantees

R[s,Ä](u) ≤ Ô⎛⎝dmax
t
(yt − yRef

t)2 log2(T) + b√dP
µ∗

[s,Ä](u) ∑
t∈[s,Ä]

(yt − �yt)2⎞⎠
where P

µ∗

[s,Ä](u) = 3Ki=1 P µ∗iIi (u) and each µ∗i ∈ [0,1] satisfies µ∗i =

√
d
2
∑t∈Ii

(yt−�yt)2
√

d
2
∑t∈Ii

(yt−�yt)2+
√
P

γ∗
i

Ii
(u)

.

If we instead suppose each Aµ,I sets hints as in Theorem 4.3, then for any u = (us, . . . , uÄ) Algorithm 2 guarantees

R[s,Ä](u) ≤ Ô⎛⎝dP µmin

[s,Ä](u) + dmax
t
(yt − yRef

t)2 log2(T) + b√dP
µ○

[s,Ä](u) ∑
t∈[s,Ä]

ℓt(ut)⎞⎠
where P

µ○

[s,Ä](u) = 3Ki=1 P µ○iIi (u) and each µ○i ∈ [0,1] satisfies µ○i =

√
d∑t∈Ii

ℓt(ut)
√
d∑t∈Ii

ℓt(ut)+
√
P

γ○
i

Ii
(u)

.

Proof. For any [s, Ä] ⊆ [1, T], Daniely et al. (2015, Lemma 1.2) shows that there exists a disjoint set of intervals I1, . . . , IK
in S such that ∪Ki=1Ii = [s, Ä] and K ≤ O(log(Ä − s)). Hence, we can decompose 3Ki=1RIi(u), so applying Theorem 4.1

to each of these sub-intervals, for any µ ∈ Sµ we have:

R[s,Ä](u) = K

∑
i=1

RIi(u) ≤ K

∑
i=1

Ô (RAγ,Ii

Ii
(u) +max

t
(yt − �yt)2 log (N ∣Ii∣))

≤ Ô (K∑
i=1

R
Aγ,Ii

Ii
(u) +Kmax

t
(yt − �yt)2 log (N(Ä − s)))

≤ Ô (K∑
i=1

R
Aγ,Ii

Ii
(u) +max

t
(yt − �yt)2 log2(T)) , (15)

where Ô(⋅) hides log(log) factors and the last line bounds K ≤ O(log(Ä − s)) ≤ O(log(T)) and N ≤ O(T log (T)). The

bound on N can be seen from the fact that ∣Sµ ∣ ≤ O(log(T)), and from the fact that S is constructed as S = ∪
⌊log(T),
i=1 Si

where Si = {[k2i, (k + 1)2i − 1] ∶ k = 0,1, . . .}, from which it is easily seen that ∣S∣ ≤ O(T) by observing that each Si has

at most T /2i intervals, hence summing them all up yields ∣S∣ = 3⌊log(T),i=1 ∣Si∣ ≤ O(T).
Now for any interval Ii, Lemma D.4 shows that there is a µ∗i ∈ [0,1] satisfying µ∗i =

√
d∑t∈Ii

1

2
(yt−�yt)2

√
d∑t∈Ii

1

2
(yt−�yt)2+

√
P

γ∗
i

Ii
(u)

and a

µ ∈ Sµ such that

R
Aγ,Ii

Ii
(u) ≤ O⎛⎝dmax

t
(yt − �yt)2 log (∣Ii∣) + b√dP

µ∗
i

Ii
(u)∑

t∈Ii

(yt − �yt)2⎞⎠
so summing these up and applying Cauchy-Schwarz inequlity leads to

K

∑
i=1

R
Aγ,Ii

Ii
(u) ≤ O⎛⎝Kdmax

t
(yt − �yt)2 log (∣Ii∣) + K

∑
i=1

b

√
dP

µ∗
i

Ii
(u)∑

t∈Ii

(yt − �yt)2⎞⎠
≤ O
⎛⎝dmax

t
(yt − �yt)2 log2(Ä − s) + b√dP

µ∗

[s,Ä](u) ∑
t∈[s,Ä]

(yt − �yt)2⎞⎠
34

Online Linear Regression in Dynamic Environments via Discounting

where we’ve defined P
µ∗

[s,Ä](u) = 3Ki=1 P µ∗iIi (u). Plugging this back into Equation (15), overall we may bound:

R[s,Ä](u) ≤ Ô⎛⎝dmax
t
(yt − yRef

t)2 log2(T) + b√dP
µ∗

[s,Ä](u) ∑
t∈[s,Ä]

(yt − �yt)2⎞⎠
where we’ve chosen �yt = yRef

t for simplicity.

An identical argument holds for the second statement: for any interval Ii, Lemma D.5 shows that there is a µ○i ∈ [0,1]
satisfying µ○i =

√
d∑t∈Ii

ℓt(ut)
√
d∑t∈Ii

ℓt(ut)+
√
P

γ○
i

Ii
(u)

and a µ ∈ Sµ such that

R
Aγ,Ii

Ii
(u) ≤ O⎛⎝dP µmin

Ii
(u) + dmax

t
(yt − yRef

t)2 log (∣Ii∣) + b√dP
µ○
i

Ii
(u)∑

t∈Ii

ℓt(ut)⎞⎠
so summing these up and applying Cauchy-Schwarz inequality again leads to

K

∑
i=1

R
Aγ,Ii

Ii
(u) ≤ O⎛⎝dP µmin

[s,Ä](u) +Kdmax
t
(yt − �yt)2 log (∣Ii∣) + K

∑
i=1

b

√
dP

µ○

Ii
(u)∑

t∈Ii

ℓt(ut)⎞⎠
≤ O
⎛⎝dP µmin

[s,Ä](u) + dmax
t
(yt − �yt)2 log2(Ä − s) + b√dP

µ○

[s,Ä](u) ∑
t∈[s,Ä]

ℓt(ut)⎞⎠
where we’ve defined P

µ∗

[s,Ä](u) = 3Ki=1 P µ∗iIi (u), so plugging this back into Equation (15), overall we may bound:

R[s,Ä](u) ≤ Ô⎛⎝dP µmin

[s,Ä](u) + dmax
t
(yt − yRef

t)2 log2(T) + b√dP
µ○

[s,Ä](u) ∑
t∈[s,Ä]

ℓt(ut)⎞⎠ ,
where we’ve defined P

µ○

[s,Ä] = 3Ki=1 P µ
○

i

Ii
(u).

F.1. Matching the Exp-concave Guarantee in Unbounded Domains

Recall from Section 3.2 that in the Exp-concave setting, the algorithm of Baby & Wang (2021) achieves a dynamic regret

bound of the form RT (u) ≤ �O (T 1/3C2/3
T) for CT = 3T−1t=1 ∥ut − ut−1∥1. Our strongly-adaptive guarantees in Theorem F.1

show that a bound of this form can be achieved even in the unbounded domain setting. To see why, note that the essential

intuition of Baby & Wang (2021) is that if we have access to a strongly-adaptive algorithm guaranteeing R[a,b](u) ≤
O(log(b − a)) static regret on all intervals [a, b] ⊆ [1, T], then to attain the desired bound up to log terms it suffices to

show that there exists a set of intervals {I1, . . . , IN} partitioning [1, T] such that N ≤ T 1/3C2/3
T and that the dynamic

regret is bounded by the static regrets over the partition, leading to regret matching O(T 1/3C2/3
T) up to logarithmic terms.

Our strongly-adaptive guarantee in Theorem F.1 actually achieves a stronger guarantee than is necessary to invoke the

above argument, by guaranteeing O(log(b − a) (√dP µ[a,b](u)∣b − a∣) dynamic regret on every interval [a, b], and hence

as a special case we have O(log(b − a)) static regret on each interval as well. A similar partitioning argument then

provides an analogous T 1/3C2/3
T bound, even in unbounded domains. If this is surprising, note that the exp-concave (and

hence bounded domain) restriction is only really used to provide an algorithm which achieves logarithmic static regret,

not to construct the essential partition. In the online linear regression setting, we do not need exp-concavity to guarantee

logarithmic static regret — the VAW forecaster can provide the necessary guarantee even in an unbounded domain.

35

Online Linear Regression in Dynamic Environments via Discounting

G. Supporting Lemmas

The following provides a useful relation between the squared loss and its Bregman divergence.

Lemma G.1. Let ℓt(w) = 1
2
(yt − ⟨xt, wtð)2. Then for any u,w ∈W ,

Dℓt(u∣w) = 1

2
⟨xt, u −wð2

Proof. By definition of Bregman divergence, we have:

Dℓt(u∣w) = ℓt(u) − ℓt(w) − ⟨∇ℓt(w), u −wð .
Expanding the definition of ℓt, we have

ℓt(u) − ℓt(w) = 1

2
(yt − ⟨xt, uð)2 − 1

2
(yt − ⟨xt, wð)2

=
1

2
y2t +

1

2
⟨xt, uð2 − yt ⟨xt, uð − 1

2
y2t −

1

2
⟨xt, wð2 + yt ⟨xt, wð

=
1

2
⟨xt, uð2 − 1

2
⟨xt, wð2 + yt ⟨xt, w − uð .

Moreover, we have

− ⟨∇ℓt(w), u −wð = ⟨(yt − ⟨xt, wð)xt, u −wð
= −yt ⟨xt, w − uð + ⟨xt, wð2 − ⟨xt, wð ⟨xt, uð ,

so combining with the previous display we have

ℓt(u) − ℓt(w) − ⟨∇ℓt(w), u −wð = 1

2
⟨xt, uð2 − 1

2
⟨xt, wð2 + yt ⟨xt, w − uð

− yt ⟨xt, w − uð + ⟨xt, wð2 − ⟨xt, wð ⟨xt, uð
=
1

2
⟨xt, uð2 + 1

2
⟨xt, wð2 − ⟨xt, wð ⟨xt, uð

=
1

2
(⟨xt, uð − ⟨xt, wð)2

=
1

2
⟨xt, u −wð2 .

The following provides a discounted version of the log-determinant lemma.

Lemma G.2. Let µ ∈ (0,1], ¼ > 0, xt ∈ R
d, and define M0 = ¼I and Mt = xtx

⊺

t + µMt−1 for each t > 0. Then for any

sequence ∆1,∆2, . . . in R,

T

∑
t=1

∆2
t ∥xt∥2M−1

t
≤ d log (1/µ)∆2

1∶T +max
t

∆2
td log

⎛⎝1 + 3
T
t=1 µ

T−t ∥xt∥22
¼d

⎞⎠
Proof. By definition we have Mt = xtx

⊺

t + µMt−1, so re-arranging and taking the determinant of both sides we have

Det (µMt−1) = Det (Mt − xtx
⊺

t) = Det (Mt)Det(I −M−
1

2

t xtx
⊺

tM
−

1

2

t)
= Det (Mt) (1 − ∥xt∥2M−1

t
)

36

Online Linear Regression in Dynamic Environments via Discounting

where the last line uses the fact that Det (I − yy⊺) = 1 − ∥y∥22. Re-arranging, using Det (µMt−1) = µdDet (Mt−1), and

using the fact that 1 − x ≤ − log (x) we have

T

∑
t=1

∆2
t ∥xt∥2M−1

t
=

T

∑
t=1

∆2
t [1 − µdDet (Mt−1)

Det (Mt)]
≤

T

∑
t=1

∆2
t log(Det (Mt)

µdDet (Mt−1))
=

T

∑
t=1

∆2
td log (1/µ) + T

∑
t=1

∆2
t log(Det (Mt)

Det (Mt−1))
≤ d log (1/µ)∆2

1∶T +max
t

∆2
t log(T/

t=1

Det (Mt)
Det (Mt−1))

= d log (1/µ)∆2
1∶T +max

t
∆2
t log(Det (MT)

Det (M0)) .
Observe that Det (M0) = Det (¼I) = ¼d, and using AM-GM inequality we have

Det (MT) ≤ (Tr (Mt)
d

)d = ⎛⎝
Tr (¼µT I +3Tt=1 µT−txtx⊺t)

d

⎞⎠
d

=
⎛⎝d¼µ

T
+3Tt=1 µT−t ∥xt∥22

d

⎞⎠
d

,

Hence
Det(MT)
Det(M0) ≤ (d¼µT

+∑
T
t=1 µ

T−t∥xt∥22
d¼

)d, so overall we have

T

∑
t=1

∆2
t ∥xt∥2M−1

t
≤ d log (1/µ)∆2

1∶T +max
t

∆2
t log

⎛⎜⎝
⎛⎝d¼µ

T
+3Tt=1 µT−t ∥xt∥22

¼d

⎞⎠
d⎞⎟⎠

= d log (1/µ)∆2
1∶T +max

t
∆2
td log

⎛⎝d¼µ
T
+3Tt=1 µT−t ∥xt∥22

¼d

⎞⎠
≤ d log (1/µ)∆2

1∶T +max
t

∆2
td log

⎛⎝1 + 3
T
t=1 µ

T−t ∥xt∥22
¼d

⎞⎠

Note that the Lemma G.2 also immediately gives us the usual log determinant lemma as a special case where µ = 1:

Lemma G.3. Let ¼ > 0, xt ∈ R
d, and define Let M0 = ¼I and Mt = xtx

⊺

t +Mt−1 for each t > 0. Then for any sequence

∆1,∆2, . . . in R,

T

∑
t=1

∆2
t ∥xt∥2M−1

t
≤ dmax

t
∆2
t log

⎛⎝1 + 3
T
t=1 ∥xt∥22
¼d

⎞⎠
The following lemma is common in adaptive online learning and provided for completeness.

Lemma G.4. Let a1, . . . , aT be arbitrary non-negative numbers in R. Then¿ÁÁÀ T

∑
t=1

at ≤
T

∑
t=1

at√
3ts=1 as

≤ 2

¿ÁÁÀ T

∑
t=1

at

37

Online Linear Regression in Dynamic Environments via Discounting

Proof. By concavity of x↦
√
x, we have

√
a1∶t −

√
a1∶t−1 ≥

at

2
√
a1∶t

,

so summing over t and observing the resulting telescoping sum yields

T

∑
t=1

at√
a1∶t
≤ 2

T

∑
t=1

√
a1∶t −

√
a1∶t−1 = 2

√
a1∶T .

For the lower bound, observe that

T

∑
t=1

at√
a1∶t
≥

T

∑
t=1

at√
a1∶T

=
a1∶T√
a1∶T

=
√
a1∶T

38

	Online Linear Regression
	Related Works
	Notations

	The Vovk-Azoury-Warmuth Forecaster
	Dynamic Regret via Discounting
	Small-loss Bounds via Self-confident Predictions
	Dimension-dependent Lower Bound

	Learning the Optimal Discount Factor
	Strongly-Adaptive Guarantees
	Conclusion
	Proofs for Section 3 (Dynamic Regret via Discounting)
	Equivalence to FTRL and Mirror Descent
	Proof of Theorem 3.1
	Proof of Lemma A.3
	Proof of Lemma A.4

	Proof of Lemma 3.2
	Existence of a Good Discount Factor
	Proof of Theorem 3.3

	Proofs for Section 3.1 (Small-loss Bounds via Self-confident Predictions)
	Proof of Theorem 3.4
	Proof of Lemma B.1

	Proofs for Section 3.2 (Dimension-dependent Lower Bound)
	Proof of Theorem 3.5

	Proofs for Section 4 (Learning the Optimal Discount Factor)
	Proof of Lemma D.1
	Proof of Lemma D.2
	Regret of the Range-Clipped Meta-Algorithm
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Adaptive Fixed-share
	Proof of Lemma E.2

	Strongly-Adaptive Guarantees
	Matching the Exp-concave Guarantee in Unbounded Domains

	Supporting Lemmas

