Online Linear Regression in Dynamic Environments via Discounting

Andrew Jacobsen'! Ashok Cutkosky >

Abstract

We develop algorithms for online linear re-
gression which achieve optimal static and dy-
namic regret guarantees even in the complete
absence of prior knowledge. We present a
novel analysis showing that a discounted vari-
ant of the Vovk-Azoury-Warmuth forecaster
achieves dynamic regret of the form Rr(u) <
O (dlog(T) v \/dPJ(u)T), where P}(u) is a
measure of variability of the comparator se-
quence, and show that the discount factor achiev-
ing this result can be learned on-the-fly. We show
that this result is optimal by providing a match-
ing lower bound. We also extend our results to
strongly-adaptive guarantees which hold over ev-
ery sub-interval [a, b] € [1,T"] simultaneously.

1. Online Linear Regression

This paper presents new techniques and analyses for on-
line linear regression, a variant of the classic least-squares
regression problem tailored to streaming data (Azoury &
Warmuth, 2001; Vovk, 2001; Orabona et al., 2015; Foster
et al., 2016). Formally, consider 7' rounds of interaction
between a learner and an environment, in which learner’s
objective is to accurately predict some observable target
signal y; € R before it’s revealed. On each round, a vec-
tor of features x, ¢ R? is first revealed, representing the
context of the environment at the start of the round, and the
learner predicts §; = (¢, w;) by means of a weight vec-
tor w; € R?. The signal y,; € R< is then observed, and the
learner incurs a loss proportional to the prediction error,
Ci(we) = 5(ye — (@, we))?. Since wy is allowed to depend
on x;, this protocol is sometimes referred to as improper
online regression, as the learner is able to make predictions
outside of the class of linear models. Indeed, since x; is
revealed before the learner must make their prediction, it is
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always possible to make predictions T = f;(x;) for any ar-
bitrary transformation f; : R? — R, for instance by setting

we = fy(wd)a o,

The classical measure of the learner’s performance in this
setting is regret, the cumulative prediction error relative to
some fixed benchmark point v € R%:

T
RT(U) = ;Et(wt) —Kt(u).

Notice that this performance measure can only properly re-
flect prediction accuracy when there exists a fixed u € R?
which predicts well on average. For example, this may oc-
cur when when the (x4,y;) pairs are all generated i.i.d.
from some well-behaved distribution. However, in many
true streaming settings the data-generating distribution may
change over time due to changes in the environment. Dy-
namic regret attempts to model such settings by comparing
against a sequence of comparators u = (ug,...,ur):

T
Rr(u) = ;ft(wt) =Ly (uy).

Notice that dynamic regret captures the usual notion of re-
gret (referred to as static regret) as a special case by set-
ting u; = ... = up. Our goal in this work is to make fa-
vorable dynamic regret guarantees even in the complete
absence of any prior knowledge of the underlying data-
generating process. Naturally, because such an algorithm
leverages no prior knowledge, it necessarily must be adap-
tive to all problem-dependent quantities without requiring
any instance-specific hyperparameter tuning.

Contributions. In this work we achieve the goal laid
out above and develop the first algorithms for online linear
regression that require no prior knowledge about the data
stream, yet still make strong performance guarantees. In
particular, our contributions are as follows:

* We show that even in the absence of any boundedness
assumptions, a discounted variant of the VAW forecaster
with a well-chosen discount factor achieves dynamic
regret Ry(u) < O(dlog(T) v \/dP}(u)T), where
PJ(u) is a measure of variability of the comparator
sequence (i.e. the magnitude of P (u) is related to
how drastically the comparator changes over time). We
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also obtain small-loss guarantees of the form Rr(u) <
O(dlog (T)v \/dP;i(u) YL, Kt(ut)), so that the algo-

rithm will automatically perform better on “easy” data
where the comparator has low loss.

e We provide a matching lower bound of the form

Rr(u) > Q(dlog(T) % \/dTP%(u)), demonstrating

optimality of the discounted VAW forecaster.

* We show that the discount factors required to obtain the
results in the first point can be learned on-the-fly, lead-
ing to algorithms that make guarantees matching our
lower bound. Moreover, we show how to extend our ap-
proach to achieve bounds of a similar form over every
sub-interval [a,b] € [1,T] simultaneously. These are
the first strongly-adaptive guarantees have been achieved
in the absence of all boundedness assumptions.

1.1. Related Works

Despite being a well-studied problem setting, there are
no prior works which approach online linear regression
with sufficient generality to be considered free from prior
knowledge. The closest works to our own are Vovk (2001);
Azoury & Warmuth (2001); Orabona et al. (2015); Mayo
et al. (2022), each of which consider the same improper
online learning setting as this work and present algorithms
that can be run in an unbounded domain (hence requiring
no prior knowledge about the comparator) and without any
prior knowledge of the data stream. Yet these works pro-
vide guarantees that only hold for static regret—the dy-
namic regret of the algorithms in these works may be ar-
bitrarily bad. In this sense, deploying any such algorithm
implicitly requires rather strong prior knowledge: that the
data-generating distribution is not changing over time.

A closely related problem setting which does account for
potential non-stationarity is the classic filtering problem
(Kalman, 1960; Simon, 2006; Kozdoba et al., 2019; Hazan
& Singh, 2022). This problem setting assumes that the y;
are generated from a dynamical system of a specific form,
and seeks to estimate the hidden state of the system. Thus,
these works revolve around strong structural assumptions
about the data-generating process from the outset. Simi-
larly, there is a large literature on adaptive filtering which
seeks to solve the filtering problem without a priori knowl-
edge of the system (Kivinen et al., 2006; Hazan et al., 2017;
2018; Rashidinejad et al., 2020; Tsiamis & Pappas, 2022;
Ghai et al., 2020), though these works still implicitly re-
quire prior knowledge that the underlying dynamical sys-
tem is from some specific class, as any performance guar-
antees may otherwise fail to hold.

Alternatively, there are several related problem settings that
one might hope to leverage results from, but these all in-
evitably require additional assumptions of some form to

be applied to the online linear regression problem. For
instance, many prior works develop algorithms for gen-
eral online regression settings that capture linear regres-
sion as a special case (Orabona et al., 2015; Luo et al.,
2016; Kotlowski, 2017; Kempka et al., 2019; Mhammedi
& Koolen, 2020). Even more generally, one might hope to
approach online linear regression via reduction to a more
general online convex optimization setting (Zhang et al.,
2018; Yuan & Lamperski, 2019; Zhao et al., 2020; Baby
et al., 2021; Baby & Wang, 2021; Luo et al., 2022; Ja-
cobsen & Cutkosky, 2022; Zhang et al., 2023; Zhao et al.,
2024). Unfortunately, all of these works require additional
boundedness assumptions on the losses such as Lipschitz-
ness or exp-concavity, both of which require a bounded do-
main in the context of losses £,(w) = $(y; — (24, w))2.
Yet assuming a bounded domain amounts amounts to hav-
ing strong prior knowledge that the comparator sequence
u = (uq,...,ur) lies entirely within some bounded subset
W < R%, which must be known and accounted for a priori
for the guarantees to hold.

One recent exception to the limitations mentioned above
is the work of Jacobsen & Cutkosky (2023). They de-
velop an approach that can be applied to any loss func-
tions satisfying |V{;(w)| < Gy + Ly |wl|| for some non-
negative constants G; and L;, and hence could be ap-
plied in our setting for G; = |y| |z and L, = [z¢]°.
Their algorithm achieves a dynamic regret guarantee on
the order of O(M?3/%\/PrT) where M = max; ||ju;| and
Pr = T, |us — us—1|. However, their approach fails to
achieve logarithmic regret against a fixed comparator, and
their approach requires prior knowledge of a Gyax > Gt
and L,y > Ly for all ¢. Moreover their approach requires
O(dT log (T)) per-round computation, making it inappro-
priate for many of the long-running problems where non-
stationarity naturally emerges due to subtle changes in the
environment over time.

1.2. Notations

We define ¢p(w) = % HwH;, so that updates can be written
purely in terms of losses #;. Given a positive definite ma-
trix M, the weighted norm w.r.t M is ||w|,, = \/(w, Mw).
For any sequence aj,as, ..., we denote amax = maxy |as|.
Positive thresholding is denoted as [-]; = max {-,0}. The
Bregman divergence w.r.t. a differentiable function v is
Dy(zly) =¥ (x) - (y) - (VY (y), z - y). We denote a v
b =max{a,b} and a A b = min{a,b}, [N]={1,...,N},
N = {0,1,...} denotes the natural numbers, and 1y is
the /NV-dimensional vector of ones. We use the short-hand
Clip(,,5)(y) = (yva)Ab and the compressed sum notations
Gisj = Z{:i g: and Hg||(21:b = Zf:a g H2 The N-dimensional
simplex is denoted Apy. O(-) hides constant factors and
9] (+) hides constant and log log factors.
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2. The Vovk-Azoury-Warmuth Forecaster

In the context of static regret, it is well known that the op-
timal strategy in our improper online linear regression set-
ting is the Vovk-Azoury-Warmuth (VAW) forecaster, dis-
covered independently by Azoury & Warmuth (2001) and
Vovk (2001). On each round, the standard VAW forecaster
sets

1

¢
wy = ()\I+ > xsxl) > ysas. (1)
s=1 s=1

The VAW forecaster is well-known for the following re-
gret guarantee (Azoury & Warmuth, 2001; Vovk, 2001;
Orabona et al., 2015).

Theorem 2.1. For any u € R% and any sequences (y;)~,
inR and (z;)L, in RY, the VAW forecaster guarantees

A d 2 T 2
Ra(u) < 5 ul; + ““Q"tyfmg(l . Ztaiﬂlxt“z ,

Let us briefly pause to appreciate some of the subtleties of
this result, as it represents a very high standard of excel-
lence in online learning. First, note that the result holds
using no prior knowledge about the data — there are no
underlying assumptions about how the features z; or the
targets y; are distributed, the algorithm requires no specific
statistics or bounds such as |y;| < Y or || < X, and the al-
gorithm works in an unbounded domain — a relative rarity
in adversarial settings. Yet despite this incredible degree of
generality, the VAW forecaster boasts a strong logarithmic
regret guarantee, which can be shown to be optimal up to
constant factors (See, e.g., Cesa-Bianchi & Lugosi (2006,
Theorem 11.9)). Thus, the VAW forecaster achieves a har-
mony between theory and practice which is quite rare in
online learning, requiring no problem-specific information
or assumptions while still guaranteeing optimal regret.

However, a major caveat to the above discussion is that
these favorable properties hold only within the context of
static regret. The dynamic regret of the VAW forecaster can
be arbitrarily bad in general. To see why, let us consider the
simple case where d = 1 and z; = 1 for all ¢. In this case,
the VAW forecaster predicts 7; = z,w; = (A+1) "' ©5 v,
which approximates an empirical average of the targets
observed up to round ¢. It is easy to see that any such
prediction strategy can fail when competing with a time-
varying comparator. For instance, if the first T'/2 targets
are —1 but the second half are +1, the VAW forecaster will
quickly converge to predicting —1 in the first 7'/2 rounds,
but will be unable to quickly adapt after the change in the
latter T'/2 rounds, leading to linear regret overall. In this
sense, the VAW forecaster actually implicitly requires quite
strong prior knowledge about the data: that it is, in some

sense, stationary. Because of this, its predictions can not be
trusted in the absence of prior knowledge, but rather only
when the practitioner knows they are dealing with data that
can be reasonably predicted using only a single fixed hy-
pothesis u € RZ. In the next section, we will see that this
issue can be alleviated by incorporating a suitable recency
bias to the statistics of the VAW forecaster.

3. Dynamic Regret via Discounting

Despite making strong static regret guarantees, we saw in
the previous section that the standard VAW forecaster may
fail to attain low regret when competing against a time-
varying comparator. Loosely speaking, the problem is that
the VAW forecaster treats all time-steps as equally impor-
tant. Indeed, it can be shown that VAW forecaster can be
understood as updating

t-1

1
w; = arg min — HwH?\t + E ls(w),
weRd 2 s=1

where A; = M + z,x]." The latter term Z’;j £s(w) forces
the VAW forecaster to choose a w which balances all of the
losses encountered so-far. Yet in dynamic scenarios, the
losses that contain the most-relevant information for pre-
dicting y; are typically the ones that have been observed the
most recently. In order to more closely track these recently-
observed losses, we make two modifications to the VAW
forecaster. First, we incorporate a forgetting or discount
factor v in to the algorithm’s statistics, placing less empha-
sis on losses observed far in the past. Second, we allow the
update to additionally make use of a sequence of “predicted
labels” or “hints” 7; that are available before we commit to
Y. Intuitively, we would like our algorithm to do better
when 3; = y;. Later, we will provide some concrete ways
to set 7, that yield strong regret bounds.

The variant of the VAW forecaster described above is pro-
vided concretely in Algorithm 1. Observe that by un-
rolling the recursions for 6; and >, the update w; =
Y71 [t + v0;] can be written in closed-form as

t -1 t—1
wy = ('Yt)\f + Z ’Ytsxszz) [@’txf +y Z 7t7175ysz(9
s=1 s=1

By setting v = 1 and ¥; = 0, the update precisely reduces to
Equation (1), so the discounted VAW forecaster is a strict
generalization of the standard VAW forecaster. Likewise,
the following theorem shows that Algorithm 1 obtains a
regret guarantee which captures Theorem 2.1 as a special
case. Proof can be found in Appendix A.2.

"The equivalence to Equation (1) is readily checked via the
first-order optimality condition, though this claim can also be de-
rived as a special case of a more general claim Proposition A.1
provided in the appendix.
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Algorithm 1: Discounted VAW Forecaster
Input A >0, v € (0,1]
Initialize w; =0, Yo =\, 6; =0
fort=1:Tdo

Receive features z; € R?

Set ¥, = zyx) + X1, choose 7; € R

Update w; = X7 [Ty + 70, ]

Predict (z;, w;) and observe y;
Incur loss £, (wy) = 5 (ye — (x4, wy))?
Set 041 = yrws + Y0,

end

Theorem 3.1. Let A > 0 and v € (0,1]. Then for any
sequence u = (u1, ..., ur) in R%, Algorithm I guarantees
dynamic regret R (u) bounded above by

T - 2
i1 ’YT i thHQ )

d 2
— -7:)°1 1
+ mtax(yt Ut) og( + IV

2 |2
2 2

T- d T
Z [} (ue) Fﬁ(ﬂt)]+§10g(1/7);(yt—’y1)2

tA 2 t t—

where Fl (w) =75 [w]3 + £ioy 7'l (w).

The regret decomposition obtained in Theorem 3.1 is ap-
pealing for two reasons. First, it captures Theorem 2.1 as a
special case: setting vy =1,%; =0,and vy = ... = ur = u,
the last two terms of the bound evaluate to zero, so the re-

ret is bounded by 2 u|2+ 2 max, y2 1 1+ Zimlodz
g y2 Ufo 2 ax¢ Y 10g \d )

which is precisely the guarantee promised by Theorem 2.1.
Second, the decomposition displays a clean separation of
concerns. The terms in the first line are the unavoidable
penalties associated with static regret, which are of course
also unavoidable here in the more general dynamic regret
setting. In the second line, any penalties incurred as a result
of a changing comparator sequence are captured entirely
by the variability term Ly Zt v (ut+1) - F}(ut), while
the term dlog (1/7) ¥, Sy - yt) represents a stability
penalty incurred due to discounting.

Intuitively, the terms in the second line represent a track-
ing/stability trade-off: against a volatile comparator se-
quence, we would ideally like to set the discount factor
~ to be small to control the variability penalty, yet this
will come at the expense of increasing the stability penalty
dlog (1/7) ¥~y (3 - %:)* Inits current form, however,
this trade-off is still a bit mysterious. The variability term
¥ 13 FY (ugsr) — F (uy) is not necessarily monotonic as
a function of ~y nor is it necessarily positive, making it dif-
ficult to meaningfully analyze or understand how it relates
to the stability penalty ¢ log (1/7) X/ (y: — T:)%. If we
instead consider a modest upper bound on these terms we

can reveal a more explicit trade-off. We provide proof of a
slightly more general statement of the following lemma in
Appendix A.3.

Lemma 3.2. (simplified) Let {y,¢1,...,0p be arbitrary

non-negative functions, v € (0,1), and F;(w) =
Yol (w). For all t, define
t—s
0 (u,0) - z —[l(0) - L)),
i S

and P} (u) = Z;i_ll d] (g1, ur). Then for any Vi >0,

yTj F(ugs1) - F) (ut)]+10g( )VT

SV
1=

P)(u) + =7y,
Y

The lemma  bounds the variability term
Y [ (uisr) - FY(ug)]  from  Theorem 3.1 in
terms of a new one P (u). To understand this new
measure of variability, for each ¢ let us first define a
~v-exponentially-decaying distribution over time-steps s < ¢
as p/(s) =

P (u) as

—. Then, given v we can express

DI

JZ(WH ,ut)

T-1 t
)= % LA - w0l

—

~
i

Eqp [ (6 uern) = € ()]

o~
Il
_

so each term of P} (w) is a measure of how different the
prediction errors of u; and u;41 are on average across ‘“re-
cent” losses. The quantity P (u) can also be naively re-
lated to the more common measure of variability — the

path-length PQHJH = Y Jug = g1 | — as follows:

T-1
Pp(u) < Y max |V (ug)| ur = wsr |
t=1 %

<y . 1P O (mpc el ).

Thus, PJ.(wu) is proportional to the usual path-length.
Note that a multiplicative penalty of max; ||u;| is the
same worst-case penalty that appears in prior works, even
in bounded domains (Zhang et al., 2018; Jacobsen &
Cutkosky, 2022; Zhang et al., 2023; Zhao et al., 2024).

Letting 7 = —--, Lemma 3.2 tells us that that latter terms of
Theorem 3. l are bounded by

d L _
UP%(U) + o Z(yt —yt)2,
nt=1
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a trade-off which can be optimized by choosing 7 =

23T (ye-T:)2

P w) to get

d T _ T 1 _
WP%(“) + - Z(yf - yt)2 = 2\' dP%(u) Z —(y —T1)2.
2n i3 =12

This is very promising; as we will see in Section 3.2, a
penalty of this form is unavoidable in general. Plugging
this choice of 7 back into 7 = ﬁ and solving for v, we find
that the ideal choice of discount factor would be ay € [0,1]
satisfying

% Z?:l (y: = Tt)?

= .
V5 X (e = )2 +/Pr(u)

Notice in particular that « appears on both sides of the ex-
pression, and solving for this  explicitly is non-trivial in
general. Nonetheless, the following theorem shows that a
discount factor satisfying the above expression always ex-
ists, and if it could somehow be provided to the discounted
VAW forecaster we would achieve dynamic regret match-
ing the lower bound in Section 3.2. Proof can be found in
Appendix A.5.

Theorem 3.3. For any sequences yi,...,yr and
Ui, .., Jr in R and any sequence u = (uy, ..., ur) in RY,
there is a discount factor v* € [0, 1] satisfying
d T ~
V& 21 (e —T)?
* 2 t=1
¥ 2)

I 0 P ()

with which the regret of Algorithm 1 is bounded above by

Rr(u) < O(dmtax(yt - 7:) log (T)

+ \l AP} (u) Zl(yt - gt)z)

While this result is promising, it is important to note that it
still falls short of our desired goal of prior-knowledge-free
learning. Indeed, it seems that we require exceptionally
strong prior knowledge to choose the prescribed discount
factor «* satisfying Equation (2). We will return to this
issue in Section 4 to show that this discount factor can be
learned on-the-fly, resulting in algorithms that are truly free
of prior knowledge.

Interestingly, the discount factor v* in Theorem 3.3 can

help to shed some light on the variability measure P;i* (u).
Observe from the relation in Equation (2) that v* can be

near zero only when Pg* (u) is very large relative to the
stability penalty, and likewise, if v* is near 1 then PJ'Z* (u)
must be inconsequentially small. In this sense, the P%* (u)

corresponding to small v* can be regarded as the worst-
case measures of variability. Yet as v* approaches zero,
Pf(u) approaches /71 [£;(uss1) — £4(us)],, which can
be naturally related other standard measures of variability.
Indeed, this penalty is similar in spirit to the temporal vari-
ability 23:11 [€e41 (ue) — £ (uy)| studied in works such as
Campolongo & Orabona (2021); Besbes et al. (2015), and
can be related to the path-length ¥7," ||lu; — w41 | via con-
vexity of ¢;. In this sense, P%* (u) can be thought of as a
relaxation of the more common measures of variability.

3.1. Small-loss Bounds via Self-confident Predictions

In the previous section, we saw that the discounted
VAW forecaster can achieve regret scaling as

@) (\/dP%*(u) YL (e - @})2), where 7, € R is an
arbitrary “hint” available before observing the true y;. One
particularly interesting option is to use the learner’s own
prediction as a hint, §; = (z;, w;). The reasoning is that any
learner achieving low dynamic regret must be predicting y;
reasonably well on average, so their own predictions would
naturally make for reasonable predicted labels ;. Con-
cretely, observe that by choosing 7; = (¢, w;) we would
have Y1 (4=T)% = oy (ye—(m, we))? = 251, G (wy),
and hence for some 7 € [0, 1] the guarantee in Theorem 3.3
would scale as

T T
Rr(u) = ;Et(wt) —li(u) <O \‘ dP%(u);Et(wt)

where the O(-) hides the logarithmic factor. Now notice
that Y7, ;(w;) appears on both sides of this inequal-
ity. Solving for ¥, £;(w;), one finds that this implies

that \/ Y7, £ (w;) < O (\/dP;('u,) + \/Zleét(ut)), )

plugging this back into the regret bound we have

Rr(u) <O P%(u)+\}P%(u);£t(ut) .

Bounds of this form, sometimes called small-loss or L*
bounds, are highly desirable because they naturally adapt to
the total loss of the comparator sequence, potentially lead-
ing to lower regret than more naive hint choices such as
Ui = Y1 oryp = 0.

Unfortunately, the above argument does not quite go
through because the now the logarithmic penalty in
Theorem 3.3 scales as O (dmax;(y; - 7:)?log (T)) =
O (dmax; £ (wy)log (T')), and this max; ¢; (w;) could be
arbitrarily large. Fortunately, it turns out that this is-
sue can be remedied by a simple trust-region argument.
On each round, instead of directly using hints J; =
(¢, we), we can constrain these predictions to be close
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to some arbitrary reference point yfef. In particular, in

Lemma D.1 we show by clipping the learner’s predic-
tions to a suitable interval centered at yRf we can guar-
antee (y; — )% < O (max;(y; — yR)? A £y(w;)). This
gives us the best-of-both-worlds: a similar self-bounding

argument to above still yields a small-loss penalty
O(\/ AP} (u) o/, ét(ut)), while the logarithmic penalty

can be bounded as O (dmax;(y; - y£")?log (T)) <

O(dmax; y?log (T)) by setting yR' = 5, 1 or yRf =

0. The following theorem follows this above argument
through, demonstrating that the discounted VAW forecaster
can achieve small-loss bounds when using a well-chosen
discount factor.

Theorem 3.4. Let yfef € R be an arbitrary reference

point and let B, = [yt — My, yt + M,] for M, =
maXgs«t |yS - yRd] | Suppose that we apply Algorithm 1 with
hints §; = Clipg, ({z¢,wt)). Then for any sequence of
losses {1, ... ,0r and any sequence u = (uq,...,ur) in
RY, there is a v° € [0,1] satisfying

. VAT b (uy)

NS INCTT)

Y 3)

Moreover, running Algorithm 1 with discount ¥° vV Ymin for
Ymin = 25% ensures regret bounded above by

Ri(u) < o(dP;mw) + dmax(y, - ) og (T)

. T
+ \‘ dP% (u);ﬂt(ut)),

Notice that unlike the previous section, there are two dif-
ferent variability penalties, P%(u) and P}™"(u). The
first mirrors the measure encountered in the last section.
The other, P}™" (), is rather annoying; in high dimen-
sions Ymin = % is generally quite large, so Py (u)
may evaluate losses at irrelevant comparators that are far
away in time. Nevertheless, notice that this term satisfies
Pl (u) < St maxg [€s(ugsn) - £s(ue)],, a penalty
which we will show is unavoidable in general in Theo-
rem 3.5.

3.2. Dimension-dependent Lower Bound

In this section, we show that
ties observed in the previous sections are un-
avoidable without further assumptions. The fol-
lowing lower bound is proven in Appendix C.1.

the regret penal-

Theorem 3.5. For any d, T > 1 and PY > 0
such that dP < 2TY?, there is a sequence of losses
l(w) = 2(y - (x4, w))? and a comparator sequence
u = (u,...,ur) satisfying max;|y;] < Y and
ZtT;f max [{s(usr1) — Cs(ur)], < P such that

T
RT(U) >0 dY2 log (T) +dP + \l dP Z(yf - yt—1)2) .
t=2

The key observation is that there is always a sequence
of losses such that Y7, ¢,(u;) = 0 can be ensured us-
ing only T'/d different comparators. Indeed, letting the
features x; cycle through the standard basis vectors, for
any sub-interval [s,s + d] € [1,T] we can choose a sin-
gle u € R? such that (x;,u) = y; for each ¢ in the inter-
val. Then by sampling the y; randomly from {-Yo,Y o}
for some o € [0,1], we can ensure variability of at most
O(TY?0?/d) < P but regret of at least Q(TY?c?) >

Q (\/dP (ST (g —yer)? v dP]).

Note that the condition dP < 2T°Y? captures a natural re-
striction of the problem setting, in that for larger P the
vacuous lower bound Rp(u) > Q(TY?) can be con-
structed. Indeed, in the boundary case where dP = 2TY?,
Theorem 3.5 tells us that there is a sequence such that
Rr(u) > Q(VdPVr) = Q(dP) = Q(TY?). Yet this
bound is achieved against any comparator sequence by the
algorithm that naively predicts O on every round: Rp(u) =
SE L 0(0) - by(uy) < XE, $yi < 2TY?. Hence, no lower
bound can exceed %TYQ, so it is sufficient to consider com-
parator sequences with variability bounded by P < 2TY2.

If we instead consider a more restricted problem setting
by assuming a bounded domain, then the losses ¢;(w) =
%(yt — (@, w))? can be considered to be exp-concave. In
this setting, Baby & Wang (2021) have shown a lower
bound of

Rr(u)>Q (Y4/3d1/3T1/3C§/3) , 4)

where Cr = Y3 |lus —ue 1], A natural question is
whether similar results also hold in the unbounded setting,
and how they compare to our lower bound in Theorem 3.5.
Note that even in the exp-concave setting, the bound in
Equation (4) is not necessarily tight. Indeed, Baby & Wang
(2021) provide an algorithm which guarantees

Rr(u) < 5(Y4/3d3'5T1/3C%/3)’

which does not match the lower bound w.r.t the dimension
d. In contrast, our lower bound in Theorem 3.5 matches
our upper bounds in all involved quantities (see Sections 3
and 4). Regardless, we also demonstrate in Appendix F.1
that the same 5(Y4/3d3'5T1/SC%/3) upper bound can be
attained, even in unbounded domains, using the strongly-
adaptive guarantees developed in Section 5.
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4. Learning the Optimal Discount Factor

Recall that our goal from the outset has been to design al-
gorithms that achieve favourable dynamic regret guaran-
tees using no prior knowledge. To this end, we showed
in Section 3 that the discounted VAW forecaster can
achieve dynamic regret guarantees of the form Rp(wu) <
O (\/dPL(u)T v dlog (T)) where P](u) is a certain
measure of variability of the comparator sequence, and in
Section 3.2 we showed that these penalties are unavoid-
able in general. However, these results hold under the as-
sumption that the learner chooses discount rates satisfying
special conditions (Equations (2) and (3)), either of which
would require exceptionally strong prior knowlege to en-
sure. Indeed, the learner would need to know the future!
In order to achieve our goal of learning in the complete ab-
sence of prior knowledge, we need to ensure that the learner
can adequately guess or learn these ideal discount factors
on-the-fly.

A common way to achieve runtime parameter-tuning of this
sort would be to run many instances of the algorithm for
different choices of v in parallel, and combine the predic-
tions using a suitable meta-algorithm. In particular, sup-
pose we have a collection of algorithms A, ..., Ay and on

each round we can query each A; for a prediction yii) eR.
Moreover, suppose we have a meta-algorithm Apje, which
tells us how to combine these predictions by outputting a

pe from the N-dimensional simplex Ay. Then by pre-

dicting y, = Zl 1 pnyg ), 2 for any benchmark sequence

w = (uy,...,ur) and any j € [N] we have

Rr(u) =) li(Y,) = le(ur)

0 I

((])) 4 ( Ut)+zft(yt) ft(ym)

~+
Il
[

A 4
=R (u) =R (e;)

where the last line observes that y(] ) = (24, w(J )) Hence,
we may achieve our goal if we can ensure 1) that there is
a j € [IN] such that A; uses a near-optimal discount factor
v, and 2) we can provide a meta-algorithm which guar-
antees low regret RY%(e;). We first investigate the latter
point, and return to the former in Theorems 4.2 and 4.3.

The obvious approach to bounding the meta-algorithm’s re-
gret would be to observe that the losses 6(Y,) = 5(ye—71)?
————— (Lemma D.2),
2 max; Zt (yt

which will allow us to apply an instance of the fixed-share

are ay-exp-concave for o =

?Recall from the introduction that because the features x; are

provided at the start of the round, we can work directly in the

. . — 2

output space R if we so choose by setting wy = Y, z¢/ |z:|”.

Hence, given y € R we allow a slight abuse of notation by let-
: = —\2
ting £:(y) = 3 (y: - 9)°.

Algorithm 2: Range-clipped Meta-algorithm

Input Online learning algorithms A, ..., An,
experts algorithm Ay, over the simplex A .

Inmitialize Ay;q, A1, ..., AN, and set M1 =0

fort=1:T do

Receive features x;

Choose reference point y;

Ref

Define B; = [yRf — My, yRet + M, ]
fori=1,...,Ndo
Send z; to A;

Get prediction y( D2 = (x4, wg 2 ) from A;

Compute ¥, 7 = = Clipg, (yt )
end
Get p; € Ay from Apeia

Predict y, = ZZ 1 ptzyg ?) and observe Yt
Update M;,1 = M; v |yt - yfef|

Send /;(w) =
Send £, (7)), ...

%(yi <]‘t, ))2 to .Ai Vi
gt (ﬂ(N)) to AMeta

end

algorithm (Cesa-Bianchi et al., 2012) to get:
log (NT)

QT

R%em(ej) <0 ( ) < O(H},H{Xet(yt(i)) log (NT))7

as shown in Theorem E.1. However, just like in Section 3.1,
the term max; ; Kt(yt(z)) is hard to quantify and could be
be arbitrarily large in general. Fortunately the very same
clipping trick used in Section 3.1 also works here: instead
of having the meta-algorithm combine the raw predictions
ylf ), we can simply clip the predictions to a trust-region
around a given reference point yR. In Lemma D.3 we
show that the clipping strategy detailed in Algorithm 2 in-
curs only an additional constant penalty in the regret. Then,
using Lemma D.1, using these clipped predictions leads to

R7**(e;) < O(max(y, - y")* log (NT)).

Note that a penalty of a similar order is already present in
the regret of the VAW forecaster (e.g. Theorem 3.1) so this
result will be sufficient for our purposes. Overall, the fol-
lowing theorem formalizes the argument described above.
We provide a simplified statement here for brevity, but the
full statement and its proof can be found in Appendix D.4.

Theorem 4.1. (simplified) Let Apypera be the instance of
fixed-share characterized in Theorem E.1. Then for any
sequence u = (uy,...,ur) in R and any j € [N], Algo-
rithm 2 guarantees

—~ . N2
Rr(u) <O (R?'7 (u) + max (ye - yfef) log (NT)) ,

where O(-) hides loglog terms.
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A similar target-clipping strategy was recently used by
Mayo et al. (2022) to prove a static regret result for scale-
free unconstrained online regression. Theorem 4.1 general-
izes their approach by clipping to a trust-region of an arbi-
trary center yR € R, and offers a somewhat streamlined ar-
gument which does not appeal to probabilistic notions such

as mixibility.

Finally, with Theorem 4.1 in hand, we can achieve our
desired result by running Algorithm 2 with the base al-
gorithms A; being instances of the discounted VAW fore-
caster with different discount factors ~y. The following the-
orems show that for a well-chosen set of discount factors,
we can make guarantees that match the bounds attained un-
der oracle tuning of v (Theorems 3.3 and 3.4), yet require
no prior knowledge of any sort. Proofs can be found in
Appendices D.5 and D.6 respectively.

Theorem 4.2. Let b > 1, Nmin = 2d, Nmax = dT, and for all
i € Nlet n; = Nmind" A Mmax, and construct the set of dis-

12;]1 (i€ N} u{0}. For any v in
S, let A, denote an instance of Algorithm 1 with discount
7.2 Let Apjera be an instance of the algorithm characterized
in Theorem 4.1, and suppose we set yfef =7 forallt. Then

forany w = (uy,...,ur) in R, Algorithm 2 guarantees

count factors S., = {%- =

Rr(u) < O(dmtaX(yt - i) log (T)

. T
+b\} 4Py (u) ;1(%—@;)2)

where v* € [0, 1] satisfies Equation (2).

Theorem 4.3. Under the same conditions as Theo-
rem 4.2, suppose each A, sets hints T = Yy =
Clipg, ((, z¢,wy)), where B, = [yfef— Mt,yfef+ M,] and
M; = maxg; |ys - yfef|. Then for any u = (uq,...,ur) in
RY, Algorithm 2 guarantees

Rr(u) < O(dP%mi“(u) + dm?x (ye - yfef)2 log (T')

+ b\‘ APy’ (u) ; Et(ut))

2d

5.7 and 7° € [0, 1] satisfies Equation (3).

where Ymin =

It is worth noting that Theorems 4.2 and 4.3 use knowl-
edge of the horizon 7' to construct the set of experts. All
of our results extend immediately to the unknown 7" set-
ting as well via the standard doubling trick (Cesa-Bianchi

3For brevity, here we refer to an algorithm that directly pre-
dicts 3z on every round as being an instance of the discounted
VAW forecaster with v = 0. This terminology can be justified by
Remark A.2, but for our purposes here it’s sufficient to consider it
convenient alias.

& Lugosi, 2006), so for simplicity we treat T" as part of the
problem setting rather than a potentially unknown property
of the data. An interesting direction for future development
would be to construct the set of experts in a more on-the-
fly way, so as to avoid using the doubling trick to adapt to
unknown 7'

5. Strongly-Adaptive Guarantees

While our original goal was only to achieve dynamic re-
gret guarantees in the absence of prior knowledge, it turns
out that we can actually achieve an even stronger result:
dynamic regret guarantees that hold over every sub-interal
[a,b] c [1,T] simultaneously. To our knowledge, strongly-
adaptive guarantees of this sort have previously only been
achieved under various boundedness assumptions (Baby
et al., 2021; Baby & Wang, 2022b;a; Jun et al., 2017;
Cutkosky, 2020; Daniely et al., 2015).

The results can be derived using the results in the previous
section. As shown in Appendix D.4, forany [s,7] € [1,T],
u = (us,...,ur), and vy € S, Algorithm 2 more generally
guarantees that

Rpsr(u) < 0 (Ré}] (u) + mtax(yt — RN 2 og (NT)) )

where R[, ;] denotes the regret over sub-interval [s,7] ¢
[1,T]. The only caveat is that the regret guarantees of the
discounted VAW forecaster only hold when the algorithm
begins learning on round s.* However, suppose that for
each s € [1,T] and each v € S, we define an algorithm
A, s which uses discount ~y but begins learning at time s.
Then for any [s,7] Lemma D.4 implies that there is a A,

such that Ré”ﬁ(u) < O(dmax;(y; — yR)2log (17 - 5) +

b dP[i’:T] (uw) X7_.(y: — ;)2). Plugging this back into the
previous display and choosing |S,,| < O(log (T')), we have
N < O(Tlog (T)) and an overall regret bound of

Ry (u) < 5(dmtaX(yt ~7:)*log (T)

+ b\’ dP[ZTT]('UJ) tZ::(yt _271&)2)-

This is the essence of the Follow the Leading History algo-
rithm of Hazan & Seshadhri (2007; 2009).

While the above approach leads to a strongly-adaptive
guarantee, it would be excessively expensive in general,

*More generally, it can be seen from the analysis that if the
algorithm starts at time ¢ = 1 and we try to bound the regret over
[s, 7], then after telescoping the divergence terms we will end up
with a non-trivial term Dy, (us|ws) which is hard to quantify in
general for s > 1 without further assumptions.
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since we’d now have O(T log (T")) total experts to update
on every round. We may instead lower this to O(log?(T))
experts using the geometric covering intervals of Daniely
et al. (2015); Veness et al. (2013). The idea is as follows:
instead of initializing a new instance of each .4, on every
round s € [T'], we will construct a set of intervals .S such
that any [s,7] € [1,7] can be covered using only a small
number of intervals from S. Then for each v € S, and
each I € S, we can define an instance of the discounted
VAW forecaster A, ; which is run only during the interval
1. The geometric covering intervals are constructed in such
a way that 1) any round ¢ can fall into at most O(log (T'))
of the intervals, and 2) any [s,7] € [1,7'] can be covered
using only O(log (7 - s)) disjoint intervals from S. The
first property ensures that there at most O(log?(T")) active
experts on each round, while the second property implies
that there is a disjoint set of intervals Iy, ..., Ik such that
Rpsr(u) = YK R;,(u), so bounding each of these using
a similar argument to the above followed by an application
of Cauchy-Schwarz inequality yields

Ry (u) < ﬁ(dmgX(yt - 7)* log*(T)

\} P () 30 yt>2)

where P, -(u) is the total variability over the intervals
and we’ve used K log (T') < O(log?(T)). Hence, overall
the penalty we incur for using the geometric covering is a
modest increase from log (T') to K log (T') < O(log*(T))
in the leading term. Likewise, a similar argument holds for
our small-loss bounds. We provide a formal statement and
proof of these results in Appendix F.

6. Conclusion

In this paper, we designed algorithms for online linear re-
gression which achieve optimal dynamic regret guarantees,
even in the absence of all prior knowledge. We developed a
novel analysis of a discounted variant of the Vovk-Azoury-
Warmuth forecaster, showing that it can guarantee dynamic
regret of the form Ry (u) < O (dlog (T) v \/dP}(u)T)
when equipped with an appropriate discount factor (Sec-
tion 3). We also provided a matching lower bound, demon-
strating that these penalties are unavoidable in general
(Section 3.2). We then showed that the ideal discount fac-
tors can be learned on-the-fly, resulting in algorithms that
can be applied with no prior knowledge yet still make op-
timal dynamic regret guarantees (Section 4) and strongly-
adaptive guarantees (Section 5). These are the first algo-
rithms for online linear regression that make meaningful
guarantees without making assumptions of any kind on the
underlying data.

An important direction for future work is to reduce the
computational complexity of the algorithms. Similar to the
traditional VAW forecaster, the approach developed here
can be infeasible for very high-dimensional features, re-
quiring roughly O(d?log(T")) computation every round.
The d? factor likely can be reduced by extending our anal-
ysis to use modern sketching techniques (Luo et al., 2016),
and the log (7") factor can possibly be reduced using simi-
lar techniques to the recent work of Lu & Hazan (2022).
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A. Proofs for Section 3 (Dynamic Regret via Discounting)
A.1. Equivalence to FTRL and Mirror Descent

We accomplish our analysis of the discounted VAW forecaster using the equivalence in the following proposition, proving
both optimistic FTRL and and optimistic mirror descent interpretations of the discounted VAW forecaster. Equation (6)
is perhaps the most natural interpretation of the update: it says that the discounted VAW forecaster chooses the w which
minimizes the discounted sum hy(w) +€;_1 (w) +~v*¢;_o(w) +. . ., thus placing greater emphasis on the most-recent losses
and the hint function h;(w). However, it is not at all obvious how to analyze the dynamic regret of the discounted VAW
forecaster when interpreted in this FTRL-like form. Rather, the key to our results in this work is to instead approach the
analysis through the lens of the mirror descent update (Equation (7)). Interestingly, a similar mirror descent interpretation
was used in the seminal work of Azoury & Warmuth (2001), though they did not account for an arbitrary 7; and they did
not refer to the algorithm in terms of mirror descent.

Proposition A.1. (Discounted VAW Forecaster) Let v € (0,1], A > 0, 71 = 0, and §; € R for t > 1. Define hy(w) =

L@ - (ze,w))? and ly(w) = 5 HwH; Recursively define Sy = xyx] +v51 starting from So = A, let ¢ (w) = & HwHQEf
and set wy = arg min ,ga 1 (w) = 0. Then the following are equivalent

t-1
S T+ v YA s 5)
s=1
-1
arg min hy(w) +7 ) A0, (s) (6)
weRd s=0
arg min (yle-1 = vhe-1 + by ) (w) + 7Dy, , (w]we-1) (7

weR4

Remark A.2. Note that with v = 0, Equations (6) and (7) prescribe choosing any w; satisfying (w;,x;) = J;. The choice
is not unique, but nevertheless it will often be convenient to refer to an algorithm which greedily predicts 3; on each round
as an instance of Algorithm 1 with vy = 0.

Proof. The result follows by showing that Equations (6) and (7) are both equivalent to Equation (5). First consider the
former, Equation (6). From the first-order optimality condition we have

-1
0=vVhi(w) +~ Z VIl (wy)
s=0
S
= _(@vt - (xtawt»wt - Z ’Yt_ _S(ys - (xsth»xs + 'Yt)\wta
s=1
where the last line recalls that we defined £y (w) = 3 HwH; Hence,

t t
(’yt)\.[ + Z ’Vtsxsl'-sr) Wt = @;&xt + Z 'ytisysxs

s=1 s=1

s=1 s=1

t -1 t—1
= w; = (’yt)\l+ Z ’yt_s.’Iisxl) I:gtxt +7 Z ’yt_l_sysxs

t-1
= Egl |:gtl't +7 Z "Ytlsysxs] )

s=1
where the last line can be seen by unrolling the recursion for 3.

Likewise, consider Equation (7). From the first-order optimality condition w; = arg min ,, ga (70-1 — Yhe-1 + he) (w) +
P)/Dwt_l (w|wt), we have

0 = y(Vl-1(wi) = Vhey(wi)) + Vhe(we) +y [VPi-1(wi) = Vb1 (wi-1)]
= VY1 Tt + YPio1T4o1 — YeTp + Ty Wy + YEpq Wy — Yo Wyq

= =YYt 1Te-1 + VY101 — Yoy + LywWs — YL 1Wy-1,

12
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where the last line observes that >; = astxtT + vX;-1 by construction. Hence, re-arranging we have

Yiwe = YpTp + VY4101 — VY1041 + YD1 W1

and unrolling the recursion:

= Tt + YYt-1Tt-1 = VYe1T—1 + Y [Jeo1Te-1 + VYt-2T1-2 — V2% + YEp-2Wi—2]

_ 2 2~ 2
=YpTp + VY-1Tp-1 + Y Yp—2T—2 — Y Y2 Ti—2 + Y Li_oWi—2

t—-1

=T -7 e+ Y YT Y,
s=1

t-1
~ t-1-s
=Yty +y Z Y YsTs,
s=1

for 7j; = 0. Hence, applying ;! to both sides we have
-1

wy =37 | Tewe +v 3 7T s
s=1

A.2. Proof of Theorem 3.1

Theorem 3.1. Let A\ > 0 and v € (0,1]. Then for any sequence u = (uy, . ..,ur) in RY, Algorithm 1 guarantees dynamic
regret Ry (u) bounded above by

Y 2
2l +

2

_ 2
Z?:l 'YT ‘ thﬂz
d

d
— mtax(yt —'yvt)Qlog (1 +

T—- d T _
Z [F7 (uen) = B (u)] + 5 log (1/7) Y (e - )
= t=1
where F}) (w) =72 |wl3 + 2hy v (w).

Proof. Begin by applying the regret template provided by Lemma A.3:

T T 1 T
Rp(u) < )" Dy, (uwy) = Dy, (uelwpsr) + Y hyar (ur) = by (ue) + 3 (e =) | Hz} 1,
=1 =1 =1

bound the first two summations using Lemma A.4:
T-1 1 T ) 9
< *|\U1||2+hT+1(UT)+7 Z FW(Utﬂ) F (ut)] 52 ) th“z;h
t=1 =1
and apply a discounted variant of the log-determinant lemma (Lemma G.2) to bound the final summation:

A d T ATt |2
< % Hu1||§ +hp (ur) + 3 mfbx(yt - %) log (1 + Zt*%duxtuz
-1 d T .
+y > [F (uer) = FY (ug)] + 51082(1/7) (v —-T)
t=1 t=1

Finally, since the regret does not depend on hr.1(-) we may set hz,(+) = 0 in the analysis and hide constants to arrive at
the stated bound. O
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A.2.1. PROOF OF LEMMA A.3

The following lemma provides the base regret decomposition that we use as a jumping-off point to prove Theorem 3.1. The
result follows using mostly standard mirror descent analysis, though with a bit of additional care to handle issues related
to the discounted regularizer.

Lemma A.3. Let v € (0,1]. Then for any sequence w = (uy,...,ur) in R Algorithm 1 guarantees

T
Rp(u) < )" Dy, (ug|wy) = Dy, (w|wisr)
t=1

T
Z hi1 (Ut) ht(ut)
T

* 250

—~ 2
=5 il

1\9\»—*

Proof. We will proceed following a mirror-descent-based analysis, and thus begin by exposing the terms (v¢; — vhy +
hi+1)(wes1) observed in the mirror-descent interpretation of the update (Equation (7)):

Rr(u)

L (wi) = Le(ur)

SRR

T
v e (we) = €y (ug)] + (1 =) ;et(wt) — L (ug)

~+
I
—

M’ﬂ

T
v [(Ce = he)(we) = (6 = he) (ue)] + ;’Yht(wt) = vhi(ug)

~+
I
juy

T
+(1 —V)t;ft(wt) — Ly (uy)

Mﬂ

T
Y[l = he) (weer) = (4 = ht)(ut)]+;7ht(wt)-7ht(ut)

~+
Il
—_

mi(et — ) (we) = (6 = he)(wisn)
+(1_7)éet(wt) Ay

_ ti(wt Yy + hin) (i) = (Y = Yy + et ) (ur)
. tzl e (100) = o (wes1) + z heet (ue) = vhe )
wl;(et = ) (wi) = (b = he) (wisn)

+(1 —'y)t;&(u}t) =l (uy)

14
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Re-arranging factors of v from the second-line and observing that 23;1 he(we) = bt (wier) = ha(wy) = hrpr (wrer):

T
= Z('}/ét = vhe + hyer) (wesr) = (Ve = Yhe + hysr) (u)
t=1

+ ; hi(wg) = hisr (i) + ;—(1 =) he(wy) + (1 =) h(ug) + ; ht+1(Ut) - ht(ut)

£ 3= h) ) = (6= o) )
(L= 3 ) = ()
= é(%t = Yhy + heer) (Weer) = (Y = vhe + hesr) (ur)
) = s (1) + 3 s () = )
£ 3= ) ) = (6 - o) )
(=) 3306~ ) () = (6 ko)) @

Moreover, from the first-order optimality condition w1 = arg min e (V¢ — Yhe + hys1)(w) + v Dy, (wlwy ), we have

(V (vl = vhe + hir1) (Wis1) + YV (W) = YV (W), Wear —ug) <0

SO re-arranging:

(V(vle = vhe + i1 ) (Wes1) weer — ug) <Y (Ve (wr) = Ve (Wis1), Wepr — Uyg)
=YDy, (uilwi) = ¥Dy, (ui|wis1) = v Dy, (wer1fwe),

where the last line uses the three-point relation for bregman divergences, (V f(w) - Vf(w'),w" —u) = Ds(ulw) -
D¢ (ulw") = Dy(w'|w). Thus,

T
Z(Vft = Yht + higr) (i) = (Ve = vhe + hegr) (ug)
t=1

(@)

M=

(V(vle = vhe + i1 ) (Wis1)s Wea1 = Ut) = Doygy—yhyshgs s (Ue|Wis1)

[

MH‘T

< ) YDy, (ulwy) =y Doy, (utlwie1) = ¥Dy, (Wes1[we) = Dagy—yhyshy sy (we|ween)

~
IS
N

M~ -

YDy, (ui|we) =y Dy, (ui|wsr) = D,y (ulwier) = v Dy, (wee1|wy)

-~
I
Ju

—~

M=

9 S YDy, (uslwn) = Dy, (uslwir) = YD, (ween )
1

M= -

Dy, (utlwi) = Dy, (ug|wisr) = (1 =) Dy, (utwi) = v Dy, (wier1]wy),

t=1

where (a) uses the definition of Bregman divergence to re-write f(w) - f(u) = (Vf(w),w —u) - D¢(ulw), (b) observes
that (¢ =Ry ) (w) = v (397 = 377 + (Tt — we) (x4, w)), 80 Dyg,—yhyshyey (1) = Dy, (4-) due to the invariance of Bregman

15
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divergences to linear terms, and (c) recalls that ¥¢,1 = xt+1xz +1 + 72 so that overall we have:

1
'VDwt(Ut|wt+1) +Dhn,,, (utlwesr) = % e = wt+1|‘2zt + 9 (To1,up — wt+1>2

~ [k
) ‘Ut — Wt+1 ‘Zm
= D¢t+1 (utlthrl)'

Plugging this back into Equation (8), we have
T
Rr(u) < ) Dy, (uthwe) = Dy, (uelwesr)
i=1

T
+hi(wr) = by (wrye) + Z hier(ue) = he(uy)
t=1

T
+ ’Y;(ft —he)(we) = (b = he) (wes1) = Dy, (wee1fwy)
T
r _7);(& =~ he)(we) = (b = he) (ur) = Dy, (ueweer).

Finally, observe that for any u, v € R?
inequality yields

, (Le=hy)(w)=(Le—hy)(v) = (G -yt ) (x4, u — v), so an application of Fenchel-Young
~ 1
(b = he) () = (b = ha) (v) = Dog, (vlu) = (T = w0) (e, u =) = 5 Ju=vlg,

1 ~ 2
< 5(% ~7)° [EA SRR

Applying this in the last two lines of the previous display yields
T
Rr(u) < ) Dy, (uilwe) = Dy, (uelwes)
t=1

hi(wy) = hpei(wrer) + i hypr(ue) = he(uy)

<0

T 1 o 9 T 1 o 9
25 Yt = Tt) th|‘2;1+(1_'}/)25(yt_yt) thHzgl
t=1 t=1

\\M)ﬁ

(utlw) = Dy, (utwsr)

(ye - yt) | Hz 1

l\JM—*

w
T
Z t+1 Ut) ht(ut)
T
>

A.2.2. PROOF OF LEMMA A .4

The following lemma bounds the sum of divergence terms. Intuitively, the goal here is to remove all instances of w; from
the analysis, since in an unbounded domain any terms depending on w, will be hard to quantify and could be arbitrarily

large in general. Lemma A.4 shows how get rid of the w,-dependent terms left in the bound from Lemma A.3, such that
only dependencies on the comparators u; remain.

16
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Lemma A.4. Under the same conditions as Lemma A.3,

T T-1
Y Dy, (utlwe) = Dy, (uglwesr) Z B (ur) = h(ug) < 22 HU1||2 +hrsa (ur) + Z F (uge1) = ' (ue).
=1
where F,' (w) = Zi:o Y5 (w).
Proof. Observe that by Lemma G.1 we have Dy, (ulv) = 3 (x4, u- v)? = Dy, (ulv) for any u,v € W. Hence, let-

ting F7'(w) = £Lo7"*,(w) and Fy(w) = hy(w) + 7F7L, (w), and recalling go(w) = 3wl = 2 fuw]? +
: Yo (s, w)?, we have Dy, (ulv) = Dpy (ulv) for any u, v ee R?. Thus:

T
Y Dy, (uewe) = Dy, ,, (ui|wii1)
t=1

Mﬂ

= Dy, (u1|wy) = Dy, (urlwrs1) + ), Dy, (uglwi) — Dy, (ug—1|wy)

~
U
N

M‘ﬂ

= Dy, (ur|w1) = Dy, (urfwrsr) + 2, Dy (uewi) = Do (s wr)

i
I\

MH

= Dy, (urw1) = Dy, (ur|wri1) + F (ue) = F) (ug—1) = (VE) (we), ug — wg-1) -

~+
Il

Moreover, by Proposition A.1 we have
wy = arg min Ay (w) + v Z A0 (w) = arg min E) (w),
weR4? s=0 weRd

hence by convexity of thy and the first-order optimality condition we have Vﬁv(wt) =0, so overall we have

T T
Y- Dy, (uilwy) = Dy, (uelwier) + Y hesr (ue) = hy(ur)

t=1 t=1
= Dy, (u1lwy) = Dy, (ur|wrr) + Z FW(Ut) FW(Ut 1)+ Z hipr (ue) = he(uy)
t=2
T T
= Dy, (u1|w1) = Dy, (uplwrin) + 3 [he(ue) = he(upor) +YEF) (ue) = yFy (uee1) ]+ ) hagr (ue) = ha(ug)
t=2 t=1

T-1 T
= Dy, (ur]wy) = Dy, (urlwrer) +9 Y5 F (ugsr) = F (ug) + ) hagr (ue) = hy(we-1) + ha(ur) = hy (ur)
=1 =2

T-1
= Dy, (u1wy) = Dy, (urlwrer) + hre (ur) = ha(uy) + Y FY (uer) — FY (ug).
t=1

Finally, observe that with w; = 0 and §; = 0 we have

Dy, (urwy) =1 (u1) =1(0) = (Vep1(0),u1) = ha(u1) +ylo(ur) = hi(ur) + % sl

so we can express the bound as the bound as

T T
Y. Dy, (us|wy) = Dy, (uelwisr) + Z hv1(ue) = he(ue)
t=1

< - Hul Hz +hri(ur) +7v Z F) (ugs1) — Fy (uy).
t=1

17
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A.3. Proof of Lemma 3.2

The following lemma bounds the variability and stability terms from Theorem 3.1 to expose a more explicit trade-off in
terms of the discount factor 7.

Lemma 3.2. Let 4y, {1, ..., {7 be arbitrary non-negative functions, 0 < v < 8 < 1, and F}' (w) = Z’;:O 54, (w). For all
t, define

d; (u,v) = > B s (u) = (V)]

Zs ()Bt s=0

and let Pﬁ(u) = > @7 (uyi1, ug). Then for any Vi > 0,

- Vi

T-1 1 ﬁ
3 3% LF] () = F ) whow () Vi < 125 P2

Proof. The first summation can be bounded as

)ﬂ
N

™M=
=

Y ; [F7 (ue) = Ff (ui-1)] = 5 (s (upsr) = s (ur) ]

~+
Il
[
»
Il
(=)

T-1 t
<y 2 2 T s () = s (ue)],
t=1 s=0
T-1 t ZS’ ﬁ —s’ .
< 3 3 Tl e e - (),
T-1 Bt—s
= (€5 (uer1) = Cs(ue) ],

IN
_
I
=
i
£

B
%,
BAS

—_
|
=

where the last inequality uses Zi:o Bt = lf ;1 iﬁ Using this along with the elementary inequality log () < z -1,
for any V7 > 0 we have

721 [F, (ut) — F] (ug-1)] +log(%) Vr <7 ﬁBPﬁ(u) + (% - 1) Vr

B

3 Y
lﬁp()+’yVT

A.4. Existence of a Good Discount Factor

The following lemma establishes the existence of a discount factor that will lead to favorable tuning of the «y-dependent
terms in Lemma 3.2.

Lemma A.5. Let {y,{1,... be arbitrary non-negative functions, Vi > 0, denote d?(u,v) - Ziod ng[fo(;') L)l for
v € [0,1), and let P}(w) = 211" d] (wss1, ur). Then there is a~v* € [0,1] such that

) VVr _
VVr+y/ P (u)

Proof. First, notice that that any such « with the stated property must be in [0, 1] since

VVr A
\/V_T+\/P @

18
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Next, observe that the condition can be equivalently expressed as follows:

A
K VT+\/P¥(’U,)
= VVr(1-7) = /Pl (u)

T-1 t

,yt—s
=7 5 [ls(upr1) = €s(up)
\ t=1 s=0 ZZ:O ’Yt_S [ o ' ]+

_ t ,yt—s
- 7\ ~ S;J 1 — i+l (1 =) [€s(ure1) = £s(ur)],

t ,Yt—s
> T s (uen) = b (un) ..
t=1 s=0 + — 7

= VT

The quantity on the LHS begins at \/Vr (for v = 0) and then decreases to 0 as a function of . Likewise, the RHS begins
at 0 (for v = 0) and increases as a function of v, approaching oo as v — 1. Hence, there must be some € [0, 1] at which
the two lines cross, and hence a «y € [0, 1] which satisfies the above relation, so there is a v € [0, 1] such that

A
Ve Py

A.S. Proof of Theorem 3.3

Now combining everything we’ve seen in the previous sections, we can easily prove the following bound for the discounted
VAW forecaster under oracle tuning of the discount factor.

Theorem 3.3. For any sequences vy, ...,yr and Ji,...,Jr in R and any sequence w = (uy, ... ,ur) in R? there is a
discount factor v* € [0, 1] satisfying

. VET (e -T)? 2

’Y = *
VIS (g -2 +/ P (w)

with which the regret of Algorithm 1 is bounded above by

For(u) <O gy o (7

. T
. J 4Py (u) Z(yy))

Proof. Lemma A.5 shows that for any sequence u = (uq, ..., ur), there is a v* € [0, 1] such that

s w)?
\/d S s - )2+ \/P%*(U)

*

v
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so choosing v = v* and applying Theorem 3.1, we have

*

Ry(u) < 7;

d _ ZT= x 2
2+ & (o -ytylog(“ DR

-1 d
#9" X [F (e = B ()] + Slog (177 ) -0

t=1

( )

)\ d T
2 sl + & max(y. - mg(l . ZHA L%)

*

1\3\&.

B0

b (a4
L=y~

2
== +
9 HU1H2 2 A

d . Sy el ) S (e - T2
fmtax(yt—yt) log| 1+ =———=|+\|2dP} (u)Z(yt—yt)

where (*) uses Lemma 3.2 (with 8 = v = v*). The stated result follows by hiding lower-order terms. O

B. Proofs for Section 3.1 (Small-loss Bounds via Self-confident Predictions)
B.1. Proof of Theorem 3.4

We split the proof of Theorem 3.4 into two parts. The following lemma, proven in Appendix B.1.1, first derives an initial
regret template that does most of the heavy lifting. We will later re-use this template in the proof of Theorem 4.3 to avoid
repeating the argument. The high-level intuition is that choosing hints 7; ~ (x;,w;) leads to ¥, (y, = 7:)% ~ Yy £y (wy),
which leads to a self-bounding argument that lets us replace Y., (y; - 7;)? with ¥, £;(u;) in the regret bound. We defer
proof of the lemma to the next subsection, Appendix B.1.1.

Lemma B.1. Let yRef € R be an arbitrary reference point, available at the start of round t, and let By

{y eR:y; Ref _ 01, < Yy <Y, Ref Mt}for M; = maxs |yS - yfef‘. Suppose that we apply Algorithm 1 with hints Gy =y, :
2d
2d+1’

Clipg, ({¢,w¢)). Then for any sequence w = (u1, ..., ur) in R? and any v, B € [0,1] such that 8 >y > Ymin =

T . 2
i1 VT ’ | ”2 )

Rr(u) <yA Hung +4dmtax(yt—yfef)2log(1+ g

B_ps
+2——Pr(u )+ " 09q £ (uy)
1-5°7 gl Z
Now using this template, Theorem 3.4 is easily proven by plugging in the stated discount factor v = v° V yin

Theorem 3.4. Let yfef € R be an arbitrary reference point and let By = [yfef— My, yfef+ M, ] for M; = maxg; |ys - yfef|.
Suppose that we apply Algorithm 1 with hints T, = Clipg, ((z¢,w;)). Then for any sequence of losses (1, ..., {1 and any
sequence u = (uy, ..., ur) in RY, there is a 7° € [0,1] satisfying

. VAT, b(uy)
¥ = —. (3)
VASE, te(ur) +/ Py (w)

2d
5.7 ensures regret bounded above by

Moreover, running Algorithm 1 with discount ¥° V ~Ymin fOr Ymin =

Rp(u) < O(dP%‘“i“(u) + dmtax(yt — )2 10g (T)

R T
+ \‘ dP} (u)gﬁt(ut)),
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Proof. By Lemma B.1 (with 8 = ), for any v > vy = %, we have

2 Ref\2 ZtT=1 ’YT_t | Hg
Rp(u) <A |lua]y + 4dm§1x(yt -y ) log|1+ =50————=

Ad

+ 21—P7(u) +

1-7 T
2d z Kt(ut).
t=1

VAZE L (ur)

Now by Lemma A.3, there is a v° € [0, 1] satisfying v° = Jart teon /PR
Yo be(ue)+ T (u

. If v° > Ymin, then for v = v° V ypin, the

terms in the second line reduce to

,yo ° 1_70 T ° T
2 OPT’Z (U)+ S deét(ut) :4 dP% (’U/)th(ut),
I-~ g =1 t=1

and otherwise for v° < yin We have

g ! g SPYE.
2&P’Ynnn(u) + min 2dzgt(ut) < 21 min P’Ymm (’U,) + - 2dzét(ut)
Y Y

1- “Ymin min t=1 min t=1

T
< 4dPme (u) + 2\l APy (u) Y 4 (uy),
t=1

so combining these two bounds and plugging back into the regret bound above, we have

2 Refy2 ZtT=1 ’)’T_t thHg
R (u) <9 Ju [} + ddmax(y, — ) log [ 1+ 217171l

Ad

T
+4dp;’min(u) +4\’ de,zo (u) th(ut)
t=1

T
<O|dP/™™(u) + dmax(yt yRN) 2 log (T') + \j APy (u) Y. 0 (uy).
t=1

B.1.1. PROOF OF LEMMA B.1
ef

Lemma B.1. Let yR

{y eR: yff M <y<y, Ref Mt}for M; = maxss |ys - yfef|. Suppose that we apply Algorithm 1 with hints §; = Y, :=
2d
2d+1’

€ R be an arbitrary reference point, available at the start of round t, and let By

Clipg, ({z¢,ws)). Then for any sequence w = (uz,...,ur) in R? and any v, 3 € [0, 1] such that 3 > 7 > Ymin =

2 Ref\2 R i 2 ||§
Ry (u) <yAfu; +4dmax(y; -y, )" log | 1+ B v R

+2ipﬁ( )+ 905 by ()
Y t=1
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Proof. Applying Theorem 3.1 followed by Lemma 3.2, for any ~y € (0,1] and 8 > v we have

A d _ S AT x5
R () < 2 2+ & o —yt)ﬂog(l il
T-1
+ 2 [F (uen) = Fy (ue) ] + log(l/v) Z(yt :)?
t=1
d - T-t
< 77 Jur |5+ = 5 max(yt -7,)*log (1 + —Zt’l ’y)\d | |2)
B vd & -
o BPﬁ(U) . 5 Z: Ye = 9:)°
Using Lemma D.1 we have
T T
Z(yt—yt Z[ t+1 M +2€t(wt)] <MT+1+22£t(wt)
t=1 t=1 t=1
so for any vy > 2d:-11 , we have
yd & 2
52(%‘%) 5 —a MT+1+Z£t wy)
-~ 2 A
= Td §MT+1 + th(wt) RACIEDRACTS
=1
4 T
MT+1 +5 Zét(wt) Ce(uy) . dzﬁt(ut),
t=1
where the final inequality uses vy > 2(21111 = 1% < 55 and bounds 2 dZt 1 le(wy) = e(ug) < ZtT:l Ce(we) — L (uy)

(assuming Zthl £i(wy) = £y (uy) > 0, which can be assumed without 1oss of generality since otherwise the stated bound
trivially holds). Plugging this back into the regret bound and re-arranging terms, we have

d —\2 ZtT=1 7T7t Hmt H;
2 max(vys — logf1+ =tz IPtl2
a (y+ = Y1) Og( + \d

A
R (u) < % w3+

. 7 p
1-

Z Et(ut)
N Hwt\lg )

Pl (u) + RT u)+

= Rr(u) <yA|uy Hg + 4dm?x(yt - y$Ef)2 log (1 + ¥

B s 1-v, &
+2——Pr(u) + 2d Y i(uy),
1_B T( ) ~ t=21 t( t)

where we’ve bounded max; (y; — 7,)% < 4Mr, 1 = 4max;(y; — yR°")? using Lemma D.1. O

C. Proofs for Section 3.2 (Dimension-dependent Lower Bound)

C.1. Proof of Theorem 3.5

Theorem 3.5. Forany d, T > 1 and P,Y > 0 such that dP < 2T ?, there is a sequence of losses £ (w) = %(y,‘ — (2, w))?
[ls(utr1) = Cs(ur)], < P such

and a comparator sequence u = (ul, . uT) satisfying max; |yt
that

T
Ry(u) > Q| dY?log (T) +dP + \J dP > (yi = yi-1)?
=2
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Proof. First notice that the trivial comparator sequence with wu; = = wur always satisfies
o max, [£s(urs1) — £s(ug)], = 0 < P, so we can always lower-bound the dynamlc regret using the well-known
lower bound for the static regret in this setting (see, e.g., Vovk (2001); Gaillard et al. (2019); Mayo et al. (2022)). In
particular, for any u € W we have

sup  Rp(u) > Q(dY?log (T)) )

Yis--YT
Next, let o € [0,1] and let 01,...,04 be a sequence of iid random variables drawn uniformly from {-o,c}, and let
y: = Yoy Choose feature vectors x; which cycle through the standard basis vectors (e.g. define ¢(t) = ¢ (mod d) + 1
and let z; = e,(4)). Now observe that the comparator sequence can always exactly fit a sequence y1,. YT by set-
ting u; to satisfy (z¢,us) = uy (1) = y¢. In particular, by letting @y = (y1,..-,%a), U2 = (Yds1s---,Y2d)s- > U[/d] =
(Yrrydyers---»y7,0,0,...) we can set u; = Ujyyq) to guarantee (x4, us) = y; on all rounds, while only changlng the com-

parator [T'/d] times at most. From this, we have the following initial bound on the regret:

sup Rr(u)>E, [th(wt) ft(ut)]

Yi,--YT
1 1
ZE [ +f(mt,wt)2+yt(xt,wt)]
2 2
1
>0 a2Y?T, (10)

where the last line uses y? = Y202 and E[y;] = 0. Moreover, since the comparator changes only every d rounds, the
variability is bounded as

T- [d]-1
Z X [ls(uss1) = Ls(ur)], < Z X [s(Wir1) — £s ()], -

Observe that £, (;41) — £5(;) can only be positive when (x5, ;) = ys and (zs,T;41) = —Yys, hence

[T/d]-1
z s [0aCuen) L)), € 3 max[£(Tn) - L(T)],
t=1 i=1
[T/d]-1 ¢ )
< 5(1/5 = (-ys))
i=1
. 2TY? 52
< .
. _ dP T-1 _ 2TY?
Hence, setting o = \/ 55 < 1 ensures ¥, max [£s(ugs1) — £s(u)], < #5—0> < P, and the regret is bounded below

by

1 1
sup Rp(u)> 50—21/2T = 74P,

Yi,--YT

which we can further lower bound as:

pM»—‘

VdP-dP > \j dP-dTZ_:lmax[Es(utn)—fs(ut)L
t=1 °

1 = L1
24\} Z ft Ut+1) Et(ut)] \JdPZ;Q(yt_yt_l)2)- (11)

Taken together with Equation (9), we have

Ry (u) > (dY?1og (T) v \/dPVr)

where Vr = dP v ZtT=2 %(yt —yi1)2
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D. Proofs for Section 4 (Learning the Optimal Discount Factor)
D.1. Proof of Lemma D.1

The following lemma shows that by clipping our predictions to some crude “trust-region”, the loss of the clipped prediction
is at worst prortional to the maximal deviation of the true 5, from the trust region. Intuitively, we can think of y®°' as being
some data-dependent but already-observed quantity, such as y;_1.

, By = {x eR: yfef— M, <z< yfef+ Mt}, and let 3, = Clipg, ((x¢,w;)) for

Lemma D.1. Define M; = maxs; |y8 - yg"f
some wy € R%. Then for any t we have

(ye - Z_J‘t)2 < min {4Mt2+17 20, (wy) + Mt2+1 - Mt2}

Proof. First, observe that we always have

9 . N2 2 N2
(e =T0)" = (g~ + oy =7,) <2(ye - yf') +2(yF" - 7,) <2M7, +2M7 <4M7,,.

Next, observe that if (s, w;) = 7j,, then we trivially have (y;~7,)? = (yi—{w¢, ws))? = 20;(wy ). Otherwise, when (z¢, w;) #

7;, we have clipped 7, to be a distance of M; away from y' and there are two cases to consider. If Sign (¥, — yr) #
Sign (y: — y*"), then the clipping operation j, = Clipg, ({x, w;)) moves us closer to y;, hence |y; — 7| < [y¢ — (¢, we)|. If

Sign (7, — &) = Sign (y¢ — y£°"), then we precisely have |y; — 3| = My, — M, wheny, ¢ By and [y, — 7| < |ye — (24, wy)]

when y; € B;. Hence, combining these cases we have
(e =90 < (g = (wi, 20)) + (Mygy = My)? < 26, (w;) + M7y, - M7,
where we have used (u —1)? < u? — [2 for u > [ > 0. Hence, combining with the first display we have

(ye —¥,)* <min {4M7, M2, - MP +20,(w)} .

D.2. Proof of Lemma D.2

The following lemma shows the following important property of the meta-learner’s losses: they are a;-exp-concave with

Qi in the domain 32 = {y = Zﬁl piyt(i) : ZfL p; = 1}.

_ 1
2max; £ (ygl))
Lemma D.2. Let y(l), R y(N) be arbitrary real numbers and let y, = {@ = Zf\il piy(i) ipe RJZ\G, Zﬁl p; = 1}. Then

,(g) = 2(y: - 9)? is o-Exp-Concave on Y, for a; < m

Proof. Letting f;(7) = exp (—a4; (7)) we have for any 7 € V;:

Qi

fi@) = [exp( 5 (v —@)2)]’ = exp (-%(yt —@)2) a(ye = 7)
P @) =exp (-5 0 -1)?) [of e -5)* - o]
- exp (=5 (- )*) [2037) - o]

Hence for o < we have

1
= 2max; £ (y®D)
_ «@ — _
V@) < exp (<50 ) e asti(m) - 1] <0

so f,(7) = exp (—ayly (7)) is concave and ¢, is a;-Exp-Concave over ) for oy < m

24



Online Linear Regression in Dynamic Environments via Discounting

D.3. Regret of the Range-Clipped Meta-Algorithm

In this section we prove a simple result showing that the range-clipping reduction described by Algorithm 2 incurs only an
constant additional penalty. This lemma will be used to do most of the heavy-lifting in proving Theorem 4.1, which simply
applies the following lemma and then chooses a specific meta-algorithm for Apfea.

Lemma D.3. Forany [a,b] ¢ [1,T], sequence u = (uq,...,up) in R, and j € [N], Algorithm 2 guarantees
1 Re) eta
Rpap)(u) < 5 mtaX(yt i)+ R Ty (w) + RMt 1(€5),

whereR (u) Yo l(w J)) L (uy) is the dynamic regret A; andRMe’b“]( ;) =Y 6(T,) - (Y gj)).

(%)

Proof. For ease of notation we let yt( 2 <:ct, w, > where w( D

is the output of algorithm 4;, and slightly abuse notation

by writing £;(y) = 3 (y:—y)? for y € R. Hence, we may write £;(w;) = Et(yt )) interchangeably. Note that this equivalence
is valid in the improper online learning setting since the features are observed before the learner makes a prediction, as
discussed in the introduction.

Now, for for any j € [N] we have

ab(u) Zét(yt — Ly (u)

I
Mv Z

. b .
() = €, (ug) + + 20 — Ly ()

-~
Il

a

b .
A]b] (u) + tZ 6 (Y,) — L (yzfj)) )

where we have observed 3 = <x wY )> Observe that by Lemma D.1 we have

, 1 ,
et(yt(J)) 2 §M2 M+1 + 5 (yt - @)2

2
:%M M+1+€t( ),

where M; = max |ys - ysRef‘. Hence,

b
Aj — j
Riapy() < Rpw (u) + 3 (@) — 4 (37)
t=a
b
Aj — —(7
< Rin(w)+ X 4@ -6 (3)
+ Z Mt2+1 Mt2
t=a

< SME+ R (u) + Z&(yt) o (v)

- RMelb] (e] )
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D.4. Proof of Theorem 4.1

. . . 1 _
Theorem 4.1. Let Ay, be an instance of Algorithm 3 with oy = m Bis1 = (OIS and p; = 15/N.
Then for any sequence w = (uy,...,ur) in R and any j € [ N], Algorithm 2 guarantees

R (w) < O Ry (w) + ma(y ~ 7)*log (N log? (1)) ).
where Ry, ;] denotes regret over the sub-interval [a, b].

Proof. The proof follows almost immediately using the regret guarantee of the range-clipped meta-algorithm (Lemma D.3),
from which we have
1 - A
Ripqp)(u) < By mtax(yt - yt)2 + R[a], (u) + RMCM (ej)

1

Now applying the guarantee of an appropriate instance of the fixed-share algorithm (Theorem E.1 with a;; = T 6’
Bt = m, andp1 = ]_N/N), we have

RMeta (e;) < [ZIOg( ! ) + 1]
5b+1p1j
< n%axét(gjgi)) [2log (((e +b)log?(e+Db) + 1)N) + 1]

where the last line applies Lemma D.1 and hides constants. All together, we have

Rpgp(u) <O (Réfb] (u) + mtax(yt -7:)%log (Nb 1og2(b))) :

D.5. Proof of Theorem 4.2

The proof of Theorem 4.2 follows by applying Theorem 4.1, and then showing that there exists a A, which attains the
desired bound. We first provide proof of the latter claim in Lemma D.4 for the sake of modularity. In particular, we will
also re-use this result to argue strongly-adaptive guarantees in Section 5. Proof of Theorem 4.2 is then easily proven at the
end of this section.

Lemma D4. Let b > 1, nuin = 2d, Nmax = d1, and define S, = {ni = nminbi AMmax 2 1=0,1,.. } and S, =

{% 1+n 11=0,1,.. } u {0}. Forany vy in S,, let A, denote an instance of Algorithm 1 with discount vy. Then for

VASE L S (ye-T)?

\/de 15 (Y- yf)2+\/P;*(“)

any u = (uy,...,ur) in RY, there is a v* € [0,1] satisfying v* = and a vy € Sy such that

T
R?V (u) < O(dmtax(yt ~T1)?log (T) + \} dPW Z gt)z)-

Proof. Denote Vy = 4 YL (e - 7:)%. By Lemma A5, there exists a v* € [0,1] such that

. -

Throughout the proof it will be convenient to work in terms of the related quantity n* = 1’_77 =\ Flw

I 1
Y (Y = T)? < Tmin\ [ = P7(u).
=1 d

Let us first
suppose that 0 < n* < 1yi,. In this case, we have

* VT
n = — < < Mmin =
Pp (u)

DN | =
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Consider the algorithm Ag with v = 0: in this case we have w; = arg min s h¢(w), so (z¢,w;) = T and the regret is
trivially

;‘gt(’wto) ft(ut)<z (yt_yt

T 1 .y T 1 .y
\JZ:Q(yt_yt) ;5(%—%)

- 7t)?

l\')\»—l

T
E
=2\/Vr Py ( (12)

for Nyin = 2d.

Otherwise, for n* > Nmin, using Theorem 3.1 we have that for any v € S,

A YA d
R (u) < -5 Jual + 5

T T-t 2
m?X(yt ~7i)? log (1 + M)

2 Ad
T-1
+9 > [F (wsr) = F) (ug)] +log (1/7) Vi
t=1
() A d _ T_ Tt |, 2
2 g+ L - yt)zlog(uw

+n* P} (u)+‘;T

where (*) observes that 1y, = 1:";”"_ <n* 7

n= % If n* > Nmax then choosing 1) = Nax = dT yields

<~* and applies Lemma 3.2 (with 8 = v*) and substitutes

7—72 ) ngtax(yt—yt),

and otherwise, there is an 7, in S, such that 7, < n* < by, so choosing 7 = ;. yields

Vi bﬁ =b\/ P} (u)Vr
n*

Tk

Hence, overall we have that there is a y € S, such that

Ad
A 1 T_ T-t 2 .
‘é||U1|§+2mﬁx<yt-@)2[dlog(1+W vil+ s VP (u)

<O dmax(y, ~71)? log (T) v b\} APy (w) Y y)) .

X 1 7 el V.
R#(u)sé||u1|§+mexwt_m)?[dlog(uM Py w0

With the previous lemma in hand, the proof of Theorem 4.2 follows easily. The theorem is re-stated for convenience.
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Theorem 4.2. Let b > 1, nyin = 2d, Nmax = d1, and for all i € N let n; = nminbi A Nmax, and construct the set of discount

factors S, = {% = 11;7 NS N} u {0} . For any v in S, let A, denote an instance of Algorithm 1 with discount 7.5 Let

Aptera be an instance of the algorithm characterized in Theorem 4.1, and suppose we set yfﬁf =¥ for all t. Then for any
w = (u1,...,ur) in RY, Algorithm 2 guarantees

Rr(u) < O(d max(y; - ;) log (T)

T
+b\J P () - 700
t=1
where v* € [0, 1] satisfies Equation (2).

Proof. Applying Theorem 4.1, for any sequence u = (uy,...,ur) in R% and any v € S, we have

Rr(u) < O (R () + max(y - s log (NT)

<O (R?” (u) + mfux(yt - y,lf"’f)2 log (T)) , (13)

where the last line uses N = |S,| = 10g, (Mmax/Mmin) < O(log, (1)), then hides log(log) factors. Finally, by Lemma D .4,
VAL, 5 (ye-T)?

there is indeed a v* € [0, 1] satisfying v* = —
7 el0] ying VAST, Eyeu0)2+/ Py (u)

and a y € S, such that

T
R?W (u)<O dmtax(yt ~71)?log (T) + b\} dPJf (u) ;(yt - @3&)2) .

Plugging this back into Equation (13) and choosing yR°' = ; proves the result. O

D.6. Proof of Theorem 4.3

As in Appendix D.5, the proof of Theorem 4.3 follows by applying Theorem 4.1 and then showing that there is a A,
attaining the desired regret bound. We first provide proof of the latter claim in Lemma D.5 for the sake of modularity, so
that we can use it when arguing strongly-adaptive guarantees in Section 5. Proof of Theorem 4.3 is proven at the end of
this section.

Lemma D.5. Under the same conditions as Lemma D.4, suppose each A, sets hints [, = yj} = Clipg, ({z¢,w])), where
By = [yf - My, yf + M,] and M, = max, lys = yR9|. Then for any w = (w,...,ur) in W, there is a v° € [0,1]

VAST, £ (up)

_ and a v € S., such that
Tt (un) +\JaP (w) TEOy

satisfying v° =
Vix

R?" (u) < O(dP}"““ (u) + dmtax (ye - yfgf)2 log (T')

. T
+ b\l dP,; (’U.) t;ft(ut)),

2d
2d+1°

where Y™™ = min {y € S, } =

3For brevity, here we refer to an algorithm that directly predicts 7; on every round as being an instance of the discounted VAW
forecaster with v = 0. This terminology can be justified by Remark A.2, but for our purposes here it’s sufficient to consider it convenient
alias.
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Proof. Using Lemma B.1, for any w = (uq,...,ur),v€(0,1),and 8 > > Ymin = %, we have
_ 2
Sy
Rr(u) <yA Hulﬂg + 4dmzax(yt - y,lf"f)2 log (1 + HTHtHQ

B s 1-vy, &
+2——Pi(u) + 2d Y Ly(uy),
1_/8 T( ) ,y ; t( t)

We will proceed by showing that there is a 3 and ~y that suitably balances the summations in the last line. To this end, recall

that by Lemma A.5, there is a 7° satisfying
o \/dZtT=1 by (ue)

~° =
\/d ZtTﬂ Oy (ug) + \/quo(u)

° dyi ¢ max
Denote 7 = 1= and 1° = 12 = /%;107(;(;“), If 1)° > fmax = 722, then we can take 3 =7° and ¥ = Ymax to get

B s v & o i,y . A8t e(ur)
——Pr(u)+ A l(uy) =n°P) (u) + —==—=——~
1 ﬁ 1 - ’}/ ; T nmax
.o & dyl
=\| AP} (u) ¢ (ut)+M
\ t=1 Thmax
. T
< \ dP} (w) Y 0 (ur) +maxﬁf(uf)
t=1
where the last line recalls 7y, = dT. Otherwise, if 7° < Ny, = # = 2d, then taking /3 = 7y = iy yields
T T
nminp%min (u) + d Zt:l ’gt (ut) < T]minp¥min (U) + d Zt:l ft(ut)
TImin n

T
= 2dP¥mi" (u) + \ dP%o (’LL) z Et (Ut)
t=1

so choosing 5 = +° and 7y = y;, yields
Ay, ét(ut)

Lastly, if nmin € 7° < max, there is a ng = 172

T
UOP% (u)+M OP‘Y( ) +b
Nk

= (b+ 1)\} dPPY u) th(ut)

Combining the three cases, we have

Q%Pﬂ(u) +— S “T g Z li(ug) <4dPl™ (u) + 2max€t(ut) +2(b+ 1)\j dPY’ (u) ift(ut)
t=1 t=1

Hence, overall the regret can be bound as

T — 2
L AT |2)

Ry (u) <9A IIU1|§+dmta><(yt—§2)210g(1+ v

T
+4d Pl (u) + 2mtax€t(ut) +2(b+ 1)\J AP (uw) > 4y (uy)
t=1

T
<O|dP}™™(u) + dmax(yt YR log (T') + b\‘ dPy (u) Y Et(ut)) ,
t=1

29



Online Linear Regression in Dynamic Environments via Discounting

where we’ve applied Lemma D.1 to bound max;(y; - 37 )* < 4MZ%,, = 4max;(y, - yR")?. Plugging this back into
Equation (14) proves the stated bound. O

Now the proof of Theorem 4.3 follows by composing Theorem 4.1 and Lemma D.5. The theorem is restated below for
convenience.
Theorem 4.3. Under the same conditions as Theorem 4.2, suppose each A, sets hints J; = ] = Clipg, ((, z¢,w;')), where

By = [yfef— M, yfef+ M) and My = maxs<; |ys —yRd|. Then for any w = (uy, ... ,ur) in R, Algorithm 2 guarantees

Ry (u) < O(dP%”‘“‘(u) + dmtax (ye - yfef)2 log (T)

+ b\‘ AP}’ (u) ;zt(ut))

where Ymin = % and +° € [0, 1] satisfies Equation (3).

Proof. As in the proof of Theorem 4.2, we apply Theorem 4.1, from which it follows that for any w = (uq,...,ur) in R?
and any vy € S, the dynamic regret is bounded as

Rr(u) < O (R (u) + max(y - s log (NT)
<0 (R?” (u) + m?x(yt - yfef)2 log (T)) , (14)

where the last line uses N = |Sy| = logy, (Mmax/Mmin) < O(log,(T")), then hides log(log) factors. And using Lemma D.5,

VATl (uy)

for any w = (uq,...,ur) there is a«° € [0, 1] satisfying v° =
yu=(u T) 7% €[0,1] Y AN oo

and a y € S, such that

T
R;}” (u) <O dP™™(u) + dmtax(yt — RN 2 log (T') + b\‘ dPY’ (u) > ﬁt(ut)) ,
t=1
Plugging this back into Equation (14) completes the proof. O

E. Adaptive Fixed-share

Algorithm 3: Adaptive Fixed-Share

Input Experts Ay,..., AN, p1 € AN
fort=1:Tdo

Get ") from A; for all i

Play 7, = X1, Pn‘yt(z) _

Observe loss £, (y) = 2 (y, — y)? and let £;; = Et(ygl)) for all 4
pi exp(—ailii)
1 pej exp(-arly;)

Choose f,1 and set pr1 = (1 = Bra1)qee1 + Bes1p1
end

Let qi1, = for all ¢

In this section, we provide for completeness analysis related to the fixed-share algorithm (Cesa-Bianchi et al., 2012)
with time-varying modulus. The following is a modest generalization of the analysis of Hazan (2019, Theorem 10.3).

—

Throughout this section we assume that the losses ¢; : JJ - R are exp-concave in their domain.

Theorem E.1. For all t let {; be an ay-Exp-Concave function and assume that oy > oy, for all t. For all t, set By <

m. Then for any j € [N] and any [a,b] ¢ [1,T], Algorithm 3 guarantees

iﬁt(yt)—ft(yﬁj))sl[ﬂog( ! )+1]
t=a 5b+1p1j

Qpy1
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Proof. The heavy lifting is done mostly using Lemma E.2, after which the proof follows by choosing the sequence of
mixing parameters ;. Applying Lemma E.2 and observing the telescoping sum, we have

t_iet(y»—et(yﬁ”)si;log(1)— : 1og( . )

t=a Py 7S] DPt+1,j5
+ —log( )
tzt:z 67 1-Bi
b1 1 ( 1 )
- —|log
o oy Bi+101j

1 1 1 1
=—log|— |- log
Qg paj Qpt1 DPb+1,5
+>» —lo ( )
;1 Qi & 1- B

| 11 ( 1 )
og .
5t+1p1j

using the elementary inequality log (1 + y) < y we have

+

t=a

Qiye1 O

: 1
Now observe that with ﬂtJrl < m,

1 ( 1 ) _ ( ﬁt+1 ) Bt+1 _ 1
og =log|1+ < = 5
1= B 1=B1/  1=Pr1 (e+t)log®(e+t)

so for non-increasing oy we have

b 1 1
bl )
t:ZaOét B\ B+ t;;at (e+t) 1og2(e+t)

X

b ica e+t)log (e+1)

[e ylog y

e+b

IA

Q

I/\

-1
ap 1og W1,

G R e
o og
& Bi+101j By+1P1;5

()
< log ,
Qi1 Br+1P1;

1
S

< —

and similarly,

bl 1 1

t=a | Ot+1 Qi

1 1

o Qt+1 O

||Me-

so overall we have

; j IOg L -1+ 1
th(yt)_gt (ygj)) < 1og( 1 )_ 1 10g( 1 )+ (ﬂb+1p1,)
t=a Qpy1

DPaj Po+1,j5 Qpt1
Pb+1,5
_ 1 log (1) " 10g(5b+11’1j ) +1
Qg Paj Qpi1
1og( Dortig )+1
< 1 ] g( 1 )+ Bo1P15
T apy (1= Ba)qaj + Bap1j Qpi1

IN
IA

1 1
2log +1
Qpyl Bb+1p1j
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E.1. Proof of Lemma E.2

The following provides an initial one-step bound to work from, which we use in the proof of Theorem E.1.

Lemma E.2. For all t let {; be an c-Exp-Concave function. Then for any j € [N, Algorithm 3 guarantees

_ ; 1 1 1 1
(@) - ) < 1og( ) 1og( )
at Ptj ) Qe Pt+1,j
+ilo ( 1 )
Qi : 1- Bt

1 11 ( 1 )
0og
5t+1p1j

+

Qi1 O

Proof. By a;-Exp-Concavity of £;, we have that y — exp (—a;£;(y)) is concave. Hence, applying Jensen’s inequality:

N 0 N
exp (—al(7,)) > Zpti exp (_Oétgt (ytl )) = Zpti exp (—aily;)

=1 =1

and taking the natural logarithm of both sides we have

N
~aily(7,) > log (Z Dti €Xp (_atgti))
i=1

1 N
Le(y) < T log (Zpti exp (_Oétgti)) .
¢

i=1

Hence, for any j € [ N] we have

, 1 N
(Ge) = (yt(])) < log (Zpti exp (—atfti)) =l
t

i=1

1 N 1
= log (me‘ exp (—at&i)) + - log (exp (—alyj))
t

t i=1

_1 log ( exp (—aly;) )
>

Qy 21 Pri exp (—aely;)

( Ptj exp (—aely;) )
Dtj 221 DPti €Xp (—Oétfti)

a5
Qi Dtj
1 1 1
o) (G )
(o7 DPtj qt+1,5
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Adding and subtracting ﬁ log (# ),

Pt+1,j

; 1 1 1 1
Ce(Gy) =L (yt(J))SIOg()— 1og(
Qt Dtj ) Q1 Di+1,j

1 1 1 1

+ log - —log

Qi1 DPt+1,5 Qi qt+1,5
1 1 1 1
o Pty Ayl Pt+1,j5

1 1 1 1
+ —log - —log
(e7 Pt+1,5 (677 dt+1,j

log(qe+1,j/Pee1,5)/cxt

[ 1 1 ] ( 1 )
+ - —|log

Qi1 O Dt+1,5
recalling p.1,5 = (1- 5t+1)(h+1,j + 5t+1p1j,

1 1 1 1
=—log|— |- log
Qi Dtj Qi1 Pt+1,5

L log ( Qt+1,5 )
Qg (1- 5t+1)(1t+1,j + PPy

+ [ L i] log( ! )
Qes1 O (1= Bis1)que1,5 + Bre1p1;

1 1 1 1
<—log|— |- log
o Py Ayl Pt+1,j5
+ 1 1 ( 1 )
—1lo
o s\1c Bi+1

1 1 log( 1 )
ﬂt+1p1j

+

Qe O
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F. Strongly-Adaptive Guarantees

In this section we provide a formal statement of the result sketched in Section 5. The result follows easily from the results
in Section 4, after borrowing the geometric covering intervals from Daniely et al. (2015).

Theorem F.1. Let S, be the set of discount factors defined in Theorem 4.2, let S denote a set of geometric covering
intervals over [1,T], and for each vy € Sy and I € S, let A, | be an instance of Algorithm I using discount ~y and applied
during interval I (and predicts yfef fort ¢ I). Let Aperq be an instance of the meta-algorithm characterized in Theorem 4.1.
Then for any [s,7] € [1,T], there is a set of disjoint intervals Iy, ..., I in S such that X, I; = [s, 7], and moreover, for
any u = (us, . .., u, ) Algorithm 2 with yfef = 7; guarantees

Rpsr1(u) < 9) (dm?x(yt - yfef)2 log?(T) + b\/de (u) > (y- ;T[t)z)

te[s,T]
* * /d 1. (Ye=Ti 2
where P&T](u) -5 PJ* (u) and each ~; € [0,1] satisfies ~; = 2 Zeer, (00 771) —
V5 Zter, (ve=T:)2+\/ Prl(u)
If we instead suppose each A, 1 sets hints as in Theorem 4.3, then for any w = (us, ..., u,) Algorithm 2 guarantees

te[s,7]

Rpyry(u) <O (dpgm;a () + dmax(y, ) 1og?(T) + b\/dPR;;] (w) % @(ut))

° 1 dZte Li(ug
where P[l T](u) =% P[ZI (u) and each ~; € [0, 1] satisfies 5 = VAT, o) .
’ T, B/ P (w)

Proof. Forany [s,7] ¢ [1,T], Daniely et al. (2015, Lemma 1.2) shows that there exists a disjoint set of intervals I, ..., Ik
in S such that UX, I; = [s,7] and K < O(log(7 - s)). Hence, we can decompose Y%, Ry, (u), so applying Theorem 4.1
to each of these sub-intervals, for any v € S, we have:

K K
~( A, ~
Ris1(w) = 32 Ry, (1) < 320 (R () + mps(ye ~72)° og (N1 )
=1 3

<0 (ZR "0 (u) +Kmax(yt —yt)Qlog (N(r- s)))

=1

sﬁ(ZR " (u) + max(y; - )* log” (T)) (15)

=1

where O(-) hides log(log) factors and the last line bounds K < O(log(7 — s)) < O(log(T)) and N < O(T'log (T)). The

bound on N can be seen from the fact that |S,| < O(log(7")), and from the fact that S is constructed as .S’ = Uolg(T)JS
where S; = { k2 (k+1)2'-1]:k=0,1,.. } from which it is easily seen that |S| < O(T') by observing that each .S; has

at most 7'/2¢ intervals, hence summing them all up yields |S| = log(T) |S;| < O(T).

. . . . " VA er, 3 (ye=T2)?
Now for any interval I;, Lemma D.4 shows that there is a v} € [0, 1] satisfying ;' = : and a

\/dZteli %(yt—@vt)2+\/P7; (u)

v € S, such that

AW fi(u) <O (dmax(yt 7)) log (|I]) + b\/dPZ_; (u) > (ye - 37,5)2)

tel;

so summing these up and applying Cauchy-Schwarz inequlity leads to

K

Al ¥ _
Y R (u) <O (Kdm?x(yt )2 log (|1;]) Z dPZ (u) > (ye - yt)Q)
i=1 i=1 tel;

so(dmtax(yt-gt)%og?(T-s)+b\/dp7 (w) 3 (yt—ﬂt)2)

te[s,7]
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where we’ve defined P"Y (u) vE, PZ_: (w). Plugging this back into Equation (15), overall we may bound:

Rps(u) < 6(dmtax(yt -y 2 log?(T) + b\/de (w) > (ye- @;)2)

te[s,7]

where we’ve chosen 7; = yRX° for simplicity.

An identical argument holds for the second statement: for any interval I;, Lemma D.5 shows that there is a 77 € [0,1]

VA er, Ce(ut)
VAZwer, L)/ P (w)

satistying ~; = and a vy € S, such that

.A—Y’[. min e ©
Rli K (u) < @) (dPZ (U) + dmgmx(yt — y}} f)21og (|Iz|) + b\/df)z1 (U) Z ét(ut))

tel;

so summing these up and applying Cauchy-Schwarz inequality again leads to

i=1 i=1 tel;

ZR "i(u) <0 (dP'Y"“n (u) + Kdmax(yt 70)%log (|1;]) + Z b\/dPZ_o (u) Et(ut))

<0 (dP[V;‘T‘? (w) +dmax(y, - 7)) log® (1 - ) + b\/de (w) > Et(ut))

te[s,7]

where we’ve defined P7 (u) v, PZ_; (u), so plugging this back into Equation (15), overall we may bound:

R[S,T](wsﬁ(dP[z":‘j(u)+dmgx(yt—y$ef)2log2(T>+b\/dP” (u) ) ft(ut))7

te[s,7]

where we’ve defined P[zT] =5 PIZE (u).

F.1. Matching the Exp-concave Guarantee in Unbounded Domains

Recall from Section 3.2 that in the Exp-concave setting, the algorithm of Baby & Wang (2021) achieves a dynamic regret
bound of the form Ry (u) < O (Tl/ 3 C’;/ 3) for O = Y.71" |us — ws-1],. Our strongly-adaptive guarantees in Theorem F.1
show that a bound of this form can be achieved even in the unbounded domain setting. To see why, note that the essential
intuition of Baby & Wang (2021) is that if we have access to a strongly-adaptive algorithm guaranteeing Ry, ;1(u) <
O(log(b - a)) static regret on all intervals [a,b] € [1,T'], then to attain the desired bound up to log terms it suffices to
show that there exists a set of intervals {I,,..., Iy} partitioning [1,7"] such that N < T/ SC;/ % and that the dynamic
regret is bounded by the static regrets over the partition, leading to regret matching O(Tl/ 3 C;/ ‘5) up to logarithmic terms.

Our strongly-adaptive guarantee in Theorem F.1 actually achieves a stronger guarantee than is necessary to invoke the

above argument, by guaranteeing O( log(b—a) v , /dP"’ (u)|b a|) dynamic regret on every interval [a, b], and hence

as a special case we have O(log(b — a)) static regret on each interval as well. A similar partitioning argument then
provides an analogous 7/ C;/ ® bound, even in unbounded domains. If this is surprising, note that the exp-concave (and
hence bounded domain) restriction is only really used to provide an algorithm which achieves logarithmic static regret,
not to construct the essential partition. In the online linear regression setting, we do not need exp-concavity to guarantee
logarithmic static regret — the VAW forecaster can provide the necessary guarantee even in an unbounded domain.
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G. Supporting Lemmas

The following provides a useful relation between the squared loss and its Bregman divergence.

Lemma G.1. Let {;(w) = 5 (y; — (x4, w;))?. Then for any u,w ¢ W,

Dy, (ulw) = = (@, u - w)”

1
2
Proof. By definition of Bregman divergence, we have:

Dy, (ulw) = €1 (u) = £e(w) = (V& (w),u - w).

Expanding the definition of ¢;, we have

() = () = & (9~ ) = 5 3~ G )’

2
1 1 1 1

= 51/152 + By <$t7u)2 — Yt ($t7u> - 53/? 5 <9Ct7w)2 + Ut ($t7w>
1 1

=3 (xt,u)2 -3 (J}t,w>2 +yg (g, w—u).

Moreover, we have
— (Ve (w),u—w) = ((y — (ve, w)) e, u — W)
=~y (g, w —u) + <l't,lU)2 —(xp,w) (zy, u),

so combining with the previous display we have

li(u) — L (w) = (Vl(w),u—w) =

1 1
5 (xt,u)2 -3 (xt,w)Q +yp (T, w0 —u)

—y (g, w—u) + (a;,g,w)2 —(zg,w) (zy, u)

(mt,u)2 + % (xt,w)2 — (¢, w) (x4, u)

(e, u) = {wr, w))”

N~ DN~ DN

(2, u—-w)>.

The following provides a discounted version of the log-determinant lemma.

Lemma G.2. Let v € (0,1], A > 0, z; € RY, and define My = X\ and M; = x;x] +yM;_y for each t > 0. Then for any
sequence A1, Ag, ... in R,

A2 (2 2 2 R LA
YA |zl < dlog (1/7) Al:TerzaxAtdlog 1+ ‘Tz
t=1 ’

Proof. By definition we have M; = z;z:] + vM;_1, so re-arranging and taking the determinant of both sides we have

Det (vM; ) = Det (M, - z,2]) = Det (M) Det (I - Mt_%xtzZMt_%)

2
= Det (M) (1 o] 3.)
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where the last line uses the fact that Det (I —yy™) = 1 - HyH; Re-arranging, using Det (yM;_1) = v?Det (M;_;), and
using the fact that 1 — = < —log (z) we have

5 'ydDet(Mt—l)
zA el —;A [1Dt(M>]

Det (Mt)
( dDet (Mt 1) )

LMH "MH

) Det (M)
2dlog (1/7) + ZA (Det(Mtl))

L Det (M)
< dlog(1/v) A2, + max A?lo ( —
8 (1/7) Al + max Alog | [T 5270

Det (MT) )

=dlog (1/v) A% + mtaXAtz log ( Det (M)

Observe that Det (M) = Det () = A%, and using AM-GM inequality we have

Tr (Mt)) (Tr(/\fyTI+ AT xtxt))d
d d

Det (M) < (

d
i (dw + 200" )
d )

Hence

d
Det(M: AT HE L T el
th((MZ)) < ( 2 Zt}ll,\v lz¢l2 )" 5o overall we have

T
> A7 23y < dlog (1/7) Alp +max Af log
t=1

d
AT + S AT o
d

=dlog (1/v) A%, + max AZdlog

AT+ XL AT a5
A

T T—¢ 2
< dlog (1/7) A% + mtaXAfdlog 1+ Zt=17)\d|xt|2)

Note that the Lemma G.2 also immediately gives us the usual log determinant lemma as a special case where v = 1:

Lemma G.3. Let A > 0, z; € RY, and define Let My = M\ and M, = xyx] + My_1 for each t > 0. Then for any sequence
Al,Ag,. ..in R,

T T 2
AT | H?\/{—l <dmaxA?log |1+ Zeat ol
=1 t t Ad

The following lemma is common in adaptive online learning and provided for completeness.

Lemma G.4. Let ay,...,ar be arbitrary non-negative numbers in R. Then
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Proof. By concavity of x — \/z, we have

a
Jai: —~Ja14_1 >
Qa1:¢ a1:¢-1 2\/m,

so summing over ¢ and observing the resulting telescoping sum yields

T T
Q¢
<2 Va1t —\/A1:t-1 = 2\/ a1.T-
; a1t ;

For the lower bound, observe that

38



	Online Linear Regression
	Related Works
	Notations

	The Vovk-Azoury-Warmuth Forecaster
	Dynamic Regret via Discounting
	Small-loss Bounds via Self-confident Predictions
	Dimension-dependent Lower Bound

	Learning the Optimal Discount Factor
	Strongly-Adaptive Guarantees
	Conclusion
	Proofs for Section 3 (Dynamic Regret via Discounting)
	Equivalence to FTRL and Mirror Descent
	Proof of Theorem 3.1
	Proof of Lemma A.3
	Proof of Lemma A.4

	Proof of Lemma 3.2
	Existence of a Good Discount Factor
	Proof of Theorem 3.3

	Proofs for Section 3.1 (Small-loss Bounds via Self-confident Predictions)
	Proof of Theorem 3.4
	Proof of Lemma B.1


	Proofs for Section 3.2 (Dimension-dependent Lower Bound)
	Proof of Theorem 3.5

	Proofs for Section 4 (Learning the Optimal Discount Factor)
	Proof of Lemma D.1
	Proof of Lemma D.2
	Regret of the Range-Clipped Meta-Algorithm
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Adaptive Fixed-share
	Proof of Lemma E.2

	Strongly-Adaptive Guarantees
	Matching the Exp-concave Guarantee in Unbounded Domains

	Supporting Lemmas

