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Abstract

Training neural networks requires optimizing a

loss function that may be highly irregular, and

in particular neither convex nor smooth. Popular

training algorithms are based on stochastic gradi-

ent descent with momentum (SGDM), for which

classical analysis applies only if the loss is either

convex or smooth. We show that a very small

modification to SGDM closes this gap: simply

scale the update at each time point by an expo-

nentially distributed random scalar. The resulting

algorithm achieves optimal convergence guaran-

tees. Intriguingly, this result is not derived by a

specific analysis of SGDM: instead, it falls nat-

urally out of a more general framework for con-

verting online convex optimization algorithms to

non-convex optimization algorithms.

1. Introduction

Non-convex optimization algorithms are one of the funda-

mental tools in modern machine learning, as training neural

network models requires optimizing a non-convex loss func-

tion. This paper provides a new theoretical framework for

building such algorithms. The simplest application of this

framework almost exactly recapitulates the standard algo-

rithm used in practice: stochastic gradient descent with

momentum (SGDM).

The goal of any optimization algorithm used to train a neural

network is to minimize a potentially non-convex objective

function. Formally, given F : Rd → R, the problem is to

solve

min
x∈Rd

F (x) = Ez[f(x, z)],

where f is a stochastic estimator of F . In practice, x denotes

the parameters of a neural network model, and z denotes

the data point. Following the majority of the literature,
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we focus on first-order stochastic optimization algorithms,

which can only access to the stochastic gradient ∇f(x, z)
as an estimate of the unknown true gradient ∇F (x). We

measure the “cost” of an algorithm by counting the number

of stochastic gradient evaluations it requires to achieve some

desired convergence guarantee. We will frequently refer to

this count as the number of “iterations” employed by the

algorithm.

When the objective function is non-convex, finding a global

minimum can be intractable. To navigate this complexity,

many prior works have imposed various smoothness as-

sumptions on the objective. These include, but not limited

to, first-order smoothness (Ghadimi & Lan, 2013; Carmon

et al., 2017; Arjevani et al., 2022; Carmon et al., 2019),

second-order smoothness (Tripuraneni et al., 2018; Car-

mon et al., 2018; Fang et al., 2019; Arjevani et al., 2020),

and mean-square smoothness (Allen-Zhu, 2018; Fang et al.,

2018; Cutkosky & Orabona, 2019; Arjevani et al., 2022).

Instead of finding the global minimum, the smoothness con-

ditions allow us to find an ϵ-stationary point x of F such

that ∥∇F (x)∥ f ϵ.
The optimal rates for smooth non-convex optimization

are now well-understood. When the objective is smooth,

stochastic gradient descent (SGD) requires O(ϵ−4) itera-

tions to find ϵ-stationary point, matching the optimal rate

(Arjevani et al., 2019). When F is second-order smooth, a

variant of SGD augmented with occasional random perturba-

tions achieves the optimal rate O(ϵ−7/2) (Fang et al., 2019;

Arjevani et al., 2020). Moreover, when F is mean-square

smooth, variance-reduction algorithms, such as SPIDER

(Fang et al., 2018) and SNVRG (Zhou et al., 2018), achieve

the optimal rate O(ϵ−3) (Arjevani et al., 2019). All of these

algorithms can be viewed as variants of SGD.

In addition to these theoretical optimality results, SGD and

its variants are also incredibly effective in practice across

a wide variety of deep learning tasks. Among these vari-

ants, the family of momentum algorithms have become

particularly popular (Sutskever et al., 2013; Kingma & Ba,

2014; You et al., 2017; 2019; Cutkosky & Orabona, 2019;

Cutkosky & Mehta, 2020; Ziyin et al., 2021). Under smooth-

ness conditions, the momentum algorithms also achieve the

same optimal rates.

However, modern deep learning models frequently incorpo-
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rate a range of non-smooth architectures, including elements

like ReLU, max pooling, and quantization layers. These

components result in a non-smooth optimization objective,

violating the fundamental assumption of a vast majority of

prior works. Non-smooth optimization is fundamentally

more difficult than its smooth counterpart, as in the worst-

case Kornowski & Shamir (2022b) show that it is actually

impossible to find a neighborhood around ϵ-stationary. This

underscores the need for a tractable convergence criterion

in non-smooth non-convex optimization.

One line of research in non-smooth non-convex optimization

studies weakly-convex objectives (Davis & Drusvyatskiy,

2019; Mai & Johansson, 2020), with a focus on finding

ϵ-stationary points of the Moreau envelope of the objectives.

It has been demonstrated that various algorithms, including

the proximal subgradient method and SGDM, can achieve

the optimal rate of O(ϵ−4) for finding an ϵ-stationary point

of the Moreau envelope. However, it is important to note

that the assumption of weak convexity is crucial for the

convergence notion involving the Moreau envelope. Our

interest lies in solving non-smooth non-convex optimization

without relying on the weak convexity assumption.

To this end, Zhang et al. (2020) proposed employing Gold-

stein stationary points (Goldstein, 1977) as a convergence

target in non-smooth non-convex (and non-weakly-convex)

optimization. This approach has been widely accepted

by recent works studying non-smooth optimization (Ko-

rnowski & Shamir, 2022a; Lin et al., 2022; Kornowski &

Shamir, 2023; Cutkosky et al., 2023). Formally, x is a

(¶, ϵ)-Goldstein stationary point if there exists a random

vector y such that E[y] = x, ∥y − x∥ f ¶ almost surely,

and ∥E[∇F (y)]∥ f ϵ.1 The best-possible rate for finding

a (¶, ϵ)-Goldstein stationary point is O(¶−1ϵ−3) iterations.

This rate was only recently achieved by Cutkosky et al.

(2023), who developed an “online-to-non-convex conver-

sion” (O2NC) technique that converts online convex op-

timization (OCO) algorithms to non-smooth non-convex

stochastic optimization algorithms. Building on this back-

ground, we will relax the definition of stationarity and ex-

tend this O2NC technique to eventually develop a conver-

gence analysis of SGDM in the non-smooth and non-convex

setting.

1.1. Our Contribution

In this paper, we introduce a new notion of stationarity for

non-smooth non-convex objectives. Our notion is a natural

relaxation of the Goldstein stationary point, but will allow

for more flexible algorithm design. Intuitively, the problem

1To be consistent with our proposed definition, we choose to
present the definition of (¶, ϵ)-Goldstein stationary point involving
a random vector y. This presentation is equivalent to the original
definition proposed by (Zhang et al., 2020).

with the Goldstein stationary point is that to verify that a

point x is a stationary point, one must evaluate the gradient

many times inside a ball of some small radius ¶ about x.

This means that algorithms finding such points usually make

fairly conservative updates to sufficiently explore this ball:

in essence, they work by verifying each iterate is not close

to a stationary point before moving on to the next iterate.

Algorithms used in practice do not typically behave this

way, and our relaxed definition will not require us to employ

such behavior.

Using our new criterion, we propose a general framework,

“Exponentiated O2NC”, that converts OCO algorithms to

non-smooth optimization algorithms. This framework is an

extension of the O2NC technique of Cutkosky et al. (2023)

that distinguishes itself through two significant improve-

ments.

Firstly, the original O2NC method requires the OCO algo-

rithm to constrain all of its iterates to a small ball of radius

roughly ¶ϵ2. This approach is designed to ensure that the

parameters within any period of ϵ−2 iterations remain in-

side a ball of radius ¶. The algorithm then uses these ϵ−2

gradient evaluations inside a ball of radius ¶ to check if

the current iterate is a stationary point (i.e., if the average

gradient has norm less than ϵ). Our new criterion, however,

obviates the need for such explicit constraints, intuitively

allowing our algorithms to make larger updates when far

from a stationary point.

Secondly, O2NC does not evaluate gradients at the actual

iterates. Instead, gradients are evaluated at an intermediate

variable wn lying between the two iterates xn and xn+1.

This conflicts with essentially all practical algorithms, and

moreover imposes an extra memory burden. In contrast, our

algorithm evaluates gradients exactly at each iterate, which

simplifies implementation and improves space complexity.

Armed with this improved framework, we proposed an un-

constrained variant of online gradient descent, which is de-

rived from the family of online mirror descent with compos-

ite loss. When applied within this algorithm, our framework

produces an algorithm that is exactly equal to stochastic

gradient descent with momentum (SGDM), subject to an

additional random scaling on the update. Notably, it also

achieves the optimal rate under our new criterion.

To summarize, this paper has the following contributions:

• We introduce a relaxed convergence criterion for non-

smooth optimization that recovers all useful properties

of Goldstein stationary point.

• We propose a modified online-to-non-convex conver-

sion framework that does not require intermediate

states.

• We apply our new conversion to the most standard

2



Random Scaling and Momentum for Non-smooth Non-convex Optimization

OCO algorithm: “online gradient descent”. The result-

ing method achieves optimal convergence guarantees

as is almost exactly the same as the standard SGDM

algorithm. The only difference is that the updates of

SGDM are now scaled by an exponential random vari-

able. This is especially remarkable because the ma-

chinery that we employ does not particularly resemble

SGDM until it is finally all put together.

2. Preliminaries

Notations Bold font x denotes a vector in R
d and ∥x∥

denotes its Euclidean norm. We define Bd(x, r) = {y ∈
R
d : ∥x − y∥ f r} and sometimes drop the subscript d

when the context is clear. We use [n] as an abbreviation

for {1, 2, . . . , n}. We adopt the standard big-O notation,

and f ≲ g denotes f = O(g). P(S) denotes the set of all

distributions over a measurable set S.

Stochastic Optimization Given a function F : Rd → R,

F is G-Lipschitz if |F (x) − F (y)| f G∥x − y∥, ∀x,y.

Equivalently, when F is differentiable, F is G-Lipschitz if

∥∇F (x)∥ f G, ∀x. F is H-smooth if F is differentiable

and ∇F is H-Lipschitz; F is Ä-second-order-smooth if F
is twice differentiable and ∇2F is Ä-Lipschitz.

Assumption 2.1. We assume that our objective function

F : Rd → R is differentiable and G Lipschitz, and given

an initial point x0, F (x0) − inf F (x) f F ∗ for some

known F ∗. We also assume the stochastic gradient satisfies

E[∇f(x, z) |x] = ∇F (x),E ∥∇F (x)−∇f(x, z)∥2 f Ã2

for all x, z. Finally, we assume that F is well-behaved in

the sense of (Cutkosky et al., 2023): for any points x and y,

F (x)− F (y) =
∫ 1

0
ï∇F (x+ t(y − x)),y − xð dt.

Online Learning An online convex optimization (OCO)

algorithm is an iterative algorithm that uses the following

procedure: in each iteration n, the algorithm plays an action

∆n and then receives a convex loss function ℓn The goal is

to minimize the regret w.r.t. some comparator u, defined as

Regretn(u) :=
∑n
t=1ℓt(∆t)− ℓt(u).

The most basic OCO algorithm is online gradient de-

scent: ∆n+1 = ∆n − ¸∇ℓn(∆n), which guarantees

RegretN (u) = O(
√
N) for appropriate ¸. Notably, in

OCO we make no assumptions about the dynamics of ℓn.

They need not be stochastic, and could even be adversarially

generated. We will be making use of algorithms that obtain

anytime regret bounds. That is, for all n and any sequence of

u1,u2, . . . , it is possible to bound Regretn(un) by some

appropriate quantities (that may be function of n). This is

no great burden: almost all online convex optimization algo-

rithms have anytime regret bounds. For readers interested in

more details, please refer to (Cesa-Bianchi & Lugosi, 2006;

Hazan, 2019; Orabona, 2019).

2.1. Non-smooth Optimization

Suppose F is differentiable. x is an ϵ-stationary point of F
if ∥∇F (x)∥ f ϵ. This definition is the standard criterion

for smooth non-convex optimization. For non-smooth non-

convex optimization, the standard criterion is the following:

x is an (¶, ϵ)-Goldstein stationary point of F if there exists

S ¢ R
d and P ∈ P(S) such that y ∼ P satisfies E[y] = x,

∥y − x∥ f ¶ almost surely, and ∥E[∇F (y)]∥ f ϵ.2 Next,

we formally define (c, ϵ)-stationary point, our proposed new

criterion for non-smooth optimization.

Definition 2.2. Suppose F : Rd → R is differentiable, x is

a (c, ϵ)-stationary point of F if ∥∇F (x)∥c f ϵ, where

∥∇F (x)∥c = inf
S¢R

d

y∼P∈P(S)
E[y]=x

∥E[∇F (y)]∥+ c · E∥y − x∥2.

In other words, if x is a (c, ϵ)-stationary point, then there

exists S ¢ R
d, P ∈ P(S) such that y ∼ P satisfies E[y] =

x, E ∥y − x∥2 f ϵ/c, and ∥E[∇F (y)]∥ f ϵ. To see how

this definition is related to the previous (ϵ, ¶)-Goldstein

stationary point definition, consider the case when c = ϵ/¶2.

Then this new definition of (c, ϵ)-stationary point is almost

identical to (¶, ϵ)-Goldstein stationary point, except that it

relaxes the constraint from ∥y−x∥ f ¶ to E ∥y−x∥2 f ¶2.

To further motivate this definition, we demonstrate that

(c, ϵ)-stationary point retains desirable properties of Gold-

stein stationary points. Firstly, the following result shows

that, similar to Goldstein stationary points, (c, ϵ)-stationary

points can also be reduced to first-order stationary points

with proper choices of c when the objective is smooth or

second-order smooth.

Lemma 2.3. Suppose F is H-smooth. If ∥∇F (x)∥c f ϵ
where c = H2ϵ−1, then ∥∇F (x)∥ f 2ϵ.
Suppose F is Ä-second-order-smooth. If ∥∇F (x)∥c f ϵ
where c = Ä/2, then ∥∇F (x)∥ f 2ϵ.

As an immediate implication, suppose an algorithm achieves

O(c1/2ϵ−7/2) rate for finding a (c, ϵ)-stationary point. Then

Lemma 2.3 implies that, with c = O(ϵ−1), the algorithm au-

tomatically achieves the optimal rate of O(ϵ−4) for smooth

objectives (Arjevani et al., 2019). Similarly, with c = O(1),
it achieves the optimal rate of O(ϵ−7/2) for second-order

smooth objectives (Arjevani et al., 2020).

Secondly, we show in the following lemma that (c, ϵ)-
stationary points can also be reduced to Goldstein stationary

points when the objective is Lipschitz.

2The original definition of (¶, ϵ) Goldstein stationary point
proposed by (Zhang et al., 2020) does not require the condition

E[y] = x. However, as shown in (Cutkosky et al., 2023), this
condition allows us to reduce a Goldstein stationary point to an
ϵ-stationary point when the loss is second-order smooth. Hence
we also keep this condition.
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Algorithm 1 O2NC (Cutkosky et al., 2023)

1: Input: OCO algorithm A, initial state x0, parameters

N,K, T ∈ N such that N = KT .

2: for n← 1, 2, . . . , N do

3: Receive ∆n from A.

4: Update xn ← xn−1+∆n and wn ← xn−1+sn∆n,

where sn ∼ Unif([0, 1]) i.i.d.

5: Compute gn ← ∇f(xn, zn).
6: Send loss ℓn(∆) = ïgn,∆ð to A.

// For output only (update every T iteration):

7: If n = kT , compute wk = 1
T

∑T−1
t=0 wn−t.

8: end for

9: Output w ∼ Unif({wk : k ∈ [K]}).

Lemma 2.4. Suppose F is G-Lipschitz. For any c, ϵ, ¶ > 0,

a (c, ϵ)-stationary point is also a (¶, ϵ′)-Goldstein stationary

point where ϵ′ = (1 + 2G
c¶2 )ϵ.

2.2. Online-to-non-convex Conversion

Since our algorithm is an extension of the online-to-

non-convex conversion (O2NC) technique proposed by

(Cutkosky et al., 2023), we briefly review the original O2NC

algorithm. The pseudocode is outlined in Algorithm 1, with

minor adjustments in notations for consistency with our

presentation.

At its essence, O2NC shifts the challenge of optimizing

a non-convex and non-smooth objective into minimizing

regret. The intuition is as follows. By adding a uniform

perturbation sn ∈ [0, 1], ï∇f(xn−1 + sn∆n, zn),∆nð =
ïgn,∆nð is an unbiased estimator of F (xn) − F (xn−1),
effectively capturing the “training progress”. Consequently,

by minimizing the regret, which is equivalent to minimizing
∑N
n=1ïgn,∆nð, the algorithm automatically identifies the

most effective update step ∆n.

2.3. Paper Organization

In Section 3, we present the general online-to-non-convex

framework, Exponentiated O2NC. We first explain the intu-

itions behind the algorithm design, and then we provide the

convergence analysis in Section 3.1. In Section 4, we pro-

vide an explicit instantiation of our framework, and see that

the resulting algorithm is essentially the standard SGDM.

In Section 5, we present a lower bound for finding (c, ϵ)-
stationary point. In Section 6, we present empirical evalua-

tions.

3. Exponentiated Online-to-non-convex

In this section, we present our improved online-to-non-

convex framework, Exponentiated O2NC, and explain the

key techniques we employed to improve the algorithm. The

Algorithm 2 Exponentiated O2NC

1: Input: OCO algorithm A, initial state x0, parameters

N ∈ N, ´ ∈ (0, 1), regularizersRn(∆).
2: for n← 1, 2, . . . , N do

3: Receive ∆n from A.

4: Update xn ← xn−1 + sn∆n, where sn ∼ Exp(1)
i.i.d.

5: Compute gn ← ∇f(xn, zn).
6: Send loss ℓn(∆) = ï´−n

gn,∆ð+Rn(∆) to A.

// For output only (does not affect training):

7: Update xn = ´−´n

1−´n xn−1 +
1−´
1−´nxn.

Equivalently, xn =
∑n
t=1 ´

n−t
xt · 1−´

1−´n .

8: end for

9: Output x ∼ Unif({xn : n ∈ [N ]}).

pseudocode is presented in Algorithm 2.

Random Scaling One notable feature of Algorithm 2 is

that the update ∆n is scaled by an exponential random

variable sn. Formally, we have the following result:

Lemma 3.1. Let s ∼ Exp(¼) for some ¼ > 0, then

Es[F (x+ s∆)− F (x)] = Es[ï∇F (x+ s∆),∆ð]/¼.

In Algorihtm 2, we set sn ∼ Exp(1) and then define xn =
xn−1 + sn∆n. Thus, Lemma 3.1 implies that

E[F (xn)− F (xn−1)] = Eï∇F (xn),∆nð
= Eï∇F (xn),xn − xn−1ð.

In other words, we can estimate the “training progress”

F (xn) − F (xn−1) by directly computing the stochastic

gradient at iterate xn. By exploiting favorable properties of

the exponential distribution, we dispense with the need for

the “auxiliary point” wn employed by O2NC.

We’d like to highlight the significance of this result. The vast

majority of smooth non-convex optimization analysis de-

pends on the assumption that F (x) is locally linear, namely

F (xn)− F (xn−1) ≈ ï∇F (xn),xn − xn−1ð. Under vari-

ous smoothness assumptions, the error in this approximation

can be controlled via bounds on the remainder in a Taylor

series. For example, when F is smooth, then F (xn) −
F (xn−1) = ïF (xn),xn − xn−1ð + O(∥xn − xn−1∥2).
However, since smoothness is necessary for bounding Tay-

lor approximation error, such analysis technique is inappli-

cable in non-smooth optimization. In contrast, by scaling

an exponential random variable to the update, we directly

establish a linear equation that E[F (xn) − F (xn−1)] =

Eï∇F (xn),xn − xn−1ð, effectively eliminating any addi-

tional error that Taylor approximation might incur.

A randomized approach such as ours is also recommended

in the recent findings by Jordan et al. (2023), who demon-

strated that randomization is necessary for achieving a
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dimension-free rate in non-smooth optimization. In par-

ticular, any deterministic algorithm suffers an additional

dimension dependence of Ω(d).

Although employing exponential random scaling might

seem unconventional, we justify this scaling by noting

that sn ∼ Exp(1) satisfies E[sn] = 1 and P{sn g t} =
exp(−t) (in particular, P{sn f 5} g 0.99). In other words,

with high probability, the scaling factor behaves like a con-

stant scaling on the update. To corroborate the efficacy of

random scaling, we have conducted a series of empirical

tests, the details of which are discussed in Section 6.

Exponentiated and Regularized Losses The most signif-

icant feature of Exponentiated O2NC (and from which it de-

rives its name) is the loss function: ℓn(∆) = ï´−n
gn,∆ð+

Rn(∆). This loss consists of two parts: intuitively, the

exponentially upweighted linear loss ï´−n
gn,∆ð measures

the “training progress” F (xn)− F (xn−1) (as discussed in

Lemma 3.1), andRn(∆) serves as an stabilizer that prevents

the iterates from irregular behaviors. We will elaborate the

role of each component later. To illustrate how Exponential

O2NC works, let un be the optimal choice of ∆n in hind-

sight. Then by minimizing the regret Regretn(un) w.r.t.

un, Algorithm 2 automatically chooses the best possible

update ∆n that is closest to un.

Exponentially Weighted Gradients For now, set aside

the regularizerRn and focus on the linear term ï´−n
gn,∆ð.

To provide an intuition why we upweight the gradient by

an exponential factor ´−n, we provide a brief overview for

the convergence analysis of our algorithm. For simplicity of

illustration, we assume gn = ∇F (xn) andRn = 0.

Let Sn = {xt}nt=1 and let yn be distributed over Sn such

that P{yn = xt} = pn,t := ´n−t · 1−´
1−´n . Our strategy will

be to show that this set Sn and random variable yn satisfy

the conditions to make xn a (c, ϵ) stationary point where xn
is defined in Algorithm 2. To start, note that this distribution

satisfies xn = E[yn]. Next, since there is always non-

zero probability that yn = x1, it’s not possible to obtain a

deterministic bound of ∥yn − xn∥ f ¶ for some small ¶
(as would be required if we were trying to establish (¶, ϵ)
Goldstein stationarity). However, since yn is exponentially

more likely to be a later iterate (close to xn) than an early

iterate (far from xn), intuitively E ∥yn − xn∥2 should not

be too big. Formalizing this intuition forms a substantial

part of our analysis.

In the convergence analysis, we will show x is a (c, ϵ)-
stationary point by bounding ∥∇F (xn)∥c (defined in Def-

inition 2.2) for all n. The condition E[yn] = xn is al-

ready satisfied by construction of yn, and it remains to

bound the expected gradient ∥E[∇F (yn)]∥ and the vari-

ance E ∥yn − xn∥2. While the regularizerRn is imposed

to control the variance, the exponentiated gradients is em-

ployed to bound the expected gradient. In particular, this is

achieved by reducing the difficult task of minimizing the ex-

pected gradient of a non-smooth non-convex objective to a

relatively easier (and very heavily studied) one: minimizing

the regret w.r.t. exponentiated losses ℓt(∆) = ï´−t
gt,∆ð.

To elaborate further, let’s consider a simplified illustration

as follows.

Recall that pn,t = ´n−t · 1−´
1−´n . By construction of yn,

E[∇F (yn)] =
∑n
t=1pn,t∇F (xt).

Next, for each n ∈ [N ], we define

un = −D
∑n
t=1 pn,t∇F (xt)

∥∑n
t=1 pn,t∇F (xt)∥

(1)

for someD to be specified later. As a remark, un minimizes

ïE[∇F (yn)],∆ð over all possible ∆ such that ∥∆∥ = D,

therefore representing the optimal update in iterate n that

leads to the fastest convergence.

With un defined in (1), it follows that

1

D

n∑

t=1

pn,tï∇F (xt),−unð =
∥
∥
∥
∥
∥

n∑

t=1

pn,t∇F (xt)
∥
∥
∥
∥
∥

= ∥E[∇F (yn)]∥.

Recall that we assume gt = ∇F (xt) for simplicity. More-

over, in later convergence analysis, we will carefully show

that
∑N
n=1

∑n
t=1 pn,tï∇F (xt),−∆tð ≲ 1 − ´ (see Ap-

pendix C). Consequently,

1

N

N∑

n=1

∥E∇F (yn)∥

=
1

DN

N∑

n=1

n∑

t=1

pn,tï∇F (xt),∆t − unð

− 1

DN

N∑

n=1

n∑

t=1

pn,tï∇F (xt),∆tð

≲
1− ´
DN

(

1 +
N∑

n=1

´nRegretn(un)

)

.

Here Regretn(un) =
∑n
t=1ï´−t

gt,∆t − unð denotes the

regret w.r.t. the exponentiated losses ℓt(∆) = ï´−t
gt,∆ð

for t = 1, . . . , n (assumingRn = 0) and comparator un de-

fined in (1). Notably, the expected gradient is now bounded

by the weighted average of the sequence of static regrets,

Regretn(un). Consequently, a good OCO algorithm that

effectively minimizes the regret is closely aligned with our

goal of minimizing the expected gradient.
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Variance Regularization As aforementioned, we impose

the regularizer Rn(∆) = µn

2 ∥∆∥2 to control the variance

E ∥yn − xn∥2. Formally, the following result establishes a

reduction from bounding variance to bounding the norm of

∆t, thus motivating the choice of the regularizer.

Lemma 3.2. For any ´ ∈ (0, 1),

Es

N∑

n=1

Eyn
∥yn − xn∥2 f

N∑

n=1

12

(1− ´)2 ∥∆n∥2.

This suggests that bounding ∥∆n∥2 is sufficient to bound

the variance of yn. Therefore, we impose the regularizer

Rn(∆) = µn

2 ∥∆∥2, for some constant µn to be determined

later, to ensure that ∥∆n∥2 remains small, effectively con-

trolling the variance of yn.

Furthermore, we’d like to highlight that Lemma 3.2 provides

a strictly better bound on the variance of yn compared to the

possible maximum deviation max ∥yn − xn∥. For illustra-

tion, assume ∆t’s are orthonormal, then max ∥yN−xN∥ ≈
∥x1 − xN∥ = O(N). On the other hand, Lemma 3.2 im-

plies that for n ∼ Unif([N ]), En[Var(yn)] = O( 1
(1−´)2 ).

In particular, we will show that 1−´ = N−1/2 when the ob-

jective is smooth. Consequently, E ∥yn − xn∥ = O(
√
N),

which is strictly tighter than the deterministic bound of

max ∥yN − xN∥ = O(N).

This further motivates why we choose this specific distribu-

tion for yn: the algorithm does not need to be conservative

all the time and can occasionally make relatively large step,

breaking the deterministic constraint that ∥yn − xn∥ f ¶,

while still satisfying Var(yn) f ¶2.

3.1. Convergence Analysis

Now we present the main convergence theorem of Algo-

rithm 2. This is a very general theorem, and we will prove

the convergence bound of a more specific algorithm (Theo-

rem 4.2) based on this result. A more formally stated version

of this theorem and its proof can be found in Appendix C.

Theorem 3.3. Follow Assumption 2.1. Let Regretn(un)
denote the regret w.r.t. ℓt(∆) = ï´−t

gt,∆ð +Rt(∆) for

t = 1, . . . , n and comparator un defined in (1). Define

Rt(∆) = µt

2 ∥∆∥2, µt =
24cD
³2 ´−t, and ³ = 1− ´, then

E ∥∇F (x)∥c ≲
F ∗

DN
+
G+ Ã

³N
+ Ã
√
³+

cD2

³2

+ E
´N+1RegretN (uN ) + ³

∑N
n=1 ´

nRegretn(un)

DN
.

Here the second line denotes the weighted average of the

sequence of static regrets, Regretn(wn), w.r.t. the exponen-

tiated and regularized loss ℓt(∆) = ï´−t
gt,∆ð and com-

parator un defined in (1), as we discussed earlier. To see an

immediate implication of Theorem 3.3, assume the average

regret is no larger than the terms in the first line. Then by

proper tuning D = 1√
³N

and ³ = max{ 1
N2/3 ,

c2/7

N4/7 }, we

have E ∥∇F (w)∥c ≲ 1
N1/3 + c1/7

N2/7 .

4. Recovering SGDM:

Exponentiated O2NC with OMD

In the previous sections, we have shown that Exponentiated

O2NC can convert any OCO algorithm into a non-convex op-

timization algorithm in such a way that small regret bounds

transform into convergence guarantees. So, the natural next

step is to instantiate Exponentiated O2NC with some partic-

ular OCO algorithm. In this section we carry out this task

and discover that the resulting method not only achieves

optimal convergence guarantees, but is also nearly identical

to the standard SGDM optimization algorithm!

The OCO algorithm we will use to instantiate Exponenti-

ated O2NC is a simple variant of “online mirror descent”

(OMD) (Beck & Teboulle, 2003), which a standard OCO

algorithm. However, typical OMD analysis involves clip-

ping the outputs ∆n to lie in some pre-specified constraint

set. We instead employ a minor modification to the standard

algorithm to obviate the need for such clipping.

Inspired by (Duchi et al., 2010), we choose our OCO algo-

rithm from the family of Online Mirror Descent (OMD) with

composite loss. Given a sequence of gradients g̃t := ´−t
gt

and convex functions Èt(∆),Rt(∆), ϕt(∆), OMD with

composite loss defines ∆t+1 as:

argmin
∆
ïg̃t,∆ð+DÈt(∆,∆t) +Rt+1(∆) + ϕt(∆)

︸ ︷︷ ︸

composite loss

.

Here DÈt
denotes the Bregman divergence of Èt, and

Rt+1(∆) + ϕt(∆) denotes the composite loss. The com-

posite loss consists of two components. Firstly,Rt+1(∆) =
µt+1

2 ∥∆∥2 controls the variance of yn, as discussed in Sec-

tion 3. Secondly, OMD is known to struggle under un-

constrained domain setting (Orabona & Pál, 2016), but

this can be fixed with proper regularization, as done in

Fang et al. (2021) (implicitly), and Jacobsen & Cutkosky

(2022) (explicitly). Following a similar approach, we set

ϕt(∆) = ( 1
¸t+1

− 1
¸t
)∥∆∥2 to prevent the norm of ∥∆∥

from being too large.

With Èt(∆) = 1
2¸t
∥∆∥2 where 0 < ¸t+1 f ¸t, Theorem

4.1 provides a regret bound for this specific OCO algorithm.

Theorem 4.1. Let ∆1 = 0 and ∆t+1 = argmin∆ïg̃t,∆ð+

6
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1
2¸t
∥∆−∆t∥2 + µt+1

2 ∥∆∥2 + ( 1
¸t+1
− 1

¸t
)∥∆∥2. Then

n∑

t=1

ïg̃t,∆t − uð+Rt(∆t)−Rt(u)

f
(

2

¸n+1
+
µn+1

2

)

∥u∥2 + 1

2

n∑

t=1

¸t∥g̃t∥2.

Note that the implicit OMD update described in Theorem

4.1 can be explicitly represented as follows:

∆t+1 =
∆t − ¸tg̃t

1 + ¸tµt+1 + ¸t(
1

¸t+1
− 1

¸t
)
. (2)

WhenRt = 0 (implying µt = 0), the update formula in (2)

simplifies to an approximation of online gradient descent

(Zinkevich, 2003), albeit with an additional scaling.

4.1. Reduction of Exponentiated O2NC

Upon substituting g̃t = ´−t
gt where gt = ∇f(xt, zt),

Theorem 4.1 provides a regret bound for Regretn(un) in

the convergence bound in Theorem 3.3. Consequently, we

can bound E ∥∇F (x)∥c for Exponentiated O2NCwith the

unconstrained variant of OMD as the OCO subroutine (with

update formula described in (2)). Formally, we have the

following result:

Theorem 4.2. Follow Assumption 2.1 and consider any

c > 0. Let ∆1 = 0 and update ∆t by

∆t+1 =
∆t − ¸t´−t

gt

1 + ¸tµt+1 + ¸t(
1

¸t+1
− 1

¸t
)
.

Let µt = ´−tµ, ¸t = ´t¸, ´ = 1 − ³, µ = 24F∗c
(G+Ã)³5/2N

,

¸ = 2F∗

(G+Ã)2N , ³ = max{N−2/3, (F∗)4/7c2/7

(G+Ã)6/7N4/7 }. Then for

N large enough such that ³ f 1
2 ,

E ∥∇F (x)∥c ≲
G+ Ã

N1/3
+

(F ∗)2/7(G+ Ã)4/7c1/7

N2/7
.

As an immediate implication, upon solving E ∥∇F (x)∥c f
ϵ for N , we conclude that Algorithm 2 instantiated with

unconstrained OGD finds (c, ϵ)-stationary point withinN =
O(max{(G + Ã)3ϵ−3, F ∗(G + Ã)2c1/2ϵ−7/2}) iterations.

Moreover, in Section 5 we will show that this rate is optimal.

Furthermore, as discussed in Section 2, with c = O(ϵ−1),
this algorithm achieves the optimal rate of O(ϵ−4) when F
is smooth; with c = O(1), this algorithm also achieves the

optimal rate of O(ϵ−7/2) when F is second-order smooth.

Remarkably, these optimal rates automatically follows from

the reduction from (c, ϵ)-stationary point to ϵ-stationary

point (see Lemma 2.3), and neither the algorithm nor the

analysis is modified to achieve these rates.

4.2. Unraveling the update to discover SGDM

Furthermore, upon substituting the definition of ¸t, µt (and

neglecting constants G, Ã, F ∗), the update in Theorem 4.2

can be rewritten as

∆t+1 =
∆t − ¸gt

1 + 1
´ (¸µ+ ³)

Let ∆t = − ´¸
¸µ+³mt, then we can rewrite the update of

Exponentiated O2NC with OGD as follows:

mt+1 =
´

1 + ¸µ
mt +

³+ ¸µ

1 + ¸µ
gt,

xt+1 = xt − sn+1 ·
´¸

¸µ+ ³
mt+1. (3)

Remarkably, this update formula recovers the standard

SGDM update, with the slight modification of an additional

exponential random variable sn+1: let ˜́ = ´
1+¸µ , which de-

notes the effective momentum constant, and let ˜̧ = ´¸
¸µ+³

be the effective learning rate, then (4) becomes

mt+1 = ˜́mt + (1− ˜́)gt,

xt+1 = xt − st+1 · ˜̧mt+1. (4)

Smooth case As discussed earlier, when F is smooth, we

set c = O(ϵ−1) to recover the optimal rate N = O(ϵ−4).
This implies c = O(N1/4). Consequently, we can check

the parameters defined in Theorem 4.2 have order ³ =
O(N−1/2), ¸ = O(N−1), and µ = O(N1/2) (note that

¸µ ≈ ³). Therefore, the effective momentum constant is

roughly ˜́ ≈ 1 − 1√
N

, and the effective learning rate is

roughly ˜̧ ≈ 1√
N

. Interestingly, these values align with

prior works (Cutkosky & Mehta, 2020).

Second-order smooth case When F is second-order

smooth and we set c = O(1), we can check that ³ =
O(N−4/7), ¸ = O(N−1), and µ = O(N3/7) (again

¸µ ≈ ³). Consequently, the effective momentum should be

set to ˜́ ≈ 1− 1
N4/7 and the effective learning rate should

be ˜̧ ≈ 1
N3/7 . It is interesting to note that in both smooth

and second-order smooth cases, (1− ˜́)˜̧ ≈ 1
N .

5. Lower Bounds for finding (c, ϵ)-stationary

points

In this section we leverage Lemma 2.3 to build a lower

bound for finding (c, ϵ)-stationary points. Inuitively,

Lemma 2.3 suggests that O(c1/2ϵ−7/2) is the optimal rate

for finding (c, ϵ)-stationary point. We can indeed prove its

optimality using the lower bound construction by Arjevani

et al. (2019) and Cutkosky et al. (2023).

Specifically, Arjevani et al. (2019) proved the following

result: For any constants H,F ∗, Ã, ϵ, there exists objective

7
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(a) Train Loss (b) Train Accuracy (c) Test Accuracy

Figure 1: Experiments on CIFAR-10 with ResNet-18 Network. The curves represent the average performance of each

optimizer in three trials, and the shaded regions denote the standard deviation.

F and stochastic gradient estimator ∇f such that (i) F is

H-smooth, F (x0) − inf F (x) f F ∗, and E ∥∇F (x) −
∇f(x, z)∥2 f Ã2; and (ii) any randomized algorithm

using ∇f requires O(F ∗Ã2Hϵ−4) iterations to find an ϵ-
stationary point of F . As a caveat, such construction does

not ensure that F is Lipschitz. Fortunately, Cutkosky et al.

(2023) extended the lower bound construction so that the

same lower holds and F is in addition
√
F ∗H-Lipschitz.

Consequently, for any F ∗, G, c, ϵ, define H =
√
cϵ and

Ã = G and assume
√
F ∗H f G. Then by the lower

bound construction, there exists F and O such that F is

H-smooth, G-Lipschitz, F (x0) − inf F (x) f F ∗, and

E ∥∇F (x)−∇f(x, z)∥2 f G2. Lipschitzness and variance

bound together imply E ∥∇f(x, z)∥2 f 2G2. Moreover,

finding an ϵ-stationary of F requires Ω(F ∗Ã2Hϵ−4) =
Ω(F ∗G2c1/2ϵ−7/2) iterations (since Ã = G, H =

√
cϵ).

Finally, note that H =
√
cϵ satisfies c = H2ϵ−1. There-

fore by Lemma 2.3, a (c, ϵ)-stationary point of F is also an

ϵ-stationary of F , implying that finding (c, ϵ)-stationary

requires at least Ω(F ∗G2c1/2ϵ−7/2) iterations as well.

Putting these together, we have the following result:

Corollary 5.1. For any F ∗, c, ϵ and G g
√
F ∗(cϵ)1/4,

there exists objective F and stochastic gradient ∇f such

that (i) F is G-Lipschitz, F (x0) − inf F (x) f F ∗, and

E ∥∇f(x, z)∥2 f 2G2; and (ii) any randomized algorithm

using ∇f requires Ω(F ∗G2c1/2ϵ−7/2) iterations to find

(c, ϵ)-stationary point of F .

6. Experiments

In the preceding sections, we theoretically demonstrated

that scaling the learning rate by an exponential random

variable sn allows SGDM to satisfy convergence guaran-

tees for non-smooth non-convex optimization. To validate

this finding empirically, we implemented the SGDM algo-

rithm with random scaling and assessed its performance

against the standard SGDM optimizer without random scal-

ing. Our evaluation involved the ResNet-18 model (He et al.,

2016) on the CIFAR-10 image classification benchmark

(Krizhevsky & Hinton, 2009). For the hyperparameters, we

configured the learning rate at 0.01, the momentum constant

at 0.9, and the weight decay at 5× 10−4. These settings are

optimized for training the ResNet model on the CIFAR-10

dataset using SGDM. We use the same hyperparameters for

our modified SGDM with random scaling.

For each optimizer, we ran the experiment three times under

the same setting to minimize variability. We recorded the

train loss, train accuracy, test loss, and test accuracy (refer

to Figure 1). We also recorded the performance of the

best iterate, e.g., the lowest train/test loss and the highest

train/test accuracy, in each trial (see Table 1).

Table 1: Performance of the best iterate in each trial.

RANDOM SCALING NO YES

TRAIN LOSS (×10−4) 9.82 ± 0.21 9.55 ± 0.37
TRAIN ACCURACY (%) 100.0 ± 0.0 100.0 ± 0.0

TEST LOSS (×10−2) 21.6 ± 0.1 22.0 ± 0.4
TEST ACCURACY (%) 94.6 ± 0.1 94.4 ± 0.2

These results show that the performance of SGDM with

random scaling aligns closely with that of standard SGDM.

7. Conclusion

We introduced (c, ϵ)-stationary point, a relaxed definition of

Goldstein stationary point, as a new notion of convergence

criterion in non-smooth non-convex stochastic optimization.

Furthermore, we proposed Exponentiated O2NC, a modified

online-to-non-convex framework, by setting exponential ran-

dom variable as scaling factor and adopting exponentiated

and regularized loss. When applied with unconstrained

8
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online gradient descent, this framework produces an algo-

rithm that recovers standard SGDM with random scaling

and finds (c, ϵ)-stationary point within O(c1/2ϵ−7/2) iter-

ations. Notably, the algorithm automatically achieves the

optimal rate of O(ϵ−4) for smooth objectives and O(ϵ−7/2)
for second-order smooth objectives.

One interesting open problem is designing an adaptive al-

gorithm with our Exponentiated O2NC framework. Since

our framework, when applied with the simplest OCO al-

gorithm online gradient descent, yields SGDM, a natural

question emerges: what if we replace online gradient de-

scent with an adaptive online learning algorithm, such as

AdaGrad? Ideally, applied with AdaGrad as the OCO sub-

routine and with proper tuning, Exponentiated O2NC could

recover Adam’s update mechanism. However, the conver-

gence analysis for this scenario is complex and demands

a nuanced approach, especially considering the intricacies

associated with the adaptive learning rate. In this vein, con-

current work by Ahn et al. (2024) applies a similar concept

of online-to-non-convex conversion and connects the Adam

algorithm to a principled online learning family known as

Follow-The-Regularized-Leader (FTRL).

Impact Statement

This paper presents work whose goal is to advance the field

of Machine Learning. There are many potential societal

consequences of our work, none which we feel must be

specifically highlighted here
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A. Proofs in Section 2

A.1. Proof of Lemma 2.3

Lemma 2.3. Suppose F is H-smooth. If ∥∇F (x)∥c f ϵ where c = H2ϵ−1, then ∥∇F (x)∥ f 2ϵ.
Suppose F is Ä-second-order-smooth. If ∥∇F (x)∥c f ϵ where c = Ä/2, then ∥∇F (x)∥ f 2ϵ.

Proof. Suppose ∥∇F (x)∥c f ϵ, then there exists P ∈ P(S), y ∼ P such that E[y] = x, ∥E∇F (y)∥ f ϵ and

cE ∥y − x∥2 f ϵ.
Assume F is H-smooth. By Jensen’s inequality, E ∥y − x∥ f

√

ϵ/c = ϵ/H with c = H2ϵ−1. Consequently,

∥∇F (x)∥ f ∥E∇F (y)∥+ ∥E[∇F (x)−∇F (y)]∥
f ∥E∇F (y)∥+ E ∥∇F (x)−∇F (y)∥ (Jensen’s inequality)

f ∥E∇F (y)∥+H E ∥x− y∥ (smoothness)

f ϵ+H · ϵ/H = 2ϵ.

Next, assume F is Ä-second-order smooth. By Taylor approximation, there exists some z such that ∇F (x) = ∇F (y) +
∇2F (x)(x− y) + 1

2 (x− y)T∇3F (z)(x− y). Note that E[∇2F (x)(x− y)] = ∇2F (x)E[x− y] = 0. Consequently,

∥∇F (x)∥ f ∥E∇F (y)∥+ ∥E[∇F (x)−∇F (y)]∥
f ∥E∇F (y)∥+ E ∥ 12 (x− y)T∇3F (z)(x− y)∥ (Jensen’s inequality)

f ∥E∇F (y)∥+ Ä
2 E ∥x− y∥2 (second-order-smooth)

f ϵ+ Ä
2 · ϵ/c = 2ϵ. (c = Ä/2)

Together these prove the reduction from a (c, ϵ)-stationary point to an ϵ-stationary point.

A.2. Proof of Lemma 2.4

Lemma 2.4. Suppose F is G-Lipschitz. For any c, ϵ, ¶ > 0, a (c, ϵ)-stationary point is also a (¶, ϵ′)-Goldstein stationary

point where ϵ′ = (1 + 2G
c¶2 )ϵ.

Proof. By definition of (c, ϵ)-stationary, there exists some distribution of y such that E[y] = x, Ã2 := E ∥y − x∥2 f ϵ/c,
and ∥E∇F (y)∥ f ϵ. By Chebyshev’s inequality,

P{∥y − x∥ g ¶} = P

{

∥y − E[y]∥ g
¶

Ã
· Ã
}

f P

{

∥y − E[y]∥ g
¶

√

ϵ/c
· Ã
}

f ϵ

c¶2
.

Next, we can construct a clipped random vector ŷ of y such that ŷ = y if ∥y − x∥ < ¶, ∥ŷ − x∥ f ¶ almost surely, and

E[ŷ] = x. In particular, note that P{ŷ ̸= y} f P{∥y − x∥ g ¶} f ϵ
c¶2 . Since F is G-Lipschitz,

∥E[∇F (ŷ)−∇F (y)]∥ = P{ŷ ̸= y}∥E[∇F (ŷ)−∇F (y)|ŷ ̸= y]∥
f 2G · P{ŷ ̸= y} f 2G · ϵ

c¶2
.

Consequently ∥E[∇F (ŷ)]∥ f ∥E[∇F (y)]∥+∥E[∇F (ŷ)−∇F (y)]∥ f ϵ+ 2Gϵ
c¶2 . This proves that x is also a (¶, ϵ+ 2Gϵ

c¶2 )-
Goldstein stationary point.

11
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B. Proofs in Section 3

B.1. Proof of Lemma 3.2

The proof consists of two composite lemmas. Recall the following notations: Sn = {xt}t∈[n], yn ∼ Pn where Pn(xt) =

´n−t · 1−´
1−´n , and xn =

∑n
t=1 ´

n−t
xt · 1−´

1−´n . Also note two useful change of summation identities:

N∑

n=1

n∑

t=1

=
∑

1ftfnfN
=

N∑

t=1

N∑

n=t

,

n∑

i=1

i−1∑

i′=1

i∑

t=i′+1

=
∑

1fi′<tfifn
=

n∑

t=1

n∑

i=t

t−1∑

i′=1

.

Proposition B.1. Eyn,s ∥yn − xn∥2 f
∑n
t=1 ¼n,t∥∆t∥2, where

¼n,t = 4
n∑

i=t

t−1∑

i′=1

pn,ipn,i′(i− i′), pn,i = Pn(xi) = ´n−i · 1− ´
1− ´n . (5)

Proof. By distribution of yn, we have

Eyn
∥yn − xn∥2 =

n∑

i=1

pn,i∥xi − xn∥2

=
n∑

i=1

pn,i

∥
∥
∥
∥
∥

n∑

i′=1

pn,i′(xi − xi′)

∥
∥
∥
∥
∥

2

f
n∑

i=1

n∑

i′=1

pn,ipn,i′∥xi − xi′∥2 = 2

n∑

i=1

i−1∑

i′=1

pn,ipn,i′∥xi − xi′∥2.

The inequality uses convexity of ∥ · ∥2. Next, upon unrolling the recursive update xt = xt−1 + st∆t,

∥xi − xi′∥2 =

∥
∥
∥
∥
∥

i∑

t=i′+1

st∆t

∥
∥
∥
∥
∥

2

f (i− i′)
i∑

t=i′+1

s2t∥∆t∥2.

Note that st and ∆t are independent and st ∼ Exp(1), so Es[s
2
t∥∆t∥2] = Es[s

2
t ]∥∆t∥2 = 2∥∆t∥p. Consequently, upon

substituting this back and applying change of summation, we have

Eyn,s∥yn − xn∥2 f 4

n∑

i=1

i−1∑

i′=1

i∑

t=i′+1

pn,ipn,i′(i− i′)∥∆t∥2

=

n∑

t=1

(

4

n∑

i=t

t−1∑

i′=1

pn,ipn,i′(i− i′)
)

∥∆t∥2.

We then conclude the proof by substituting the definition of ¼n,t.

Proposition B.2. Define ¼n,t as in (5), then
∑N
n=t ¼n,t f 12

(1−´)2 .

Proof. In the first part of the proof, we find a good upper bound of ¼n,t. We can rearrange the definition of ¼n,t as follows.

¼n,t = 4

(
1− ´
1− ´n

)2 n∑

i=t

t−1∑

i′=1

´n−i´n−i
′

(i− i′) (let j = i− i′)

= 4

(
1− ´
1− ´n

)2 n∑

i=t

i−1∑

j=i−t+1

´n−i´n−i+j · j (let k = n− i)

= 4

(
1− ´
1− ´n

)2 n−t∑

k=0

´2k
n−k−1∑

j=n−k−t+1

j´j . (6)

12
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The second line uses change of variable that j = i− i′, and the third line uses k = n− i. Next,

n−k−1∑

j=n−k−t+1

j´j = ´

n−k−1∑

j=n−k−t+1

d

d´
´j = ´ · d

d´





n−k−1∑

j=n−k−t+1

´j





= ´ · d
d´

(
´n−k−t+1 − ´n−k

1− ´

)

=
´a−k+1 − ´b−k+1

(1− ´)2 +
(a− k)´a−k − (b− k)´b−k

1− ´ ,

where a = n− t+ 1, b = n. Upon substituting this back into (6), we have

¼n,t = 4

(
1− ´
1− ´n

)2 n−t∑

k=0

´2k

(
´a−k+1 − ´b−k+1

(1− ´)2 +
a´a−k − b´b−k

1− ´ − k´
a−k − ´b−k
1− ´

)

= 4

(
1− ´
1− ´n

)2 n−t∑

k=0

(
´a+1 − ´b+1

(1− ´)2 +
a´a − b´b
1− ´

)

´k − ´a − ´b
1− ´ · k´k. (7)

For the first term,
∑n−t
k=0 ´

k = 1−´n−t+1

1−´ = 1−´a

1−´ . For the second term,

n−t∑

k=0

k´k = ´ · d
d´

(
n−t∑

k=0

´k

)

= ´ · d
d´

(
1− ´a
1− ´

)

=
´ − ´a+1

(1− ´)2 −
a´a

1− ´ .

Upon substituting this back into (7) and simplifying the expression, we have

¼n,t = 4

(
1− ´
1− ´n

)2

·
[(

´a+1 − ´b+1

(1− ´)2 +
a´a − b´b
1− ´

)

· 1− ´
a

1− ´ −
´a − ´b
1− ´ ·

(
´ − ´a+1

(1− ´)2 −
a´a

1− ´

)]

= 4
(a´a − b´b)(1− ´a) + a´a(´a − ´b)

(1− ´n)2 = . . . = 4
a´a(1− ´b)− b´b(1− ´a)

(1− ´n)2 .

Upon substituting a = n− t+ 1 and b = n, we conclude the first half of the proof with

¼n,t f 4
a´a(1− ´b)
(1− ´n)2 f 4 · (n− t+ 1)´n−t+1

1− ´n .

In the second part, we use this inequality to bound
∑N
n=t ¼n,t. Define K = + 1

1−´ ,, then

N∑

n=t

¼n,t = 1{tfK−1} ·
K−1∑

n=t

¼n,t +

N∑

n=max{t,K}
¼n,t. (8)

For the first summation in (8), for all t f n f K − 1, we have

¼n,t f 4 · (n− t+ 1)´n−t+1

1− ´n
(i)

f 4 · (n− t+ 1)´n−t+1

1− ´n−t+1

(ii)

f 4 · 1 · ´
1

1− ´1
f 4

1− ´ .

(i) holds because 1
1−´n is decreasing w.r.t. n. (ii) holds because f(x) = x´x

1−´x is decreasing for x g 0 and ´ ∈ (0, 1), so

f(n− t+ 1) f f(1) since n− t+ 1 g 1. Recall that K − 1 f 1
1−´ , then the first summation in (8) can be bounded by

1{tfK−1} ·
K−1∑

n=t

¼n,t f
K−1∑

n=1

4

1− ´ f
4

(1− ´)2 . (9)

For the second summation in (8), for all n g K g 1
1−´ ,

1

1− ´n
(i)

f 1

1− ´ 1
1−β

(ii)

f lim
x→1

1

1− x 1
1−x

=
e

e− 1
f 2.

13
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(i) holds because 1
1−´n is decreasing. (ii) holds because f(x) = 1

1−x
1

1−x
is increasing for x g 0, so f(´) f limx→1 f(x)

for all ´ ∈ (0, 1). Consequently, the second summation in (8) can be bounded by

N∑

n=max{t,K}
¼n,t f

N∑

n=max{t,K}
4 · (n− t+ 1)´n−t+1

1− ´n f 8

N∑

n=t

(n− t+ 1)´n−t+1 = 8

N−t∑

n=1

n´n (10)

By change of summation,

N∑

n=1

n´n =

N∑

n=1

n∑

i=1

´n =

N∑

i=1

N∑

n=i

´n f
N∑

i=1

´i

1− ´ f
1

(1− ´)2 .

We then conclude the proof by substituting (9), (10) into (8).

Lemma 3.2. For any ´ ∈ (0, 1),

Es

N∑

n=1

Eyn
∥yn − xn∥2 f

N∑

n=1

12

(1− ´)2 ∥∆n∥2.

Proof. By Proposition B.1 and Proposition B.2, we have

Es

N∑

n=1

Eyn
∥yn − xn∥2

(i)

f
N∑

n=1

n∑

t=1

¼n,t∥∆t∥2
(ii)
=

N∑

t=1

(
N∑

n=t

¼n,t

)

∥∆t∥2
(iii)

f
N∑

t=1

12

(1− ´)2 ∥∆t∥2.

Here (i) is from Proposition B.1, (ii) is from change of summation, and (iii) is from Proposition B.2.

B.2. Proof of Lemma 3.1

Lemma 3.1. Let s ∼ Exp(¼) for some ¼ > 0, then

Es[F (x+ s∆)− F (x)] = Es[ï∇F (x+ s∆),∆ð]/¼.

Proof. Denote p(s) = ¼ exp(−¼s) as the pdf of s. Upon expanding the expectation, we can rewrite the LHS as

Es[F (x+ s∆)− F (x)] =
∫ ∞

0

[F (x+ s∆)− F (x)]p(s) ds

(i)
=

∫ ∞

0

(∫ s

0

ï∇F (x+ t∆),∆ð dt
)

p(s) ds

=

∫ ∞

0

∫ ∞

0

ï∇F (x+ t∆),∆ð1{t f s}p(s) dtds

=

∫ ∞

0

(∫ ∞

t

p(s) ds

)

ï∇F (x+ t∆),∆ð dt

(ii)
=

∫ ∞

0

p(t)

¼
ï∇F (x+ t∆),∆ð dt

=
1

¼
Es[ï∇F (x+ s∆),∆ð].

Here the (i) applies fundamental theorem of calculus on g(s) = F (x+ s∆)− F (x) with g′(s) = ï∇F (x+ s∆),∆ð and

(ii) uses the following identity for exponential distribution:
∫∞
t
p(s)ds = exp(−¼t) = p(t)/¼.

C. Proof of Theorem 3.3

We restate the formal version of Theorem 3.3 as follows. Recall that Sn = {xt}t∈[n], yn ∼ Pn where Pn(xt) = ´n−t· 1−´1−´n ,

and xn =
∑n
t=1 ´

n−t
xt · 1−´

1−´n .

14
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Theorem C.1. Suppose F is G-Lipschitz, F (x0)− inf F (x) f F ∗, and the stochastic gradients satisfy E[∇f(x, z) |x] =
∇F (x) and E ∥∇F (x) − ∇f(x, z)∥2 f Ã2 for all x, z. Define the comparator un and the regret Regretn(u) of the

regularized losses ℓt as follows:

un = −D ·
∑n
t=1 ´

n−t∇F (xt)
∥∑n

t=1 ´
n−t∇F (xt)∥

, Regretn(u) =

n∑

t=1

ï´−t
gt,∆t − uð+Rt(∆t)−Rt(u).

Also define the regularizor asRt(w) = µt

2 ∥w∥2 where µt = µ´−t, µ = 24cD
³2 and ³ = 1− ´. Then

E ∥∇F (x)∥c f
F ∗

DN
+

2G+ Ã

³N
+ Ã
√
³+

12cD2

³2
+

1

DN

(

´N+1
ERegretN (uN ) + ³

N∑

n=1

´n ERegretn(un).

)

.

Proof. We start with the change of summation. Note that

N∑

n=1

n∑

t=1

´n−t(1− ´)(F (xt)− F (xt−1)) =

N∑

t=1

(
N∑

n=t

´n−t
)

(1− ´)(F (xt)− F (xt−1))

=

N∑

t=1

(1− ´N−t+1)(F (xt)− F (xt−1))

= F (xN )− F (x0)−
N∑

t=1

´N−t+1(F (xt)− F (xt−1)).

Upon rearranging and applying the assumption that F (x0)− F (xN ) f F (x0)− inf F (x) f F ∗, we have

−F ∗ f E

N∑

n=1

n∑

t=1

´n−t(1− ´)(F (xt)− F (xt−1)) + E

N∑

t=1

´N−t+1(F (xt)− F (xt−1)). (11)

First, we bound the first summation in (11). Denote Ft as the Ã-algebra of xt. Note that ∆t ∈ Ft and zt ̸∈ Ft, so by the

assumption that E[∇f(x, z) |x] = ∇F (x),

E[gt | Ft] = E[∇f(xt, zt) | Ft] = ∇F (xt) =⇒ Eï∇F (xt),∆tð = Eïgt,∆tð.

By Lemma 3.1, E[F (xt)− F (xt−1)] = Eï∇F (xt),∆tð. Upon adding and subtracting, we have

E[F (xt)− F (xt−1)] = Eï∇F (xt)− gt + gt,∆t − un + unð
= E [ï∇F (xt),unðð+ ï∇F (xt)− gt,−unð+ ïgt,∆t − unð] .

Consequently, the first summation in (11) can be written as

E

N∑

n=1

n∑

t=1

´n−t(1− ´) (ï∇F (xt),unð+ ï∇F (xt)− gt,−unð+ ïgt,∆t − unð) . (12)

For the first term, upon substituting the definition of un, we have

n∑

t=1

´n−t(1− ´)ï∇F (xt),unð = (1− ´)
〈

n∑

t=1

´n−t∇F (xt),−D
∑n
t=1 ´

n−t∇F (xt)
∥∑n

t=1 ´
n−t∇F (xt)∥

〉

= (1− ´n) · −D
∥
∥
∥
∥

∑n
t=1 ´

n−t∇F (xt)
∑n
t=1 ´

n−t

∥
∥
∥
∥

= −D(1− ´n)∥Eyn
∇F (yn)∥

Since ∥∇F (xt)∥ f G for all t, ∥Eyn
∇F (yn)∥ f G as well. Therefore, we have

f −D∥Eyn
∇F (yn)∥+DG´n.
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Since ´ < 1,
∑N
n=1 ´

n f 1
1−´ . Therefore, upon summing over n, the first term in (12) becomes

E

N∑

n=1

n∑

t=1

´n−t(1− ´)ï∇F (xt),unð f
(

−D
N∑

n=1

E ∥Eyn
∇F (yn)∥

)

+
DG

1− ´ . (13)

For the second term, by Cauchy-Schwarz inequality,

E

n∑

t=1

´n−tï∇F (xt)− gt,−unð f

√
√
√
√

E

∥
∥
∥
∥
∥

n∑

t=1

´n−t(∇F (xt)− gt)

∥
∥
∥
∥
∥

2

E ∥un∥2.

Since E[∇F (xt)− gt | Ft] = 0, by martingale identity and the assumption that E ∥∇F (x)−∇f(x, z)∥2 f Ã2,

E

∥
∥
∥
∥
∥

n∑

t=1

´n−t(∇F (xt)− gt)

∥
∥
∥
∥
∥

2

=
n∑

t=1

E ∥´n−t(∇F (xt)− gt)∥2 f
n∑

t=1

Ã2´2(n−t) f Ã2

1− ´2
.

Upon substituting ∥un∥ = D and 1
1−´2 f 1

1−´ , the second term in (12) becomes

E

N∑

n=1

n∑

t=1

´n−t(1− ´)ï∇F (xt)− gt,−unð f
N∑

n=1

(1− ´) · ÃD
√

1− ´2
f ÃDN

√

1− ´. (14)

For the third term, upon adding and subtractingRt and substituting the definition of Regretn(u), we have

E

N∑

n=1

n∑

t=1

´n−t(1− ´)ïgt,∆t − unð

= E

N∑

n=1

n∑

t=1

(1− ´)´n
(
ï´−t

gt,∆t − unð+Rt(∆t)−Rt(un)−Rt(∆t) +Rt(un)
)

= E

N∑

n=1

(1− ´)´nRegretn(un) + E

N∑

n=1

n∑

t=1

(1− ´)´n(−Rt(∆t) +Rt(un)). (15)

Upon substituting (13), (14) and (15) into (12), the first summation in (11) becomes

N∑

n=1

n∑

t=1

´n−t(1− ´)(F (xt)− F (xt−1))

f
(

−D
N∑

n=1

E ∥Eyn
∇F (yn)∥

)

+
DG

1− ´ + ÃDN
√

1− ´

+ E

N∑

n=1

(1− ´)´nRegretn(un) + E

N∑

n=1

n∑

t=1

(1− ´)´n(−Rt(∆t) +Rt(un)). (16)

Next, we consider the second summation in (11). Since E ∥gt∥ f E ∥∇F (xt)∥ + E ∥∇F (xt) − gt∥ f G + Ã and

Eï∇F (xt),∆tð = Eïgt,∆tð, we have

E[F (xt)− F (xt−1)] = Eï∇F (xt),∆tð = Eïgt,∆t − uN ð+ Eïgt,uN ð
f Eïgt,∆t − uN ð+D(G+ Ã).

Following the same argument in (15) by adding and subtractingRt, the second summation becomes

E

N∑

t=1

´N−t+1(F (xt)− F (xt−1)) = E

N∑

t=1

´N+1ï´−t
gt,∆t − uN ð+ ´N−t+1D(G+ Ã)

f ´N+1
ERegretN (uN ) +

D(G+ Ã)

1− ´ + E

N∑

t=1

´N+1(−Rt(∆t) +Rt(uN )). (17)
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Combining (16) and (17) into (11) gives

−F ∗ f
(

−D
N∑

n=1

E ∥Eyn
∇F (yn)∥

)

+
DG

1− ´ + ÃDN
√

1− ´

+ E

N∑

n=1

(1− ´)´nRegretn(un) + E

N∑

n=1

n∑

t=1

(1− ´)´n(−Rt(∆t) +Rt(uN ))

+ ´N+1
ERegretN (uN ) +

D(G+ Ã)

1− ´ + E

N∑

t=1

´N+1(−Rt(∆t) +Rt(uN )). (18)

As the final step, we simplify the terms involvingRt. Recall thatRt(w) = µt

2 ∥w∥2, soRt(un) = µt

2 D
2 is independent of

n. Hence, by change of summation,

E

N∑

n=1

n∑

t=1

(1− ´)´n(−Rt(∆t) +Rt(un)) + E

N∑

t=1

´N+1(−Rt(∆t) +Rt(uN ))

= E

N∑

t=1

(
N∑

n=t

´n

)

(1− ´)
︸ ︷︷ ︸

=´t−´N+1

(

−µt
2
∥∆t∥2 +

µt
2
D2
)

+ E

N∑

t=1

´N+1
(

−µt
2
∥∆t∥2 +

µt
2
D2
)

= E

N∑

t=1

´t
(

−µt
2
∥∆t∥2 +

µt
2
D2
)

Recall Lemma 3.2 that E
∑N
n=1 Eyn

∥yn − xn∥2 f E
∑N
t=1

12
(1−´)2 ∥∆t∥2. Upon substituting µt =

24cD2

(1−´)2 ´
−t, we have

= E

N∑

t=1

(

− 12cD

(1− ´)2 ∥∆t∥2 +
12cD3

(1− ´)2
)

f
(

−cDE

N∑

n=1

E
yn

∥yn − xn∥2
)

+
12cD3N

(1− ´)2 .

Substituting this back into (18) with ³ = 1− ´, we have

−F ∗ f −DE

[
N∑

n=1

∥Eyn
∇F (yn)∥+ c · Eyn

∥yn − xn∥2
]

+
DG

³
+ ÃDN

√
³+

D(G+ Ã)

³
+

12cD3N

³2

+ ´N+1
ERegretN (uN ) + ³

N∑

n=1

´n ERegretn(un).

By definition of ∥∇F (·)∥c defined in Definition 2.2, ∥∇F (xn)∥c f ∥Eyn
∇F (yn)∥ + c · Eyn

∥yn − xn∥2. Moreover,

since x is uniform over xn, E ∥∇F (x)∥2,c = 1
N

∑N
n=1 E ∥∇F (xn)∥2,c We then conclude the proof by rearranging the

equation and dividing both sides by DN .

D. Proofs in Section 4

D.1. Proof of Theorem 4.1

Only in this subsection, to be more consistent with the notations in online learning literature, we use w for weights instead

of ∆ as we used in the main text.

To prove the regret bound, we first provide a one-step inequality of OMD with composite loss. Given a convex and

continuously differentiable function È, recall the Bregman divergence of È is defined as

DÈ(x,y) = È(x)− È(y)− ï∇È(y),y − xð.

17
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Note that ∇xDÈ(x,y) = ∇È(x)−∇È(y). Moreover, as proved in (Chen & Teboulle, 1993), DÈ satisfies the following

three-point identity:

DÈ(z,x) +DÈ(x,y)−DÈ(z,y) = ï∇È(y)−∇È(x), z − xð.

Lemma D.1. Let È, ϕ be convex, and define wt+1 = argmin
w
ïg̃t,wð+DÈ(w,wt) + ϕ(w). Then for any u,

ïg̃t,wt − uð f ïg̃t,wt −wt+1ð+DÈ(u,wt)−DÈ(u,wt+1)−DÈ(wt+1,wt) + ϕ(u)− ϕ(wt+1).

Proof. Let f(w) = ïg̃t,wð +DÈ(w,wt) + ϕ(w). Since È, ϕ are convex, so is f . Therefore, wt+1 = argmin
w
f(w)

implies that for all u,

0 f ï∇f(wt+1),u−wt+1ð
= ïg̃t +∇È(wt+1)−∇È(wt) +∇ϕ(wt+1),u−wt+1ð
= ïg̃t,u−wtð+ ïg̃t,wt −wt+1ð+ ï∇È(wt+1)−∇È(wt),u−wt+1ð+ ï∇ϕ(wt+1),u−wt+1ð.

Since ϕ is convex, ïϕ(wt+1),u − wt+1ð f ϕ(u) − ϕ(wt+1). Moreover, by the three-point identity with z = u,x =
wt+1,y = wt, we have

ï∇È(wt)−∇È(wt+1),u−wt+1ð = DÈ(u,wt+1) +DÈ(wt+1,w)−DÈ(u,wt).

Substituting these back and rearranging the inequality then conclude the proof.

We restate the formal version of Theorem 4.1 as follows.

Theorem D.2. Given a sequence of {g̃t}∞t=1, a sequence of {¸t}∞t=1 such that 0 < ¸t+1 f ¸t, and a sequence of {µt}∞t=1

such that µt g 0, letRt(w) = µt

2 ∥w∥2, ϕt(w) = ( 1
¸t+1
− 1

¸t
)∥w∥2, w1 = 0 and wt updated by

wt+1 = argmin
w

ïg̃t,wð+
1

2¸t
∥w −wt∥2 + ϕt(w) +Rt+1(w).

Then for any n ∈ N,

n∑

t=1

ïg̃t,wt − uð+Rt(wt)−Rt(u) f
(

2

¸n+1
+
µn+1

2

)

∥u∥2 + 1

2

n∑

t=1

¸t∥g̃t∥2.

Proof. Denote Èt(w) = 1
2¸t
∥w∥2. Since Èt, ϕt,Rt are all convex and DÈt

(w,wt) =
1

2¸t
∥w −wt∥2, Lemma D.1 holds,

which gives

ïg̃t,wt − uð f ïg̃t,wt −wt+1ð+DÈt
(u,wt)−DÈt

(u,wt+1)−DÈt
(wt+1,wt)

+ ϕt(u)− ϕt(wt+1) +Rt+1(u)−Rt+1(wt+1).

Equivalently,

ïg̃t,wt − uð+Rt(wt)−Rt(u) f ïg̃t,wt −wt+1ð+DÈt
(u,wt)−DÈt

(u,wt+1)−DÈt
(wt+1,wt)

+ ϕt(u)− ϕt(wt+1) +Rt(wt)−Rt+1(wt+1) +Rt+1(u)−Rt(u). (19)

By Young’s inequality,

ïg̃t,wt −wt+1ð −DÈt(wt+1,wt) f
¸t
2
∥g̃t∥2 +

1

2¸t
∥wt+1 −wt∥2 −

1

2¸t
∥wt+1 −wt∥2 =

¸t
2
∥g̃t∥2.

Next, note that

DÈt
(u,wt)−DÈt

(u,wt+1) = DÈt
(u,wt)−DÈt+1

(u,wt+1) +DÈt+1
(u,wt+1)−DÈt(u,wt+1).

18
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Since ∥u−wt+1∥2 f 2∥u∥2 + 2∥wt+1∥2 and 1
¸t+1
− 1

¸t
g 0,

DÈt+1
(u,wt+1)−DÈt

(u,wt+1) + ϕt(u)− ϕt(wt+1)

=

(
1

2¸t+1
− 1

2¸t

)

∥u−wt+1∥2 +
(

1

¸t+1
− 1

¸t

)

(∥u∥2 − ∥wt+1∥2) f
(

2

¸t+1
− 2

¸t

)

∥u∥2.

Upon substituting back into (19), we have

ïg̃t,wt − uð+Rt(wt)−Rt(u) f
¸t
2
∥g̃t∥2 +DÈt

(u,wt)−DÈt+1
(u,wt+1) +

(
2

¸t+1
− 2

¸t

)

∥u∥2

+Rt(wt)−Rt+1(wt+1) +Rt+1(u)−Rt(u).
Upon telescoping this one-step inequality, we have

n∑

t=1

ïg̃t,wt − uð+Rt(wt)−Rt(u)

f
(

n∑

t=1

¸t
2
∥g̃t∥2

)

+DÈ1
(u,w1)−DÈn+1

(u,wn+1) +

(
2

¸n+1
− 2

¸1

)

∥u∥2

+R1(w1)−Rn+1(wn+1) +Rn+1(u)−R1(u).

We then conclude the proof by using w1 = 0, DÈt(u,w) = 1
2¸t
∥u−w∥2 andRn(w) = µt

2 ∥w∥2 to simplify

DÈ1
(u,w1)−DÈn+1

(u,wn+1) +

(
2

¸n+1
− 2

¸1

)

∥u∥2

f 1

2¸1
∥u∥2 +

(
2

¸n+1
− 2

¸1

)

∥u∥2 f 2

¸n+1
∥u∥2

andR1(w1)−Rn+1(wn+1) +Rn+1(u)−R1(u) f Rn+1(u) +R1(w1) =
µn+1

2 ∥u∥2.

D.2. Proof of Theorem 4.2

Theorem 4.2. Follow Assumption 2.1 and consider any c > 0. Let ∆1 = 0 and update ∆t by

∆t+1 =
∆t − ¸t´−t

gt

1 + ¸tµt+1 + ¸t(
1

¸t+1
− 1

¸t
)
.

Let µt = ´−tµ, ¸t = ´t¸, ´ = 1 − ³, µ = 24F∗c
(G+Ã)³5/2N

, ¸ = 2F∗

(G+Ã)2N , ³ = max{N−2/3, (F∗)4/7c2/7

(G+Ã)6/7N4/7 }. Then for N

large enough such that ³ f 1
2 ,

E ∥∇F (x)∥c ≲
G+ Ã

N1/3
+

(F ∗)2/7(G+ Ã)4/7c1/7

N2/7
.

Proof. First, define D = F∗

(G+Ã)
√
³N

, µ = 24cD
³2 and ¸ = 2D

√
³

G+Ã . Note that these definitions are equivalent to µ =
24F∗c

(G+D)³5/2N
and ¸ = 2F∗

(G+Ã)2N as defined in the theorem.

Next, note that both Theorem C.1 and Theorem D.2 hold since the explicit update of ∆t+1 is equivalent to

∆t+1 = argmin
∆
ï´−t

gt,∆ð+
1

2¸t
∥∆−∆t∥2 +

(
1

¸t+1
− 1

¸t

)

∥∆∥2 + µt+1

2
∥∆∥2.

Also recall that Regretn(un) =
∑n
t=1ï´−t

gt,∆t − unð+Rt(∆t)−Rt(un). Therefore, upon substituting g̃t = ´−t
gt,

¸t = ´t¸, µt = ´−tµ and ∥un∥ = D into Theorem D.2, we have

ERegretn(un) f
(

2

¸n+1
+
µn+1

2

)

E ∥u∥2 +
1

2

n∑

t=1

¸t E ∥g̃t∥2

=

(
2

¸
+
µ

2

)

D2´−(n+1) +
¸

2

n∑

t=1

´−t
E ∥gt∥2.

19
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By Assumption 2.1, E ∥gt∥2 = E ∥∇F (xt)∥2 + E ∥∇F (xt)− gt∥2 f G2 + Ã2. Moreover,
∑n
t=1 ´

−t f ´−n

1−´ . Therefore,

´n+1
ERegretn(un) f

(
2

¸
+
µ

2

)

D2 +
¸(G2 + Ã2)

2³

Upon substituting ¸ = 2D
√
³

G+Ã (note that G
2+Ã2

G+Ã f G+ Ã) and µ = 24cD
³2 , we have

f 2D(G+ Ã)√
³

+
12cD3

³2
.

Consequently, with ³ f 1
2 (so that ´−1 f 2), we have

1

DN

(

´N+1
ERegretN (uN ) + ³

N∑

n=1

´n ERegretn(un)

)

f 1 + 2³N

DN

(
2D(G+ Ã)√

³
+

12cD3

³2

)

≲
G+ Ã

N
+
cD2

³2N
+ (G+ Ã)

√
³+

cD2

³
.

Upon substituting this into the convergence guarantee in Theorem C.1, we have

E ∥∇F (x)∥c f
F ∗

DN
+

2G+ Ã

³N
+ Ã
√
³+

12cD2

³2
+

1

DN

(

´N+1
ERegretN (uN ) + ³

N∑

n=1

´n ERegretn(un)

)

≲
F ∗

DN
+
G+ Ã

³N
+ (G+ Ã)

√
³+

cD2

³2

With D = F∗

(G+Ã)
√
³N

and ³ = max{N−2/3, (F∗)4/7c2/7

(G+Ã)6/7N4/7 }, we have

≲
G+ Ã

³N
+ (G+ Ã)

√
³+

(F ∗)2c

(G+ Ã)2³3N2
≲
G+ Ã

N1/3
+

(F ∗)2/7(G+ Ã)4/7c1/7

N2/7
.
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