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Electric vertical takeoff and landing technology has emerged as a promising solution to alleviate ground
transportation congestion. However, the limited capacity of onboard batteries enforces hard time constraints for
vehicle operations in a complex urban environment. Therefore, a constrained, real-time trajectory optimization
method is necessary to enable safe and energy-efficient vehicle flight. Unfortunately, most existing trajectory
optimization methods suffer from low computational efficiency, unpredictable convergence processes, and strong
dependence on a good initial trajectory. In this paper, we employ a successive convex programming approach to solve
the multiphase minimum-energy-cost electric vertical takeoff and landing vehicle trajectory optimization problem for
urban air mobility applications. The main contribution is the development and validation of two novel convexification
methods that find approximate optimal solutions to the multiphase nonlinear trajectory optimization problem in real
time by solving a sequence of convex subproblems. Specifically, the first method transforms the original nonlinear
problem into a sequence of second-order cone programming problems through a convenient change of variables
and lossless convexification, while the second approach achieves a similar goal without the need for control
convexification. The resulting convex subproblems can be solved reliably in real time by advanced interior point
methods. The proposed methods are demonstrated through numerical simulations of two different urban air mobility
scenarios and compared with the solution obtained from GPOPS-II, a state-of-the-art general-purpose optimal
control solver. Our proposed sequential convex programming methods can obtain near-optimal solutions with faster

computational speed than GPOPS-II.
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drag force, N
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= time of flight, s

new control variables
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state vector

altitude, m
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atmospheric density, kg/m3
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1. Introduction

ODAY, the world’s population has more than doubled since the

1960s, which has generated a heavy demand on surface trans-
portation. In 2019, Americans spent an average of more than 99 h
each year in road traffic, and in the most traffic-congested city,
Bogota, Colombia, every driver on average wastes more than 191 h
every year in traffic [1]. So, people have begun to reimagine and
explore advanced air transportation ideas with the aim of creating
novel solutions to surface traffic congestion problems. Fortunately,
with the rapid development of battery and aviation technologies,
electric vertical takeoff and landing (eVTOL) aircraft are becoming
a promising alternative solution to road-traffic congestion problems
by utilizing the three-dimensional (3D) urban space to better meet the
mobility demand. In 2020, NASA published a report on the urban air
mobility (UAM) vision concept of operations [2], where the UAM
research is divided into five main areas, including aircraft deve-
lopment, airspace design, individual aircraft operations, airspace
operations management, and community integration. In this paper,
we focus on the safe and efficient operations of individual eVTOL
aircraft.

Compared to traditional rotorcraft, such as helicopters and multi-
copters, eVTOL vehicles are potentially more energy-efficient, flex-
ible, and generate much less noise within the operating environment
[3]. In spite of the challenges in design, manufacturing, operational
management, and flight control, eVTOL vehicles are highly desirable
under the envisioned UAM scenarios. However, due to the limits
of current technology and the complicated infrastructure develop-
ment process, eVTOL operations suffer from limited battery endur-
ance and vertiport capacity during early UAM operations [4—6].

The main idea behind the UAM concept is to mitigate ground
traffic congestion by taking advantage of the 3D National Airspace
System (NAS) with minimal additional workload and burden on air
traffic controllers. Therefore, to fulfill the limited vertiport capacity
and limited battery life, the eVTOL operations should follow a four-
dimensional (4D) trajectory, which includes the 3D trajectory para-
meterized by time. Also, a time of arrival (RTA) constraint is usually
required and enforced for a given mission scenario under a specific
flight schedule [7].

A general autonomous flight control system consists of several
subsystems, including navigation and perception, mission planning,
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tactical planning, trajectory optimization, feedback control, and
actuator commands [8]. First, navigation and perception data are
obtained and processed from different sensors. Second, users define
the mission goals, flight constraints, and possible waypoints for the
flight mission in the mission planning section. Third, the system
needs to update the detailed mission goals with the real-world mis-
sion environment in the tactical planning section. Finally, trajectory
optimization is required to find a trajectory with feasible state and
control profiles while satisfying some flight objectives. Some early
research on eVTOL trajectory planning includes tilt-wing eVTOL
takeoff trajectory optimization [9], eVTOL merging control [10], and
wind-optimal trajectory planning [11]. Based on the outcomes of
trajectory optimization, feedback control is used to calculate the real-
time control signal, considering real-world disturbances such as wind
gusts, sensor errors, and other environmental factors.

In this work, we focus on trajectory optimization, one of the key
modules to enable safe and efficient eVTOL operations. Trajectory
optimization problems are usually solved by two main methods:
indirect and direct methods [12]. The indirect methods leverage the
calculus of variations or Pontryagin’s minimum principle to deter-
mine the first-order optimality conditions for the problem and then
transfer the original problem to a two-point (or multipoint) boundary
value problem. The indirect methods take a lot of effort to derive the
adjoint differential equations and require a good initial guess for
the problem, which can be difficult to obtain for real-world applica-
tions. The direct methods, on the other hand, do not require explicit
derivation of optimality conditions for the original problem. Instead,
the direct methods discretize the states and/or controls of the pro-
blem using transcription methods such as direct collocation or direct
shooting to convert the original continuous-time optimal control
problem into a finite-dimensional parameter optimization problem,
which is a nonlinear programming (NLP) problem in general. The
resulting NLP problem can then be solved using NLP algorithms
such as the sequential quadratic programming (SQP) method or the
penalty function method. In recent years, thanks to powerful interior-
point NLP solvers such as IPOPT [13], direct methods have been
widely used in aerospace and transportation areas. However, these
methods suffer from some drawbacks. First, solving NLP problems,
in particular those with highly nonlinear dynamics and complex
constraints, is computationally expensive, and the solution time is
sensitive to the initial guess, the parameter settings, and the non-
linearity and complexity of the problem. Second, the algorithm is not
guaranteed to converge to the optimal solution, even a local optimum.
Third, an accurate initialization of the problem is usually required
for most problems. Consequently, these approaches may not be
suitable for onboard, real-time eVTOL trajectory optimization for
UAM applications, where flight safety and performance are of vital
importance.

It is worth noting that the trajectory optimization program
addressed in this paper is different from other path planning programs
such as the traveling salesman problem (TSP) [14]. One of the key
differences lies in the incorporation of nonlinear flight dynamic
systems (i.e., translational equations of motion) in our considered
trajectory optimization problem. In addition, the dynamic path con-
straints, control constraints, and speed limit have been traditionally
ignored in path planning problems but can be included in our problem
formulation. As such, a continuous-time optimal control problem,
instead of a discrete static mathematical programming problem, is
formulated and solved in this work, although the continuous-time
problem is eventually converted into and solved as a discrete-time
numerical optimization problem by convex optimization.

Over the last few years, convex optimization, which studies the
problem of minimizing a convex function over a convex set, has been
widely used to solve optimal control and trajectory optimization prob-
lems in aerospace engineering due to the advantages of fast convergence
and guaranteed global minima for a single convex problem [15]. If the
problem can be formulated as a convex optimization problem, such as
linear programming (LP), quadratic programming (QP), second-order
cone programming (SOCP), or semidefinite programming (SDP), then,
the relaxed problem can be solved in polynomial time because of its low

complexity and convex structure [16]. As such, convex optimization [

approaches have great potential for onboard, real-time applications.

Nevertheless, two big challenges for convex approaches are how to
recognize a convex problem and how to transform a nonconvex
problem into a convex problem. Sequential convex programming
(SCP) has emerged as a method that solves nonconvex optimization
problems by finding the solutions to a sequence of convex subpro-
blems [17]. For the SCP method, the convex terms in the problem
remain unchanged, and only the nonconvex components are con-
vexified by convex approximations or relaxations. Generally, the
nonconvex constraints in an optimal control problem can be con-
vexified by introducing slack variables and constraint relaxations,
and the highly nonlinear dynamic equations are commonly replaced
by an approximate formula obtained from first-order Taylor series
expansions. Then, the solution can be obtained numerically by using
interior-point methods. The SCP method has been studied in the
aerospace field, and example applications include powered descent
guidance for Mars landing [18,19], orbital transfers [20,21], entry
guidance and trajectory optimization [22-24], launch trajectory opti-
mization [25,26], and low-speed air and ground vehicles [27-29]. In
our previous work [30], we formulated a single-phase, cruise-to-
landing eVTOL trajectory optimization problem and solved it using
a convex optimization approach that was shown to converge to an
optimal trajectory in real time. Single-phase eVTOL trajectory opti-
mization can provide us with a quick, accurate solution but may not
be applicable to real-world scenarios due to environmental con-
straints and additional mission requirements.

Most UAM missions involve multiple flight phases, including
takeoff, climb, cruise, hover, descent, approach, and landing. Build-
ing on our preliminary work in [31], we develop a novel convex
optimization approach in this paper to obtain numerical solutions to
the minimum-energy-cost, multiphase eVTOL trajectory optimiza-
tion problem. First, the problem is formulated as a general nonlinear
trajectory optimization with a fixed RTA constraint. Then, the non-
linearity in the flight dynamics is reduced via a convenient change of
variables, the nonconvex control constraint is relaxed into a convex
form, and the solution to the original trajectory optimization pro-
blem is sought by solving a series of SOCP problems using the SCP
algorithm. To address the possible breakdown of the underlying
assumptions for exact convexification, an alternative approach is
devised without the need for control constraint relaxation. Two
different eVTOL cruise-to-landing scenarios are solved with the
proposed methods. Results of the simulation cases are provided to
demonstrate the performance of the proposed approach through
comparisons with a state-of-the-art pseudospectral optimal control
solver [32].

The rest of this paper is organized as follows: A two-phase eVTOL
trajectory optimization problem is formulated in Sec. II based on the
EHang 184 eVTOL vehicle. In Sec. III, we provide two convexifi-
cation procedures to reformulate the original problem into a convex
problem and develop an SCP algorithm to solve the problem. In
Sec. IV, the numerical results of two examples are presented to
demonstrate the performance of the proposed methods. Lastly, we
summarize the work in Sec. V.

II. Problem Formulation

In this section, we present the details of the problem formulation. A
general optimal control problem formulation consists of a few com-
ponents, including a dynamic system that governs the motion of the
vehicle, the physical constraints to be satisfied, and a performance
criterion to be optimized. The dynamic system utilized in this paper is
developed based on a quad-rotor eVTOL aircraft and is described in
Sec. II.A. Following that, the flight constraints are discussed in
Sec. I1.B. Finally, the objective function and the overall trajectory
optimization problem are presented in Sec. II.C.

A. System Dynamics

In this paper, the dynamic model of the eVTOL vehicle is adapted
from [31]. The vehicle is assumed to take a geodesic path, and only
the longitudinal motion of the vehicle is modeled to formulate a
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two-dimensional (2D) trajectory optimization problem. The flight
dynamic equations are as follows:

r=V, ey
=V, @)
"/X — Tsrinné’_% 3)

"/ _ Tcos6 _ D

2 m w8 C))
where x (along track distance) and z (altitude) compose the position
vector of the vehicle; V, and V, represent the horizontal and vertical
components of the vehicle speed, respectively; 7 is the net thrust; m is
the vehicle mass; g is the gravitational acceleration; and @ is the rotor
tip-path-plane pitch angle. The state vector y and the control vector u
for the system are defined as

y=1[xzV,V.]l and u=[T, 0" (5)

We assume that the maximum ground speed of the eVTOL vehicle is
equal to 100 km/h. Thus, the drag force on the fuselage of the aircraft
can be calculated from incompressible flow theory, and the net drag is
assumed to be equivalent to the drag force on the fuselage. As such,
the horizontal (D, ) and vertical (D) components of the aerodynamic
drag force can be obtained from [7,30] as follows:

_pVICHS. . pVICKS.

D
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(6)
where p is the atmospheric density, Cp is the aerodynamic drag
coefficient, and S, and S, are the reference front and top flat plate
areas of the fuselage, respectively. For simplicity, all these four

variables are assumed to be constant in this paper. Therefore, D,
and D, are only dependent on the velocity components.

B. Flight Constraints

To ensure the safety of the flight mission and passenger comfort,
the eVTOL vehicle has to satisfy several constraints. In this paper, the
eVTOL vehicle is assumed to take a fixed RTA at the target vertiport;
however, the RTA at the intermediate, cruise-to-descent transition
waypoint is free to be optimized according to different scenarios.
Thus, a two-phase free-waypoint-time problem can be formed. First,
we impose the initial and terminal conditions for the aircraft by
introducing the following boundary conditions:

(%) = o @)
y(ty) = yy (®)

Then, we define the maximum along-track distance and maximum
altitude as follows:

0 <x < Xinax (C))
0<2< Zma (10)

Meanwhile, the maximum speed and maximum thrust are bounded
based on vehicle specifications:

NZESZEL AN (1
0<T < Ty (12)

Moreover, we restrict the vehicle’s pitch angle € based on the pas-
senger’s comfort level as follows:

10] < Ornax (13)

Because the problem considered in this paper consists of two phases
(i.e., cruise and descent/landing), linkage constraints are imposed to
ensure the continuity between these two phases. The general linkage
constraints are shown as follows:

Y () =y () =0 (14)
- =0 (15)

where p is set to 1 because only the transition from cruise to descent/
landing is considered in this paper.

C. Performance Index and Optimal Control Problem

For the multiphase trajectory optimization problem, the perfor-
mance index is defined to minimize the overall control effort with
respect to the entire mission, and the objective function is as follows:

vl ,
J = —T=dt (16)
o 2

0

Then, the performance index of the two-phase problem can be written
as follows:

2 r”l
J= ToT2qr 17
;/2 (7

With the objective function and constraints, an optimal control
problem can be formulated as
Problem 1:

Minimize : (17)
Subject to : (1) — (4), (7) — (15)

Overall, we aim to minimize the objective function (17) while
satisfying the system dynamics (1-4), the boundary conditions (7)
and (8), the inequality state and control constraints (9—13), and the
linkage constraints (14) and (15).

Remark 1: In Problem 1, the objective function is convex. How-
ever, the dynamics are nonlinear, and the controls and states are
highly coupled, which will make NLP algorithms hard to converge.
In the following section, we will apply a series of convexification
techniques to transform Problem 1 into a convex optimization prob-
lem and develop a sequential convex approach to compute the
solution.

III. Problem Reformulation and Convexification

As discussed above, one potential issue with the direct methods is
that the computational time may become significant when the prob-
lem is highly nonlinear and requires a large number of iterations to
converge. To address this issue, we will leverage recent advances in
convex optimization that allow us to obtain optimal solutions in real
time. Multiphase convex optimization method has been successfully
used to solve problems such as reentry trajectory optimization [33]
and rocket launch trajectory optimization [25,26]. Motivated by these
previous works, we develop and customize a convex approach to the
multiphase eVTOL trajectory optimization problem for UAM sce-
narios in this section.

It is worth mentioning that our considered multiphase UAM
problem is fundamentally different from the multiphase problems
solved in [25,26,33] in terms of the path constraints, relaxed control
constraints, and objective functions involved. For example, bounds
on the state variables are enforced in this paper such that the vehicle
flies within a more confined airspace. More relaxed control con-
straints are considered in this paper due to the constrained tilt angle
for safe and comfortable UAM missions. Further, minimum control
effort, instead of minimum flight time, is considered in the objective
function. As a result, the underlying assumptions that ensure the
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validity of convexification are different, and the convexification
procedure needs to be rederived.

The convexification process for the considered multiphase trajec-
tory optimization problem is adapted partially from our previous
work [30]; however, the linkage constraints make the approach much
more complicated than that of the single-phase problem. The process
consists of a change of variables and convexification of the control
constraint and dynamics detailed in Sec. III.A, an alternative strategy
for addressing possible nonequivalent relaxations in Sec. II.B, con-
vexification of the free time-of-arrival at the intermediate waypoint in
Sec. III.C, and problem discretization in Sec. IIL.D, followed by a
multiphase SCP algorithm in Sec. IILE.

A. First Convexification Approach

From Problem 1, we recognize that the system dynamics are
nonlinear, which will affect the convergence of the method. To
address this issue, we first introduce the following new variables:

u; =Tsinf, u, =Tcosd, and u;=T> (18)

Along with the above new variables, a new constraint should be
imposed based on the trigonometric identities:

w2 +ud=uy 19)

Then, the original system dynamics in Egs. (1-4) become

=V, (20)
=V, @1)
V=t _D (22)
V=20 _ (23)

and the objective function takes the following new form:

2 P 1
J=Z/f§u3dt (24)
p=1 ’1’;

The state boundary conditions and inequality constraints remain the
same; however, a set of inequality constraints has to be enforced on
the new controls to ensure that Eqs. (12) and (13) are met:

0<uy <T2 (25)

u tan(_amax) Suyp Ly tan(emax) (26)

Notice that the feasible set defined by the new equality control
constraint in Eq. (19) represents the surface of a convex cone, which
is nonconvex. However, we apply a relaxation technique to convert
the original constraint to an inequality constraint with the following
form:

Uus

u? + uk < uy 27)

Remark 2: Note that constraint (26) is valid only within a specific
range of 6. In this research, considering real-world eVTOL opera-
tions and passenger comfort in UAM applications, the pitch angle fis
bounded between —(z/2) and z/2, which makes constraint (26)
equivalent to the original constraint (13).

Now, u3 is bounded by Egs. (26) and (27), which together con-
stitute a solid convex cone defined by two convex constraints. The
new inequality constraint enables the control variables to reach the
inside of the convex cone, rather than being constrained on its sur-
face. Therefore, the new constraints define a larger feasible set than
the original one. The geometric representation of this relaxation is
shown in Fig. 1.

The equivalence of the constraint relaxation in Eq. (27) largely
depends on the constraint settings, particularly the lower and upper
bounds of the path constraints in Problem 1 and the new control
constraints in Egs. (25) and (26). These settings essentially shape the
feasible solution space and thus influence the solution of the trajec-
tory optimization problem. The equivalence of the relaxation can be
proved by constructing the Karush—Kuhn—Tucker (KKT) conditions
with complementary slackness under some assumptions as detailed
below.

Assumption 1: The control constraints in Eqs. (25) and (26) are
inactive almost everywhere on [z, tf], i.e., the thrust of the vehicle
does not become zero or reach its maximum value almost everywhere
on [fy, 7], and the pitch angle of the vehicle during the flight does not
reach its minimum or maximum angular limit almost everywhere
on [l(), lf]

Assumption 2: The along-track distance x does not touch its lower
or upper limit almost everywhere on [f, ¢/], i.e., the constraint in
Eq. (9) is inactive almost everywhere on [ty ¢]. Also, the altitude z
does not touch its lower limit almost everywhere on [#y, /], i.e., the
constraint 0 < zin Eq. (10) is inactive almost everywhere on [7y, #/].

Proposition 1: If {y*(t),u*(t)} is an optimal solution to the
problem after relaxation, then the optimal control u*(¢) lies on the
boundary of the cone defined by Eq. (27), i.e., u}()? + u3()? =
uj (1) is satisfied almost everywhere on [#, /] under Assumptions 1
and 2.

Proof: We can arrive at the conclusion drawn in Proposition 1 by
leveraging the direct adjoining method for optimal control [34]. First,
the Hamiltonian for the relaxed problem is formulated as follows:

1 D,
H(y,u,/lo,/l) 21051/{3 +/?,1VX+12VZ+A;(%—Z)

D.
+A4(ﬂ— “—g) (28)
m m

where 4y > 0 is a constant, and A = [1;;4,;43; 44] is the costate
vector. Note that the constraint on the upper limit of z in Eq. (10)
and the maximum speed constraint in Eq. (11) are not required to be
inactive. To derive the KKT conditions for minimizing H over the
constraints, we introduce the Lagrangian L as follows based on
Assumptions 1 and 2:

Uz

>

Uy

Uy

Uz

5%

Fig.1 Relaxation of control constraint.
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L(y7u7/107)“7y) = H(yﬁuﬁo,/{) + Vl(u3 - M% - u%)
+ UZ(Zmax - Z) + VB(Vrznax - V)zc - V%) (29)

where v = [v;; 1; 3] is the Lagrangian multiplier vector. Note that
the airspeed constraint in Eq. (11) has been rewritten into an equiv-
alent form, V2 + V2 < V2., for simpler derivation. The costate
equations are derived as follows:

h=-%L=0 (30)
o=~ =1, @1
Iy = — S = A+ e 2V, (32)
=== =y + Ay 4 20V, (33)

The stationary conditions are as follows:

L= 22U =0 (34)
L — L 2puy =0 (35)
=Bt =0 (36)

The complementary slack conditions are as follows:

v 20, v(uj— uTz - ui‘z) =0 37
v 20, v(Zmax—2*) =0 (38)
v3 20, V3(V12nax - V:Z - Vﬁz) =0 (39

The Informal Theorem 4.1 in [34] states that there exist a constant A,
a continuous costate vector A(f), and a continuous multiplier vector
v(t) such that the nontriviality condition [Ag; A(7); v, (1); v3(2)] # 0
holds for ¢ € [ty, /] and the optimality conditions in Eqs. (30-39) are
satisfied almost everywhere on [z, #/].

The proof can be achieved by contradiction. To this end, we
assume that Proposition 1 does not hold and the control constraint
in Eq. (27) is inactive at the optimal solution to the relaxed problem,
ie, uf(N* + us()? < ui(¥), for some time interval ¢ € [1,, t,] within
[t t7]. Then, from Eq. (37) we have v; = 0. Using vy =0 in
Egs. (34) and (35), we can get 13 = 4, = 0. With this result, we
solve Egs. (32) and (33) for 4, and 4,, respectively, as follows:

M =21V, (40)
/12 = 21/3 VZ (41)

From Eq. (30), we know that A; is constant, while V is varying
during the flight. Therefore, to make Eq. (40) hold, we have v3 = 0
and then 4, = 0. Further, we get 4, = 0 from Eq. (41). Up to this
point, we have shown that 4, =4, =43 =4, =0, v, =0, and
vz = 0. Using 4, = 0 in Eq. (31), we have v, = 0. At last, solving
Eq. (36) for 4y we obtain 4, = —2v; = 0. Therefore, we have proved
that [A; A(2); v, (2); v3(¢)] = 0, which contradicts the nontriviality
condition [Ag; A(?); v, (2); v3(f)] # 0. As such, we have proved Propo-
sition 1, i.e., the relaxed control constraint is active at the optimal
solution, and the convex relaxation of the control constraint in
Eq. (27) is equivalent. O

Finally, the only nonconvex term left in the problem is the non-
linear dynamic system defined by Eqs. (20-23). Based on the state
and control vectors defined in Eq. (5), the equations of motion can be
rewritten as a state representation as follows:

y=f() +Bu (42)
where
Vx B 0 T
V. 0
fy) = _pV%CDSX and Bu=| U (43)
2m m
pV2iCpS, )
2m i - m

To convexify Eq. (42), we apply a successive linearization method to
replace this nonlinear equation with a first-order Taylor series expan-
sion around a reference solution that will be updated sequentially
(will be detailed in Sec. III.E). With the linear approximation method,
the state equation becomes

Yy f(y*) +AQ")(y - y*) + Bu (44)

where A is the state matrix defined by partial derivatives and evalu-
ated at the reference solution as follows:

0 0 1 0
af (y) ’ X :
* Yy
y y=y* m
0 0 0 _szCDSz
m *
= —y=y
(45)
and B is a constant control matrix:
0 0 O
0 0 O
1
B=|—_ 0 0 (46)
m
1
0o — 0
m

Lastly, a trust-region constraint is added to the problem to improve
the convergence of the sequential optimization process:

ly—y*|<é 47

where § is a fixed trust-region radius.

Remark 3: In general, a smaller trust region restricts the search
space and may lead to slower convergence, although it can potentially
prevent the optimization process from taking too large steps, which
would potentially lead to inaccurate or infeasible solutions. In con-
trast, a larger trust region allows for more aggressive search and
possibly faster convergence at the risk of overshooting the optimal
solution and causing divergence in the algorithm. The trust-region
size can be potentially adjusted based on the iteration process of the
algorithm for better convergence [24]. In this paper, we choose to fix
the trust-region radius and focus on the development and demonstra-
tion of a basic SCP method. However, the impact of the trust-region
size on the developed method for the specific problem considered
will be demonstrated by the simulation results presented in Sec. IV.C.

Remark 4: Assumptions 1 and 2 can be satisfied by the optimal
solutions when the bounds on the states and controls are properly
defined and no extreme maneuvers need to be performed by the
vehicle; otherwise, the equivalence may not be guaranteed, and the
method may converge to a solution that may not be a solution to
the original problem. This motivates our second convexification
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approach that eliminates the need of u5 and the corresponding control
relaxation, which will be detailed in the following subsection.

B. The Second Convexification Approach

Although constraint relaxation is a common technique to convex-
ify optimization problems, its effectiveness is highly dependent on
the problem setting. For the UAM problem considered in this paper, it
is possible that the relaxed control constraint (27) may not be guar-
anteed to be active at the optimal solution at all times due to the
possible violation of the underlying assumptions as mentioned in
Remark 4. This observation has led us to develop a second approach.
Instead of introducing variable u3, we propose to only introduce u
and u, as the control variables:

uy =Tsinf, u, = Tcosl (48)

Therefore, the constraints (25) and (27) can be combined as
ud +ul < Tk (49)

with the same inequality constraint for #; and u, as in Eq. (26). Then,
the objective function can be rewritten as follows:

J—Z/ —(u1+u2)dt (50)

Remark 5: Note that the new control constraint (49) is equivalent to
the original thrust constraint (12), which already represents a convex
set. Therefore, no further relaxation is needed and the objective
function is already convex, leading to a simpler problem formulation
due to the absence of both T and u5.

Remark 6: 1t is worth mentioning that the above two convexifica-
tion methods follow different strategies while sharing the same goal
of relaxing the original problem into a convex problem. Both
approaches are presented in this paper because each of them has its
pros and cons. The first convexification approach has been frequently
used in the literature and leads to potentially more general convex
subproblems; however, its validity holds under specific assumptions
as detailed above. After discretization, the first approach will result in
an SOCP problem, while the second approach will lead to a convex
QP problem, which is a subclass of SOCP. In situations where the
underlying assumptions and equivalent relaxation are guaranteed, the
first approach is expected to produce more accurate solutions than
the second approach. In some cases, such as the scenarios studied in
Sec. IV, the second approach seems superior to the first one in terms
of convergence and stability.

C. Convexification of Free Transition Time

For the two-phase eVTOL trajectory optimization problem, the
arrival time to the transition waypoint is usually free to optimize.
Consequently, to account for the free travel time in the procedure, we
define a new variable = over a fixed domain [0, 1] to replace the
original time variable 7 [26]. The time dilation ¢ between ¢ and 7 is
defined as

dt
GZE:tf_tO (51)

Then, the objective functions (24) and (50) are therefore, respec-
tively, changed to

,
J = iz,ff{{%uwdf (52a)

2 S A+ o de (52b)

Since we have introduced the new time variable ¢ to the pro-
blem, the new objective function is nonconvex. Similar to the linear
approximation in Eq. (44), we convexify the objective functions by

taking the first-order linear approximation around the reference
trajectory obtained from the last step of the SCP process as
follows:

J=y2, ff His6 + o(uz — ii3) + iis(c —5)]dr (53a)

J= Z/ —[@? + #3)6 + 6(u3 + ul —u? —u
+ (@2 + iB) (o — &)]dr (53b)

For the new equations of motion due to the free time of arrival at
the transition waypoint, we apply a similar successive lineariza-
tion method to replace the nonlinear equations with a first-order
Taylor series expansion around a reference solution that will be
updated sequentially within SCP. With the linear approximation
method, the dynamic equations become

¥ =L = of (0. u@) ~ Ay + But Fote (5

where A, B, F, and c are obtained from the following:

A =o(y.m) (55)

B(x) = 6% (5.w) (56)

F(z) = f(3.4) = f(3) + B (57)
c(r) = —(Ay + Bu) (58)

Note that all the variables with a bar on top denote the reference
solution and value that will be updated and obtained from the
previous step of the SCP procedure that will be detailed in
Sec. IILE.

With the above development and through the application of the two
convex approaches, the overall optimal control problems are now
defined, respectively, as follows:

Problem 2 (First Convex Approach):

Minimize : (53a)

Subject to:  (54), (7) — (11), (14), (15), (25) — (27), (47)

Problem 3 (Second Convex Approach):

Minimize : (53b)

Subject to :  (54), (7) — (11), (14), (15), (49), (47)

Remark 7: Through a series of techniques, including change of
variables, linear approximation, and convexification of the free time-
of-arrival at the intermediate waypoint as detailed above, the original
problem (Problem 1) has been transformed into a convex continuous-
time optimal control problem (Problem 2 or Problem 3) with or
without the convex relaxation of the control constraint. To facilitate
the implementation of convex optimization algorithms and obtain
numerical solutions, the continuous-time problem must be discre-
tized into a finite-dimensional numerical optimization problem,
which is described in the following subsection.

D. Discretization

To obtain a numerical solution, we will discretize the continuous-
time optimal control problem (Problems 2 and 3) into a parameter
optimization problem with a finite set of variables and constraints that
can be solved by numerical optimization solvers. In this paper, we
apply a trapezoidal rule for discretization [22]. First, we split the
independent variable = € [0, 1] of each phase into N segments with
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N + 1 nodes. The step size is Az = (1 — 0) /N, and the discretized
nodes are denoted by {7(,7|,....,7y} with 7, =7,_; + Az, i =
1,2, ..., N. The corresponding state and control profiles are then dis-
cretized at the N + 1 points.

By applying the trapezoidal rule, the current state Y; can be
obtained from the previous step Y;_; as follows:

At
K=KI+ZK“MH;+M%mew1+M
— (1A + 6F1BulT))) + (6 1AKYY, + 651 Bu,
+ o7 + Buf™) - (1Al + 0 Buf )] (59)

After rearrangement, we have

At At At
(I 2 k lAk I)Y _ (1+ 3 k lAk I)Yl',l _70.k—1Bui

At At
- 7:7"‘13u,4,1 = 7[(o-(ff.‘_‘ll + Buk=!) — (oF1AK]
+ ¥ Buk ) + (e(f5! + Bub!) — (6% 1AK! + oM Bukh)
(60)

The linearized objective functions in Eqs. (53a) and (53b) can be
discretized and represented, respectively, as follows:

Ar 2 N-1
72 [ k I5k=1 4 k_l(MSi_ﬁéi_l) +ﬁ§i_l(0'—5'k_l)]
p=1i=1
(61a)
2, &l 2(k—1 2(k—1
S NG 4 e
p=1 i=1
5 13, - ) - )
+w””+”“%w—#ﬂ] (61b)

Lastly, because an RTA constraint is considered in this paper, the
final arrival time for the eVTOL mission is fixed. Therefore, we add
the following time constraint to ensure that the sum of the flight times
for both phases meets the final time constraint:

2
Yot =1 (62)
p=1

After the above convexification and discretization process, the final
optimization problems are established as follows:
Problem 4 (First Convex Approach):

Minimize : (61a)

Subject to :  (60), (7) — (11), (14), (15), (25) — (27). (47). (62)

Problem 5 (Second Convex Approach):

Minimize : (61b)

Subject to:  (60), (7) — (11), (14), (15), (49), (47), (62)

Remark 8: At this point, Problems 2 and 3 have been discretized
into Problems 4 and 5, respectively, which are SOCP problems that
minimize linear objective functions subject to linear equality and
inequality constraints as well as second-order cone constraints. If a
solution to Problems 4 and 5 exists, then it is guaranteed to be a
globally optimal solution. However, due to the approximations made
above, we cannot solve a single Problem 4 or Problem 5 to obtain the
optimal solution to the original trajectory optimization problem

Gﬂalization: k=0,y®,u®, 50

Convex SOCP sub-problem

|

Solution: [y*, u¥, a¥]

l

Fig.2 SCP flowchart.

(Problem 1). Instead, a successive convex approach is presented
and described in the next section to obtain an approximate optimal
solution to Problem 1.

It is worth noting that SOCP is a special type of convex optimiza-
tion problem. A general convex optimization problem has the follow-
ing structure [16]:

Minimize fo») 63)
Subjectto  fi(y) <b, i=1,...,m

where the functions f;, i =0,1,...,m: R" — R are convex, sat-

isfying
filax + py) < af;(x) + Bfi(y) 64

forallx,ye R" andalla, f € Rwitha+f=1,a>0,>0.

E. Multiphase Sequential Convex Programming

In this work, for the first time, an SCP method is developed to
obtain the solution to the multiphase nonconvex UAM trajectory
optimization problem. Figure 2 shows a flowchart that illustrates the
SCP algorithm developed in this paper. The SCP method for solving
the two-phase problem is described in the following steps:

1) Initialize the iteration index k = 0 and phase number i = 0.
Specify the initial state y;(zy). Propagate the equations of motion
with the initial condition to obtain an initial trajectory y®. In this
paper, the initial trajectory is obtained by simple linear interpolation
between the initial and final states of the first phase.

2) Change the phase numberto i = 1 and repeat step 1 to obtain the
initial trajectory for the second phase. Set k = k + 1.

3) For k > 0, parameterize the convex subproblem (Problem 4 or
Problem 5) using the solution from the previous iteration to find a
solution { y(k) fk), (T(k)}(l = 0, 1) at the current step.

4) Check the convergence condition

sup |y(k) yl(-k_l)| <e i=0,1 (65)

where ¢ is a preset tolerance. If the condition is satisfied, the algo-
rithm moves to step 5; otherwise, set k = k + 1 and go back to step 3.

5) The algonthm 1s converged and a solution for the problem is
foundtobely, Ju; ), o; }( =0,1).

IV. Numerical Simulation

In this section, the proposed convex approach is validated through
numerical simulations based on the EHang 184 model with vehicle
parameters listed in Table 1, the initial and terminal conditions shown
in Table 2, and the number of discretized segments defined in Table 3.
The number of discretized nodes used in the simulations is based on
the tradeoff between solution accuracy and computational time. The
eVTOL vehicle starts at a cruise speed of 13.83 m/s and is 20,000 m
away from the destination vertiport. All the simulations are per-
formed on a desktop with a 64-bit operating system and an AMD
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Table1 Vehicle parameters for simulations

Parameter Value
Vehicle’s mass, m 240 kg
Reference front plate area, S, 2.11 m?
Reference top plate area, S, 1.47 m?
Drag coefficient, Cp 1
Atmospheric density, p 1.225 kg/m?
Gravitational acceleration, g 9.81 m/s?
Maximum along-track distance, X, 20,000 m
Maximum altitude, z;,.. 500 m
Maximum airspeed, V.« 27.78 m/s
Maximum net thrust, 7', 4800 N
Maximum rotor tip-path-plane pitch angle, 6., 6 deg
Time of flight, 7, 25 min

Table 2 Initial and terminal conditions

Parameter Value
Initial along-track distance, x, Om
Initial altitude, z, 500 m
Initial along-track airspeed, V 13.83 m/s
Initial vertical airspeed, V 0 m/s
Terminal along-track distance, x f 20,000 m
Terminal altitude, %5 Om
Terminal along-track airspeed, V., 0 m/s
Terminal vertical airspeed, V, f 0 m/s

Table 3 Number of discretized nodes
for each phase of each scenario

Scenario N of phase one N of phase two

1 50 50
2 50 70

Ryzen 7 1800X eight-core processor. The convex optimization
problems are implemented in the YALMIP [35] optimization tool-
box, with ECOS [36] as the convex optimization solver.

For both simulation cases considered in this paper, the baseline
trust-region size in Eq. (47) is selected as 6 = [200m, 5Sm, 3 m/s,
3m/s, 0.1 * 61yic, 0.1 * Ginic]”, Where 64y; and o5;n;, are the guessed
flight times for the first and second phases, respectively, based on the
flight distance and the steady-state airspeed. The stopping criteria
€ in Eq. (65) is selected as € =[0.5m,0.5m,0.3m/s,0.3m/s,
0.85,0.85].

A. Case One: Vertical Descent and Landing
Figure 3 shows the schematic for the first scenario considered. Under

this scenario, the eVTOL vehicle will cruise to the fixed top of descent
(TOD) point right above the vertiport and then perform a vertical
descent to the destination. The flight time to the mid-waypoint is free
to optimize, while the final arrival time is fixed to be 1500 s.

Cruise -ﬁ-
T

Fixed TOD

500m .
Vertical descent

Om
v @

Fig.3 Schematic for the first scenario.

Both convexification methods are used to solve the problem,
and the results are compared in Figs. 4-7. The subplots on the left
illustrate the results of the first convex approach, while the subplots on
the right display the outcomes of the second convexification approach.
Figure 4 presents the convergence of the objective value by the two
convex approaches. It can be observed that both approaches reached a
steady state. However, the second approach demonstrated convergence
in just five iterations, whereas the first approach required 10 iterations.
It is also important to note that, since the objective functions for
both problems differ, they converge to distinct final optimal objective
values, yet both achieve steady states.

Figures 5 and 6 illustrate the convergence of differences between
consecutive intermediate steps in the along-track and vertical direc-
tions, respectively. Both convex approaches have met the final con-
vergence criteria. The A operation measures the maximum difference
in the state variable between the current step and the previous step,
and Ax and Az are defined as Ax := max |x® (z;) — x*~D(z;)| and
Az = max |0 (z;) — %D (z;)], respectively, where i = 1,2, ..., N.
In each step, ECOS takes about 1.5 s to solve each convex subpro-
blem. If a faster computational time of the algorithm is favored, we
can either reduce the number of discretized nodes or choose a looser
convergence tolerance for the algorithm.

Figure 7 shows a clear convergence of the along-track airspeed
versus time profiles with curves converge from “cool” (dark blue)
to “warm” (red) color. As mentioned in previous sections, the
initial trajectory for the SCP method is a linear interpolation bet-
ween the starting and landing points. Note that the algorithm
gradually converges from simple straight-line guesses at earlier
steps to smooth velocity profiles in the final solutions. This is
aligned with the fact that the intermediate steps of SCP usually
do not produce optimal solutions, but the converged solution serves
as an approximate optimal solution to the original problem. If a
more accurate initial trajectory is chosen, faster convergence is
expected with fewer iterations.

For comparison, GPOPS is used to solve the original problem
(Problem 1) under the first scenario. Figures 8—12 show the detailed
comparisons between the results from the GPOPS solver and our
proposed SCP methods. From Fig. 8, we can see that both solvers and
both convex approaches converge to very similar altitude profiles,
and the optimal trajectories almost overlap with each other. This
alignment can also be observed from the airspeed profiles in Figs. 9
and 10. From Figs. 11 and 12, we can see that the net thrust curves
obtained by the SCP methods are smoother than those of the GPOPS
solver in the last descent and landing phases. However, the pitch
angle curves from the SCP algorithms have more jitters during the
second phase. Overall, the control curves from both solvers follow a
very similar trend, and all the terminal constraints as well as the state
and control constraints are satisfied.

Furthermore, the GPOPS solver requires approximately 20 s to
converge. In contrast, the SCP method exhibits quicker convergence:
with the first approach, it converges in 10 iterations, taking a total of
10 s; with the second approach, it converges in just five iterations,
requiring less than 6 s. The results of the first scenario demonstrate
the effectiveness of our developed SCP algorithm, which reaches a
solution of similar accuracy but with faster computational speed.
In the first simulation case, both convex approaches converged to
very similar results. However, the second approach meets the con-
vergence criteria much faster than the first, which may be caused by
the possible breakdown of Assumptions 1 and 2 that are required to
guarantee the exactness of the relaxed constraint (27) throughout the
flight mission.

B. Case Two: Inclined Descent and Landing

In the second scenario, as shown in Fig. 13, the eVTOL vehicle
starts at a cruise speed and altitude, flies to a fixed TOD position, and
then descends to the destination vertiport within the specified time of
flight. In this simulation, the TOD point is set at halfway between
the start and endpoints with a specific horizontal distance from the
target vertiport. The TOD position can be modified to match real-
world UAM demand. The flight time to mid-waypoint is again free to
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Fig. 8 Altitude versus time profiles for the first scenario.
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Fig. 11 Net thrust versus time profiles for the first scenario.
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Fig. 13 Schematic for the second scenario.

optimize. This scenario usually happens in a suburban or rural area,
where the approach and landing trajectory could be more flexible in a
wider operating environment. Once again, both the GPOPS solver
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and the SCP algorithm are employed to solve the same problem. The
results derived from the two convex approaches as well as GPOPS are
then compared with each other.

Figure 14 depicts the variation in the objective value at each
iteration when applying the SCP method. The curves clearly dem-
onstrate that both convex approaches achieved convergence in five
iterations. Figures 15 and 16 display the convergence of the changes
in the distances along the x and z directions, respectively. Figure 17
shows the trajectories of all iterations using the SCP method. Again,
the dark blue color indicates the initial trajectory, and the red color
represents the converged optimal trajectory. We can see that the
proposed SCP method converges very quickly, and the trajectories
become very close and almost overlap after two to three steps. The
convergence plots from Figs. 14-17 for both convex approaches
exhibit very similar trends. These plots suggest a high degree of
similarity in the performance and convergence characteristics of the
two methods.
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Fig. 14 Convergence of objective value for the second scenario.
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Detailed comparisons between the results from GPOPS and those
from the SCP method are shown in Figs. 18-22. Figure 18 shows that
the optimal trajectories follow a similar trend but converge to a
slightly different mid-waypoint arrival time and descend and land
along different trajectories in the second phase. The difference
between the obtained waypoint arrival times is less than 1% of the
entire flight. In addition, it can be noted from Figs. 19-22 that the
SCP method converges to much smoother state and control profiles
than GPOPS. High-frequency jitters are observed from the curves by
GPOPS, which may be caused by the highly coupled state and control
variables in the nonconvex problem formulation solved in GPOPS.
The convexification process utilized in this paper has proven to be
helpful in reducing such jitters. Furthermore, since the second con-
vexification method does not involve the constraint relaxation that
the first approach requires, it effectively addresses almost the same
problem as the GPOPS solver. Consequently, the results from the
second convex approach are nearly identical to those of GPOPS, with
their outcomes almost overlapping. Based on this observation, the
second convex method will be used for the analysis of trust region,
computational time, solution optimality, and robustness, as detailed
in the following subsections.
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Convergence of trajectories for the second scenario.

In addition, it costs around 20 s for GPOPS to solve the second
scenario. In contrast, the SCP method only takes five iterations for
both approaches to converge and around 1.5 s to solve each SOCP
subproblem. Compared to the first simulation case, the longer com-
putational time in each iteration may be caused by the more discre-
tized nodes used in the second case and the slightly more complicated
trajectory involved. Overall, the SCP method shows a faster con-
vergence speed than the general-purpose GPOPS solver, and thus the
SCP algorithm has the potential to solve the eVTOL trajectory
optimization problem in real time for possible on-board applications.

C. Analysis of Trust Region

To assess the impact of the trust region size on the convergence of
the SCP method, we conducted a series of experiments. The results
are presented in Table 4, which summarizes the relationship between
the trust region size and the corresponding feasibility and the number
of iterations required for convergence.

The experimental results presented in Table 4 illustrate the signifi-
cant impact that the size of the trust region has on the convergence
behavior of our SCP algorithm. Specifically, a trust region that is
too restrictive (<5% of the baseline value) may lead to infeasible
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Fig. 18 Altitude versus time profiles for the second scenario.



WU ETAL. 13

. ‘g.ll||IIIIIIIIIIIIIIIIIIIIIIII‘I"F‘
2 ‘
E
- -5
[0}
[}
Q.
4
©
% -10
Q
5 —— GPOPS
= ——SCP
-15 : . . .
0 5 10 15 20 25
Time (min)

a) First convex approach

04
Q)
E
3 5
(9]
Q.
4
©
R
§ -+ GPOPS

-e-SCP
-15 . . . .
5 10 15 20 25
Time (min)

b) Second convex approach

Fig. 19 Vertical speed versus time profiles for the second scenario.

30 T T T :

Along-track airspeed (m/s)

0 5 10 15 20 25
Time (min)
a) First convex approach

W
o

20

10

Along-track airspeed (m/s)

0 5 10 15 20 25
Time (min)

b) Second convex approach
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Fig. 22 Pitch angle versus time profiles for the second scenario.

subproblems. This aligns with our expectation that, after linearization
and discretization of the original problem, an overly restrictive trust
region can make the convex subproblem infeasible due to an overly
confined search space. Conversely, when the trust region is too big

(>80% of the baseline value), the SCP method struggles to converge,
especially under strict convergence criteria. This can be attributed to
the search space being too large, suggesting that too large trust region
size can lead to inefficient search and potentially divergent behavior.
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Table4 Impact of trust region
size on SCP convergence

No. of iterations
to converge

Trust region size
(% of baseline value)

<5% Infeasible subproblems
7%—10% 10 (may trap in local minima)
10%-80% 5-6 (balanced search space)
>80% >8 (risk of nonconvergence)

An optimal balance for this problem is achieved with a trust region
sized between 10% and 80% of the state value, which results in a
balanced search space and requires a moderate number of iterations
(five to six) to converge. Interestingly, a small trust region size bet-
ween 7% and 10% of the state value tends to require more iterations
to converge, suggesting that the algorithm may be trapped in local
minima. These findings demonstrate the importance of selecting an
appropriate trust region size to ensure both the feasibility of the SCP
method and its efficient convergence.

D. Analysis of Computational Speed and Optimality

To further investigate the computational efficiency of the GPOPS
solver and our SCP method, we implement different convergence
criteria and tolerances and compare their results in Tables 5-8 for
both the first and second scenarios. The convergence of the GPOPS
solver depends on the maximum mesh error tolerance, which is typi-
cally set between le —2 (for less accurate solutions) and le —5
(for more accurate solutions). In contrast, the SCP method solves a
convex problem in each iteration and measures the difference in the
solutions between two consecutive iterations. The convergence tol-
erance for the SCP method is set within the range of 1e — O to le — 3
for our applications. Due to these key differences and the nature of the
underlying algorithms and techniques utilized for these solvers, it is
difficult and nearly impossible to compare these two solvers with the
same accuracy ranges and convergence thresholds. Instead, we are
interested in studying the variation in the computational efficiency
of these solvers when the desired accuracy level and convergence
tolerance vary.

Table 5 Computational time of GPOPS for the first CONOP

Mesh tolerance Average time, s Median time, s Standard deviation, s

le—-2 3.94 3.76 0.62
le-3 16.52 14.50 4.23
le—4 38.73 35.07 9.72
le-5 98.34 94.72 14.78

Table 6 Computational time
of SCP for the first CONOP

Convergence Average Median Standard
tolerance time, s time, s deviation, s
le-0 8.01 8.63 0.51
le—1 10.29 9.93 0.64
le—-2 19.69 19.83 1.17
le-3 48.82 47.74 2.26

Table 7 Computational time of
GPOPS for the second CONOP

Mesh Average Median Standard
tolerance time, s time, s deviation, s
le-2 6.08 591 0.27
le—3 17.54 18.30 3.29
le—4 46.50 43.23 9.55
le-5 180.50 172.67 20.05

Table 8 Computational time
of SCP for the second CONOP

Convergence  Average Median  Standard
tolerance time, s time, s deviation, s
le-0 7.09 7.54 1.12
le—1 14.52 15.15 33
le—2 19.91 19.99 227
le-3 36.87 3543 232

To provide a statistical analysis of computational efficiency, we
ran 100 simulations for each solver with each tolerance under each
CONOP by introducing random Gaussian noise to the initial tra-
jectory in each trial. For each simulation, we calculated the mean,
median, and standard deviation of the computational time as shown in
Tables 5-8. From these tables, we can observe that as the convergence
tolerance becomes stricter, the computational time of GPOPS exhib-
its an exponential growth, while the increase in the computational
time for the SCP method follows a polynomial trend. For GPOPS,
the exponential increase in its computational time with decreasing
mesh tolerance can be attributed to the solver’s inherent approach,
which involves transforming the original optimal control problem
into a mesh grid and solving the resulting discretized NLP pro-
blem. As the required solution precision increases (i.e., as the mesh
tolerance decreases), the mesh grid becomes finer, leading to a
larger-scale discretized problem that requires significantly more
computational resources, thereby causing an exponential increase
in computational time and indicating substantial variability in the
solver’s performance at high precision levels. In contrast, the SCP
method’s computational time exhibits a polynomial growth as the
convergence tolerance decreases because the SCP method forms a
convex approximation of the problem at each iteration and then
solves a convex problem in each step. As the convergence tolerance
becomes more stringent, the number of iterations required will grow,
leading to a polynomial increase in computational time. It is impor-
tant to note that these observations are not direct comparisons with
the same accuracy or convergence thresholds but rather indicators of
the scalability and computational behavior inherent to each method.
The results reveal that the SCP is suitable for a wider range of real-
time applications because of the polynomial versus exponential
growth in computational time relative to GPOPS.

While our SCP method demonstrates an advantage in terms
of computational speed in most cases, it is crucial to examine the
tradeoffs involved, particularly in terms of the accuracy and optimal-
ity of the solutions obtained. It is important to note that the objective
function is linearized during the SCP process, which might lead to
variations in objective values. To ensure consistency in the com-
parison, we integrated the control effort over the time domain for
both SCP and GPOPS and compared the results. Table 9 presents a
summary of the objective values obtained using both methods across
two different CONOPs.

As indicated in this table, for the first CONOP, the objective
value achieved using GPOPS is 8.4083e + 09, while SCP with the
second convexification approach yielded a slightly higher value of
8.4778e + 09. This suggests that while SCP provides a gain in
computational efficiency, it may do so at the expense of a marginal
increase in the objective value, implying a potential loss in solution
optimality. However, in the second CONOP, SCP not only dem-
onstrated superior computational speed but also achieved a lower
objective value (8.4486e + 09) compared to 8.4819¢ 4 09 for
GPOPS. This outcome indicates that SCP can be more efficient

Table9 Comparison of objective values for both
scenarios

CONOP GPOPS objective value SCP objective value
First 8.4083e + 09 8.4778e + 09
Second 8.4819¢ + 09 8.4486e + 09
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and, at times, more effective, depending on the specific problem
characteristics.

It is important to note that both methods belong to the direct
collocation method. Therefore, the solutions obtained are not guar-
anteed to be global minima. The application of SCP requires addi-
tional domain knowledge and a deeper mathematical understanding
of the convexification process, which can be seen as a tradeoff against
its computational benefits.

E. Analysis of Robustness

To provide an in-depth evaluation of the robustness and reliability
of the proposed SCP algorithm, Monte Carlo analysis is conducted
in this subsection. Each simulation run is performed with a set of
perturbed key parameters, including vehicle mass, initial altitude,
and initial velocity. All these parameters are perturbed with a normal
distribution and random variation from their baseline values, as
shown in Table 10. Mild variations of £5% are considered first,
and then more substantial £10% variations in these parameters
are introduced to mimic more severe uncertainties and perturbations
in real-world operations to test the capability and robustness of the
algorithm in handling such discrepancies. Also, 300 simulations are
run for each variation, with the expectation of capturing the possible
situations considered and providing meaningful statistical results.
Given the range of the considered parameters, we believe that 300
runs are sufficient for statistical analysis of the problems considered
in this paper.

For the cases with £5% variations, Fig. 23 showcases the con-
verged trajectory profiles of the SCP method across 300 simulations,
and Fig. 24 presents the corresponding velocity profiles from these
simulations. The results indicate consistent convergence of SCP
within four to six iterations in the vast majority of the trials. For
the cases with substantial +10% variations, both SCP and GPOPS
were used to solve 300 runs. However, the GPOPS solver consis-
tently failed to converge under £ 10% variations. Even with reduced
variations of £5%, a looser convergence tolerance of le — 3 was
necessary for GPOPS to achieve convergence within finite iterations.
The objective values of these simulations from both SCP and GPOPS
are compared in Fig. 25. Each boxplot shows the results of 300

Table 10  Variation of key parameters for
robustness analysis of SCP

Parameter Baseline value Variation 1  Variation 2
Initial altitude 500 m +5% +10%
Initial velocity 13.85 m/s +5% +10%
Vehicle mass 240 kg +5% +10%
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Fig. 23 SCP trajectory profiles from different initial positions with
+5% variations.
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Fig.24 SCP velocity profiles from different initial velocities with +5%
variations.

simulation runs. The resulting distributions of objective values reveal
that when the GPOPS solver successfully converges, it yields stable
objective values. On the other hand, the SCP method consistently
achieved lower objective values across the 300 runs, although the
distribution of its objective values appears broader compared to that
of the GPOPS solver. Furthermore, the simulations with +10%
variations by SCP show more outlier values, which is aligned with
our expectations due to wider ranges of parameters considered.

Finally, we conducted a comparative analysis of the computational
times between the GPOPS and SCP methods under various parameter
variations, and the results are presented in Fig. 26. With a looser
tolerance and random variations of 5%, GPOPS achieved an aver-
age convergence time of 31.5 s, while the SCP method consistently
converged in less than 10 s at 5% variations and within 12 s at
the £10% variation level. Notably, the SCP method displays wider
variations in solution times, with less than five outliers that require
more than 20 s to converge. These results show that when conver-
gence is achieved, the GPOPS solver exhibits more stable perfor-
mance across all runs than SCP, while SCP converges faster than
GPOPS in general. Overall, the rapid convergence of the SCP method
demonstrates not only the efficiency of the algorithm but also its
robustness in adapting to a range of uncertain and perturbed con-
ditions. In addition, it is important to mention that we are not trying to
prove that SCP is superior to GPOPS in all aspects. In fact, GPOPS is
a relatively mature and widely recognized optimal control solver,
whereas our SCP method developed in this paper is still in its early
stages of development. It is our expectation that the performance of
the SCP method will be enhanced when more advanced techniques,
such as more efficient discretization rules, adaptive meshing, and
sparsity, are introduced.

V. Conclusions

Real-world UAM miissions involve multiple flight phases, includ-
ing takeoff, climb, cruise, descent, and landing, and require the
onboard computer to be capable of planning feasible or even optimal
trajectories in real time in a complex urban environment. In this paper,
we present a successive convexification approach to solving the
multiphase trajectory optimization problem for eVTOL vehicles to
cruise, descend, and land on the destination vertiport under different
scenarios. To solve this nonconvex optimal control problem, we first
decoupled the states and controls and reduced the nonlinearity in the
flight dynamics through a change of variables. Then, we transformed
the original nonconvex problem into an SOCP problem via a convex
relaxation of the control constraint and successive linear approxima-
tions of the nonlinear objective function and nonlinear dynamics.
In view of possible violations of the underlying assumptions for
exact relaxation, an alternative convexification method is developed
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by eliminating the need for control constraint relaxation. Finally, an
SCP algorithm is developed to find a solution to the original trajectory
optimization by solving a sequence of SOCP subproblems. Numeri-
cal simulations of two different scenarios are performed to test the
performance of our proposed SCP algorithm through comparisons
with the state-of-the-art GPOPS-II solver. The results revealed that
the SCP method exhibited a polynomial growth in computational
time versus an exponential increase in computational time shown
by GPOPS when the convergence tolerance became smaller. For
scenarios requiring lower accuracy, GPOPS may perform better
and offer sufficient performance with less computational cost than
SCP. As the demand for higher accuracy increases, however, SCP
may become more advantageous because of its polynomial versus
exponential growth in computational time relative to GPOPS, dem-
onstrating the suitability of SCP for a wider range of real-time
applications than GPOPS.
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