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Abstract

Modern data aggregation often involves a platform collecting data from a network
of users with various privacy options. Platforms must solve the problem of how to
allocate incentives to users to convince them to share their data. This paper puts
forth an idea for a fair amount to compensate users for their data at a given privacy
level based on an axiomatic definition of fairness, along the lines of the celebrated
Shapley value. To the best of our knowledge, these are the first fairness concepts for
data that explicitly consider privacy constraints. We also formulate a heterogeneous
federated learning problem for the platform with privacy level options for users.
By studying this problem, we investigate the amount of compensation users receive
under fair allocations with different privacy levels, amounts of data, and degrees of
heterogeneity. We also discuss what happens when the platform is forced to design
fair incentives. Under certain conditions we find that when privacy sensitivity is
low, the platform will set incentives to ensure that it collects all the data with the
lowest privacy options. When the privacy sensitivity is above a given threshold,
the platform will provide no incentives to users. Between these two extremes, the
platform will set the incentives so some fraction of the users chooses the higher
privacy option and the others chooses the lower privacy option.

1 Introduction

Many of the largest companies to ever exist center their business around this precious resource of data.
This includes directly selling access to data to others for profit, selling targeted advertisements based
on data, or exploiting data through data-driven engineering to better develop and market products.
Simultaneously, as users become more privacy conscious, online platforms are increasingly providing
privacy level options for users. Platforms may provide incentives to users to influence their privacy
level decisions. This manuscript investigates how platforms can fairly compensate users for their data
contribution at a given privacy level.

Consider a platform offering geo-location services with three user privacy level options:

i) Users send no data to the platform Ð all data processing is local and private.
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ii) An intermediate option with federated learning (FL) for privacy. Data remains with the
users, but the platform can ask for gradients with respect to a particular loss function, or
data statistics.

iii) A non-private option, where the platform can collect any relevant data from a user device.

If users choose option (i), the platform does not stand to gain from using that data in other tasks. If
the user chooses (ii), the platform is better off, but still has limited access to the data via FL and may
not be able to fully leverage its potential. Therefore, the platform wants to incentivize users to choose
option (iii). This may be done by providing services, discounts or money to users that choose this
option. Effectively, by choosing an option, users are informally selling (or not selling) their data to
platforms. Due to the lack of a formal exchange, it can be difficult to understand if this sale of user
data is fair. Are platforms making the cost of choosing private options like (i) or (ii) too high? Is the
value of data much higher than what the platform is paying?

A major shortcoming of the current understanding of data value is that in many cases, it fails to
explicitly consider a critical factor in an individual’s decision to share dataÐprivacy. This work puts
forth a rigorous notion of the fair value of data that explicitly includes privacy and makes use of the
axiomatic framework of the Shapley value from game theory (Shapley, 1952). Furthermore, we also
ask: What happens when platforms are required to pay users fairly? The two key sections of this
work, and their main contributions are organized as follows:

Section 3 introduces an axiomatic notion of fairness, placing restrictions on the relative amounts
distributed to the players. We then present a FL case study of the proposed notion studying how
payments change as a function of privacy level, amount of data, and degree of heterogeneity.

Section 4 explores the platform incentive design problem when the platform is restricted to those fair
payments. Theorem 2 establish that under certain conditions, there are three distinct regimes for the
optimal incentives depending on the common privacy sensitivity of the users.

1.1 Relevant Literature

Figure 1: Users generate data with
phones, cameras, vehicles, and drones.
This data goes to the platform but re-
quires some level of privacy. The plat-
form uses this data to generate utility, of-
ten by using the data for learning tasks.
In return, the platform may provide the
users with payments in the form of ac-
cess to services, discounts on products,
or monetary compensation.

Privacy and Fairness Currently, popular forms of pri-
vacy include federated learning (Kairouz et al., 2021) and
differential privacy (DP) (Dwork, 2008; Bun and Steinke,
2016) either independently or in conjunction with one an-
other. Our work uses a flexible framework that allows for
a rage of different privacy models to be considered. In Jia
et al. (2019), Ghorbani and Zou (2019) and Ghorbani et al.
(2020) a framework for determining the fair value of data
is proposed. These works extend the foundational princi-
ples of the Shapley value (Shapley, 1952), which was orig-
inally proposed as a concept for utility division in coali-
tional games to the setting of data. We take this idea fur-
ther and explicitly includes privacy in the definition of the
fair value of data.

Optimal Data Acquisition One line of literature stud-
ies data acquisition, where platforms attempt to collect
data from privacy conscious users. Ghosh and Roth (2011)
study heterogeneous DP guarantees with the goal to de-
sign a dominant strategy truthful mechanism to acquire
data and estimate the sum of users’ binary data. In Fallah
et al. (2022) the authors consider an optimal data acquisi-
tion problem in the context of private mean estimation in
two different local and central heterogeneous DP settings.
Hu and Gong (2020) goes beyond linear estimation to con-
sider FL, where each user has a unique privacy sensitivity
function and the platform pays them via a proportional scheme. Karimireddy et al. (2022) consider
mechanisms that ensure users don’t ªfree-loadº. Roth and Schoenebeck (2012); Chen et al. (2018);
Chen and Zheng (2019); Cummings et al. (2023) also follow this data acquisition framework.
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Figure 3: Users send data xi and privacy level ρi to the central platform in exchange for payments
ti(ρi;ρ−i). The central platform extracts utility from the data at a given privacy level and optimizes
incentives to maximize the difference between the utility and the sum of payments U(ρ)−

∑

i ti(ρ).

2 PROBLEM SETTING

Definition 1. A heterogeneous privacy framework on the space of random function A : XN → Y is:

1. A set of privacy levels E ⊆ R≥0 ∪ {∞}, representing the amount of privacy of each user.

2. A constraint set A(ρ) ⊆ {A : XN → Y}, representing the set of random functions that
respect the privacy levels ρi ∈ E for all i ∈ [N ]. If a function A ∈ A(ρ) then we call it a
ρ-private algorithm.

Figure 2: Users choose between three
levels of privacy. ρi = 0:, users send
no data, ρi = 1: model is securely com-
bined with other users who also choose
ρi = 1, ρi = 2: users send their relevant
information directly to the platform.

We maintain this general notion of privacy framework be-
cause different notions of privacy can be useful in differ-
ent situations. The lack of rigour associated with notions
such as FL, may make it unsuitable for high security ap-
plications, but it may be very useful in protecting users
against data breaches on servers, by keeping their data lo-
cal. One popular choice with rigorous guarantees is DP:

Definition 2. Pure heterogeneous ϵ-DP, is a heterogeneous
privacy framework with E = R≥0 ∪ {∞} and the con-
straint set A(ϵ) = {A : Pr(A(x) ∈ S) ≤ eϵiPr(A(x′) ∈
S)} for all measurable sets S.

Henceforth we will use the symbol ϵ to represent privacy
level when we are specifically referring to DP as our pri-
vacy framework, but if we are referring to a general pri-
vacy level, we will use ρ. Fig. 2, depicts another hetero-
geneous privacy framework. ρi = 0 means the user will
keep their data fully private, ρi = 1 is an intermediate pri-
vacy option where user data is obfuscated and only trans-
mitted in part (perhaps via FL) and finally if ρi = 2, the users send a sufficient statistic for their data
to the platform. The platform applies a ρ-private algorithm Aρ : XN 7→ Y to process the data, pro-
viding privacy level ρi to data xi. The output of the algorithm y = Aρ(x) is used by the platform to
derive utility U , which depends on the privacy level ρ. For example, if the platform is estimating the
mean of a population, the utility could depend on the mean square error of the private estimator.

The platform generates a transferable and divisible utility U(ρ) from the user data and distributes
a portion of the utility ti(ρi;ρ−i) to user i, where ρ−i denotes the vector of privacy levels ρ with
the ith coordinate deleted. These incentives motivates users to lower their privacy level, but each
user will also have some sensitivity to their data being shared, modelled by a sensitivity function
ci : E → [0,∞), ci(0) = 0. The behavior of users can be modelled with the help of a utility function:

ui(ρ) = ti(ρi,ρ−i)− ci(ρi). (1)

From the perspective of the platform, the goal is to design the payments ti(ρi;ρ−i) such that it
maximizes the difference between the utility it receives and the payments made to the players i.e.,
U(ρ) − 1

T t(ρ). This is depicted in Fig 3. One way to formulate this problem is to consider
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maximizing this difference at equilibrium points:

maximize
t(·),P

U(P)− 1
T t(P)

subject to P ∈ NE(t).
(2)

where we have used the shorthand f(P) = Eρ∼P [f(ρ)]. NE(t) denotes the set of Nash Equilibrium
strategies induced by t, which is the vector with payment function ti at index i. Restrictions must
be placed on t, otherwise it can be made arbitrarily negative. Individual rationality is a common
condition in mechanism design that says that a user can be made no worse off by participation. In
Section 4, we consider a fairness constraint. Model limitations are discussed in Appendix A.

3 Axiomatic Fairness with Privacy

What is a fair way to distribute utility back to the users as incentives? In this section, we view the users
as a coalition, pooling their resources to generate utility (Appendix B, considers what happens if we
include the platform in the coalition). This coalitional perspective is not a complete characterization
of the complex dynamics between users and platforms, but we argue that it is still a useful one. In our
definition of fairness, we are interested in the intrinsic value of the data. That is, not the market value
that users are willing to sell for (potentially depressed), but rather, how much of the utility generated
comes from the data. This information is particularly useful to economists, regulators, and investors,
who are interested in characterizing the value of data as capital for the purposes of analysis, taxation
and investment respectively. The answer to this fairness question turns out to be connected to the
celebrated Shapley value (Shapley, 1952). Following an axiomatic approach to fairness, the Shapley
value describes how to fairly divide utility among a coalition. In this section we develop an axiomatic
Shapley value-based approach to fairness for users providing private data to platforms.

Axiomatic Fairness Due to asymmetry between the platform and the users, it makes sense to
discuss fairness between users. We can consider the following axioms on the fair value of each user ϕi:

i) (Fairness) For i, j ∈ [N ] : U(ρS∪{i}) = U(ρS∪{j}) ∀S ⊂ [N ]\{i, j} =⇒ ϕi(ρ) = ϕj(ρ).

In addition, for any user i ∈ [N ], U(ρS∪{i})− U(ρS) = 0 ∀S ⊂ [N ]\{i} =⇒ ϕi(ρ) = 0.

ii) (Pseudo-Efficiency) The sum of values is the total utility α(ρ)U(ρ) =
∑

i ϕi(ρ). Where if
U(ρ) = U(ρ̃) then α(ρ) = α(ρ̃) and 0 ≤ α(ρ) ≤ 1.

iii) (Additivity) Let ϕi(ρ) be the value of users for the utility function U , under the ϵ-private
algorithm Aρ. Let V be a separate utility function, also based on the output of the algorithm Aϵ, and
let ϕ′

i(ρ) be the utility of the users with respect to V . Then under the utility U + V , the value of user
i is ϕi(ρ) + ϕ′

i(ρ).

Theorem 1. Let ϕi(ρ) satisfying axioms i-iii represent the portion of total utility awarded to each
user i from utility U(ρ). Then for α(ρ) that satisfies axiom ii, ϕi takes the form:

ϕi(ρ) =
α(ρ)

N

∑

S⊆[N ]\{i}

1
(

N−1
|S|

)

(

U(ρS∪{i})− U(ρS)
)

. (3)

It may seem that the computational complexity of equation 3 is N |E|
N , but this is really only true for

a worst-case exact computation. In practice, U typically has some kind of structure that makes the
problem much more tractable. In Ghorbani and Zou (2019), Jia et al. (2019), Wang and Jia (2023) and
Lundberg and Lee (2017) special structures are used to compute these types of sums with significantly
lower complexities, particularly in cases where the U is related to the accuracy of a deep network.

Example: Fair Incentives in Federated Learning Recently, Donahue and Kleinberg (2021)
consider a setting where heterogeneous users voluntarily opt-in to federation. We now use Theorem 1
to answer: how much less should the platform pay a user that chooses to federate with others as
compared to one that provides full access to their data? Let each user i ∈ [N ] have a unique mean and
variance (θi, σ2

i ) ∼ Θ, where Θ is some global joint distribution. User i draws ni samples i.i.d. from
its local distribution Di(θi, σ

2
i ). To motivate this example, let θi represent some information about

the user critical for advertising. We wish to learn θi as accurately as possible to maximize our profits,
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(a) (b)

Figure 4: Plots of difference from the average utility per user U(ρ)/N for each of the four different
types of users. There are N = 10 users. N1 = 5 of these users opt for federating (ρi = 1), N2 = 4
directly provide their data to the platform (ρi = 2), and finally, N0 = 1 users chooses to not participate
(ρi = 0). Furthermore, each has ni data samples. Without loss of generality, we take α(ρ) = 1, and
the results of this section can be scaled accordingly. In (a) all users have equal importance ai = 1, in
(b) here is one user i with ai = 100 (indicated with a star), while all other users j ̸= i have aj = 1.

by serving the best advertisements possible to each user. Fig. 2 summarizes our FL formulation
with a 3-level privacy space E = {0, 1, 2}. Let s2 = Var(θi) and r2 = E[σ2

i ]. When ρi = 2, user

i provides its local estimator θ̂i directly to the platform. When ρi = 1, user i’s local estimator is
securely aggregated with all other users that choose this same privacy to produce θ̂f , which the
platform uses to construct its estimate θ̂pi . The goal of the platform is to construct estimators θ̂pi that
minimize the expected mean squared-error (and thus utility U , defined below) of each estimate, while
respecting the privacy level vector ρ:

EMSEi(ρ) := E

[

(

θ̂pi (ρ)− θi

)2
]

U(ρ) :=

n
∑

i=1

ai log

(

(r2 + 2s2)

EMSEi(ρ)

)

. (4)

ai represents the relative importance of each user. Since some users may spend more than others, the
platform may care more about their θi more accurately, adding another layer of heterogeneity. also
note we have defined EMSEi(0) := r2 + 2s2.

Fig 4a plots the difference from an equal distribution of utility, i.e., how much each user’s utility
differs from U(ρ)/N . We assume ai = 1 for all users. In the bars furthest to the left, where s2 = 100
and r2 = 1, we are in a heterogeneous environment and a user’s data will not be helpful for estimating
the other θis. Users choosing ρi = 2 are paid the most, since at least their own data can be used to
target their own θi. Likewise, users that federate obfuscate where their data is coming from, making
their data less valuable since their own θi cannot be targeted. On the right side, we have a regime
where s2 = 0.1 and r2 = 100, which is more homogeneous. Now users with larger ni are paid above
the average utility per user, while those with lower ni are paid less. Users with ρi = 2 still receive
more than those with ρi = 1 when ni is fixed, and this difference is significant when ni = 100. In the
center we have an intermediate regime of heterogeneity, which interpolates between the two extremes.
In Fig 4b each set of graphs has exactly one user has ai = 100, making it 100 times more important
than the others. Looking at the two leftmost sets of bars in Fig 4b we see that when user i with ρi = 2
and ni = 100 is the most important one user i receives most of the benefit in the heterogeneous case,
but in the homogeneous case, other users also benefit. Another key point is the similarity between
the second and fourth set of graphs. This tells an interesting story: when users are homogeneous,
regardless of which user has ai = 100, it is those users with large ni that will benefit.

4 Fairness Constraints: Data Acquisition

We now use our concrete definition of fairness to constrain the platform to a class of fair payments.
The platform can choose the fraction of utility that it keeps α, but the incentives it provides to
users must be distributed in a fair way. Consider N users each with identical statistical marginal
contribution, i.e., for any i, j we have S ⊆ [N ]\{i, j}, U(ρS∪{i}) = U(ρS∪{j}). The platform
is restricted to making fair payments satisfying axioms (i-iii) with the additional constraint that
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α(ρ) = α ∈ [0, 1]. Users choose one of two available privacy levels ρi ∈ E , with E = {ρ′1, ρ
′
2} and

ρ′2 > ρ′1. We can write the utility of the user i as

u(ρi,ρ−i) = αϕ(ρi;ρ−i)− c1 {ρi = ρ′2} . (5)

To enrich the problem, we allow users to employ a mixed strategy denoted by p = [p, (1 − p)]T ,
where users choose the ρ′1 with probability p and ρ′2 with probability 1 − p. The platform is also
trying to maximize the fraction of the total expected utility U(p) := Eρ∼p [U(ρ)] that it keeps as in
equation 2. The platform’s goal is to choose a payment value α such that it optimizes:

maximize
α

(1− α)U(p∗(α))

subject to p∗(α) ∈ NE(α).
(6)

The objective is simplified compared to equation 2 by exploiting the pseudo-efficiency axiom, which
says that the sum of payments is α times the total utility. The constraint in equation 6 implicitly
encodes the user behavior governed by equation 5, and will change with the privacy sensitivity c.

It is helpful to define the expected relative payoff, where the expectation is taken with respect to the
actions of the other players. When all other users choose a mixed strategy p, the expected relative
payoff is defined as:

γ(p) := ϕ(ρ′2;p)− ϕ(ρ′1;p) = Eρj∼p

j ̸=i
[ϕ(ρ′2;ρ−i)− ϕ(ρ′1;ρ−i)] . (7)

Theorem 2. Consider a binary privacy level game with N users and a platform. If U satisfies
Assumptions 1: monotonicity and 2: diminishing returns, and the platform payments are fair as
defined in Theorem 1 with constant α then the optimal α∗ can be divided into three regimes depending
on c. The boundaries of these regions are γmax := maxp γ(p) and some cth < γmax such that:

1. When c > γmax, α∗ = 0 is the maximizer of 6.

2. When cth < c < γmax then α∗ is the smallest α ∈ [0, 1] such that p∗(α) ∈ γ−1(c/α).

3. When c < cth: α∗ is the smallest α ∈ [0, 1] such that p∗(α) = 0, where

cth = max

{

c

∣

∣

∣

∣

1− c/γmin

1− α
−

U(p∗(α))

U(0)
≥ 0 ∀α < c/γmin

}

. (8)

Details of the assumptions can be found in Appendix D.4 and E. Theorem 2 can be interpreted as
follows. If privacy sensitivity is above γmax for the given task, it is not worth the effort of the platform
to participate. On the other hand, if privacy sensitivity is less than cth, the platform should set α to
be as small as possible, while still ensuring that all users choose the low privacy setting. Finally, if
privacy sensitivities lie somewhere in between, α∗ should be chosen based on the γ function, and
generally will lead to a mixed strategy with some proportion of users choosing each of the two
options. Appendix G provides some discussion non-homogeneous privacy sensitivity.
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Figure 5: Utility of users and platform when
platform solves equation 6. The solution has
three separate regions as predicted by Theo-
rem 2.

Mechanism Design Example Fig. 5 depicts the
solution to equation 6, for a DP-Baysian estimation
problem (details in Appendix C) meeting the con-
ditions of Theorem 2. As predicted, the solution is
clearly divided into three regions. Equation 8 tells us
that cth = 1

3 and γmax = 2
3 , matching our observa-

tions in Fig. 5. In the first region when c ≤ 1
3 the plat-

form is able to capture most of the utility for itself,
paying less of it out to the users. We also see that
throughout this regime, the total utility is maximized,
as predicted by the theory. For c ∈ [ 13 ,

2
3 ], the total

utility begins to decrease, as users no longer have
enough incentive to always choose the less private
option. Finally, for c ≥ 2

3 , the platform no longer at-
tempts to incentivize the users, and the total utility
falls to zero.
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5 Conclusion

This paper introduces a formal definition of fair payments in the context of the acquisition of private
data. By formulating a federated mean estimation problem, we show that heterogeneous users can
have significantly different contributions to the overall utility, and that a fair incentive must take into
account the amount of data, privacy level as well as the degree of heterogeneity. Theorem 2 provides
us with interesting insights about how a platform would design payments under a fairness constraint.

This work also opens the door to new questions: How do we design mechanisms that consider
fairness with heterogeneous privacy sensitivities with an arbitrary number of users? How do we
efficiently compute fair values? Are their other meaningful notions of fairness worthy of study? How
do we consider the fact that incentives are often non-monetary? Answering these questions will only
become more important as data continues to play an increasing role in our economy.
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A Model Limitations

Known sensitivity functions To solve equation 2, the platform requires the privacy sensitivity ci
of each user, and our solution in Section 4 depends on this information. This can be justified when
platforms interact with businesses. For example an AI heath platform may interact with insurance
companies and hospitals and can invest significant resources into studying each of its partners. Another
example is advertisement platforms and sellers. Another justification is that the privacy sensitivity ci
is learned by the platforms over time, and we are operating in a regime where the estimates of ci have
converged. An interesting future direction could be investigating this learning problem.

Data-correlated sensitivity In Section 4 we treat the sensitivity function ci as fixed and known,
but a practical concern is that ci may depends on the data xi. Say xi is biological data pertaining to
a disease. Those users with the diseases may have higher ci. Without taking this into account, the
collected data will be biased. If our utility function is greatly increased by those users who do have
the disease though, they may receive far more payment, compensating for this correlation. We leave
a investigation of data-correlated sensitivity and fairness to future work.

Known transferable and divisible utility Solving equation 2 also requires knowledge of the utility
function. In some cases, the platform may dictate the utility entirely on its own, perhaps to value a
diverse set of users. In other cases, like in the estimation setting of Example 1, it may represent a
more concrete metric, like a risk function that is easily computed. In some cases, however, the utility
function may not be easily computed. For example it may depend on the revenue of a company’s
product, or the downstream performance of a deep network. We also note that ti(ρi;ρ−i) may not
represent a monetary transfer. Individuals are often compensated for data via discounts or access to
services. A shortcoming of our model is that we assume a divisible and transferable utility, which
may fail to capture these nuances of compensation. Privacy-utility trade-offs are also well studied in
a range of different areas (Xu et al., 2023; Guan et al., 2019).

Informed and Strategic Users We also assume that users can compute and play their equilibrium
strategy, which is a standard assumption in game theory. Practically this also means that the platform
must be transparent about the incentives, fully publishing this information to the users.

B Platform as a Coalition Member

We define a coalition of users and a platform as a collection of s users, with 0 ≤ s ≤ N and up to 1
platform. Let a ∈ {0, 1} represent the action of the platform. Let a = 1 when the platform chooses to
join the coalition, and a = 0 otherwise. Let U(ρ) be as defined in Section 2. We augment the utility to
take into account that the utility is zero if the platform does not participate, and define ρS as follows:

U(a,ρ) :=

{

U(ρ) a = 1

0 a = 0
, [ρS ]i :=

{

ρi i ∈ S

0 else
. (9)

Let ϕp(a,ρ) and ϕi(a,ρ), i ∈ [N ] represent the ªfairº amount of utility awarded to the platform and
each user i respectively, given a and ρ, otherwise described as the ªvalueº of a user. Note that these
values depend implicitly on both the private algorithm Aρ and the utility function U , but for brevity,
we avoid writing this dependence explicitly. The result of Hart and Mas-Colell (1989) show that
these values are unique and well defined if they satisfy the following three axioms:

B.i) (Fairness) For i, j ∈ [N ] : U(a,ρS∪{i}) = U(a,ρS∪{j}) ∀S ⊂ [N ]\{i, j} =⇒
ϕi(a,ρ) = ϕj(a,ρ).

In addition, for any user i ∈ [N ], U(1,ρS∪{i}) − U(1,ρS) = 0 ∀S ⊂ [N ]\{i} =⇒
ϕi(a,ρ) = 0.

B.ii) (Efficiency) The sum of values is the total utility U(a,ρ) = ϕp(a,ρ) +
∑

i ϕi(a,ρ).

B.iii) (Additivity) Let ϕp(a,ρ) and ϕi(a,ρ) be the value of the platform and users respectively
for the utility function U , under the ρ-private Aρ. Let V be a separate utility function,
also based on the output of Aρ, and let ϕ′

p(a,ρ) and ϕ′
i(a,ρ) be the utility of the platform

and individuals with respect to V . Then under the utility U + V , the value of user i is
ϕi(a,ρ) + ϕ′

i(a,ρ) and the value of the platform is ϕp(a,ρ) + ϕ′
p(a,ρ).

9



Theorem 3. Let ϕp(a, ϵ) and ϕi(a, ϵ) satisfying axioms (A.i-iii) represent the portion of total utility
awarded to the platform and each user i from utility U(a, ϵ). Then they are unique and take the form:

ϕp(a,ρ) =
1

N + 1

∑

S⊆[N ]

1
(

N
|S|

)U(a,ρS), (10)

ϕi(a,ρ) =
1

N + 1

∑

S⊆[N ]\{i}

1
(

N
|S|+1

)

(

U(a,ρS∪{i})− U(a,ρS)
)

. (11)

Theorem 3 is proved in Appendix D.2. We now consider a simple setting where we can apply this
result.

C DP-Bayes Estimation Example

This section describes an example of the fair values applied to a particular estimation problem.
Example 1 provides provides the fair values according to Theorem 3 while Example 2 considers
Theorem 1.

Let Xi represent independent and identically distributed data of user i respectively, with Pr(Xi =
1/2) = p and Pr(Xi = −1/2) = 1− p, with p ∼ Unif(0, 1). The platform’s goal is to construct an ϵ-
DP estimator for µ := E[Xi] = p− 1/2 that minimizes Bayes risk. There is no general procedure for
finding the Bayes optimal ϵ-DP estimator, so restrict our attention to ϵ-DP linear-Laplace estimators
of the form:

A(X) = w(ϵ)TX+ Z, (12)

where Z ∼ Laplace(1/η(ϵ)). In Fallah et al. (2022) the authors argue that unbiased linear estimators
are nearly optimal in a minimax sense for bounded random variables. We assume a squared error loss
L(a, µ) = (a− µ)2 and let Alin(ϵ) be the set of ϵ-DP estimators satisfying equation 12. Then, we
define:

Aϵ = argmin
A∈Alin(ϵ)

E[L(A(X), µ)] r(ϵ) = E[L(Aϵ(X), µ)]. (13)

In words, Aϵ is an ϵ-DP estimator of the form equation 12, where w(ϵ) and η(ϵ) are chosen to
minimize the Bayes risk of the estimator, and r(ϵ) is the risk achieved by Aϵ. Since the platform’s goal
is to accurately estimate the mean of the data, it is natural for the utility U(ϵ) to depend on ϵ through
the risk function r(ϵ). Note that if U is monotone decreasing in r(ϵ), then U is monotone increasing
in ϵ. Let us now consider the case of N = 2 users, choosing from an action space of E = {0, ϵ′},
for some ϵ′ > 0. Furthermore, take U to be an affine function of r(ϵ): U(ϵ) = c1r(ϵ) + c2. For
concreteness, take U(0) = 0 and sup

ϵ∈R
U(ϵ) = 1. Note that this ensures that U is monotone

increasing in ϵ, and is uniquely defined (exact calculations are available in Appendix D.1). Consider
the example of a binary privacy space E = {0,∞}. By equation 27, the utility can be written in
matrix form as:

U =

[

0 2/3
2/3 1

]

. (14)

Example 1. Note from equation 10 and equation 11, it is clear that ϕp(0, ϵ) = ϕi(0, ϵ) = 0. Let

Φp and Φ
(1)
i represent the functions ϕp(1, ϵ) and ϕi(1, ϵ) in matrix form akin to U. Then using

equation 10 and equation 11, we find that the fair allocations of the utility are given by:

Φp =

[

0 1/3
1/3 5/9

]

, Φ
(1)
1 =

[

0 1/3
0 2/9

]

, Φ
(1)
2 =

[

0 0
1/3 2/9

]

. (15)

Example 2. Consider the utility function defined in equation 14, for the N = 2 user mean estimation
problem with E = {0,∞}. By Theorem 1 the fair allocation satisfying (i-iii) must be of the form:

Φ
(2)
1 = A⊙

[

0 2/3
0 1/2

]

, Φ
(2)
2 = A⊙

[

0 0
2/3 1/2

]

, A = AT , 0 ≤ [A]ij ≤ 1. (16)
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D Missing Proofs

D.1 Proof of Equation 27

In this section, we present the calculations required to arrive at the utility values in equation 27. First
let’s treat the trivial case of ϵ1 = 0, ϵ2 = 0. The optimal ϵ-DP estimator is simply the optimal Bayes
estimator with no data, i.e., the prior mean. Let us define this estimator as µ̂(0,0) = 0. Its risk function
is

R(µ, µ̂(0,0)) = E
[

L(µ̂(0,0), µ) | µ
]

= µ2. (17)

The Bayes risk of µ̂(0,0) is the expectation of this quantity taken using our prior:

r([0, 0]) = E
[

µ2
]

=
1

12
. (18)

Next, consider the case where user i chooses privacy level ϵ1 = ϵ′ > 0, and the other user chooses
ϵ2 = 0. In this case the estimator depends on X1, µ̂(ϵ′,0) = w1X1 + Z. Then the risk function is:

R(µ, µ̂(ϵ′,0)) = E

[

(w1X1 + Z − µ)
2
| µ
]

=

(

µ+
1

2

)

(

µ−
w1

2

)2

+

(

−µ+
1

2

)

(

µ+
w1

2

)2

+
2

η2
.

(19)
Now taking the expectation with respect to our prior over µ, we have:

E
[

R(µ, µ̂(ϵ′,0))
]

=
1

12

(

3w2
1 − 2w1 + 1

)

+
2

η2
, (20)

here η is the inverse scale parameter for Z. Note that equation 20 is minimized when η is maximized.
The ϵ-DP condition enforces the constraint η ≤ ϵ′

w1

. This constraint will be met with equality for the

optimal w1. The optimal w∗
1 = 1

3+ 24

ϵ′2

. Thus, we have:

µ̂(ϵ′,0) =
1

3 + 24
ϵ′2

X1 + Z, Z ∼ Laplace

(

ϵ′

3ϵ′2 + 24

)

, (21)

and the resulting Bayes risk is:

r([ϵ′, 0]) = r([0, ϵ′]) =
1

12

(

1−
1

3 + 24
ϵ′2

)

. (22)

For the case with ϵ1 = ϵ2 = ϵ′ we can repeat the same process by defining µ̂(ϵ′,ϵ′) = w1X1 +
w2X2 + Z. By symmetry, we must have w1 = w2, so we drop the index. Then the risk function and
its expectation are:

R(µ, µ̂(ϵ′,ϵ′)) = 2

(

µ+
1

2

)(

−µ+
1

2

)

µ2 +

(

µ+
1

2

)2

(w − µ)
2
+

(

−µ+
1

2

)2

(µ+ w)
2
+

2

η

2

(23)

E
[

R(µ, µ̂(ϵ′,ϵ′))
]

=
1

12
(8w2 − 4w + 1) +

2

η2
. (24)

By a similar argument to the previous case, the Bayes optimal estimator and the corresponding Bayes
risk is:

µ̂(ϵ′,ϵ′) =
1

4 + 12
ϵ′2

(X1 +X2) + Z, Z ∼ Laplace

(

ϵ′

4ϵ′2 + 12

)

, (25)

r([ϵ′, ϵ′]) =
1

12

(

1−
1

2 + 6
ϵ′2

)

. (26)

Finally letting U(ϵ) = c1r(ϵ) + c2. Take U(0) = 0 =⇒ c1 = −12c2. And maxϵ U(ϵ) = 1 =⇒
c1 = 24(1− c2). Simplifying gives us our desired result:

U =

[

U([0, 0]T ) U([0, ϵ′]T )
U([ϵ′, 0]T ) U([ϵ′, ϵ′]T )

]

=







0 2
(

3 + 24
(ϵ′)2

)−1

2
(

3 + 24
(ϵ′)2

)−1 (

1 + 3
(ϵ′)2

)−1






(27)
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D.2 Proof of Theorem 3 and Theorem 1

We will begin with the proof of Theorem 1, which is standard and follows the typical proof of the
Shapley value. We begin by proving ϕi(ρ) as defined in equation 3 satisfies axioms (B.i-iii). First
assume U(ρS∪{i}) = U(ρS∪{j}) ∀S ⊂ [N ]\{i, j}, then:

ϕi(ρ) =
α(ρ)

N

∑

S⊆[N ]\{i}

U(ρS∪{i})− U(ρS)
(

N−1
|S|

) (28)

=
α(ρ)

N





∑

S⊆[N ]\{i,j}

U(ρS∪{i})− U(ρS)
(

N−1
|S|

) +
∑

S⊆[N ]\{i,j}

(

U(ρS∪{j}∪{i})− U(ρS∪{j})
)

(

N−1
|S|+1

)



(29)

=
α(ρ)

N





∑

S⊆[N ]\{i,j}

U(ρS∪{j})− U(ρS)
(

N−1
|S|

) +
∑

S⊆[N ]\{i,j}

(

U(ρS∪{i}∪{j})− U(ρS∪{i})
)

(

N−1
|S|+1

)



(30)

= ϕj(ρ), (31)

proving axiom (B.i) is satisfied. For the proof that axiom (B.ii) is satisfied, we write:

∑

i

ϕi(ρ) =
α(ρ)

N

∑

i

∑

S⊆[N ]\{i}

U(ρS∪{i})− U(ρS)
(

N−1
|S|

) (32)

=
α(ρ)

N





∑

i

∑

S⊆[N ]\{i}

U(ρS∪{i})
(

N−1
|S|

) −
∑

i

∑

S⊆[N ]\{i}

U(ρS)
(

N−1
|S|

)



 (33)

= α(ρ)U(ρ) +
α(ρ)

N









∑

i

∑

S⊆[N ]\{i}
|S|<N−1

U(ρS∪{i})
(

N−1
|S|

) −
∑

i

∑

S⊆[N ]\{i}

U(ρS)
(

N−1
|S|

)









(34)

= α(ρ)U(ρ) +
α(ρ)

N













∑

i

∑

S⊆[N ]
i∈S

|S|<N−1

U(ρS)
(

N−1
|S|−1

) −
∑

S⊆[N ]
|S|≤N−1

(N − |S|)U(ρS)
(

N−1
|S|

)













(35)

= α(ρ)U(ρ) +
α(ρ)

N









∑

S⊆[N ]
|S|≤N−1

|S|U(ρS)
(

N−1
|S|−1

) −
∑

S⊆[N ]
|S|≤N−1

(N − |S|)U(ρS)
(

N−1
|S|

)









(36)

= α(ρ)U(ρ), (37)

thus proving axiom (B.ii) is satisfied. Finally, we note that (B.iii) is satisfied by linearity. Next, we
establish the uniqueness of equation 3. To prove uniqueness, we take an approach that is standard in
the literature where we define the unanimity game, show the uniqueness of the ϕi(ρ) in that case,
and then argue that uniqueness follows from additivity (B.iii).

Define the unanimity utility, indexed by some T ⊆ [N ]:

UT (ρ) =

{

1 if T ⊆ supp(ρ)
0 if else.

(38)

{UT }T⊆[N ] form a linear basis for utility function such that any utility U can be represented uniquely
by a set of values {bT }T⊆[N ]. In addition, by direct application of the axioms, it is easy to see that

for the unanimity utility, the fair allocation ϕ
(T )
i (ρ) is unique and is of the form:

ϕ
(T )
i (ρ) =

{

α(ρ)
T

if i ∈ T

0 if else.
(39)
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Thus, for any utility U , the fair value is represented uniquely by
∑

T⊆[N ] bTϕ
(T )
i (ρ), since this value

is unique, it must be equivalent to equation 3.

Now we consider the proof of Theorem 3. By a similar argument to the above, we can establish that:

ϕp(a,ρ) =
1

N + 1

∑

S⊆[N ]

U(a,ρS)− U(0,ρS)
(

N
|S|

) (40)

as well as:

ϕi(a,ρ) =
1

N + 1

∑

S⊆[N ]\{i}
a′∈{0,a}

1
(

N
|S|+1(a′=1)

)

(

U(a′,ρS∪{i})− U(a′,ρS)
)

(41)

(42)

Applying the definition U(0,ρ) = 0 we have

ϕp(a,ρ) =
1

N + 1

∑

S⊆[N ]

U(a,ρS)
(

N
|S|

) (43)

ϕi(a,ρ) =
1

N + 1

∑

S⊆[N ]\{i}

1
(

N
|S|+1

)

(

U(a,ρS∪{i})− U(a,ρS)
)

, (44)

completing the proof.

D.3 Error Computation for Section 3

In this section we prove Proposition 4 and 5 from which exact error expressions follow.

Proposition 4. For the federated mean estimation problem described in Section 3, the expected
mean-squared error is given by:

E

[

(

θ̂pi − θi

)2
]

=

r2





N2
∑

j=1

w2
ij ·

1

nj

+
1

N1
w2

i0

1

n̄



+s2









N2
∑

j=1
j ̸=i

w2
ij +

1

N2
1

N2+N1
∑

j=N2+1
j ̸=i

w2
i0 +









N2
∑

j=1
j ̸=i

wij +
1

N1

N2+N1
∑

j=N2+1
j ̸=i

wi0









2







,

(45)

where n̄ =

(

1
N1

N1+N2
∑

j=N2+1

1
nj

)−1

.

Proof. Consider an estimator of the form θ̂pi =
N
∑

i=1

vij θ̂j , where user j has n samples, and θj is the

local model of user j. By Theorem 4.2 of Donahue and Kleinberg (2021), the error can be written as:

E

[

(

θ̂pi − θi

)2
]

= r2
N
∑

j=1

v2ij ·
1

nj

+ s2







∑

j ̸=i

v2ij +





∑

j ̸=i

vij





2





(46)

For j = 1, . . . , N2, we have vij = wij . For j = N2 + 1, . . . , N2 +N1, we have vij =
wi0

N1

. Finally,
for j > N1 +N2, we have vij = 0. Thus the first term can be written as:

r2
N
∑

j=1

v2ij ·
1

nj

= r2





N2
∑

j=1

w2
ij

1

nj

+

N2+N1
∑

j=N2+1

1

nj

(

wi0

N1

)2


 (47)

= r2





N2
∑

j=1

w2
ij

1

nj

+
1

N1
w2

i0

1

n̄



 . (48)

Making these same substitutions to
∑

j ̸=i v
2
ij and

∑

j ̸=i vij yields the desired result.
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Proposition 5. The error expression equation 45 is minimized if ρi = 0 with weights:

wi0 =
N1

N1 +N2
V0

V̄

, wij =
V0/Vj

N1 +N2
V0

V̄

. (49)

If ρi = 1 equation 45 is minimized by:

wi0 =
N1

N1 +N2
V0

V̄

+
N2

N1 +N2
V0

V̄

s2

V̄
, (50)

wij =
V0/Vj

N1 +N2
V0

V̄

−
1

N1 +N2
V0

V̄

s2

Vj

. (51)

Finally, if ρi = 2, equation 45 is minimized by:

wi0 =
N1

N1 +N2
V0

V̄

−
N1

N1 +N2
V0

V̄

s2

Vi

, (52)

wij =
V0/Vj

N1 +N2
V0

V̄

−
V0/Vj

N1 +N2
V0

V̄

s2

Vi

(53)

wii =
V0/Vi

N1 +N2
V0

V̄

+
N1 +N2

V0

V̄
− V0

Vi

N1 +N2
V0

V̄

s2

Vi

(54)

Proof. First we will consider the case where ρi = 1. Considering the point where the derivative of
equation 45 with respect to wik, k ≥ 1 is equal to zero gives:

2r2

nk

wik−
2r2

n̄N1



1−

N2
∑

j=1

wij



+s2



2wik − 2
N1 − 1

N2
1



1−

N2
∑

j=1

wij



+
2

N2
1



N1 − 1 +

N2
∑

j=1

wij







 = 0,

(55)
(

r2

nk

+ s2
)

wik =

(

r2

n̄
+ s2

)

wi0

N1
−

s2

N1
. (56)

It is easily verified from the second derivative that solving this equation gives us the unique minimum

of equation 45. For ease of notation, define Vk :=
(

r2

nk
+ s2

)

and V0 :=
(

r2

n̄
+ s2

)

, V̄ =
(

1
N2

N2
∑

k=1

1
Vk

)−1

. Thus, we have:

wik =
V0

wi0

N1

− s2

N1

Vk

. (57)

Noting that wi0 +
∑N2

j=1 wij = 1, we have:

wi0 +
N2

N1

V0

V̄
wi0 −

N2

N1

s2

V̄
= 1, (58)

wi0 =
N1

N1 +N2
V0

V̄

+
N2

N1 +N2
V0

V̄

s2

V̄
, (59)

wij =
V0/Vj

N1 +N2
V0

V̄

−
1

N1 +N2
V0

V̄

s2

Vj

. (60)

This completes the proof for those users i such that ρi = 1. When ρi = 2, the gradient condition
with respect to k ≥ 1, k ̸= i is:

wikVk =
V0

N1
wi0, (61)

and similarly, the gradient condition when k = i is:

wiiVi + wi0
N2V0

N1V̄
+

s2

Vi

= 1. (62)

Combining these together gives our desired result. ρi = 0
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D.4 Proof of Theorem 2

We begin by formally stating the assumptions:

Assumption 1. The utility U is monotone: ρ
(2)
S ≥ ρ

(1)
S =⇒ U(ρ

(2)
S ) > U(ρ

(1)
S ) ∀S ⊆ [N ].

Assumption 2. The utility U has diminishing returns. Let nprivate(ρS) represent the number of
elements of i ∈ S such that ρi = ρ′1, i.e., the number of users choosing the higher privacy option.

Furthermore, define ∆iU(ρS) := U(ρ
(i+)
S )− U(ρS), where ρ

(i+)
S is equal to ρS except ρ

(i+)
i = ρ′2.

In other words, ∆iU(ρS) is the marginal increase in utility when the ith user switches to the lower
privacy option. Then U satisfies:

nprivate(ρ
(1)
S ) ≥ nprivate(ρ

(2)
S ) =⇒ ∆iU(ρ(1)) > ∆iU(ρ(2)). (63)

The symmetric Nash equilibria of our game is characterized Cheng et al. (2004) by the minimizers of

min
p

∑

s∈E

[u(s, p)− u(p, p)]
2
+ , (64)

where u(s, p) is the utility a user when they choose privacy level ρi = s, and all other users play
mixed strategy p, and u(p, p) = Es∼p [u(s, p)]. Since our action space is binary, there are only two
terms in this sum. Applying the definition of u and writing out both terms of this sum yields:
∑

s∈E

[u(s, p)− u(p, p)]
2
+ = [u(ρ1, p)− u(p, p)]

2
+ + [u(ρ2, p)− u(p, p)]

2
+ (65)

= [c(1− p)− α(ϕ(p, p)− ϕ(ρ1, p))]
2
+ + [c(1− p)− α(ϕ(p, p)− ϕ(ρ2, p))]

2
+(66)

= [(1− p)(c− αγ(p))]
2
+ + [−p(c− αγ(p))]

2
+ , (67)

where we define γ(p) := ϕ(ρ2, p) − ϕ(ρ1, p). γ is an important quantity in this problem that
described the relative increase in payment a user receives for choosing a higher privacy level when
the other users choose mixed strategy p. In general, to say something about the equilibria, we must
say something about γ. We can now use Assumptions 1 and 2, as well as the definition of ϕ(·; ·) to
establish properties of γ. First we show γ(p) ≥ 0 using monotonicity of U :

γ(p) = ϕ(ρ2, p)− ϕ(ρ1, p), (68)

= Eρj∼p

ρi=ρ′

2





1

N

∑

S⊆[N ]\{i}

1
(

N−1
|S|

)

(

U(ρS∪{i})− U(ρS)
)





− Eρj∼p

ρi=ρ′

1





1

N

∑

S⊆[N ]\{i}

1
(

N−1
|S|

)

(

U(ρS∪{i})− U(ρS)
)



 , (69)

=
1

N

∑

S⊆[N ]\{i}

1
(

N−1
|S|

)Eρj∼p

j ̸=i

[

U(ρ
(i+)
S∪{i})− U(ρ

(i−)
S∪{i})

]

≥ 0. (70)

In equation 69 we have used the definition of the fair value from Theorem 1, and in equation 70,
we have simplified the expression, exchanged the sum and expectation, and used the fact that the
expectation of a non-negative random variable is non-negative.

Next, we will show that under Assumption 2 (and our assumption of equal marginal contribution) we
also have γ′(p) ≥ 0. Assume p2 > p1, and let b(n, p) =

(

N
n

)

pi(1− p)N−i:

γ(p2)− γ(p1) =
1

N

∑

S⊆[N ]\{i}

1
(

N−1
|S|

)

(

Eρj∼p2

j ̸=i

[

U(ρ
(i+)
S∪{i})− U(ρ

(i−)
S∪{i})

]

− Eρj∼p1

j ̸=i

[

U(ρ
(i+)
S∪{i})− U(ρ

(i−)
S∪{i})

]

)

(71)

=
1

N

∑

S⊆[N ]\{i}

1
(

N−1
|S|

)

N
∑

n=0

(b(n, p2)− b(n, p1))∆iU(ρ(n)) s.t. nprivate(ρ(n)) = N − n

(72)
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Now note that b(n, p2) − b(n, p1) is zero-mean, and decreasing, furthermore, ∆iU(ρ(n)) is non-
negative and non-increasing. Let n∗ represent the smallest value of n such that b(n, p2)− b(n, p1) is
negative. Then we have:

∆iU(ρ(n)) =

n∗−1
∑

n=0

(b(n, p2)− b(n, p1))∆iU(ρ(n)) +

N
∑

n=n∗

(b(n, p2)− b(n, p1))∆iU(ρ(n))

(73)

≥

(

n∗−1
∑

n=0

b(n, p2)− b(n, p1)

)

(∆iU(ρ(n∗ − 1))−∆iU(ρ(n∗))) (74)

≥ 0. (75)

With the knowledge that γ(p) ≥ 0 and γ′(p) ≥ 0 we can compute p∗ for three distinct cases. Defining
γmax := maxp γ(p) and γmin := minp γ(p), we have:

Case 1 c− αγmax > 0:
∑

s∈E

[u(s, p)− u(p, p)]
2
+ = [(1− p)(c− αγ(p))]

2
+ (76)

Since this quantity is non-negative, it is clearly minimized when p∗ = 1, where it is exactly 0.
Furthermore, since c− αγmax > 0 is satisfied with strict inequality, it is the unique minimizer.

Case 2 c/α ∈ [γmin, γmax]:
∑

s∈E

[u(s, p)− u(p, p)]
2
+ = [(1− p)(c− αγ(p))]

2
+ + [−p(c− αγ(p))]

2
+ , (77)

In the above case, this is minimized when p∗ ∈ γ−1(c/α).

Case 3 c− αγmin < 0:
∑

s∈E

[u(s, p)− u(p, p)]
2
+ = [−p(c− αγ(p))]

2
+ , (78)

In the above case, the expression is minimized when p∗ = 0. To summarize, we have:

p∗(α) =











1 if α < c
γmax

γ−1(c/α) if α ∈ [ c
γmax

, c
γmin

]

0 if α > c
γmin

. (79)

This establishes that the Nash equilibrium is cleanly separated into three regions. From this fact, we
are able to show that the optimal strategy of the platform is also separated into three regions. We
consider a platform that solves the following problem, where we define U(p) := Eρi∼p [U(ρ)]:

min
α

(1− α)U(p∗(α)), (80)

Clearly, when privacy sensitivity is large, specifically, when c ≥ γmax then α∗ = 0 is the optimal
solution, since p∗(α) = 1 for all α < 1, and for α > 1 the objective becomes negative.

Alternatively, when c is very small, we can determine the optimal value as follows. We first note that
Assumption 1 implies that U(p) is a decreasing function of p. Thus the condition for α∗ = c

γmin
is:

1− c/γmin

1− α
>

U(p∗(α))

U(0)
∀α < c/γmin. (81)

Since the left-hand side takes value 1
1−α

at c = 0, while the right-hand side is 1, as well as the fact
that both sides are continuous, by the Intermediate Value Theorem, (and our previous, which implies
that for c large enough this condition does not hold), there is some minimum cth, where this condition
fails. Thus we conclude, there are three regions:

(1) a region where c ≤ cth is small, and α∗ is the smallest α such that p∗ = 0, (2) an intermediate
region where a symmetric mixed strategy is played, and (3) a region where c ≥ γmax , and α∗ =
0, p∗ = 1.
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E Monotonicity of Utility

When beginning this work, the dearth of algorithms that supported heterogeneous privacy constraints
surprised us, given the increasing number of privacy options available to users. All of the algorithms
that did exist were provably sub-optimal Hu and Gong (2020), or placed constraints on privacy
parameters to prove approximate optimality Fallah et al. (2022). In both of these works, the pathology
of the algorithm leads to error that is not monotonically decreasing in ρ. For DP-based notions of
privacy, which both of the aforementioned works are, one can prove that an optimal error must be
monotonic. This observation inspired a recent work that studies a saturation phenomenon Chaudhuri
and Courtade (2023). Similar ideas can also be found in Cummings et al. (2023). The idea is that an
optimal algorithm will sometimes give users that choose a large ϵi more privacy than they asked for,
to ensure that it still efficiently uses information from users j with ϵj ≪ ϵi.

F Comparison to Other Works

Two key novelties of our work is that we (1) consider a constraint of fairness and (2) have users
choose a privacy level, rather than report their privacy sensitivity. This is different from Fallah et al.
(2022), and Cummings et al. (2023), which rely on incentive compatibility, and have users report
their privacy parameters. In Fallah et al. (2022), a computationally efficient algorithm is proposed
for computing user payments and privacy levels to assign users. Both of these works consider a
mean estimation problem, where users have i.i.d. samples, and so also have the ªequal marginal
contibutionº assumption that we have. Distinct from our model, users have an additional term in
their utility where they benefit from reduced error in the estimation problem. These works focus on
maximizing the platform utility, and it is very clear that the payments deviate significantly from the
fair ones that satisfy the fairness axioms. Hu and Gong (2020) is perhaps the work most relevant to
ours. They consider an incentive design problem where the platform fixes the total sum of payments
R and the amount each user receives is proportional to their privacy level ρi, which the users choose.
This proportional scheme, while potentially viewed as a type of fairness, does not satisfy our axioms.
For a particular utility function, they develop a computationally efficient algorithm to compute the
equilibrium privacy levels ρi based on the privacy sensitivities of the users and the total sum of
payments R. In all of these works, users have a linear privacy sensitivity function with rate ci. Though
this seems different from our binary privacy problem, there is a direct correspondence here since we
allow mixed strategies, so in expectation, our sensitivity is also reduced to a linear function of the
mixed strategy: i.e., E [ci1 {ρi = ρ′2}] = ciPr(ρi = ρ′2).

G Different Privacy Sensitivities

The computational burden in solving equation 6 is in characterizing the constraint, since the objective
reduces to a one-dimensional optimization over α ∈ [0, 1]. In the previous section, with the knowledge
that the game is symmetric, we are able to easily characterize the equilibria as a function of α. If
the ci’s are all different, for arbitrary utility functions, the problem essentially reduces to finding the
equilibria in a general game. To make this tractable, we will need some assumptions. In Hu and Gong
(2020), the specific choice of utility function and payments makes computation of the equilibrium
tractable. If we have only two groups of users with different ci that act together, and a finite privacy
space, we can appeal to tools for enumerating equlibira in matrix games Avis et al. (2010). In this
case if the privacy space is also binary, then the equilibria have an analytical solution, which we
provide in Appendix H. Similar to the symmetric case, there are 3 cases for each of the two users as
well as corresponding thresholds that depend on c1 and c2 respectively, resulting in 9 total cases. For
example, in the case where payment is below the threshold of both users, neither participate at the
low-privacy level, when the payment is high enough both participate at the low privacy level, and for
the remaining intermediate cases, either only one user chooses the low privacy option, or there is
some asymmetric mixed strategy. Below, we numerically investigate this case:

This problem differs from equation 6 because the equilibrium is governed by asymmetric users. For
example, if user 1 and user 2 have privacy sensitivity c1 and c2 respectively, we have

u1(p1,p2) = pT
1 Φ

(2)
1 p2 − [0 c1]

Tp1, u2(p1,p2) = pT
1 Φ

(2)
2 p2 − [0 c2]

Tp2. (82)
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Figure 6: (Left) The payments to user 2 from the platform for a range of c1, c2. (Right) The platform’s
share of utility for the optimal α∗ payments for a range of values c1, c2.

Consider a setting where there are only two users (these can be thought of as representing two groups
of users) with utility function u1 and u2 listed above. Thus, when the platform is trying to optimize
it’s own utility, it must take into consideration that these two groups will play different strategies.

maximize
α

pT
1 Up2 − (1− α)pT

1 Up2

subject to (p1,p2) ∈ NE(α).
(83)

Fig. 6 plots the results of simulating the solution of 83. It shows that there is one region when c1
and c2 are both small and close together (< 1/3), the platform chooses α to collect data from both
users. If the difference is large, even in this region, the users may be asymmetrically engaged. When
c1 > c2 > 1/3, the platform chooses α such that only user 2 chooses to participate, even if the
difference is very small, and vice versa if c2 > c1 > 1/3, as before, when c1, c2 > 2/3 the sensitivity
to too high and the platform can no longer offer enough payment to the users.

H Equilibria for Binary Privacy Level with Two Different Privacy Sensitivities

Let p = [p (1− p)]T be the mixed strategy of user 1 and let q = [q (1− q)]T be the mixed strategy
of user 2. When they play these respective strategies, the utility of user 1 is:

u1(p,q) = pqαϕ(ρ′1, ρ
′
2) + p(1− q)αϕ(ρ′1, ρ

′
2) + (1− p)qαϕ(ρ′2, ρ

′
1) + (1− p)(1− q)αϕ(ρ′2, ρ

′
2) +−c1(1− p)

= pαϕ(ρ′1,q) + (1− p)αϕ(ρ′2,q)− c1(1− p)

= p (c1 − αγ(q)) + αϕ(ρ′2,q)− c1.

By a symmetric argument, we also have that

u2(p,q) = q (c2 − αγ(p)) + αϕ(ρ′2,p)− c2. (84)

We are interested in characterizing the best response maps:

BR1(q;α) = argmax
p

u1(p,q) BR2(p;α) = argmax
q

u2(p,q), (85)

since their intersection characterize the set of NEs.

We begin with finding an analytic expression for BR1(q;α), which, we will break into three distinct
cases:

Case 1: c1 − αγmax > 0

In this case, the constant factor in front of p is always positive (invoking the monotonicity and non-
negativity we proved in the previous section under the assumptions), thus the best response is:

BR1(q;α) = [1 0]T ∀α <
c1

γmax

. (86)
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Case 2: c1 − αγmin < 0

In this case, by a similar argument to before, the constant factor in front of p is always negative, thus
the best response is:

BR1(q;α) = [0 1]T ∀α >
c1

γmin

. (87)

Case 3: α ∈
[

c1
γmax

, c1
γmin

]

In this case, the sign of the factor in front of p changes with q. We can write the best response piece-
wise as:

BR1(q;α) =







[1 0]T if c1 − αγ(q) > 0

{[a b]T : a, b ≥ 0, a+ b = 1} if c1 − αγ(q) = 0

[0 1]T if c1 − αγ(q) < 0

(88)

This same analysis can be applied to BR2(p;α). The NE is characterized by the sets where these two
maps intersect. The following table summarize the equilibria p∗, q∗, written as scalars for readability.

α ≤ c1
γmax

α ∈
[

c1
γmax

, c1
γmin

]

α > c1
γmin

α ≤ c2
γmax

(1, 1) (0, 1) (0, 1)

α ∈
[

c2
γmax

, c2
γmin

]

(1, 0)
{

(1, 0), (0, 1),
(

γ−1
(

c1
α

)

, γ
(

c2
α

))}

(0,1)

α > c2
γmin

(1,0) (1,0) (0,0)

When α is below the threshold for the two users (the top left entry), both c1 and c2 are too small for it
to be worthwhile for the users to participate at the lower privacy option. Conversely, if α is above
the threshold for both users, then both users choose the less private option. When neither of these
extremes occur the results are more nuanced.

I Impact Statement

One of the unique defining characteristics of data is that its generation process is inherently distributed,
so no single entity exists to advocate for data sellers. In the past, platforms have been able to extract
data from users, often with little to no compensation in return. As public consciousness around
privacy changes, a nuanced relationship around privacy between platforms and users must develop.
Transparency and understanding the value of user data is an important step in empowering regulators,
consumers, and platforms.

• Users making strategic decisions about when they share their data stand to gain from
incentives.

• For regulators, understanding the amount of value that flows through the interactions between
platforms can enable better policies around data. Frameworks similar to those discussed in
Theorem 3 and 1 can be a starting point in understanding exactly how much this value is.

• For platforms, understanding which data tasks are economically viable, and how they
allocate incentive is important. Our discussion in Section 4, and our three regimes help shed
light on this.
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