
SeaK: Rethinking the Design of a Secure Allocator for OS Kernel

Zicheng Wang†‡, Yicheng Guang‡, Yueqi Chen†,

Zhenpeng Lin§, Michael Le¶, Dang K Le§,

Dan Williams⋆, Xinyu Xing§, Zhongshu Gu¶, Hani Jamjoom¶,
†University of Colorado Boulder, ‡Nanjing University,

§Northwestern University, ¶IBM Research, ⋆Virginia Tech
†{zicheng.wang, yueqi.chen}@colorado.edu, ‡ guangyichengok@gmail.com,

§{zplin, dang.le, xinyu.xing}@u.northwestern.edu,
¶{mvle, zgu, jamjoom}@us.ibm.com, ⋆djwillia@vt.edu

Abstract
In recent years, heap-based exploitation has become the most

dominant attack against the Linux kernel. Securing the kernel

heap is of vital importance for kernel protection. Though the

Linux kernel allocator has some security designs in place to

counter exploitation, our analytical experiments reveal that

they can barely provide the expected results. This shortfall

is rooted in the current strategy of designing secure kernel

allocators which insists on protecting every object all the time.

Such strategy inherently conflicts with the kernel nature.

To this end, we advocate for rethinking the design of secure

kernel allocator. In this work, we explore a new strategy which

centers around the “atomic alleviation” concept, featuring

flexibility and efficiency in design and deployment. Recent

advancements in kernel design and research outcomes on

exploitation techniques enable us to prototype this strategy in

a tool named SeaK. We used real-world cases to thoroughly

evaluate SeaK. The results validate that SeaK substantially

strengthens heap security, outperforming all existing features,

without incurring noticeable performance and memory cost.

Besides, SeaK shows excellent scalability and stability in the

production scenario.

1 Introduction

In the Linux kernel, exploitation targeting heap vulnerabili-

ties such as use-after-free, heap out-of-bound write and read,

and uninitialized heap is very prevalent. In the Google and

Alphabet Vulnerability Reward Program held in 2022 [36], 42

revealed Linux kernel exploits are all against the kernel heap.

In the Pwn2Own contest since 2020, all nine showcased Linux

kernel exploits target the kernel heap, with awards reaching

up to $300k. In addition, from a variety of sources including

industry summits like BlackHat and personal blogs of famous

whitehat hackers (e.g., [1, 9]), we collected public exploits,

PoCs, and write-ups over the past five years, and found that

143 out of 173 Linux kernel exploits are against the kernel

heap. Hence, securing the heap is of paramount importance

for kernel protection.

Though there are security features in place in the Linux

kernel to counter heap-based exploitation, they can barely

provide the expected protection. On one hand, the features

that are enabled by default in most distros are overly specific

to certain exploitation techniques, making them bypassable.

Consider freelist randomization as an example: by design,

it only works for exploits leveraging spatial corruption, like

heap out-of-bound write and read, and falls short in defend-

ing against temporal corruption, such as use-after-free. On

the other hand, the features that are disabled by default have

intrinsic weaknesses and fail to deliver the promised security

improvements. To enumerate, structure layout randomization

faces challenges in securely storing the random seed, while,

based on our experiments, KFENCE rarely achieves its goal

of separating kernel objects.

In parallel, in the user space, the design of secure allocators

has been well researched [19, 45, 57, 59], introducing features

like red zones, poisoning, user tracking, and ad-hoc sanity

checks. These features can be found in a kernel mechanism

named slub_debug. Unfortunately, slub_debug is regarded

primarily as a debugging feature and serves as the building

block for sanitizers like KASAN, due to its high cost.

In this work, we conducted a multi-faceted measurement of

existing security features, revealing the fundamental obstacle

in designing a kernel secure allocator: the allocator is the core

kernel subsystem and is invoked with high frequency. Given

the current strategy in security feature design, which insists

on protecting every object all the time [51], performance and

memory overhead accompany each allocation and free. This

level of overhead is unacceptable for the kernel as it must

offer services for user space with high efficiency but does not

have unlimited memory.

Since the obstacle is intrinsic to the kernel nature, we advo-

cate for rethinking the design of kernel secure allocators. In

this work, we explore a new strategy which centers around the

“atomic alleviation” (AA) concept. One AA offers the most

granular level of exploit alleviation by separating a specific

type of kernel object. We can orchestrate particular sets of

AAs to meet distinct security needs, focusing only on critical

Create Overlapping. Figure 1 illustrates an essential step

in exploitation which is to create overlapping between heap

corruption and sensitive data such as function pointers and

credentials. The overlapping can be categorized into spatial

overlapping and temporal overlapping according to the nature

of vulnerabilities. To exploit heap out-of-bound write/read, at-

tackers manipulate heap layout [22,68] to place victim objects

that contain sensitive data adjacent to the vulnerable object.

By triggering the vulnerability, the corruption has a spatial

overlapping with the sensitive data, allowing attackers to tam-

per with it and achieve IP control or privilege escalation. To

exploit use-after-free, attackers first free the vulnerable object

which still has a dangling pointer referring to it. The freed slot

is recycled back to SLAB/SLUB allocator. Then, attackers

spray victim objects containing sensitive data to reclaim the

same memory, leveraging the LIFO feature. By dereferencing

the dangling pointer, attackers tamper with sensitive data in

the victim object and obtain exploitable primitives.

Cross-cache Exploitation. If the victim object and the vulner-

able object are in the same slab cache, it is often referred to as

within-cache exploitation. Cross-cache exploitation stands for

the situation where the victim object and the vulnerable object

are in different slab caches. To exploit a heap out-of-bound

write/read in a cross-cache exploitation manner, attackers ma-

nipulate the heap layout at the buddy allocator level, ensuring

that two pages — the one containing the victim object and

the other containing the vulnerable object are adjacent though

they belong to distinct caches. To exploit a use-after-free

in a cross-cache exploitation manner, attackers first free all

vulnerable objects within the same cache so that the cache is

reclaimed to the buddy allocator. Then, they allocate a number

of victim objects, forcing the buddy allocator to re-halve the

just reclaimed slab cache pages - previously storing vulner-

able objects - for storing victim objects instead. Thus, there

is a temporal overlapping between the vulnerable and victim

objects.

Same-type Exploitation. In most exploits, regardless of

within-cache or cross-cache, the vulnerable object and the

victim object are of distinct types so the difference between

their semantics allows successful tampering. However, the

newest DirtyCred attack [44] demonstrates that vulnerable ob-

jects and victim objects can be of the same type in exploitation.

Technically, two objects of the same type (e.g., struct cred

but carrying different privilege levels (e.g., cred.uid == 1000

and cred.uid == 1000) can be overlapped to achieve privilege

escalation. This attack bypasses all existing security features

in the kernel allocator, even slub_debug.

3 Obstacles in Existing Designs

The newest security features in the Linux kernel allocator are

in three categories: (C1) features that are enabled by default

in mainstream Linux distros such as Ubuntu and CentOS;

(C2) features that are designed for protection but are disabled

by default in most distros; (C3) features that are commonly

employed in user space secure allocators and integrated into

slub_debug [37].

In this section, we will evaluate the security and overhead

of these features, followed by investigation into the particular

obstacle in secure kernel allocator design.

3.1 Security Analysis

By-default Enabled Features (C1). In this category, ❶ freel-

ist randomization [26] randomizes the order of slots in the

freelist of the SLAB/SLUB allocator so that attackers can

hardly accurately predict the slab cache layout. ❷ The freelist

obfuscation [27] aims to hinder attackers from manipulating

the allocator into returning a memory under the attackers’

control. ❸ The heap zeroing [52] on allocation initializes the

slot during allocation so that attackers cannot read sensitive

information belonging to the object that previously occupied

the slot. These features raise the bar of exploitation but are

too specific to certain vulnerabilities and attack techniques

and thus can be easily bypassed [2–4, 7, 10]. Taking freelist

randomization as an example, it is designed only against vul-

nerabilities that cause spatial overlapping like out-of-bound

write, and doesn’t work for vulnerabilities that cause temporal

overlapping like use-after-free. Even for spatial overlapping,

it can be bypassed through heap grooming [39].

By-default Disabled Features (C2). In this category, ❶ struc-

ture layout randomization [25] shuffles the field orders in

structures each time the kernel boots up so that attackers

cannot predict the offset between sensitive data and the start

of corruption. However, the kernel must reveal the random

seed to support compiling third-party kernel modules. How

to securely store the seed continues to be a challenge nowa-

days [33]. Besides, it only randomizes structures that contain

only function pointers and cannot cover all structural types.

❷ KFENCE allocates objects from a pre-reserved pool. Each

object takes pages and is surrounded by red zones and guard

pages, which can detect out-of-bound access. When the ob-

ject is freed, the corresponding page is unmapped so that

use-after-free can also be detected. However, to reduce over-

head, KFENCE randomly samples objects for separation, no

matter whether the object is security-related or not. Further,

the sampling only happens in the fast path of allocation and it

only samples one object in a certain time window. Thus, in

our experiment, KFENCE can only protect 0.005% - 0.35%

sensitive objects even after its capability is maximized. Fea-

tures in this category are designed for protection but fall short

of providing assured security improvement, presumably the

reason why they are disabled by default.

Lightweight “Debugging” Features (C3). This category

includes ❶ slub_debug which is primarily regarded as a de-

bugging feature. It provides a full spectrum of security fea-

tures typically found in userspace secure allocators: red zones

around objects enabled by Z flag, poisoning and user tracking

of freed memory by P and U flags respectively, and additional

sanity checks by F flag. Compared with KASAN, slub_debug

is lightweight but for protection, it is too heavy. We will show

this in the following.

3.2 Overhead Measurement

Benchmarks and Settings. We use two benchmarks to evalu-

ate the overhead of existing security features. One is LM-

bench [47] which is a micro-benchmark widely used for

system call level measurement. Another is Phoronix Test

Suite [11] which is a macro-benchmark. It runs real-world

applications and we use it to measure the impact of SeaK on

the overall system. In particular, from Phoronix Test Suite, we

choose seven applications: OpenSSL, 7zip-compress, FFm-

peg, Redis, SQLite, and Apache as representatives of different

workloads to comprehensively test processor, OS, and system.

Our experiments were conducted using a bare-metal ma-

chine running Ubuntu 22.04 LTS with an Intel(R) Core(TM)

i7-6700 CPU @ 3.40GHz and 16GB RAM. We built a vanilla

kernel image as the baseline using the Linux kernel v5.15 -

the latest Long-term support (LTS) version at the time of ex-

perimentation. The vanilla kernel doesn’t contain any security

features described in this section. Then, we built another three

images: one with all three features in C1, one with the two

features in C2, and one with slub_debug in C3. To minimize

fluctuation and rule out outliers, we repeatedly ran bench-

marks until the overhead of the recent five executions had a

coefficient of variation smaller than 3.5% - a default setting

in Phoronix. Between each round, we rebooted the whole

system to ensure a clean environment for the benchmark.

Performance Overhead. Table 1 presents the performance

overhead. Though a recent study [55] reveals that freelist ran-

domization in C1 showcases 45% peak overhead in certain

situations (i.e., big-select and big-fork) because of poor local-

ity, our measurement over both LMbench and Phoronix indi-

cates that the overall overhead of C1 is not obvious: -2.74%

to 3.91% which is within reasonable fluctuation range. For

the two features in C2 that are disabled by default, their over-

head is slightly noticeable: -1.88% to 5.25% for LMbench,

and -1% to 1.34% for real-world applications in Phoronix.

While this extent of overhead is tolerable, as we discussed in

the security analysis (Section 3.1), both features in C2 have

inherent weaknesses that prevent them from producing the

expected secure enhancement.

For slub_debug in C3, its overhead is prohibitively high,

reaching 177.22% for LMbench and 57.58% for Phoronix.

Note that, in the table, some benchmarks (e.g., 7zip-compress)

show negative overhead because their execution time predom-

inantly takes place in user space with minimal kernel involve-

ment. These negative numbers shouldn’t be mis-interpreted

LMbench C1 C2 C3

Simple syscall 0.35% 1.06% 0.90%

Simple read 0.98% 3.73% 0.70%

Simple write 0.41% 1.71% 2.46%

Select on 100 fd’s -0.64% 1.21% 0.04%

Signal handler install -1.35% -1.88% -1.17%

Signal handler overhead 0.75% 3.29% 169.16%

fork+exit 0.60% 1.76% 168.17%

fork+execve 2.42% 1.56% 177.22%

fork+/bin/sh -c 1.21% 2.32% 151.55%

UDP latency 3.91% 4.97% 144.34%

TCP/IP connection -2.74% 5.25% 129.81%

AF_UNIX bandwidth -0.20% 0.27% 52.16%

Pipe bandwidth 0.80% 1.16% -1.98%

Phoronix C1 C2 C3

Sockperf (Msgs/sec) -0.27% -0.61% 57.58%

OSBench (Ns/Event) -0.08% -1.00% 6.25%

7-Zip Compress (MIPS) -0.34% 0.54% -0.39%

FFmpeg Live (FPS) -0.14% 0.28% 1.25%

OpenSSL SHA256 (B/s) 0.01% 0.04% 0.01%

Redis SET (Reqs/sec) -0.37% 0.47% 0.55%

SQLite Speedtest (sec) 0.52% 1.34% 4.05%

Apache 100 (Reqs/sec) -0.50% -0.42% 46.29%

Table 1: Performance overhead of security features in different

categories. See Section 3.1 for more details of each category.

as indicating that slub_debug has no overhead. In fact, for

benchmarks that are dependent on kernel services, the over-

head arises significantly.

Memory Overhead. Figure 2 presents the memory overhead

when running LMbench (Phoronix’s result are moved to [18]

due to space limit). From the figure, we can observe that

vanilla, C1, and C3 exhibit similar memory usage while C2

consumes an additional 400 MB of memory. This is because

KFENCE in C2 allocates objects from a pre-reserved pool

and each object separated by KFENCE occupies pages that

are surrounded by red zones and guard pages.

3.3 Behind Security / Overhead Trade-off

Summarizing from security analysis and overhead measure-

ment, existing security designs in the Linux kernel allocator

either fail to provide substantial security enhancement (C1 and

C2) or are impractical due to excessive memory and perfor-

mance overhead (C2 and C3). To have a deeper understanding

of the root obstacle, we selected Apache from Phoronox - a

case with noticeable overhead - as our target and conducted a

case study.

Table 2 presents the statistics collected by bpftrace during

the execution of Apache. From the table, we can observe that,

User Space

Kernel Space

eBPF Synthesizer

Runtime Kernel

dedicated

region
“guard pages +

43 entropy”

alloc
handler

BPF

Mapsfree
handler

Figure 3: Overview of one atomic alleviation (AA) in SeaK. The

eBPF program synthesizer in the userspace installs an eBPF program

with alloc handlers and free handlers into the kernel space, separating

objects of interest.

of which SeaK is built, as long as the eBPF programs can be

installed. Further, we assume attackers are unprivileged users

so that they cannot directly disable SeaK.

Defender. Defenders are privileged users or system admin-

istrators so that SeaK is granted the right privilege to install

eBPF programs into the kernel. The installed eBPF programs

are free from bugs and their safety is guaranteed by the sound

verified. We assume that defenders are aware of the vulnerabil-

ity threat by either catching its exploit in the wild or obtaining

necessary information (e.g., vulnerability reports) from public

resources including the dashboard of Syzkaller – the most

widely used kernel fuzzer developed by Google, the National

Vulnerability Database, and more.

4.3 SeaK at a Glance

The atomic alleviation (AA for short) is the key concept in

SeaK. One AA is responsible for separating a specific type

of kernel objects - objects of interest. Figure 3 illustrates the

design of one AA in SeaK.

In user space, the eBPF synthesizer first analyzes the ker-

nel source code to pinpoint the allocation and free sites for

objects of interest. Then, it investigates debug information

to map the source-code-level sites into corresponding binary

addresses of call instructions that invoke memory allocation

and free functions (e.g., kmalloc/kfree). After this, the synthe-

sizer produces an eBPF program that can be installed into

kernel space to achieve alleviation.

In the kernel space, the eBPF program shoulders a complete

allocation and free logic for objects of interest: The alloc

handler attached to the allocation sites intercepts the original

allocation and obtains memory from a dedicated region that is

separated; the free handler attached to the free sites prevents

the memory in dedicated regions from being directly returned

to the buddy system and recycles memory only for objects

that are allowed by the security policy. The status of dedicated

regions is maintained by BPF maps. If one dedicated region

runs out of space, additional memory will be assigned. When

the threat landscape changes and the AA is no longer useful

1 // essential utilities

2 int alloc_handler(struct pt_regs* ctx,

3 u64 kpi_type) {...}

4 int free_handler(struct pt_regs* ctx,

5 u64 kpi_type) {...}

6

7 SEC("kprobe/?") // attach to allocation site

8 int probe_alloc_? (struct pt_regs* ctx) {

9 return alloc_handler(ctx, ?);

10 }

11 SEC("kprobe/?") // attach to free site

12 int probe_free_? (struct pt_regs* ctx) {

13 return free_handler(ctx, ?);

14 }

Listing 1: The snippet of synthesis template. Once the "?" is filled

in, it can be directly compiled and installed into the kernel space.

or requires updates, the eBPF program can exit gracefully and

be reinstalled later if needed again.

Like secure allocators in user space (e.g., [19,45,57,59]), to

prevent spatial overlapping, the dedicated region is equipped

with guard pages and randomization with up to 43 entropy.

To prevent temporal overlapping, SeaK currently enforces

the most restrictive separation policy to deal with the newest

exploitation techniques (Section 2.2): only recycle within

objects that are allocated from the same site, having the same

size, carrying the same privilege level, and in the same zone.

Advantages. SeaK is flexible from the following perspectives.

❶ Design-wise, one AA offers the most granular level of al-

leviation. We can strategically orchestrate different sets of

AAs to meet distinct security needs. It allows efficient use

of resources by focusing on crucial objects, rather than an

indiscriminate separation. ❷ Deployment-wise, AAs can be

enabled on the fly without disrupting running computation ser-

vices, thus maintaining system availability. ❸ Evolution-wise,

The separation policy enforced in AA can be dynamically

upgraded when new exploitation techniques are disclosed. In

comparison, the implementation of existing solutions is fixed

once integrated.

5 Technical Details

In this section, we will present more technical details of AA

in SeaK, from the eBPF synthesizer in the user space to the

runtime separation in the kernel space.

5.1 eBPF Program Synthesis

To separate objects of interest, an eBPF program is generated.

The essential elements needed to construct the eBPF program

include the binary addresses of the allocation site and free

site, as well as the prototype of the kernel function that is

called for allocation or free. Readers can refer to List 2 in

Appendix for the illustration of a synthesized program.

Synthesis Template. List 1 shows the template SeaK uses

to synthesize eBPF programs. All the "?" in the template

represent the elements that need to be customized per site.

In line 7 and line 11, SEC decoration denotes the locations of

the allocation and free sites in the format of func+offset. In

this format, func is the symbol of the kernel function where

allocation and free are called, offset represents the offset of

the call instruction from the start of func. We use func+offset

instead of the absolute address of the call instruction (i.e.,

0xffffffff81c331db) because of Kernel Address Space Layout

Randomization (KASLR) [28] which randomizes the base

address of kernel image during boot time. Using func+offset,

the eBPF program can work across machines with different

base addresses without further modification.

In lines 8 and 12, the "?" serves as a placeholder for a

unique identifier to differentiate multiple allocation sites and

free sites. In line 9 and 13, the "?" is used to differentiate

prototypes of allocation and free functions being called. This

Kernel Programming Interface (KPI) information (kpi_type)

is needed so that the eBPF programs (line 1-5) can deter-

mine how to obtain the requested size of the allocation and

the address of object to be freed from the run-time context.

For example, we differentiate kmalloc and kmem_cache_alloc

because the allocation size is stored in the 1st parameter of

kmalloc but in the 2nd parameter of kmem_cache_alloc, passed

through $rdi and $rsi, respectively, by the x64 convention.

Determining Allocation and Free Sites. Given the object

type, SeaK finds the allocation sites and free sites by first

searching at the source code level and then converting the

sites into the corresponding binary addresses in the format of

func+offset.

At the source code level, the SLAB/SLUB allocator uses

two series of kernel functions for allocation and free. One is

kmalloc/kfree series for objects in the general cache. The other

is kmem_cache_alloc/kmem_cache_free series for special cache.

For the buddy system, the functions for allocation and free are

alloc_pages/free_pages series. The code lines that call these

functions are allocation and free sites. We further narrow

down the scope and identify the sites specific to the objects of

interest by analyzing the return values or arguments of these

function calls. Because their return values or arguments are

always pointers referencing the objects allocated or freed, by

analyzing them, we can easily figure out whether the object is

of interest. Technically, we perform a use-def analysis and re-

solve memory alias. Along the use-def chain of returned value

or arguments, we track instructions relevant to typecasting,

pointer dereferencing, and argument passing. The operands

of these instructions explicitly reveal the type of variables. By

using this information, we can easily infer and conclude the

type of each allocated or freed object.

At the binary level, sites in the source code that allocate

or free objects of interest are mapped to binary addresses

via debugging information in the kernel image. Note that,

guard

page

alloc
handler

Key: addr

Value: ip-size-priv-zone

free
handler

Key: ip-size-priv-zone

Value: region region-index

obj2region

dedicated regions

rand

o set
… …object

… …object

guard

page
object

guard

page

guard

page

Figure 4: Run-time separation in the kernel space. The attached

malloc handlers and free handlers leverage two BPF maps to manage

dedicated regions.

kmalloc/kfree series functions at the source code level are

occasionally inlined into kmem_cache_alloc/kmem_cache_free se-

ries at the binary level through compiler optimization. There-

fore, we synthesize the kpi_type part in the eBPF programs

according to the series used in the kernel image rather than

the source code to eliminate inaccuracies.

5.2 Run-time Separation

Here, we delve into more details of how eBPF programs and

BPF maps separate objects of interest.

Data Structures. As illustrated in Figure 4, in one AA, an

alloc handler is attached to each allocation site, and a free

handler is attached to each free site. The synthesizer described

in Section 5.1 is responsible for identifying these sites and

synthesizing the corresponding handlers.

To track the status of dedicated regions that store sepa-

rated objects, each AA has two BPF maps: region-index and

obj2region. The region-index map is used to locate dedicated

regions. Its key is customized according to the security policy.

Its value represents the dedicated region which is the address

of either a struct kmem_cache object if the requested size is

smaller than one page or a struct page object if the requested

size is larger than one page. The key of the obj2region map

is the address of an individual object that is separated into

dedicated regions. Its value indicates which region the object

belongs to and can be used to index the region-index map.

Evolving with Exploitation Techniques. In Figure 4, we

use ip-size-priv-zone as the key to index the dedicated region.

As such, the memory is recycled only within objects that are

allocated from the same site (i.e., ip), with the same size,

carrying the same privilege level, and in the same zone. It

is the most restrictive policy that can alleviate the newest

exploitation techniques that have been disclosed thus far. As

new exploitation techniques evolve in the future, this policy

can be strengthened accordingly.

Guard Page and Randomization. Each separated object

occupies multiple pages. Even for the object the real size

of which is smaller than one page, it takes over at least one

page. These pages are further surrounded by guard pages that

are not mapped. The offset of the object from the start of

the pages is randomized. The randomization entropy within

the page is 7, considering pointer alignment in x64. Since

the dedicated region can be located anywhere in the direct

mapping area, the overall entropy is 21 for the 16 MB DMA

zone or 43 for the 64TB normal zone, which is much higher

than the widely-used KASLR which is 8. Given such a high

entropy, the chance for attackers to brute-force the address of

separated objects in one shot is nearly zero.

Workflow. Now, we describe how the aforementioned designs

are used through the life cycle of an object that is separated.

When the object is allocated, the alloc handler will be ex-

ecuted. According to the security policy, it obtains the exe-

cution context: (1) the address of allocation sites from $rip

register, (2) the request size from $rdi for kmalloc, $rsi for

kmem_cache_alloc, $rsi*PAGE_SIZE for alloc_pages. (3) the priv-

ilege level of the current process through the helper function,

(4) the requested zone which is specified in GFP flags - $rsi

for kmalloc, $rdx for kmem_cache_alloc, $rdi for alloc_pages.

This context information is concatenated to form the key.

The alloc handler uses the key to look up the region-index

map to examine if there is already a dedicated region that

fits. If no dedicated region is available, the alloc handler cre-

ates a new slab cache or a new buddy through the helper

function and records related information in the region-index

map. Otherwise, the alloc handler retrieves the slab cache or

buddy structure from the region-index map, storing the object

and setting guard pages through help functions. Following

this, the address of the object is used as the key to update

the obj2region map. Finally, the alloc handler overwrites the

return address to directly jump to the next instruction of allo-

cation call and thus skip the original allocation.

When the object is freed, the free handler will be executed.

It first obtains object’s address from the $rdi register and looks

it up in the obj2region map to determine if the object to sepa-

rated. If not, the kernel continues the routine free operation.

Otherwise, the free handler looks up the region-index map,

obtains the dedicated region, and frees the object from the

region using a helper function. Note that, this free operation

does not indeed return the memory. Instead, the memory is

recycled for the subsequent allocations of objects with the

same ip-size-priv-zone key, as the security policy requires.

Concurrency and Exit. Since objects of interest can be allo-

cated and freed at many kernel sites, the alloc handlers and

free handlers attached to these sites will concurrently access

the shared region-index and obj2region maps. Therefore, it

is essential to ensure the atomicity of map read and write.

Fortunately, the current eBPF ecosystem provides a spin lock

per key and a read-copy-update (RCU) counter per value in

BPF maps to achieve concurrency control.

When one AA is no longer needed or a stronger policy is de-

veloped, it exits gracefully without causing memory leakage.

More specifically, SeaK creates a kernel task that periodically

scans the entire kernel memory to check for pointers referring

to the separated objects indexed in the obj2region map. If

no more pointers refer to the separated objects, the occupied

memory can be safely returned to the buddy system. Other-

wise, the AA stays in the kernel until the obj2region map

becomes empty.

6 Application

In this section, we showcase how to orchestrate a set of AAs

to meet security requirements in different scenarios.

6.1 Separating Security-Sensitive Objects

Given not all objects are security-sensitive, protecting each

one indiscriminately is unnecessary. Kernel objects such as

cred, msg_msg, and key_payload are well-known to be security-

sensitive because they contain data like credentials and func-

tion pointers. Separating them is one key task in prior works,

including xMP [53], kalloc_type [30], AutoSlab [40], and

slab_virtual [64]. SeaK can complete this task in a straightfor-

ward way: each AA separates one specific sensitive type.

A series of research efforts have been undertaken to identify

security-sensitive objects in the Linux kernel: SLAKE [22]

collects objects with function pointers; ELOISE [21] focuses

on elastic objects that can provide stronger write and read

primitives; AlphaExp [65] finds objects based on within-

cache exploitation scheme. As exploitation techniques evolve,

more objects will be identified as security-sensitive. By con-

structing and installing more AAs, SeaK can easily adapt to

these newly discovered objects. This flexibility is a signif-

icant advantage over prior works because their design and

implementation are fixed. Moreover, SeaK can enforce sepa-

ration on the fly while prior works require recompilation and

rebooting which disrupts system availability.

6.2 Separating Vulnerability Corruptions

Due to the lack of manpower and design complexity, the

patching process is quite lengthy for the Linux kernel. A

study two years ago [61] revealed that the average patching

window in the Linux kernel was 66 days, and the situation is

getting worse [8]. During this time window, patches are not

available for these N-day vulnerabilities and attackers have

the full freedom to develop exploits and launch attacks.

To mitigate this threat, we can construct AAs to separate

corruptions introduced by vulnerabilities, thereby limiting the

damage. For vulnerabilities such as heap out-of-bound write

and read, corruption happens when there is beyond-boundary

access. One AA can be installed to separate the overflowed

object. Thus, guard pages can catch the spatial overlapping

caused by the vulnerability, and due to randomization, the

overlapping cannot precisely tamper with targeted kernel data.

For vulnerabilities such as use-after-free, corruption happens

when a dangling pointer dereferences a freed object. After

separating the freed object using one AA, the heap memory

is recycled only for objects that are allowed by the separation

policy, which is restrictive enough to fail newest exploitation

attempts. Furthermore, SeaK creates a task that periodically

scans the entire kernel memory to check for the existence

of dangling pointers and starts recycling only when there is

no dangling pointer. Presented with multiple N-day vulner-

abilities, we employ a set of AAs to protect the kernel until

patches for these vulnerabilities are released.

7 Implementation

The implementation of SeaK includes 416 lines of C code for

eBPF templates, 152 lines of C code for the new helper func-

tions in the kernel, and 649 lines of Python code for eBPF

program synthesis and framework integration. In addition,

SeaK has 3998 lines of C++ code based on LLVM infrastruc-

ture, to pinpoint allocation and free sites for objects of interest

and support the scenario of separating vulnerability corrup-

tion by identifying vulnerable objects. SeaK is implemented

over Linux and can be migrated to other open-source kernels

thanks to the consistent design of the eBPF ecosystem across

platforms. SeaK is open-source in GPLv2 Licence1.

eBPF Program Synthesis. Given the type of objects for

separation, SeaK analyzes the kernel image with debug infor-

mation to pinpoint allocation sites and free sites in order to

synthesize eBPF programs. We use LLVM infrastructure to

search for these sites of interest at the source code level and

use Binary Ninja to map the results to binary addresses. More

specifically, we provide a list of kernel allocation and free

KPIs (e.g., kfree, kmem_cache_free, kfree_skbmem, etc) for Bi-

nary Ninja. Binary Ninja can get the addresses of all symbols,

cross-reference them to their call sites, retrieve the address

of each call site, and then write them into a file. After that,

each address in this file is passed to llvm-symbolizer to create

an allocation site mapping between the kernel image binary

and the source code. The mapping itself is stored as a Python

dictionary within a .pickle file. We can easily look up the

mapping for the exact call instructions that allocate and free

objects of interest. All the steps and sub-steps mentioned

above are wrapped in a Python script to fully automate the

entire analysis workflow.

New Helper Functions & BPF Maps. To support separat-

ing objects of interest, we extend the eBPF mechanism by

adding new helper functions, including bpf_create_slab_cache

1https://github.com/a8stract-lab/SeaK

and bpf_create_buddy to create dedicated regions, bpf_get_zone

to obtain the requested zone (e.g., normal zone or DMA zone),

bpf_cache_alloc and bpf_buddy_alloc to allocate memory in the

dedicated regions, and bpf_set_pt_present to set guard pages.

The two BPF maps, region-index and obj2region, used in the

eBPF program are both of type BPF_MAP_TYPE_HASH, which sup-

ports quick lookup and update. The maximum number of

entries for both maps is set to 214, allowing the management

of up to 16,384 dedicated regions. Our implementation is

based on v5.15 the latest Long-term support (LTS) kernel ver-

sion when we did our experiments. It can be easily migrated

to other versions with minor modifications. We leverage the

LLVM toolchain to compile eBPF programs.

Support for Loadable Kernel Modules (LKMs). In some

corner cases, objects of interest are allocated and freed by

loadable kernel modules. Without loading these modules, the

attached address cannot be determined. To deal with this is-

sue, we first install an eBPF program that attaches to the

load_module() kernel function to monitor which module is

loaded. Once the module is loaded, it sends out signals, allow-

ing separation-purposed eBPF programs to be installed. Note

that SeaK does not need the absolute address of the kernel

module as the attached sites are based on symbols.

Support for Application Scenarios. To identify vulnerable

objects that introduce corruption, we employ the approach

in prior work [43] to analyze reports generated by sanitizers

such as KASAN, KMSAN, KCSAN, and more. We pay spe-

cial attention to the soundness of our analysis by including

situations not previously considered. More specifically, some

kernel objects are ordinary arrays and do not belong to any

structure or union type (e.g., char* p = kmalloc(0x10)). If we

naively treat char* as the vulnerable type, SeaK will inevitably

isolate a number of irrelevant arrays in the kernel, resulting

in unnecessary overhead. Through investigation, we observe

that these arrays are either referenced by a pointer field in

a structure (e.g., bitmap_ip.members) so that they can be used

across system calls, or used as a temporary buffer that will

be passed as a function argument, which can be tracked by

our analysis. Therefore, for each array in the analysis, we

create an anonymous type type_name+offset for differentia-

tion. Here, type_name indicates the associated structure type

(e.g., struct bitmap_ip) and offset records the offset of the

pointer field (e.g., members). we patch the LLVM compiler to

dump bitcodes before any optimization passes, thus prevent-

ing compiler optimization from influencing the accuracy of

our analysis.

8 Evaluation

In this section, we use real-world cases to evaluate SeaK in

terms of security improvement, performance and memory

overhead, as well as scalability and stability.

Exploits Sensitive Object Type C1 C2 C3 SeaK

2021-4154 (exp1) [41] msgseg, pipe_buffer # #/H#

2021-22600 (exp3) [16] msg_msg, pipe_buffer # #/H#

2022-0185 (exp4) [24] msg_msg, pipe_buffer # #/H#

2022-27666 (exp6) [73] xattr, xfrm_policy # #/H#

2022-29582 (exp9) [56] msgseg, tls_context # #/H#

2022-1786 (exp13) [69] timerfd_ctx # #/H#

2022-20409 (exp15) [42] cred # #/H# #

Table 3: Results of SeaK’s security improvement for separating

security-sensitive objects. The “Exploits” column includes CVE IDs

and the internal exploit ID from Google. The “Sensitive Object Type”

means the type of objects misused in the exploit. # indicates failing

to prevent exploitation,H# stands for working occasionally due to the

sampling nature, means succeeding in preventing exploitation.

8.1 Security Analysis

To evaluate the security improvement of SeaK, we draw a com-

parison between it and existing security features, no matter

whether they are enabled by default or not.

Dataset & Criteria. We built two datasets corresponding

to the two illustrative scenarios. The first dataset is for the

scenario of separating security-sensitive objects. It includes

seven exploits collected by Google and Alphabet Vulnerabil-

ity Reward Program [36]. We didn’t include all cases because

the remaining lacks publicly available, functional exploit code.

We selected this program as the data source because the pro-

gram report clearly specifies which security-sensitive object

is used in each case, which saves our time and avoids inaccu-

racies in identifying which type of object for separation.

The second dataset is for the scenario of separating vulner-

ability corruption. This dataset is constructed using vulnera-

bilities reported by Syzkaller [15]. Every case from Syzkaller

encompasses a report, a configuration file, and a PoC pro-

gram, all aiding in the reproduction of the vulnerability. We

randomly selected 50 vulnerabilities reported after kernel ver-

sion v4.15 2, successfully reproducing 46 of them. These

include 30 reported by KASAN, 1 by KMSAN, 1 by UB-

SAN, 5 by BUG_ON macro, 2 by GPF, and 7 by WARNING

macro. The diversity within these vulnerabilities ensures that

the dataset is representative.

Separating Security-Sensitive Objects. Table 3 shows the

results of separating security-sensitive objects against the

first dataset. In general, SeaK outperforms C1 (i.e., freelist

randomization + freelist obfuscation + heap zeroing), C2 (i.e.,

structure layout randomization + KFENCE), and also C3 (i.e.,

slub_debug=UFPZ).

For C1, all exploits can bypass by-default enabled features

in it. First, freelist randomization essentially cannot prevent

temporal corruption based exploitation (e.g., exp1, exp3, exp9,

exp13, exp15) and is bypassed using heap grooming [39] in

2LLVM is unable to compile kernel earlier than this version, and many

eBPF features used in SeaK did not exist at the time.

the exploitation of spatial corruption based exploitation (e.g.,

exp4, exp6). Second, freelist obfuscation and heap zeroing

are not activated because no exploit tampers with freelist

pointer and relies on uninitialized value for KASLR bypass-

ing. Instead, they use the read capability introduced by the

vulnerability to leak kernel base address.

For C2, structure layout randomization fails to prevent all

exploits because it only randomizes structures with every field

as a function pointer. None of the sensitive objects misused in

the exploit fall into this category. KFENCE samples objects

for separation. During the experiment, we maximized the

capability of KFENCE by minimizing its sampling interval

to 1 ms and expanding its memory pool to its limit of 512

MB. We discovered that it can protect only 0.005% - 0.35%

sensitive objects in Table 3.

For C3, slub_debug successfully thwarts most exploits ex-

cept for exp15. This exploit performs DirtyCred attack [44]

which overlaps two cred carrying different levels of privilege,

thereby evading detection through red zone, poisoning, and

user tracking.

In comparison, SeaK prevents all exploits, showcasing the

strongest security improvement. On one hand, guard pages

and offset randomization hinder exploitation utilizing spatial

overlapping, achieving the same effect as slub_debug. On

the other hand, SeaK only recycles objects allocated from the

same site, having the same size, carrying the same privilege

level, and in the same zone. Therefore, it can handle not only

common temporal overlapping attacks but also the newest

same-type exploitation like DirtyCred. Moreover, when new

attacks emerge in the future, SeaK supports updating the recy-

cling policy correspondingly to keep pace with the evolving

threat landscape.

Separating Vulnerability Corruption. Table 4 shows the

sampled results for separating vulnerability corruption against

the second dataset. The results share a similarity with the first

scenario: C1 cannot restrict corruption, so is structure layout

randomization in C2; KFENCE in C2 works occasionally if

the vulnerable object is sampled. slub_debug can separate all

corruptions when proactive attacks are not present.

FP and FN. To separate vulnerability corruption, SeaK iden-

tifies the vulnerable object and its allocation and free sites.

During this process, SeaK can have False Positive (FP) - iden-

tifying objects that are not vulnerable or sites that allocating

irrelevant objects, and False Negative (FN) - missing vulnera-

ble objects or sites that allocate vulnerable objects. SeaK can

accommodate FP by separating more objects at the cost of

a minor increase in overhead, thanks to its scalability (See

Section 8.2). The elimination of FN relies on the soundness

of the analysis. To achieve this, we used the state-of-the-art

techniques in implementation (See Section 7). However, it

is important to note that, to date, no whole-program analysis

is sound when applied to real programming languages [46].

Therefore, thouogh empirically SeaK didn’t overlook any vul-

SYZ Title C1 C2 C3 Type of Identified Vulnerable Object SeaK

GPF-delayed_uprobe_remove # #/H# delayed_uprobe

WARNING-call_rcu # #/H# route4_filter

WARNING-ODEBUG bug-tcf_queue_work # #/H# route4_filter, workqueue_struct

KASAN-uaf-read-route4_get # #/H# Qdisc, route4_bucket, route4_filter, route4_head...

UBSAN-shift-oob-dummy_hub_control # #/H# urb, usb_ctrlrequest, usb_device, usb_hcd

KASAN-uaf-read-hci_send_acl # #/H# hci_chan, hci_conn, hci_dev, l2cap_conn, work_struct

BUG-corrupted list-kobject_add_internal # #/H# hci_conn

KMSAN-uninit-value-geneve_xmit # #/H# netdev, sk_buff

KASAN-slab-oob-write-decode_data # #/H# tty_ldisc, tty_struct

Table 4: Sampled results of SeaK’s security improvement for separating vulnerability corruption. More results can be found in Table 9. The

“SYZ Title” column is the bug report title minus an uninformative preposition. Structures in bold in “Type of Identified Vulnerable Object”

column are ground truth. The remainings are FPs. SeaK has no FN in all test cases. # indicates failing to prevent corruption from damaging

other kernel objects, H# stands for working occasionally due to the sampling nature, means succeeding in separating corruption.

nerable object in all test cases (See Table 4 and 9), we must

caution users about the risk of FNs - SeaK might occasionally

fail to separate vulnerable objects.

Comparison with Other Works. Beyond C1, C2, C3, in

Section 6.1, we mentioned several works also for object sepa-

ration purpose. Among them, xMP [53] and kalloc_type [30]

are comparable to SeaK security-wise. However, AutoSlab

inadvertently simplifies cross-cache exploitation [40] because

it separates kernel objects per slab cache which eases recy-

cling at the buddy system level. Google slab_virtual’s newest

implementation [63] prevents temporal-corruption-based ex-

ploitation but partially works for spatial-corrution-based ex-

ploitation. Besides, it cannot handle DMA objects which must

reside in DMA zone. On a different note, PET [66] prevents

vulnerability triggering, focusing on a different stage of the

exploitation chain from SeaK. It can miss vulnerabilities trig-

gered through different paths or at different sites [43].

8.2 Overhead Measurement

Benchmarks and Settings. We employed identical bench-

marks and settings including variances for measuring the

overhead of SeaK as those utilized for the existing security

features outlined in Section 3.2. In addition to the vanilla

kernel image, we built a hardened kernel image incorporating

the SeaK extensions. Both images have the BPF JIT engine

enabled. Note that, we needn’t build a different kernel for

each individualAA. Once the SeaK extension is there, any

number of AAs can be installed.

We used bpftrace to profile the lifespan of kernel objects

for 20 minutes in two situations - no workload and running

LMbench. The profiling revealed that most kernel objects are

allocated and freed quickly while a small fraction of objects

have long lifespan. No objects have both a long lifespan and

frequent operations, as this combination would result in a

substantial amount of objects lingering in memory, thus easily

exhausting kernel memory.

Based on the profiling results, we consider three repre-

sentative situations - Cold, Hot, and Durable. “Cold” refers

to an object whose allocation and free rarely happen. We

use KASAN-uaf-l2cap_chan_close [60] from the dataset for

separating vulnerability corruption as an example of this sit-

uation, because its vulnerable object - struct l2cap_chan is

allocated only in function l2cap_chan_create in the Bluetooth

module. “Hot” indicates that the object is frequently allocated

and freed, but has a short lifespan. Our profiling shows that

struct seq_operations is the hottest in both no workload situ-

ation and running LMbench situation - allocated 32.7 times

and 47.34 times per second respectively. “Durable” stands for

an object that has a long lifespan and a moderate operation fre-

quency. Our profiling suggests struct cred, struct sk_filter,

struct fdtable, because they have 5s, 20s, and 30s lifespan.

Further, we include struct file into our measurement because

“Everything is a file”.

Performance Overhead. Table 8.2 presents the performance

overhead of the three representative situations. Intuitively, one

would anticipate the overhead of “Hot” is the highest, given

the correlation between performance and the frequency of

allocation and free. However, the data illustrates that “Hot”

doesn’t show any significant increase compared to the other

situations. Specifically, the overhead ranges from -2.42% to

2.70% for LMbench, and -1.73% to 1.64% for Phoronix,

which is within reasonable margin of fluctuation and aligns

with the data for “Cold” and “Durable”. Therefore, we con-

clude that SeaK has negligible overhead, regardless of the

benchmark and the use frequency of objects that are sepa-

rated.

To further validate our conclusion and have a deeper un-

derstanding of SeaK’s performance, we measured the latency

caused by critical operations in SeaK. The potential overhead,

if there is any, will come from eBPF program execution and

LMbench 2 AAs 4 AAs 8 AAs 16 AAs 32 AAs 64 AAs

Avg. -0.32% 0.0% -0.55% 0.01% 0.20% 0.04%

Phoronix 2 AAs 4 AAs 8 AAs 16 AAs 32 AAs 64 AAs

Avg. -0.28% -0.74% -0.33% -0.31% 0.71% 0.22%

Table 7: Performance of SeaK scaling up to 64 AAs. More detailed

results are in Table 8.

of AAs grows, regardless of the benchmark used. This is

because one single AA, no matter for cold or hot objects, has

negligible overhead. Regarding memory overhead, Figure 5

shows that the memory usage of 64 AAs is on par with Vanilla,

with occasional variances up to 100MB. Such intermittent

overhead is negligible for modern OS which has access to

the entire physical memory - often multiples of 4GB - owing

to SDRAM technology. To conclude, SeaK is scalable when

multiple AAs are present.

Regarding stability, we enabled all 64 AAs on the machine

used for daily research and education activities, including

Overleaf, Outlook, Zoom meetings, ChatGPT, Docker con-

tainers for CTF challenges, and plugining/unplugining pe-

ripherals. Over nearly 2.5 months, the machine maintained

consistent stability without encountering any issues.

9 Discussion & Future Directions

eBPF Alternatives and Security Issues. SeaK employs the

eBPF ecosystem because it is safe, expressive, efficient, and

only privileged users can install eBPF programs. Without

considering these advantages, there are alternatives of eBPF

ecosystem like Kprobe. Kprobe stores raw data rather than

structures data in kernel memory and relies on a userspace pro-

cess to be in charge of data sharing between modules. Starting

from Kprobe, we need to reinvent the wheels already provided

by the eBPF ecosystem. This requires significant engineering

efforts and inevitably incurs higher performance overhead

due to additional kernel-user switches for data sharing.

A recent work EPF [34] reveals that attackers can misuse

BPF code as gadgets for code reuse attacks. Furthermore, the

eBPF ecosystem was previously reported to contain vulnera-

bilities [12–14]. Though addressing these security issues are

orthogonal to SeaK, it remains worthwhile to pay attention to

the downsides of eBPF in the deployment of SeaK.

Hardware Support. SeaK relies on randomization and guard

pages to separate objects within dedicated regions. While the

entropy stands strong at 43, it can be further strengthened

through hardware features or hypervisor features if present.

Some promising memory protection features include Intel

MPK, Arm protection domain, and RISC-V Donky [58], and

Xen. However, considering that many devices, especially em-

bedded ones, lack these features, we choose not to integrate

them into SeaK at this time to maintain its broad applicability.

In the future, we will release new versions to leverage these

features specific to different platforms.

Extending to stack. Though SeaK is designed as a kernel

secure allocator, it can be extended to prevent stack attack. For

example, we can attach eBPF programs to functions where

stack overflow might happen, recording the value of the return

address in BPF maps at the function entry and examining its

integrity at the function exit. We will integrate this extension

into SeaK in the future.

10 Related Works

Heap security features from the upstream kernel have been

evaluated in Section 3 and those from academia and commer-

cial products have been compared with SeaK in Section 8.

The remaining related works are secure allocator in user

space, which employs safe design principles and random-

ized mechanisms to mitigates heap vulnerabilities. Typically,

these allocators separate in-place metadata from the object

and randomize both the allocation and reuse of memory.

Notable examples include DieHard [19] and its successor

DieHarder [48], which rely on abundant memory space to

allocate more memory than required and randomize object lo-

cations. FreeGuard [59] enhances performance by integrating

the security features of BIBOP-style allocators with the rapid

allocation capabilities of freelist-style allocators. Guarder [57]

refines FreeGuard by fine-tuning the level of entropy, while

SlimGuard [45] improves memory efficiency through fine-

grained memory class management. While SeaK benefits from

its user-space counterparts, certain features are not applicable

to kernel space. For example, the kernel doesn’t have infinite

memory which is commonly assumed in these works.

In addition to general-purposed secure allocators, there are

specialized allocators focusing solely on mitigating use-after-

free vulnerabilities. Cling [50] ensures that freed objects are

reused only if their types match, identified through runtime

call stack analysis. MarkUs [17] employs garbage collection

principles to free objects when no dangling pointers reference

them. Oscar [62] and FFmalloc [20] operate under the as-

sumption of unlimited memory space, allocating objects once

and never reusing them. Vik [23] assigns IDs to allocated

objects and permits only pointers with matching IDs to ac-

cess the object, optimizing overhead through ARM hardware

features. These specialized allocators are generally unsuitable

for kernel space because their assumptions do not apply there.

Besides, they are overly specific to certain vulnerability type

while SeaK generally works.

11 Conclusion

This work presents SeaK, the first practical secure allocator in

the kernel that substantially strengthens heap security without

introducing noticeable overhead. It is anchored in a new strat-

egy of designing a secure kernel allocator, centering around

the “atomic alleviation” concept. This new strategy is derived

from in-depth analyses of existing kernel heap security fea-

tures and is further validated by comprehensive evaluation

of SeaK in terms of security improvement, performance and

memory overhead, scalability, and stability.

References

[1] Alexander Popov’s blog. https://a13xp0p0v.github.io/.

[2] Analysis and Exploitation of a Linux Kernel Vulnerability. -

Perception Point. https://perception-point.io/analys

is-and-exploitation-of-a-linux-kernel-vulnerab

ility-2/.

[3] bevx-talk. https://duasynt.com/slides/bevx-talk.pdf.

[4] CVE-2016-6187: Exploiting Linux kernel heap off-by-one -

Vitaly Nikolenko. https://duasynt.com/blog/cve-2016

-6187-heap-off-by-one-exploit.

[5] eBPF for Windows: Main Page — microsoft.github.io. https:

//microsoft.github.io/ebpf-for-windows/. [Accessed

06-Feb-2023].

[6] eBPF Implementation for FreeBSD :: FreeBSD

Presentations and Papers — papers.freebsd.org.

https://papers.freebsd.org/2018/bsdcan/hayakaw

a-ebpf_implementation_for_freebsd/. [Accessed

06-Feb-2023].

[7] Lexfo’s security blog - CVE-2017-11176: A step-by-

step Linux Kernel exploitation (part 1/4). https:

//blog.lexfo.fr/cve-2017-11176-linux-kernel-

exploitation-part1.html.

[8] Upstream bug lifetimes. https://syzkaller.appspot.com

/upstream/graph/lifetimes.

[9] Vitaly Nikolenko’s blog. https://duasynt.com/.

[10] ZDI-17-240 | Zero Day Initiative. https://www.zerodayin

itiative.com/advisories/ZDI-17-240/.

[11] Phoronix Test Suite, 2015. http://www.phoronix-test-s

uite.com/.

[12] CVE - CVE-2021-4204 — cve.mitre.org. https://cve.m

itre.org/cgi-bin/cvename.cgi?name=CVE-2021-4204,

2022.

[13] CVE - CVE-2022-0264 — cve.mitre.org. https://cve.m

itre.org/cgi-bin/cvename.cgi?name=CVE-2022-0264,

2022.

[14] CVE - CVE-2022-23222 — cve.mitre.org. https://cve.m

itre.org/cgi-bin/cvename.cgi?name=CVE-2022-23222,

2022.

[15] Syzkaller: an unsupervised coverage-guided kernel fuzzer,

2023. https://github.com/google/syzkaller.

[16] Rajvardhan Agarwal. CVE-2021-22600, 2022.

https://github.com/r4j0x00/exploits/tree/mas

ter/CVE-2021-22600.

[17] Ainsworth, Sam and Jones, Timothy M. MarkUs: Drop-in use-

after-free prevention for low-level languages. In 2020 IEEE

Symposium on Security and Privacy (SP), 2020.

[18] Anonymous Author(s). Raw results of evaluation. https:

//tinyurl.com/3ytyevpb, October 2022.

[19] Berger, Emery D. and Zorn, Benjamin G. DieHard: Probabilis-

tic Memory Safety for Unsafe Languages. In Proceedings of

the 27th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI), 2006.

[20] Brian Wickman and Hong Hu and Insu Yun and DaeHee Jang

and JungWon Lim and Sanidhya Kashyap and Taesoo Kim.

Preventing Use-After-Free Attacks with Fast Forward Alloca-

tion. In 30th USENIX Security Symposium (USENIX Security),

2021.

[21] Yueqi Chen, Zhenpeng Lin, and Xinyu Xing. A Systematic

Study of Elastic Objects in Kernel Exploitation. In Proceed-

ings of the 27th ACM SIGSAC Conference on Computer and

Communications Security (CCS), 2020.

[22] Yueqi Chen and Xinyu Xing. SLAKE: Facilitating Slab Ma-

nipulation for Exploiting Vulnerabilities in the Linux Kernel.

In Proceedings of the 26th ACM SIGSAC Conference on Com-

puter and Communications Security (CCS), 2019.

[23] Cho, Haehyun and Park, Jinbum and Oest, Adam and Bao,

Tiffany and Wang, Ruoyu and Shoshitaishvili, Yan and Doupé,

Adam and Ahn, Gail-Joon. ViK: Practical Mitigation of Tem-

poral Memory Safety Violations through Object ID Inspection.

In Proceedings of the 27th ACM International Conference on

Architectural Support for Programming Languages and Oper-

ating Systems (ASPLOS), 2022.

[24] clubby789. CVE-2022-0185: A Case Study - A tale on discov-

ering a Linux kernel privesc, 2022. https://www.hackthebo

x.com/blog/CVE-2022-0185:_A_case_study.

[25] Kees Cook. security things in linux v4.13, 2017.

https://outflux.net/blog/archives/2017/09/05/

security-things-in-linux-v4-13/.

[26] Kees Cook. security things in linux v4.14, 2017.

https://outflux.net/blog/archives/2017/11/14/

security-things-in-linux-v4-14/.

[27] Kees Cook. [v4] mm: Add SLUB free list pointer obfuscation.

https://patchwork.kernel.org/project/linux-harde

ning/patch/20170726041250.GA76741@beast/, 2022.

[28] Jake Edge. Kernel address space layout randomization, 2013.

https://lwn.net/Articles/569635/.

[29] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine Blin,

and Gilles Muller. BMC: Accelerating Memcached using Safe

In-kernel Caching and Pre-stack Processing. In 18th USENIX

Symposium on Networked Systems Design and Implementation

(NSDI), 2021.

[30] Pierre H. https://twitter.com/pedantcoder/status/14

70585072361172993?lang=en, 2021.

[31] Yi He, Zhenhua Zou, Kun Sun, Zhuotao Liu, Ke Xu, Qian

Wang, Chao Shen, Zhi Wang, and Qi Li. RapidPatch: Firmware

Hotpatching for Real-Time Embedded Devices. In Proceedings

of the 31th USENIX Security Symposium (USENIX Security),

2022.

[32] Hsin-Wei Hung, Yingtong Liu, and Ardalan Amiri Sani. Sifter:

protecting security-critical kernel modules in android through

attack surface reduction. In Proceedings of the 28th Annual In-

ternational Conference on Mobile Computing And Networking,

2022.

[33] Nur Hussein. Randomizing structure layout, 2017. https:

//lwn.net/Articles/722293/.

[34] Di in, Vaggelis Atlidakis, and Vasileios P Kemerlis. EPF:

Evil packet filter. In USENIX Annual Technical Conference

(USENIX ATC 23), 2023.

[35] Kostis Kaffes, Jack Tigar Humphries, David Mazières, and

Christos Kozyrakis. Syrup: User-Defined Scheduling Across

the Stack. In Proceedings of the ACM SIGOPS 28th Sympo-

sium on Operating Systems Principles (SOSP), 2021.

[36] kCTF VRP. Kernel Exploits Recipes Notebook.

https://docs.google.com/document/d/1a9uUAISBz

w3ur1aLQqKc5JOQLaJYiOP5pe_B4xCT1KA/, October 2022.

[37] Imran Khan. Linux SLUB Allocator Internals

and Debugging - SLUB Debugger, Part 2 of 4.

https://blogs.oracle.com/linux/post/linux-slub

-allocator-internals-and-debugging-2, 2022.

[38] Andrey Konovalov. Linux Kernel Exploitation, 2020. https:

//github.com/xairy/linux-kernel-exploitation.

[39] Azeria Labs. Grooming the ios kernel heap, 2020. https:

//azeria-labs.com/grooming-the-ios-kernel-heap/.

[40] Zhenpeng Lin. How AUTOSLAB Changes the Memory Un-

safety Game. https://grsecurity.net/how_autoslab_ch

anges_the_memory_unsafety_game, August 2021.

[41] Zhenpeng Lin. CVE-2021-4154, 2022. https://github.c

om/Markakd/CVE-2021-4154/blob/master/WRITEUP.md.

[42] Zhenpeng Lin. CVE-2022-20409, 2022. https://github.c

om/Markakd/bad_io_uring.

[43] Zhenpeng Lin, Yueqi Chen, Yuhang Wu, Dongliang Mu, Chen-

sheng Yu, Xinyu Xing, and Kang Li. GREBE: Unveiling

Exploitation Potential for Linux Kernel Bugs. In IEEE Sympo-

sium on Security and Privacy (S&P), 2022.

[44] Zhenpeng Lin, Yuhang Wu, and Xinyu Xing. DirtyCred: Esca-

lating Privilege in Linux Kernel. In Proceedings of the 29th

ACM SIGSAC Conference on Computer and Communications

Security (CCS), 2022.

[45] Liu, Beichen and Olivier, Pierre and Ravindran, Binoy. Slim-

Guard: A Secure and Memory-Efficient Heap Allocator. In

Proceedings of the 20th International Middleware Confer-

ence(Middleware), 2019.

[46] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis,

Ondřej Lhoták, J. Nelson Amaral, Bor-Yuh Evan Chang,

Samuel Z. Guyer, Uday P. Khedker, Anders Møller, and Dim-

itrios Vardoulakis. In Defense of Soundiness: A Manifesto. In

Communications of the ACM (CACM), 2015.

[47] Larry McVoy and Carl Staelin. LMbench - Toos for Perfor-

mance Analysis, 2015. http://lmbench.sourceforge.net

/.

[48] Novark, Gene and Berger, Emery D. DieHarder: Securing

the Heap. In Proceedings of the 17th ACM Conference on

Computer and Communications Security (CCS), 2010.

[49] Sujin Park, Diyu Zhou, Yuchen Qian, Irina Calciu, Taesoo

Kim, and Sanidhya Kashyap. Application-Informed Kernel

Synchronization Primitives. In 16th USENIX Symposium on

Operating Systems Design and Implementation (OSDI), 2022.

[50] Periklis Akritidis. Cling: A Memory Allocator to Mitigate Dan-

gling Pointers. In 19th USENIX Security Symposium (USENIX

Security), 2010.

[51] Jesse Polhemus. Vasileios kemerlis wins an nsf career award

for adaptive hardening, debloating, and hardware-assisted

protection. https://cs.brown.edu/news/2023/03/21/vas

ileios-kemerlis-wins-nsf-career-award-adaptive

-hardening-debloating-and-hardware-assisted-prot

ection/.

[52] Alexander Potapenko. mm: security: introduce

init_on_alloc=1 and init_on_free=1 boot options.

https://git.kernel.org/pub/scm/linux/kernel/gi

t/torvalds/linux.git/commit/?id=6471384af2a65306

96fc0203bafe4de41a23c9ef, 2022.

[53] Sergej Proskurin, Marius Momeu, Seyedhamed Ghavamnia,

Vasileios P. Kemerlis, and Michalis Polychronakis. xMP: Se-

lective Memory Protection for Kernel and User Space. In

Proceedings of the 41st IEEE Symposium on Security and Pri-

vacy (S&P), 2020.

[54] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang, and

K. K. Ramakrishnan. SPRIGHT: Extracting the Server from

Serverless Computing! High-Performance EBPF-Based Event-

Driven, Shared-Memory Processing. In Proceedings of the

ACM SIGCOMM Conference (SIGCOMM), 2022.

[55] Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen, Camilo

Vega, Michael Stumm, and Ding Yuan. An Analysis of Perfor-

mance Evolution of Linux’s Core Operations. In Proceedings

of the 27th ACM Symposium on Operating Systems Principles

(SOSP), 2019.

[56] Ruia-ruia. CVE-2022-29582, 2022. https://github.com/R

uia-ruia/CVE-2022-29582-Exploit.

[57] Sam Silvestro and Hongyu Liu and Tianyi Liu and Zhiqiang

Lin and Tongping Liu. Guarder: A Tunable Secure Alloca-

tor. In 27th USENIX Security Symposium (USENIX Security),

2018.

[58] David Schrammel, Samuel Weiser, Stefan Steinegger, Mar-

tin Schwarzl, Michael Schwarz, Stefan Mangard, and Daniel

Gruss. Donky: Domain Keys – Efficient In-Process Isolation

for RISC-V and x86. In 29th USENIX Security Symposium

(USENIX Security), 2020.

[59] Silvestro, Sam and Liu, Hongyu and Crosser, Corey and Lin,

Zhiqiang and Liu, Tongping. FreeGuard: A Faster Secure Heap

Allocator. In Proceedings of the ACM SIGSAC Conference on

Computer and Communications Security (CCS), 2017.

[60] syzbot. WARNING:refcount bug in l2cap_chan_put,

2020. https://syzkaller.appspot.com/bug?id=39d35c

93d0856ca3134bf97f8bb3f249808c2751.

[61] Seyed Mohammadjavad Seyed Talebi, Zhihao Yao,

Ardalan Amiri Sani, Zhiyun Qian, and Daniel Austin.

Undo Workarounds for Kernel Bugs. In Proceedings of the

30th USENIX Security Symposium (USENIX Security), 2021.

[62] Thurston H.Y. Dang and Petros Maniatis and David Wag-

ner. Oscar: A Practical Page-Permissions-Based Scheme for

Thwarting Dangling Pointers. In 26th USENIX Security Sym-

posium (USENIX Security), 2017.

[63] Torvalds. Slub virtual. https://github.com/thejh/linux

/tree/slub-virtual/.

[64] Eduardo Vela. Making Linux Kernel Exploit Cook-

ing Harder. https://security.googleblog.com/2022/08

/making-linux-kernel-exploit-cooking.html, August

2022.

[65] Ruipeng Wang, Kaixiang Chen, Chao Zhang, Zulie Pan,

Qianyu Li, Siliang Qin, Shenglin Xu, Min Zhang, and Yang

Li. AlphaEXP: An expert system for identifying Security-

Sensitive kernel objects. In 32nd USENIX Security Symposium

(USENIX Security), 2023.

[66] Zicheng Wang, Yueqi Chen, and Qingkai Zeng. PET: Prevent

discovered errors from being triggered in the linux kernel. In

32nd USENIX Security Symposium (USENIX Security), 2023.

[67] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Wei Zou, and Xi-

aorui Gong. FUZE: Towards Facilitating Exploit Generation

for Kernel Use-After-Free Vulnerabilities. In Proceedings

of the 27th USENIX Security Symposium (USENIX Security),

2018.

[68] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi Xie,

Yuanyuan Zhang, and Dawu Gu. From Collision To Exploita-

tion: Unleashing Use-After-Free Vulnerabilities in Linux Ker-

nel. In Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security (CCS), 2015.

[69] Kyle Zeng. CVE-2022-1786, 2022. https://blog.kylebot

.net/2022/10/16/CVE-2022-1786.

[70] Kyle Zeng, Yueqi Chen, Haehyun Cho, Xinyu Xing, Adam

Doupé, Yan Shoshitaishvili, and Tiffany Bao. Playing for K

(H) eaps: Understanding and Improving Linux Kernel Exploit

Reliability. In Proceedings of the 31st USENIX Security Sym-

posium (USENIX Security), 2022.

[71] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jef-

frey Tao, Evan Mesterhazy, Michael Makris, Junfeng Yang,

Amy Tai, and Ryan Stutsman. XRP:In-Kernel Storage Func-

tions with eBPF. In 16th USENIX Symposium on Operating

Systems Design and Implementation (OSDI), 2022.

[72] Yang Zhou, Zezhou Wang, Sowmya Dharanipragada, and Min-

lan Yu. Electrode: Accelerating Distributed Protocols with

eBPF. In 20th USENIX Symposium on Networked Systems

Design and Implementation (NSDI), 2023.

[73] Xiaochen Zou. CVE-2022-27666, 2022. https://github.c

om/plummm/CVE-2022-27666.

LMBench 2 cases 4 cases 8 cases 16 cases 32 cases 64 cases

Simple syscall 0.70% -0.01% -1.52% -1.20% 0.28% 1.43%

Simple read 0.06% 0.16% -0.35% 0.16% 0.78% 0.05%

Simple write 0.55% -2.28% -2.58% -2.28% -0.21% 2.44%

Select on 100 fd’s -0.11% -0.04% 0.11% 0.00% -0.36% 0.01%

Signal handler install -0.77% -1.21% -1.55% -1.21% -1.01% -0.39%

Signal handler overhead 0.26% -0.34% -1.14% -0.58% 1.55% 3.29%

fork+exit -2.68% 3.26% 0.06% 3.26% -2.04% -3.30%

fork+execve -1.95% -0.90% -0.50% -0.90% 3.01% -1.99%

fork+/bin/sh -c -0.39% 0.06% 0.65% 0.06% 1.07% -2.96%

UDP latency 0.95% 0.17% -0.34% 0.17% -0.23% 0.92%

TCP/IP connection 1.72% 0.64% -0.15% 0.64% 1.20% 0.10%

AF_UNIX bandwidth -1.09% 0.13% 0.26% 0.13% -1.54% -0.16%

Pipe bandwidth -1.45% 1.00% -0.16% 1.89% 0.13% 0.04%

Avg. -0.32% 0.05% -0.55% 0.01% 0.20% 0.04%

Phoronix 2 cases 4 cases 8 cases 16 cases 32 cases 64 cases

Sockperf (Msgs/sec) 0.48% -1.33% -1.65% -1.30% 4.20% 3.75%

OSBench (Ns/Event) -0.24% -0.16% -0.19% -0.23% 1.45% 0.45%

7-Zip Compress (MIPS) -1.88% -1.22% -0.50% 1.07% -0.29% 0.41%

FFmpeg Live (FPS) 0.48% -0.83% -0.34% 1.63% 1.97% 0.87%

OpenSSL SHA256 (B/s) -0.10% -0.16% -0.09% -0.05% -0.07% 0.04%

Redis SET (Reqs/sec) 0.94% -3.30% -3.06% -3.36% -1.06% -2.99%

SQLite Speedtest (sec) 0.37% -0.31% 0.57% 1.41% 0.00% 0.15%

Apache 100 (Reqs/sec) -0.30% -0.52% -0.71% -0.40% -0.55% -0.85%

Avg. -0.28% -0.74% -0.33% -0.31% 0.71% 0.22%

Table 8: Complete results for the performance of SeaK scaling up

to 64 AAs. Corresponding sampled results are in Table 7.

A Additional Results

Due to the space limit, we only present sampled results in the

text. In Google Sheet [18], we present more results regarding

memory usage of existing features and SeaK when running

Phoronix. In addition, Table 8 presents more complete results

regarding SeaK’s scalability in performance. Table 9 shows

the FN and FP results of static analysis for separating vulner-

ability corruption. List 2 shows an example of synthesized

eBPF program.

SYZ Title C1 C2 C3 Type of Identified Vulnerable Object SeaK

BUG__corrupted_list_in_kobject_add_internal # #/H# hci_conn

KASAN__use-after-free_Read_in_sctp_auth_free # #/H# crypto_shash, sctp_endpoint

KASAN__use-after-free_Write_in__sco_sock_close # #/H# hci_conn

KMSAN__uninit-value_in_geneve_xmit # #/H# sk_buff, net_device

WARNING__refcount_bug_in_l2cap_chan_put # #/H# l2cap_chan

KASAN__slab-out-of-bounds_Read_in_tcf_exts_destroy # #/H# tc_action, tcindex_filter_result

KASAN__use-after-free_Read_in_rdma_listen # #/H# rdma_id_private

BUG__corrupted_list_in_nft_obj_del # #/H# nft_object

BUG__corrupted_list_in_nf_tables_commit # #/H# nft_flowtable,nft_trans

general_protection_fault_in_delayed_uprobe_remove # #/H# delayed_uprobe

KASAN__use-after-free_Read_in_delayed_uprobe_remove # #/H# delayed_uprobe

KASAN__use-after-free_Read_in_x25_device_event # #/H# net_device, x25_neigh

WARNING__ODEBUG_bug_in_tcf_queue_work # #/H# workqueue_struct,route4_filter

KASAN__use-after-free_Read_in_route4_get # #/H#
Qdisc, route4_bucket,route4_head, sk_buff, tcf_block, tcf_chain,

tcf_proto,route4_filter

WARNING__ODEBUG_bug_in_route4_change # #/H# route4_filter

WARNING_in_call_rcu # #/H# route4_filter

KASAN__slab-out-of-bounds_Write_in_default_read_copy_kernel # #/H#
snd_pcm_oss_file, snd_pcm_plugin, snd_pcm_runtime,

snd_pcm_substream,snd_pcm_plugin_channel

KASAN__slab-out-of-bounds_Read_in_default_write_copy_kernel # #/H#
snd_pcm_oss_file, snd_pcm_plugin, snd_pcm_runtime,

snd_pcm_substream,snd_pcm_plugin_channel

general_protection_fault_in_vb2_mmap # #/H# video_device,vb2_buffer

KASAN__use-after-free_Read_in_vb2_mmap # #/H# video_device,vb2_buffer

KASAN__use-after-free_Read_in__list_add_valid # #/H# sockaddr, ucma_context, ucma_file,rdma_id_private

KASAN__null-ptr-deref_Read_in_refcount_sub_and_test_checked # #/H# vb2_vmalloc_buf

KASAN__use-after-free_Write_in__ext4_expand_extra_isize # #/H# ext4_inode_info, ext4_sb_info, inode

KASAN__use-after-free_Read_in__nf_tables_abort # #/H# list_head, net, nft_trans, sk_buff, sock, nft_table

BUG__corrupted_list_in__nf_tables_abort # #/H# list_head, nft_flowtable, nft_rule, nft_set, nft_table

WARNING_in_snd_info_get_line # #/H#
pde_opener, proc_dir_entry, seq_file, snd_info_private_data,

snd_info_buffer

KASAN__slab-out-of-bounds_Write_in_decode_data # #/H# tty_ldisc, tty_struct

KASAN__use-after-free_Read_in_ip6_hold_safe # #/H# dst_entry

KASAN__use-after-free_Write_in_ip6_hold_safe # #/H# dst_entry

KASAN__use-after-free_Read_in_l2cap_chan_close # #/H# l2cap_chan

KASAN__slab-out-of-bounds_Read_in_cap_inode_getsecurity # #/H# vfs_cap_data

kernel_BUG_at_fs/userfaultfd.c # #/H# userfaultfd_ctx

KASAN__use-after-free_Read_in_handle_userfault # #/H# mm_struct, vm_area_struct,userfaultfd_ctx

KASAN__use-after-free_Read_in__rhashtable_lookup # #/H# rhashtable

KASAN__use-after-free_Read_in_hci_send_acl # #/H# hci_conn, hci_dev, l2cap_conn, work_struct, hci_chan

WARNING_in_snd_usbmidi_submit_urb/usb_submit_urb # #/H# urb

UBSAN__shift-out-of-bounds_in_dummy_hub_control # #/H# urb, usb_ctrlrequest, usb_device, usb_hcd

KASAN__use-after-free_Read_in_tcp_check_sack_reordering # #/H# sk_buff

KASAN__use-after-free_Read_in__vb2_perform_fileio # #/H# vb2_fileio_data, video_device

KASAN__slab-out-of-bounds_Read_in_bitmap_ip_add # #/H# bitmap_ip->members

KASAN__slab-out-of-bounds_Read_in_bitmap_ip_ext_cleanup # #/H# net, nlattr, sk_buff, sock, bitmap_ip->members

KASAN__slab-out-of-bounds_Write_in_bitmap_ip_del # #/H# bitmap_ip->members

KASAN__use-after-free_Read_in__queue_work # #/H# atomic64_t, work_struct

KASAN__use-after-free_Read_in_ep_scan_ready_list # #/H# atomic64_t, work_struct

KASAN__use-after-free_Read_in_p9_fd_poll # #/H# list_head, p9_client, p9_trans_fd

WARNING__ODEBUG_bug_in_p9_fd_close # #/H# p9_client, p9_trans_fd

Table 9: More results of SeaK’s security improvement for separating vulnerability corruption. Structures in bold in “Type of Identified

Vulnerable Object” are ground truth. The remaining is FP. SeaK has no FN in all test cases. # indicates failing to prevent exploitation,H# stands

for working occasionally due to the sampling nature, means succeeding in preventing exploitation.

1 // essential utilities

2 // define a map where an alloc_addr corresponds to a key

3 struct {

4 ...

5 } addr2key SEC(".maps");

6 // define a map where a key corresponds to a cache

7 struct {

8 ...

9 } key2cache SEC(".maps");

10 int alloc_handler(struct pt_regs* ctx,

11 u64 kpi_type) {

12 // one key is related to one kind of object

13 key = generate_key(ctx);

14 //for kmem_cache_alloc,

15 //we should get the kmem_cache first.

16 //Then we can read the alloc_size through kmem_cache.

17 if(kpi_type == kmem_cache_alloc){

18 cache = (struct kmem_cache*) PT_REGS_PARM1(ctx);

19 alloc_size = BPF_CORE_READ(cache, size);

20 alloc_size = get_size(alloc_size);

21 }else if(kpi_type == kmalloc){

22 alloc_size = PT_REGS_PARM1(ctx);

23 alloc_size = get_size(alloc_size);

24 }

25 //use key to find the related cache in key2cache

26 cache = bpf_look_up_cache(key2cache, key)

27 if(!cache){

28 //create a cache if first allocted

29 cache = generate_cache(key,alloc_size);

30 }

31 //allocate an object

32 alloc_addr = bpf_cache_alloc(cache)

33 update_map(addr2key,alloc_addr,key);

34 }

35 int free_handler(struct pt_regs* ctx,

36 u64 kpi_type) {

37 //for kmem_cache_free

38 //the second parameter is alloc_addr

39 if(kpi_type == kmem_cache_free){

40 alloc_addr = PT_REGS_PARM2(ctx);

41 }else if (kpi_type == kfree){

42 alloc_addr = PT_REGS_PARM1(ctx);

43 }

44 key = bpf_look_up_key(addr2key,alloc_addr)

45 //locate the object’s cache

46 cache = bpf_look_up_cache(key2cache,key)

47 alloc_size = BPF_CORE_READ(cache,size)

48 // get the alloc_size of the object

49 bpf_delete_object(alloc_size,alloc_addr)

50 }

51 // attach to allocation site

52 SEC("kprobe/single_open+0x2a")

53 int probe_alloc_seq (struct pt_regs* ctx) {

54 return alloc_handler(ctx, kmem_cache_alloc);

55 }

56 // attach to free site

57 SEC("kprobe/single_release+0x34")

58 int probe_free_seq (struct pt_regs* ctx) {

59 return free_handler(ctx, kfree);

60 }

Listing 2: A simplified example of a synthesized ebpf pro-

gram. The to-be-protected object is seq_operations which is

allocated via kmem_cache_alloc in single_open() and freed via

kfree in single_release. Note that comments in the code are

not synthesized but for illustration purpose.

