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Abstract

In recent years, heap-based exploitation has become the most
dominant attack against the Linux kernel. Securing the kernel
heap is of vital importance for kernel protection. Though the
Linux kernel allocator has some security designs in place to
counter exploitation, our analytical experiments reveal that
they can barely provide the expected results. This shortfall
is rooted in the current strategy of designing secure kernel
allocators which insists on protecting every object all the time.
Such strategy inherently conflicts with the kernel nature.

To this end, we advocate for rethinking the design of secure
kernel allocator. In this work, we explore a new strategy which
centers around the “atomic alleviation” concept, featuring
flexibility and efficiency in design and deployment. Recent
advancements in kernel design and research outcomes on
exploitation techniques enable us to prototype this strategy in
a tool named SeaK. We used real-world cases to thoroughly
evaluate SeaK. The results validate that SeaX substantially
strengthens heap security, outperforming all existing features,
without incurring noticeable performance and memory cost.
Besides, Seak shows excellent scalability and stability in the
production scenario.

1 Introduction

In the Linux kernel, exploitation targeting heap vulnerabili-
ties such as use-after-free, heap out-of-bound write and read,
and uninitialized heap is very prevalent. In the Google and
Alphabet Vulnerability Reward Program held in 2022 [36], 42
revealed Linux kernel exploits are all against the kernel heap.
In the Pwn20wn contest since 2020, all nine showcased Linux
kernel exploits target the kernel heap, with awards reaching
up to $300k. In addition, from a variety of sources including
industry summits like BlackHat and personal blogs of famous
whitehat hackers (e.g., [1,9]), we collected public exploits,
PoCs, and write-ups over the past five years, and found that
143 out of 173 Linux kernel exploits are against the kernel
heap. Hence, securing the heap is of paramount importance
for kernel protection.

Though there are security features in place in the Linux
kernel to counter heap-based exploitation, they can barely
provide the expected protection. On one hand, the features
that are enabled by default in most distros are overly specific
to certain exploitation techniques, making them bypassable.
Consider freelist randomization as an example: by design,
it only works for exploits leveraging spatial corruption, like
heap out-of-bound write and read, and falls short in defend-
ing against temporal corruption, such as use-after-free. On
the other hand, the features that are disabled by default have
intrinsic weaknesses and fail to deliver the promised security
improvements. To enumerate, structure layout randomization
faces challenges in securely storing the random seed, while,
based on our experiments, KFENCE rarely achieves its goal
of separating kernel objects.

In parallel, in the user space, the design of secure allocators
has been well researched [19,45,57,59], introducing features
like red zones, poisoning, user tracking, and ad-hoc sanity
checks. These features can be found in a kernel mechanism
named slub_debug. Unfortunately, slub_debug is regarded
primarily as a debugging feature and serves as the building
block for sanitizers like KASAN, due to its high cost.

In this work, we conducted a multi-faceted measurement of
existing security features, revealing the fundamental obstacle
in designing a kernel secure allocator: the allocator is the core
kernel subsystem and is invoked with high frequency. Given
the current strategy in security feature design, which insists
on protecting every object all the time [51], performance and
memory overhead accompany each allocation and free. This
level of overhead is unacceptable for the kernel as it must
offer services for user space with high efficiency but does not
have unlimited memory.

Since the obstacle is intrinsic to the kernel nature, we advo-
cate for rethinking the design of kernel secure allocators. In
this work, we explore a new strategy which centers around the
“atomic alleviation” (AA) concept. One AA offers the most
granular level of exploit alleviation by separating a specific
type of kernel object. We can orchestrate particular sets of
AAs to meet distinct security needs, focusing only on critical



objects instead of every object indiscriminately. Besides, the
enforcement and retirement of AAs do not bother to recom-
pile and reboot the kernel, supporting continuous protection
upgrading.

This strategy had been previously infeasible until re-
cent advancements in the extended Berkeley Packet Filter
(eBPF) [29,35,49,54,66,71,72]. Using eBPF, we prototyped
this new strategy in a tool named SeaK, representing Secure
allocator for Kernel. We further developed techniques that
can automatically identify allocation and free sites of objects
selected for separation in a certain scenario, and synthesized
eBPF programs that construct separation at runtime. The sep-
aration is shipped with guard pages and up to 43 entropy
randomization.

This strategy wouldn’t be reliable security-wise without
the outcomes of research on exploitation techniques in recent
years. We applied SeaK to two scenarios to illustrate how
it enhances kernel heap security. Given that not all objects
are worth protecting, recent works [21,22, 65] have been fo-
cusing on identifying security-sensitive objects in the Linux
kernel. Advancements in this direction pave the way for de-
ploying SeakK to separate and protect these critical objects. In
another scenario where the kernel patching process is lengthy,
we showcase how SeaK can separate corruptions introduced
by N-day vulnerabilities, thereby protecting the kernel from
potential exploitation before patches are available.

We evaluated SeaK in terms of security improvement, per-
formance and memory overhead, and scalability, by using
real-world cases. Our experimental results validate that Seak
can effectively thwart state-of-the-art kernel heap exploitation,
even the newest DirtyCred attack [44], outperforming existing
security features. In the meanwhile, the performance overhead
of a single AA is negligible - less than 1% on average when
separating the most frequently used object; and the memory
overhead is not noticeable when separating the most durable
object. SeaK is scalable as there is no obvious increase in
performance overhead and memory overhead when more than
64 AAs are orchestrated.

To our knowledge, SeaK is the first practical secure alloca-
tor in open-source kernels. SeaK has been deployed on the
authors’ machine, having supported daily research and educa-
tion activities for 2.5 months, and running stably to date. In
summary, this work makes the following contributions:

* A multi-faceted measurement to disclose the inherent ob-
stacles of designing a secure allocator for OS kernel.

* The introduction of a new and practical strategy to secure
kernel heap and its core concept - atomic alleviation.

* Open-source design and implementation of the strategy
in SeaK which is the first practical secure kernel alloca-
tor. SeaK can remediate vulnerability before patches are
available.

* A comprehensive evaluation of SeaK which validates the
effectiveness and efficiency of the new strategy.

spatial overlappin
P pping [ vuin. obj
free
i
temporal
allocate overlapping
! itive data : :

Figure 1: Kernel heap exploitation which creates overlapping
between spatial/temporal memory corruption from the vulner-
able object and sensitive data in the victim object.
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2 Background

In this section, we will describe the heap management and
heap exploitation techniques in the Linux kernel.

2.1 Kernel Heap Management

In the Linux kernel, the term of heap often refers to the mem-
ory located in the direct mapping region which has 64TB
in total and maps all physical memory. The heap is coordi-
nately managed by the buddy allocator and the SLAB/SLUB
allocator, which roughly work as follows.

Buddy Allocator. The buddy allocator partitions physical
memory into pages and manages objects larger than one page.
During allocation, if the requested size (e.g., 2 pages) is un-
available, a larger chunk (e.g., 8 pages) is repeatedly halved
(e.g., 8 pages to 4 pages to 2 pages) until a chunk of the exact
size is produced. The two halves are referred to as buddies:
one satisfies the allocation request and the other remains free.
When the allocated buddy is later freed and its counterpart
buddy is not used, they will be merged back and reclaimed
(e.g., two 2-page buddies back to one 4-page chunk).

SLAB/SLUB Allocator. The SLAB/SLUB allocator manages
small objects by acquiring pages from the buddy allocator.
These pages are known as slab caches and are divided into
slots - each slot aims to hold one object. Objects stored in
the same slab cache either share the same type or have a
similar size. When slots are free, they are linked in a singly-
linked list called the freelist. The freelist works in a LIFO
(Last In, First Out) fashion: retrieving the first slot in the
freelist for allocation and adding the slot back to the beginning
of the list during free. If all slots in these pages are freed,
the SLAB/SLUB allocator returns these pages to the buddy
allocator.

2.2 Kernel Heap Exploitation

In recent years, exploitation techniques against the kernel
heap have been thoroughly discussed in both academia [21,
22,67,68,70] and industry [38]. Due to the space limit, we
won’t elaborate on concrete exploits but instead summarize
the common ideas behind various exploitation techniques.



Create Overlapping. Figure 1 illustrates an essential step
in exploitation which is to create overlapping between heap
corruption and sensitive data such as function pointers and
credentials. The overlapping can be categorized into spatial
overlapping and temporal overlapping according to the nature
of vulnerabilities. To exploit heap out-of-bound write/read, at-
tackers manipulate heap layout [22,68] to place victim objects
that contain sensitive data adjacent to the vulnerable object.
By triggering the vulnerability, the corruption has a spatial
overlapping with the sensitive data, allowing attackers to tam-
per with it and achieve IP control or privilege escalation. To
exploit use-after-free, attackers first free the vulnerable object
which still has a dangling pointer referring to it. The freed slot
is recycled back to SLAB/SLUB allocator. Then, attackers
spray victim objects containing sensitive data to reclaim the
same memory, leveraging the LIFO feature. By dereferencing
the dangling pointer, attackers tamper with sensitive data in
the victim object and obtain exploitable primitives.

Cross-cache Exploitation. If the victim object and the vulner-
able object are in the same slab cache, it is often referred to as
within-cache exploitation. Cross-cache exploitation stands for
the situation where the victim object and the vulnerable object
are in different slab caches. To exploit a heap out-of-bound
write/read in a cross-cache exploitation manner, attackers ma-
nipulate the heap layout at the buddy allocator level, ensuring
that two pages — the one containing the victim object and
the other containing the vulnerable object are adjacent though
they belong to distinct caches. To exploit a use-after-free
in a cross-cache exploitation manner, attackers first free all
vulnerable objects within the same cache so that the cache is
reclaimed to the buddy allocator. Then, they allocate a number
of victim objects, forcing the buddy allocator to re-halve the
just reclaimed slab cache pages - previously storing vulner-
able objects - for storing victim objects instead. Thus, there
is a temporal overlapping between the vulnerable and victim
objects.

Same-type Exploitation. In most exploits, regardless of
within-cache or cross-cache, the vulnerable object and the
victim object are of distinct types so the difference between
their semantics allows successful tampering. However, the
newest DirtyCred attack [44] demonstrates that vulnerable ob-
jects and victim objects can be of the same type in exploitation.
Technically, two objects of the same type (e.g., struct cred
but carrying different privilege levels (e.g., cred.uid == 1000
and cred.uid == 1000) can be overlapped to achieve privilege
escalation. This attack bypasses all existing security features
in the kernel allocator, even slub_debug.

3 Obstacles in Existing Designs

The newest security features in the Linux kernel allocator are
in three categories: (C1) features that are enabled by default
in mainstream Linux distros such as Ubuntu and CentOS;

(C2) features that are designed for protection but are disabled
by default in most distros; (C3) features that are commonly
employed in user space secure allocators and integrated into
slub_debug [37].

In this section, we will evaluate the security and overhead
of these features, followed by investigation into the particular
obstacle in secure kernel allocator design.

3.1 Security Analysis

By-default Enabled Features (C1). In this category, @ freel-
ist randomization [26] randomizes the order of slots in the
freelist of the SLAB/SLUB allocator so that attackers can
hardly accurately predict the slab cache layout. ® The freelist
obfuscation [27] aims to hinder attackers from manipulating
the allocator into returning a memory under the attackers’
control. ® The heap zeroing [52] on allocation initializes the
slot during allocation so that attackers cannot read sensitive
information belonging to the object that previously occupied
the slot. These features raise the bar of exploitation but are
too specific to certain vulnerabilities and attack techniques
and thus can be easily bypassed [2—4,7, 10]. Taking freelist
randomization as an example, it is designed only against vul-
nerabilities that cause spatial overlapping like out-of-bound
write, and doesn’t work for vulnerabilities that cause temporal
overlapping like use-after-free. Even for spatial overlapping,
it can be bypassed through heap grooming [39].

By-default Disabled Features (C2). In this category, @ struc-
ture layout randomization [25] shuffles the field orders in
structures each time the kernel boots up so that attackers
cannot predict the offset between sensitive data and the start
of corruption. However, the kernel must reveal the random
seed to support compiling third-party kernel modules. How
to securely store the seed continues to be a challenge nowa-
days [33]. Besides, it only randomizes structures that contain
only function pointers and cannot cover all structural types.
® KFENCE allocates objects from a pre-reserved pool. Each
object takes pages and is surrounded by red zones and guard
pages, which can detect out-of-bound access. When the ob-
ject is freed, the corresponding page is unmapped so that
use-after-free can also be detected. However, to reduce over-
head, KFENCE randomly samples objects for separation, no
matter whether the object is security-related or not. Further,
the sampling only happens in the fast path of allocation and it
only samples one object in a certain time window. Thus, in
our experiment, KFENCE can only protect 0.005% - 0.35%
sensitive objects even after its capability is maximized. Fea-
tures in this category are designed for protection but fall short
of providing assured security improvement, presumably the
reason why they are disabled by default.

Lightweight “Debugging” Features (C3). This category
includes @ slub_debug which is primarily regarded as a de-
bugging feature. It provides a full spectrum of security fea-



tures typically found in userspace secure allocators: red zones
around objects enabled by Z flag, poisoning and user tracking
of freed memory by P and U flags respectively, and additional
sanity checks by F flag. Compared with KASAN, slub_debug
is lightweight but for protection, it is too heavy. We will show
this in the following.

3.2 Overhead Measurement

Benchmarks and Settings. We use two benchmarks to evalu-
ate the overhead of existing security features. One is LM-
bench [47] which is a micro-benchmark widely used for
system call level measurement. Another is Phoronix Test
Suite [11] which is a macro-benchmark. It runs real-world
applications and we use it to measure the impact of SeaK on
the overall system. In particular, from Phoronix Test Suite, we
choose seven applications: OpenSSL, 7zip-compress, FFm-
peg, Redis, SQLite, and Apache as representatives of different
workloads to comprehensively test processor, OS, and system.
Our experiments were conducted using a bare-metal ma-
chine running Ubuntu 22.04 LTS with an Intel(R) Core(TM)
i7-6700 CPU @ 3.40GHz and 16GB RAM. We built a vanilla
kernel image as the baseline using the Linux kernel v5.15 -
the latest Long-term support (LTS) version at the time of ex-
perimentation. The vanilla kernel doesn’t contain any security
features described in this section. Then, we built another three
images: one with all three features in C1, one with the two
features in C2, and one with slub_debug in C3. To minimize
fluctuation and rule out outliers, we repeatedly ran bench-
marks until the overhead of the recent five executions had a
coefficient of variation smaller than 3.5% - a default setting
in Phoronix. Between each round, we rebooted the whole
system to ensure a clean environment for the benchmark.

Performance Overhead. Table 1 presents the performance
overhead. Though a recent study [55] reveals that freelist ran-
domization in C1 showcases 45% peak overhead in certain
situations (i.e., big-select and big-fork) because of poor local-
ity, our measurement over both LMbench and Phoronix indi-
cates that the overall overhead of Cl1 is not obvious: -2.74%
to 3.91% which is within reasonable fluctuation range. For
the two features in C2 that are disabled by default, their over-
head is slightly noticeable: -1.88% to 5.25% for LMbench,
and -1% to 1.34% for real-world applications in Phoronix.
While this extent of overhead is tolerable, as we discussed in
the security analysis (Section 3.1), both features in C2 have
inherent weaknesses that prevent them from producing the
expected secure enhancement.

For slub_debug in C3, its overhead is prohibitively high,
reaching 177.22% for LMbench and 57.58% for Phoronix.
Note that, in the table, some benchmarks (e.g., 7zip-compress)
show negative overhead because their execution time predom-
inantly takes place in user space with minimal kernel involve-
ment. These negative numbers shouldn’t be mis-interpreted

LMbench C1 C2 C3
Simple syscall 0.35% | 1.06% 0.90%
Simple read 0.98% | 3.73% 0.70%
Simple write 041% | 1.71% 2.46%
Select on 100 fd’s -0.64% | 1.21% 0.04%
Signal handler install -1.35% | -1.88% -1.17%
Signal handler overhead | 0.75% | 3.29% | 169.16%
fork+exit 0.60% | 1.76% | 168.17%
fork+execve 2.42% 1.56% | 177.22%
fork+/bin/sh -c 121% | 2.32% | 151.55%
UDP latency 391% | 4.97% | 144.34%
TCP/IP connection 274% | 5.25% | 129.81%
AF_UNIX bandwidth -020% | 027% | 52.16%
Pipe bandwidth 0.80% | 1.16% -1.98%

Phoronix C1 C2 C3
Sockperf (Msgs/sec) -0.27% | -0.61% 57.58%
OSBench (Ns/Event) -0.08% | -1.00% 6.25%
7-Zip Compress (MIPS) | -0.34% | 0.54% -0.39%
FFmpeg Live (FPS) -0.14% | 0.28% 1.25%
OpenSSL SHA256 (B/s) | 0.01% | 0.04% 0.01%
Redis SET (Reqs/sec) -0.37% | 0.47% 0.55%
SQLite Speedtest (sec) 0.52% 1.34% 4.05%
Apache 100 (Reqgs/sec) | -0.50% | -0.42% | 46.29%

Table 1: Performance overhead of security features in different
categories. See Section 3.1 for more details of each category.

as indicating that slub_debug has no overhead. In fact, for
benchmarks that are dependent on kernel services, the over-
head arises significantly.

Memory Overhead. Figure 2 presents the memory overhead
when running LMbench (Phoronix’s result are moved to [18]
due to space limit). From the figure, we can observe that
vanilla, C1, and C3 exhibit similar memory usage while C2
consumes an additional 400 MB of memory. This is because
KFENCE in C2 allocates objects from a pre-reserved pool
and each object separated by KFENCE occupies pages that
are surrounded by red zones and guard pages.

3.3 Behind Security / Overhead Trade-off

Summarizing from security analysis and overhead measure-
ment, existing security designs in the Linux kernel allocator
either fail to provide substantial security enhancement (C1 and
C2) or are impractical due to excessive memory and perfor-
mance overhead (C2 and C3). To have a deeper understanding
of the root obstacle, we selected Apache from Phoronox - a
case with noticeable overhead - as our target and conducted a
case study.

Table 2 presents the statistics collected by bpftrace during
the execution of Apache. From the table, we can observe that,
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Figure 2: Increase of memory usage of existing security features
when running L.Mbench.

Vanilla C1 Cc2 C3
Inst. # (million) 1,661,099 | 1,641,186 | 1,673,330 | 2,708,439
Invoked #/sec 324,194 321,347 321,634 214,793
Time Proportion 17.1% 17.1% 17.7% 41.4%
Time Per Req (us) 17.8 17.7 17.7 332

Table 2: Statistics collected through the Apache Benchmark in five
minutes. “Inst. # (million)” indicates the # of instructions executed
within the kernel, represented in millions. “Invoked #” is the # of
times the allocator is called. “Time Proportion” is the fraction of
time spent within the allocator inside the kernel. “Time Per Req”
averages time required to handle a request.

in a given time, the kernel with security features executes a
substantially higher number of instructions, particularly for
C3 which exhibits a 63.1% increase compared to vanilla. This
is attributed to C3’s most complete spectrum of security fea-
tures, which introduces numerous additional instructions to
the kernel allocator. Further, we observed that the kernel allo-
cator is invoked very frequently, reaching 214,793 to 324,194
times per second. As a result, in C3, the time proportion dedi-
cated to the allocator doubles, jumping from 17.1% to 41.4%.
This bloating not only decelerates the kernel, as evidenced by
the reduced number of allocator invocations in a given time,
but also impacts the entire system, leading to longer response
times for Apache to handle a request.

Conclusion. Based on our analytical experiments, we have the
following conclusion. First, the allocator is a core subsystem
in the kernel and is frequently used. Second, each time the
kernel invokes the allocator, it incurs the overhead associated
with executing the additional code introduced by security
features. Given these facts, the current strategy of protecting
every object all the time can hardly work within the kernel
which must offer services for user space efficiently.

4 Design Overview

Drawing on lessons learned from evaluating existing features,
a more realistic strategy would be conserving resources on

critical objects rather than protecting every object indiscrimi-
nately. We explored this new strategy and prototype it in the
design of SeaK. In this section, we will first describe the eBPT
ecosystem on top of which we build Seak, followed by the
threat model and the design overview.

4.1 The eBPF Ecosystem

The extended Berkeley Packet Filter (eBPF) is an in-kernel
virtual machine that allows privileged users to run programs
in the kernel space. The eBPF programs are written in the C
language and compiled to bytecode using the LLVM eBPF
backend. Privileged users can install the compiled eBPF pro-
grams into the kernel and attach them to arbitrary instructions,
monitoring and modifying kernel behaviors.

The safety of eBPF programs is guaranteed by a static ver-
ifier which establishes three properties: (1) memory safety,
ensuring that the program only accesses pre-defined mem-
ory locations, (2) information flow security, ensuring that no
secret kernel state is exposed, and (3) all execution must ter-
minate. Over decades of development, eBPF has significantly
improved in expressiveness. The eBPF helper functions al-
low the installed eBPF programs to interact with other kernel
subsystems. The BPF maps can store arbitrary data. They
allow eBPF programs to communicate with each other and
with privileged userspace processes by looking up and updat-
ing the stored data through keys. For the sake of efficiency,
a variety of optimization techniques has been adopted in the
eBPF ecosystem. For instance, the eBPF bytecode is executed
by a Just-In-Time (JIT) engine rather than a slow interpreter
to achieve native-machine code level performance. Further,
the instructions once attached, are overwritten to call or Jmp
instructions instead of the previously used int3 interrupt. As
such, the time spent on switching context to eBPF programs
is saved.

eBPF for Security. The eBPF ecosystem has undergone
swift evolution across commodity OS kernels, including
Linux, Windows, FreeBSD, and macOS [5, 6]. In the se-
curity area, PET [66] instruments eBPF programs to error
sites, preventing kernel vulnerabilities from being triggered.
Sifter [32] filters malicious syscall with eBPF to make at-
tack surfaces in security-critical kernel modules unreachable.
RapidPatch [31] allows RTOS developers to hot-patch em-
bedded device firmware using eBPE.

4.2 Threat model

Seak has the following assumptions about the capabilities of
attackers and defenders.

Attacker. Attackers possess a vulnerability that corrupts the
kernel heap. This vulnerability can be exploited using the
newest kernel exploitation techniques. It can be present in
any kernel subsystem, including the eBPF subsystem on top



| eBPF Synthesizer | User Space
I
— ¢ ——————————————— =
OXfFe1c32ff3: alloc Kernel Space :
callg <kmalloc> — Bl 0o dedicated |
OXfB1C331db: ) BPF L-p( region I
L free Maps “guard pages +
callg _<kfree> g handler 43 entropy” I
Runtime Kernel Jl

Figure 3: Overview of one atomic alleviation (AA) in Seak. The
eBPF program synthesizer in the userspace installs an eBPF program
with alloc handlers and free handlers into the kernel space, separating
objects of interest.

of which SeaK is built, as long as the eBPF programs can be
installed. Further, we assume attackers are unprivileged users
so that they cannot directly disable SeaK.

Defender. Defenders are privileged users or system admin-
istrators so that SeaK is granted the right privilege to install
eBPF programs into the kernel. The installed eBPF programs
are free from bugs and their safety is guaranteed by the sound
verified. We assume that defenders are aware of the vulnerabil-
ity threat by either catching its exploit in the wild or obtaining
necessary information (e.g., vulnerability reports) from public
resources including the dashboard of Syzkaller — the most
widely used kernel fuzzer developed by Google, the National
Vulnerability Database, and more.

4.3 SeaK at a Glance

The atomic alleviation (AA for short) is the key concept in
SeaK. One AA is responsible for separating a specific type
of kernel objects - objects of interest. Figure 3 illustrates the
design of one AA in Seak.

In user space, the eBPF synthesizer first analyzes the ker-
nel source code to pinpoint the allocation and free sites for
objects of interest. Then, it investigates debug information
to map the source-code-level sites into corresponding binary
addresses of call instructions that invoke memory allocation
and free functions (e.g., kmalloc/kfree). After this, the synthe-
sizer produces an eBPF program that can be installed into
kernel space to achieve alleviation.

In the kernel space, the eBPF program shoulders a complete
allocation and free logic for objects of interest: The alloc
handler attached to the allocation sites intercepts the original
allocation and obtains memory from a dedicated region that is
separated; the free handler attached to the free sites prevents
the memory in dedicated regions from being directly returned
to the buddy system and recycles memory only for objects
that are allowed by the security policy. The status of dedicated
regions is maintained by BPF maps. If one dedicated region
runs out of space, additional memory will be assigned. When
the threat landscape changes and the AA is no longer useful

1| // essential utilities

2 || int alloc_handler (struct pt_regs* ctx,

3 u6d kpi_type) {...}

4 || int free_handler (struct pt_regs* ctx,

5 u6d kpi_type) {...}

6

7 || SEC ("kprobe/?") // attach to allocation site
8 || int probe_alloc_? (struct pt_regs* ctx) {
9 return alloc_handler (ctx, ?);

10 ||}

11 || SEC("kprobe/?") // attach to free site
12 || int probe_free_? (struct pt_regs* ctx) {
13 return free_handler (ctx, ?);

14 ||}

Listing 1: The snippet of synthesis template. Once the "2" is filled
in, it can be directly compiled and installed into the kernel space.

or requires updates, the eBPF program can exit gracefully and
be reinstalled later if needed again.

Like secure allocators in user space (e.g., [19,45,57,59]), to
prevent spatial overlapping, the dedicated region is equipped
with guard pages and randomization with up to 43 entropy.
To prevent temporal overlapping, Seak currently enforces
the most restrictive separation policy to deal with the newest
exploitation techniques (Section 2.2): only recycle within
objects that are allocated from the same site, having the same
size, carrying the same privilege level, and in the same zone.

Advantages. SeaK is flexible from the following perspectives.
@ Design-wise, one AA offers the most granular level of al-
leviation. We can strategically orchestrate different sets of
AAs to meet distinct security needs. It allows efficient use
of resources by focusing on crucial objects, rather than an
indiscriminate separation. ® Deployment-wise, AAs can be
enabled on the fly without disrupting running computation ser-
vices, thus maintaining system availability. ® Evolution-wise,
The separation policy enforced in AA can be dynamically
upgraded when new exploitation techniques are disclosed. In
comparison, the implementation of existing solutions is fixed
once integrated.

5 Technical Details

In this section, we will present more technical details of AA
in Seak, from the eBPF synthesizer in the user space to the
runtime separation in the kernel space.

5.1 eBPF Program Synthesis

To separate objects of interest, an eBPF program is generated.
The essential elements needed to construct the eBPF program
include the binary addresses of the allocation site and free
site, as well as the prototype of the kernel function that is
called for allocation or free. Readers can refer to List 2 in
Appendix for the illustration of a synthesized program.



Synthesis Template. List 1 shows the template Seak uses
to synthesize eBPF programs. All the "»" in the template
represent the elements that need to be customized per site.
In line 7 and line 11, sec decoration denotes the locations of
the allocation and free sites in the format of func+offset. In
this format, func is the symbol of the kernel function where
allocation and free are called, offset represents the offset of
the call instruction from the start of func. We use functoffset
instead of the absolute address of the call instruction (i.e.,
0xfEFEFEFFB1c331db) because of Kernel Address Space Layout
Randomization (KASLR) [28] which randomizes the base
address of kernel image during boot time. Using func+offset,
the eBPF program can work across machines with different
base addresses without further modification.

In lines 8 and 12, the "2 serves as a placeholder for a
unique identifier to differentiate multiple allocation sites and
free sites. In line 9 and 13, the "2" is used to differentiate
prototypes of allocation and free functions being called. This
Kernel Programming Interface (KPI) information (kpi_type)
is needed so that the eBPF programs (line 1-5) can deter-
mine how to obtain the requested size of the allocation and
the address of object to be freed from the run-time context.
For example, we differentiate kmalloc and kmem_cache_alloc
because the allocation size is stored in the 1st parameter of
xmalloc but in the 2nd parameter of kmem cache_alloc, passed
through srdi and srsi, respectively, by the x64 convention.

Determining Allocation and Free Sites. Given the object
type, SeaK finds the allocation sites and free sites by first
searching at the source code level and then converting the
sites into the corresponding binary addresses in the format of

functoffset.

At the source code level, the SLAB/SLUB allocator uses
two series of kernel functions for allocation and free. One is
kmalloc/kfree series for objects in the general cache. The other
1S kmem_cache_alloc/kmem_cache_free series for special cache.
For the buddy system, the functions for allocation and free are
alloc_pages/free_pages series. The code lines that call these
functions are allocation and free sites. We further narrow
down the scope and identify the sites specific to the objects of
interest by analyzing the return values or arguments of these
function calls. Because their return values or arguments are
always pointers referencing the objects allocated or freed, by
analyzing them, we can easily figure out whether the object is
of interest. Technically, we perform a use-def analysis and re-
solve memory alias. Along the use-def chain of returned value
or arguments, we track instructions relevant to typecasting,
pointer dereferencing, and argument passing. The operands
of these instructions explicitly reveal the type of variables. By
using this information, we can easily infer and conclude the
type of each allocated or freed object.

At the binary level, sites in the source code that allocate

or free objects of interest are mapped to binary addresses
via debugging information in the kernel image. Note that,

alloc _ 7{ Key: ip-size-priv-zone

N~ .
handler [\ | Value: region region-index
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Figure 4: Run-time separation in the kernel space. The attached
malloc handlers and free handlers leverage two BPF maps to manage
dedicated regions.

kmalloc/kfree series functions at the source code level are
occasionally inlined into kmem cache_alloc/kmem_cache_free Se-
ries at the binary level through compiler optimization. There-
fore, we synthesize the kpi_type part in the eBPF programs
according to the series used in the kernel image rather than
the source code to eliminate inaccuracies.

5.2 Run-time Separation

Here, we delve into more details of how eBPF programs and
BPF maps separate objects of interest.

Data Structures. As illustrated in Figure 4, in one AA, an
alloc handler is attached to each allocation site, and a free
handler is attached to each free site. The synthesizer described
in Section 5.1 is responsible for identifying these sites and
synthesizing the corresponding handlers.

To track the status of dedicated regions that store sepa-
rated objects, each AA has two BPF maps: region-index and
obj2region. The region-index map is used to locate dedicated
regions. Its key is customized according to the security policy.
Its value represents the dedicated region which is the address
of either a struct kmem_cache object if the requested size is
smaller than one page or a struct page object if the requested
size is larger than one page. The key of the obj2region map
is the address of an individual object that is separated into
dedicated regions. Its value indicates which region the object
belongs to and can be used to index the region-index map.

Evolving with Exploitation Techniques. In Figure 4, we
use ip-size-priv-zone as the key to index the dedicated region.
As such, the memory is recycled only within objects that are
allocated from the same site (i.e., ip), with the same size,
carrying the same privilege level, and in the same zone. It
is the most restrictive policy that can alleviate the newest
exploitation techniques that have been disclosed thus far. As
new exploitation techniques evolve in the future, this policy
can be strengthened accordingly.



Guard Page and Randomization. Each separated object
occupies multiple pages. Even for the object the real size
of which is smaller than one page, it takes over at least one
page. These pages are further surrounded by guard pages that
are not mapped. The offset of the object from the start of
the pages is randomized. The randomization entropy within
the page is 7, considering pointer alignment in x64. Since
the dedicated region can be located anywhere in the direct
mapping area, the overall entropy is 21 for the 16 MB DMA
zone or 43 for the 64TB normal zone, which is much higher
than the widely-used KASLR which is 8. Given such a high
entropy, the chance for attackers to brute-force the address of
separated objects in one shot is nearly zero.

Workflow. Now, we describe how the aforementioned designs
are used through the life cycle of an object that is separated.

When the object is allocated, the alloc handler will be ex-
ecuted. According to the security policy, it obtains the exe-
cution context: (1) the address of allocation sites from srip
register, (2) the request size from $rdi for kmalloc, $rsi for
kmem_cache_alloc, $rsi*PAGE_SIZE for alloc_pages. (3) the pI‘iV-
ilege level of the current process through the helper function,
(4) the requested zone which is specified in GFP flags - srsi
for kmalloc, $rdx for kmem_cache_alloc, $rdi for alloc_pages.
This context information is concatenated to form the key.
The alloc handler uses the key to look up the region-index
map to examine if there is already a dedicated region that
fits. If no dedicated region is available, the alloc handler cre-
ates a new slab cache or a new buddy through the helper
function and records related information in the region-index
map. Otherwise, the alloc handler retrieves the slab cache or
buddy structure from the region-index map, storing the object
and setting guard pages through help functions. Following
this, the address of the object is used as the key to update
the obj2region map. Finally, the alloc handler overwrites the
return address to directly jump to the next instruction of allo-
cation call and thus skip the original allocation.

When the object is freed, the free handler will be executed.
It first obtains object’s address from the srdi register and looks
it up in the obj2region map to determine if the object to sepa-
rated. If not, the kernel continues the routine free operation.
Otherwise, the free handler looks up the region-index map,
obtains the dedicated region, and frees the object from the
region using a helper function. Note that, this free operation
does not indeed return the memory. Instead, the memory is
recycled for the subsequent allocations of objects with the
same ip-size-priv-zone Key, as the security policy requires.

Concurrency and Exit. Since objects of interest can be allo-
cated and freed at many kernel sites, the alloc handlers and
free handlers attached to these sites will concurrently access
the shared region-index and obj2region maps. Therefore, it
is essential to ensure the atomicity of map read and write.
Fortunately, the current eBPF ecosystem provides a spin lock

per key and a read-copy-update (RCU) counter per value in
BPF maps to achieve concurrency control.

When one AA is no longer needed or a stronger policy is de-
veloped, it exits gracefully without causing memory leakage.
More specifically, SeaK creates a kernel task that periodically
scans the entire kernel memory to check for pointers referring
to the separated objects indexed in the obj2region map. If
no more pointers refer to the separated objects, the occupied
memory can be safely returned to the buddy system. Other-
wise, the AA stays in the kernel until the obj2region map
becomes empty.

6 Application

In this section, we showcase how to orchestrate a set of AAs
to meet security requirements in different scenarios.

6.1 Separating Security-Sensitive Objects

Given not all objects are security-sensitive, protecting each
one indiscriminately is unnecessary. Kernel objects such as
cred, msg_msg, and key_payload are well-known to be security-
sensitive because they contain data like credentials and func-
tion pointers. Separating them is one key task in prior works,
including xMP [53], kalloc_type [30], AutoSlab [40], and
slab_virtual [64]. SeaK can complete this task in a straightfor-
ward way: each AA separates one specific sensitive type.

A series of research efforts have been undertaken to identify
security-sensitive objects in the Linux kernel: SLAKE [22]
collects objects with function pointers; ELOISE [21] focuses
on elastic objects that can provide stronger write and read
primitives; AlphaExp [65] finds objects based on within-
cache exploitation scheme. As exploitation techniques evolve,
more objects will be identified as security-sensitive. By con-
structing and installing more AAs, SeaK can easily adapt to
these newly discovered objects. This flexibility is a signif-
icant advantage over prior works because their design and
implementation are fixed. Moreover, SeakK can enforce sepa-
ration on the fly while prior works require recompilation and
rebooting which disrupts system availability.

6.2 Separating Vulnerability Corruptions

Due to the lack of manpower and design complexity, the
patching process is quite lengthy for the Linux kernel. A
study two years ago [61] revealed that the average patching
window in the Linux kernel was 66 days, and the situation is
getting worse [8]. During this time window, patches are not
available for these N-day vulnerabilities and attackers have
the full freedom to develop exploits and launch attacks.

To mitigate this threat, we can construct AAs to separate
corruptions introduced by vulnerabilities, thereby limiting the
damage. For vulnerabilities such as heap out-of-bound write
and read, corruption happens when there is beyond-boundary



access. One AA can be installed to separate the overflowed
object. Thus, guard pages can catch the spatial overlapping
caused by the vulnerability, and due to randomization, the
overlapping cannot precisely tamper with targeted kernel data.
For vulnerabilities such as use-after-free, corruption happens
when a dangling pointer dereferences a freed object. After
separating the freed object using one AA, the heap memory
is recycled only for objects that are allowed by the separation
policy, which is restrictive enough to fail newest exploitation
attempts. Furthermore, SeakK creates a task that periodically
scans the entire kernel memory to check for the existence
of dangling pointers and starts recycling only when there is
no dangling pointer. Presented with multiple N-day vulner-
abilities, we employ a set of AAs to protect the kernel until
patches for these vulnerabilities are released.

7 Implementation

The implementation of SeakK includes 416 lines of C code for
eBPF templates, 152 lines of C code for the new helper func-
tions in the kernel, and 649 lines of Python code for eBPF
program synthesis and framework integration. In addition,
SeaK has 3998 lines of C++ code based on LLVM infrastruc-
ture, to pinpoint allocation and free sites for objects of interest
and support the scenario of separating vulnerability corrup-
tion by identifying vulnerable objects. SeaK is implemented
over Linux and can be migrated to other open-source kernels
thanks to the consistent design of the eBPF ecosystem across

platforms. SeaK is open-source in GPLv2 Licence!.

eBPF Program Synthesis. Given the type of objects for
separation, SeaK analyzes the kernel image with debug infor-
mation to pinpoint allocation sites and free sites in order to
synthesize eBPF programs. We use LLVM infrastructure to
search for these sites of interest at the source code level and
use Binary Ninja to map the results to binary addresses. More
specifically, we provide a list of kernel allocation and free
KPIs (e.g., xfree, kmem_cache_free, kfree_skbmen, etc) for Bi-
nary Ninja. Binary Ninja can get the addresses of all symbols,
cross-reference them to their call sites, retrieve the address
of each call site, and then write them into a file. After that,
each address in this file is passed to 11vm-symbolizer to create
an allocation site mapping between the kernel image binary
and the source code. The mapping itself is stored as a Python
dictionary within a .pickle file. We can easily look up the
mapping for the exact call instructions that allocate and free
objects of interest. All the steps and sub-steps mentioned
above are wrapped in a Python script to fully automate the
entire analysis workflow.

New Helper Functions & BPF Maps. To support separat-
ing objects of interest, we extend the eBPF mechanism by
adding new helper functions, including bpf_create_slab_cache

Ihttps://github.com/a8stract-lab/Seak

and bpf_create_buddy to create dedicated regions, bpf_get_zone
to obtain the requested zone (e.g., normal zone or DMA zone),
bpf_cache_alloc and bpf_buddy_alloc to allocate memory in the
dedicated regions, and bpf_set_pt_present to set guard pages.
The two BPF maps, region-index and obj2region, used in the
eBPF program are both of type er_mvap_tvpE_HASH, Which sup-
ports quick lookup and update. The maximum number of
entries for both maps is set to 2'4, allowing the management
of up to 16,384 dedicated regions. Our implementation is
based on v5.15 the latest Long-term support (LTS) kernel ver-
sion when we did our experiments. It can be easily migrated
to other versions with minor modifications. We leverage the
LLVM toolchain to compile eBPF programs.

Support for Loadable Kernel Modules (LKMs). In some
corner cases, objects of interest are allocated and freed by
loadable kernel modules. Without loading these modules, the
attached address cannot be determined. To deal with this is-
sue, we first install an eBPF program that attaches to the
load_module () kernel function to monitor which module is
loaded. Once the module is loaded, it sends out signals, allow-
ing separation-purposed eBPF programs to be installed. Note
that SeaK does not need the absolute address of the kernel
module as the attached sites are based on symbols.

Support for Application Scenarios. To identify vulnerable
objects that introduce corruption, we employ the approach
in prior work [43] to analyze reports generated by sanitizers
such as KASAN, KMSAN, KCSAN, and more. We pay spe-
cial attention to the soundness of our analysis by including
situations not previously considered. More specifically, some
kernel objects are ordinary arrays and do not belong to any
structure or union type (e.g., char* p = kmalloc (0x10)). If we
naively treat char* as the vulnerable type, SeaK will inevitably
isolate a number of irrelevant arrays in the kernel, resulting
in unnecessary overhead. Through investigation, we observe
that these arrays are either referenced by a pointer field in
a structure (e.g., bitmap_ip.members) SO that they can be used
across system calls, or used as a temporary buffer that will
be passed as a function argument, which can be tracked by
our analysis. Therefore, for each array in the analysis, we
create an anonymous type type nametoffset for differentia-
tion. Here, type_name indicates the associated structure type
(e.g., struct bitmap_ip) and offset records the offset of the
pointer field (e.g., members). we patch the LLVM compiler to
dump bitcodes before any optimization passes, thus prevent-
ing compiler optimization from influencing the accuracy of
our analysis.

8 Evaluation

In this section, we use real-world cases to evaluate SeaK in
terms of security improvement, performance and memory
overhead, as well as scalability and stability.



Exploits Sensitive Object Type | C1 | C2 | C3 | seak
2021-4154 (expl) [41] msgseg, pipe_buffer O |00 | @ [ ]
2021-22600 (exp3) [16] msg_msg, pipe_buffer | O | O/® | @ [ J
2022-0185 (exp4) [24] msg_msg, pipe_buffer o | @ [ )
2022-27666 (exp6) [73] xattr, xfrm_policy O |00 | @ [ J
2022-29582 (exp9) [56] msgseg, tls_context O |00 | @ [ ]
2022-1786 (exp13) [69] timerfd_ctx O |00 | @ [
2022-20409 (expl5) [42] cred O |oD| O [

Table 3: Results of Seak’s security improvement for separating
security-sensitive objects. The “Exploits” column includes CVE IDs
and the internal exploit ID from Google. The “Sensitive Object Type’
means the type of objects misused in the exploit. O indicates failing
to prevent exploitation, @ stands for working occasionally due to the
sampling nature, @ means succeeding in preventing exploitation.

1

8.1 Security Analysis

To evaluate the security improvement of Seak, we draw a com-
parison between it and existing security features, no matter
whether they are enabled by default or not.

Dataset & Criteria. We built two datasets corresponding
to the two illustrative scenarios. The first dataset is for the
scenario of separating security-sensitive objects. It includes
seven exploits collected by Google and Alphabet Vulnerabil-
ity Reward Program [36]. We didn’t include all cases because
the remaining lacks publicly available, functional exploit code.
We selected this program as the data source because the pro-
gram report clearly specifies which security-sensitive object
is used in each case, which saves our time and avoids inaccu-
racies in identifying which type of object for separation.

The second dataset is for the scenario of separating vulner-
ability corruption. This dataset is constructed using vulnera-
bilities reported by Syzkaller [15]. Every case from Syzkaller
encompasses a report, a configuration file, and a PoC pro-
gram, all aiding in the reproduction of the vulnerability. We
randomly selected 50 vulnerabilities reported after kernel ver-
sion v4.15 2, successfully reproducing 46 of them. These
include 30 reported by KASAN, 1 by KMSAN, 1 by UB-
SAN, 5 by BUG_ON macro, 2 by GPF, and 7 by WARNING
macro. The diversity within these vulnerabilities ensures that
the dataset is representative.

Separating Security-Sensitive Objects. Table 3 shows the
results of separating security-sensitive objects against the
first dataset. In general, SeaK outperforms C1 (i.e., freelist
randomization + freelist obfuscation + heap zeroing), C2 (i.e.,
structure layout randomization + KFENCE), and also C3 (i.e.,
slub_debug=UFPZ).

For C1, all exploits can bypass by-default enabled features
in it. First, freelist randomization essentially cannot prevent
temporal corruption based exploitation (e.g., exp1, exp3, exp9,
expl3, expl5) and is bypassed using heap grooming [39] in

2LLVM is unable to compile kernel earlier than this version, and many
eBPF features used in SeaX did not exist at the time.

the exploitation of spatial corruption based exploitation (e.g.,
exp4, exp6). Second, freelist obfuscation and heap zeroing
are not activated because no exploit tampers with freelist
pointer and relies on uninitialized value for KASLR bypass-
ing. Instead, they use the read capability introduced by the
vulnerability to leak kernel base address.

For C2, structure layout randomization fails to prevent all
exploits because it only randomizes structures with every field
as a function pointer. None of the sensitive objects misused in
the exploit fall into this category. KFENCE samples objects
for separation. During the experiment, we maximized the
capability of KFENCE by minimizing its sampling interval
to 1 ms and expanding its memory pool to its limit of 512
MB. We discovered that it can protect only 0.005% - 0.35%
sensitive objects in Table 3.

For C3, slub_debug successfully thwarts most exploits ex-
cept for exp15. This exploit performs DirtyCred attack [44]
which overlaps two cred carrying different levels of privilege,
thereby evading detection through red zone, poisoning, and
user tracking.

In comparison, SeakK prevents all exploits, showcasing the
strongest security improvement. On one hand, guard pages
and offset randomization hinder exploitation utilizing spatial
overlapping, achieving the same effect as slub_debug. On
the other hand, Seak only recycles objects allocated from the
same site, having the same size, carrying the same privilege
level, and in the same zone. Therefore, it can handle not only
common temporal overlapping attacks but also the newest
same-type exploitation like DirtyCred. Moreover, when new
attacks emerge in the future, Seak supports updating the recy-
cling policy correspondingly to keep pace with the evolving
threat landscape.

Separating Vulnerability Corruption. Table 4 shows the
sampled results for separating vulnerability corruption against
the second dataset. The results share a similarity with the first
scenario: C1 cannot restrict corruption, so is structure layout
randomization in C2; KFENCE in C2 works occasionally if
the vulnerable object is sampled. slub_debug can separate all
corruptions when proactive attacks are not present.

FP and FN. To separate vulnerability corruption, SeaK iden-
tifies the vulnerable object and its allocation and free sites.
During this process, SeaK can have False Positive (FP) - iden-
tifying objects that are not vulnerable or sites that allocating
irrelevant objects, and False Negative (FN) - missing vulnera-
ble objects or sites that allocate vulnerable objects. SeaK can
accommodate FP by separating more objects at the cost of
a minor increase in overhead, thanks to its scalability (See
Section 8.2). The elimination of FN relies on the soundness
of the analysis. To achieve this, we used the state-of-the-art
techniques in implementation (See Section 7). However, it
is important to note that, to date, no whole-program analysis
is sound when applied to real programming languages [46].
Therefore, thouogh empirically SeakK didn’t overlook any vul-



SYZ Title Cl|] C2 | C3 Type of Identified Vulnerable Object SeaK
GPF-delayed_uprobe_remove O |00 | @ delayed_uprobe )
WARNING-call_rcu O | 00| @ routed_filter ]
WARNING-ODEBUG bug-tcf_queue_work | O | O/ | @ route4_filter, workqueue_struct [ ]
KASAN-uaf-read-route4_get O | 00| @ Qdisc, route4_bucket, routed_filter, route4_head... ]
UBSAN-shift-oob-dummy_hub_control O | 0| @ urb, usb_ctrlrequest, usb_device, usb_hed [
KASAN-uaf-read-hci_send_acl O | O/® | @ | hci_chan, hci_conn, heci_dev, 12cap_conn, work_struct [ ]
BUG-corrupted list-kobject_add_internal O | 0| @ hci_conn )
KMSAN-uninit-value-geneve_xmit O | O | @ netdev, sk_buff o
KASAN-slab-oob-write-decode_data O |00 | @ tty_ldisc, tty_struct [ ]

Table 4: Sampled results of SeaK’s security improvement for separating vulnerability corruption. More results can be found in Table 9. The
“SYZ Title” column is the bug report title minus an uninformative preposition. Structures in bold in “Type of Identified Vulnerable Object”
column are ground truth. The remainings are FPs. SeaK has no FN in all test cases. O indicates failing to prevent corruption from damaging
other kernel objects, @ stands for working occasionally due to the sampling nature, @ means succeeding in separating corruption.

nerable object in all test cases (See Table 4 and 9), we must
caution users about the risk of FNs - SeaK might occasionally
fail to separate vulnerable objects.

Comparison with Other Works. Beyond C1, C2, C3, in
Section 6.1, we mentioned several works also for object sepa-
ration purpose. Among them, xXMP [53] and kalloc_type [30]
are comparable to SeaK security-wise. However, AutoSlab
inadvertently simplifies cross-cache exploitation [40] because
it separates kernel objects per slab cache which eases recy-
cling at the buddy system level. Google slab_virtual’s newest
implementation [63] prevents temporal-corruption-based ex-
ploitation but partially works for spatial-corrution-based ex-
ploitation. Besides, it cannot handle DMA objects which must
reside in DMA zone. On a different note, PET [66] prevents
vulnerability triggering, focusing on a different stage of the
exploitation chain from SeaK. It can miss vulnerabilities trig-
gered through different paths or at different sites [43].

8.2 Overhead Measurement

Benchmarks and Settings. We employed identical bench-
marks and settings including variances for measuring the
overhead of SeakK as those utilized for the existing security
features outlined in Section 3.2. In addition to the vanilla
kernel image, we built a hardened kernel image incorporating
the SeaK extensions. Both images have the BPF JIT engine
enabled. Note that, we needn’t build a different kernel for
each individualAA. Once the SeaK extension is there, any
number of AAs can be installed.

We used bpftrace to profile the lifespan of kernel objects
for 20 minutes in two situations - no workload and running
LMbench. The profiling revealed that most kernel objects are
allocated and freed quickly while a small fraction of objects
have long lifespan. No objects have both a long lifespan and
frequent operations, as this combination would result in a

substantial amount of objects lingering in memory, thus easily
exhausting kernel memory.

Based on the profiling results, we consider three repre-
sentative situations - Cold, Hot, and Durable. “Cold” refers
to an object whose allocation and free rarely happen. We
use KASAN-uaf-12cap_chan_close [60] from the dataset for
separating vulnerability corruption as an example of this sit-
uation, because its vulnerable object - struct 12cap_chan is
allocated only in function 12cap_chan_create in the Bluetooth
module. “Hot” indicates that the object is frequently allocated
and freed, but has a short lifespan. Our profiling shows that
struct seq operations iS the hottest in both no workload situ-
ation and running LMbench situation - allocated 32.7 times
and 47.34 times per second respectively. “Durable” stands for
an object that has a long lifespan and a moderate operation fre-
quency. Our profiling suggests struct cred, struct sk_filter,
struct fdtable, because they have Ss, 20s, and 30s lifespan.
Further, we include struct file into our measurement because
“Everything is a file”.

Performance Overhead. Table 8.2 presents the performance
overhead of the three representative situations. Intuitively, one
would anticipate the overhead of “Hot” is the highest, given
the correlation between performance and the frequency of
allocation and free. However, the data illustrates that “Hot”
doesn’t show any significant increase compared to the other
situations. Specifically, the overhead ranges from -2.42% to
2.70% for LMbench, and -1.73% to 1.64% for Phoronix,
which is within reasonable margin of fluctuation and aligns
with the data for “Cold” and “Durable”. Therefore, we con-
clude that SeaX has negligible overhead, regardless of the
benchmark and the use frequency of objects that are sepa-
rated.

To further validate our conclusion and have a deeper un-
derstanding of SeaK’s performance, we measured the latency
caused by critical operations in SeaK. The potential overhead,
if there is any, will come from eBPF program execution and



LMbench (ms) Vanilla Cold Hot Durable File
Simple syscall 0.1942 | -1.68% | -0.67% | 0.06% | 0.08% | -0.29% | -0.94%
Simple read 0.2946 | 020% | -058% | 0.49% | -0.48% | 0.03% | -045%
Simple write 0.2502 | -2.67% | -242% | 051% | 0.15% | 0.56% | -0.18%
Select on 100 fd’s 1.0718 | 026% | 0.20% | -0.16% | -0.49% | -0.10% | -0.01%
Signal handler install 0.2538 | -1.28% | -1.32% | 0.17% | -0.33% | 0.11% | 0.02%
Signal handler overhead 0.8815 | -090% | -1.53% | 0.12% | 1.54% | 035% | -0.33%
fork+exit 99.6357 | 083% | 249% | -049% | -2.82% | -3.44% | -2.43%
fork+execve 2832725 | 1.51% | 0.23% | 232% | 1.82% | -1.76% | 3.34%
fork+/bin/sh -c 678.1250 | 2.93% | 2.70% | 2.35% | 0.23% | -1.16% | 2.28%
UDP latency 5.8852 | 1.25% | -1.10% | 0.07% | -0.73% | -1.37% | -0.32%
TCP/IP connection 10.1259 | 0.13% | 0.78% | 0.51% | -0.01% | 2.04% | 1.62%
AF_UNIX bandwidth 9460.5067 | 067% | -0.56% | 0.71% | 0.92% | -1.85% | -1.26%
Pipe bandwidth 4569.4767 | 087% | -1.37% | -1.03% | 1.94% | 056% | -3.02%

Phoronix Vanilla Cold Hot Durable File
Sockperf (Msgs/sec) 739608 | -0.04% | -1.73% | -130% | 0.73% | 0.63% | 0.93%
OSBench (Ns/Event) 78.28 | -092% | -0.30% | -0.23% | -1.18% | -0.15% | -2.23%
7-Zip Compress (MIPS) 29521 | -1.31% | -095% | 1.07% | 0.60% | 1.62% | 0.97%
FFmpeg Live (FPS) 178.08 | 043% | -129% | 1.63% | 1.57% | 0.86% | 0.68%
OpenSSL SHA256 (Bfs) | 1225189783 | 0.28% | -031% | -0.03% | 0.02% | 0.23% | -0.08%
Redis SET (Regs/sec) 1932771 | 149% | -121% | -3.36% | -0.28% | 0.30% | 1.03%
SQLite Speedtest (sec) 6263 | 057% | 1.64% | -141% | -0.88% | 1.44% | -041%
Apache 100 (Regs/sec) 48216 | -063% | -095% | -0.40% | 0.49% | 0.68% | 0.18%

Table 5: Performance overhead of SeaK. Vanilla indicates the base-
line. The “Cold”, “Hot”, and “Durable” columns are three representa-
tive situations explained in Section 8.2. Especially, three columns in
“Durable” indicate cred, sk_filter, and fdtable from left to right.

Operations Time (ns) | Operations | Time (ns)
create region 13,320.93 | idle handler 1,479.55
allocate from region 1,545.04 | alloc handler 7,108.49
free to region 121.03 | free handler 1,597.02

set guard page 280.64

Table 6: Latencies of critical operations in Seak. The idle handler
represents an empty eBPF program; the alloc handler refers to the
time in eBPF programs minus allocation helper function; the free
handler is time in eBPF programs minus free helper function.

the creation of dedicated regions. Therefore, we inserted rdtsc
instructions before and after these operations to collect the
data. The results are presented in Table 6. As we can see,
all latencies are below 0.02 ms, significantly smaller than
the minimum time required for a system call - 0.1942 ms
for simple syscall in Table 8.2. Among all operations, the
most time-consuming one is ‘“create region”, taking 0.013
ms. It occurs only when a dedicated region is created - the
AA performs allocation for the first time. Such a small over-
head is unlikely to impact real-world applications - as doubly
confirmed in Table 8.2.

Memory Overhead. The additional memory brought in by
SeaK comprises the guard pages and the unused memory
within the page(s) that hold the object. As two separated
objects can share one guard page, the maximum memory
wastage is §KB for each 16B object. However, such extreme
memory inflation is very rare, as our profiling indicates that
87.2% objects in the kernel are at least 64 bytes. Figure 5
presents the increased memory usage for various situations
when running LMbench. Unlike existing features (Figure 2),
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Figure 5: Increased memory usage of Seak when running LMbench.
The lines of all situations almost completely overlap with each other,
except for 64 AAs (in purple). Durable (avg.) averages memory
usage of cred, sk_filter, and fdtable.

the memory usage lines for “Cold”, “Hot”, and ‘Durable
(avg.) almost completely overlap with Vanilla. On the one
hand, it is because AA offers the most granular level of sepa-
ration rather than indiscriminately protect every object all the
time. Therefore, itself doesn’t impose excessive memory over-
head. On the other hand, no kernel object has a long lifespan
while also being frequently allocated. Therefore, the mem-
ory consumed by SeaK is either quickly reclaimed, as seen in
“Hot” and “Cold”, or sufficiently small to remain unnoticeable,
as in“Durable”.

Comparison with Other Works. Besides C1, C2, C3, Sec-
tion 6.1 mentioned several protections from academia and
commercial products that are also for object separation. While
the performance of kalloc_type [30] and AutoSlab [40] can
not be evaluated due to their closed-source nature, a compari-
son can be made among Seak, XMP [53], slab_virtual [63],
and PET [66], based on publicly available results and our
measurement in the same setting: xXMP’s average overhead
for isolating cred using LMbench is 22.34% (calculated from
paper’s data), exceeding Seak’s 1%. The Phoronix results of
both are negligible. The average performance overhead of
slab_virtual is 1.09% which is larger than SeaK-64 case’s
0.4%. PET’s performance overhead is 3% and memory over-
head is 5.6% (915MB/16GB), as shown in the paper, while
Seak’s overhead is minimal in both.

8.3 Scalability & Stability Analysis

To deploy SeaK in the real world, it is essential to evaluate
its scalability when multiple AAs are used. To measure this,
we gathered all AAs from our security analysis and randomly
selected additional security-sensitive objects identified in [65],
to obtain in total of 64 unique AAs. We increased the number
of installed AAs exponentially, without any specific order,
and presented the averaged performance overhead in Table 7
(More complete results are in Table 8 in Appendix). The
performance shows no noticeable degradation as the number



LMbench | 2AAs | 4AAs | 8 AAs | 16 AAs | 32 AAs | 64 AAs
Avg. -0.32% 0.0% | -0.55% 0.01% | 0.20% 0.04%
Phoronix | 2AAs | 4 AAs | 8 AAs | 16 AAs | 32 AAs | 64 AAs
Avg. -0.28% | -0.74% | -0.33% | -0.31% | 0.71% 0.22%

Table 7: Performance of SeaK scaling up to 64 AAs. More detailed
results are in Table 8.

of AAs grows, regardless of the benchmark used. This is
because one single AA, no matter for cold or hot objects, has
negligible overhead. Regarding memory overhead, Figure 5
shows that the memory usage of 64 AAs is on par with Vanilla,
with occasional variances up to 100MB. Such intermittent
overhead is negligible for modern OS which has access to
the entire physical memory - often multiples of 4GB - owing
to SDRAM technology. To conclude, SeakK is scalable when
multiple AAs are present.

Regarding stability, we enabled all 64 AAs on the machine
used for daily research and education activities, including
Overleaf, Outlook, Zoom meetings, ChatGPT, Docker con-
tainers for CTF challenges, and plugining/unplugining pe-
ripherals. Over nearly 2.5 months, the machine maintained
consistent stability without encountering any issues.

9 Discussion & Future Directions

eBPF Alternatives and Security Issues. Seak employs the
eBPF ecosystem because it is safe, expressive, efficient, and
only privileged users can install eBPF programs. Without
considering these advantages, there are alternatives of eBPF
ecosystem like Kprobe. Kprobe stores raw data rather than
structures data in kernel memory and relies on a userspace pro-
cess to be in charge of data sharing between modules. Starting
from Kprobe, we need to reinvent the wheels already provided
by the eBPF ecosystem. This requires significant engineering
efforts and inevitably incurs higher performance overhead
due to additional kernel-user switches for data sharing.

A recent work EPF [34] reveals that attackers can misuse
BPF code as gadgets for code reuse attacks. Furthermore, the
eBPF ecosystem was previously reported to contain vulnera-
bilities [12—14]. Though addressing these security issues are
orthogonal to Seak, it remains worthwhile to pay attention to
the downsides of eBPF in the deployment of SeakK.

Hardware Support. SeaK relies on randomization and guard
pages to separate objects within dedicated regions. While the
entropy stands strong at 43, it can be further strengthened
through hardware features or hypervisor features if present.
Some promising memory protection features include Intel
MPK, Arm protection domain, and RISC-V Donky [58], and
Xen. However, considering that many devices, especially em-
bedded ones, lack these features, we choose not to integrate
them into SeaK at this time to maintain its broad applicability.

In the future, we will release new versions to leverage these
features specific to different platforms.

Extending to stack. Though SeaK is designed as a kernel
secure allocator, it can be extended to prevent stack attack. For
example, we can attach eBPF programs to functions where
stack overflow might happen, recording the value of the return
address in BPF maps at the function entry and examining its
integrity at the function exit. We will integrate this extension
into SeaK in the future.

10 Related Works

Heap security features from the upstream kernel have been
evaluated in Section 3 and those from academia and commer-
cial products have been compared with SeakK in Section 8.

The remaining related works are secure allocator in user
space, which employs safe design principles and random-
ized mechanisms to mitigates heap vulnerabilities. Typically,
these allocators separate in-place metadata from the object
and randomize both the allocation and reuse of memory.
Notable examples include DieHard [19] and its successor
DieHarder [48], which rely on abundant memory space to
allocate more memory than required and randomize object lo-
cations. FreeGuard [59] enhances performance by integrating
the security features of BIBOP-style allocators with the rapid
allocation capabilities of freelist-style allocators. Guarder [57]
refines FreeGuard by fine-tuning the level of entropy, while
SlimGuard [45] improves memory efficiency through fine-
grained memory class management. While SeaK benefits from
its user-space counterparts, certain features are not applicable
to kernel space. For example, the kernel doesn’t have infinite
memory which is commonly assumed in these works.

In addition to general-purposed secure allocators, there are
specialized allocators focusing solely on mitigating use-after-
free vulnerabilities. Cling [50] ensures that freed objects are
reused only if their types match, identified through runtime
call stack analysis. MarkUs [17] employs garbage collection
principles to free objects when no dangling pointers reference
them. Oscar [62] and FFmalloc [20] operate under the as-
sumption of unlimited memory space, allocating objects once
and never reusing them. Vik [23] assigns IDs to allocated
objects and permits only pointers with matching IDs to ac-
cess the object, optimizing overhead through ARM hardware
features. These specialized allocators are generally unsuitable
for kernel space because their assumptions do not apply there.
Besides, they are overly specific to certain vulnerability type
while SeaK generally works.

11 Conclusion

This work presents SeakK, the first practical secure allocator in
the kernel that substantially strengthens heap security without



introducing noticeable overhead. It is anchored in a new strat-
egy of designing a secure kernel allocator, centering around
the “atomic alleviation” concept. This new strategy is derived
from in-depth analyses of existing kernel heap security fea-
tures and is further validated by comprehensive evaluation
of SeakK in terms of security improvement, performance and
memory overhead, scalability, and stability.
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LMBench 2 cases | 4 cases | 8 cases | 16 cases | 32 cases | 64 cases
Simple syscall 0.70% | -0.01% | -1.52% | -1.20% 0.28% 1.43%
Simple read 0.06% | 0.16% | -0.35% 0.16% 0.78% 0.05%
Simple write 0.55% | 2.28% | -2.58% | -2.28% | -0.21% 2.44%
Select on 100 fd’s -0.11% | -0.04% | 0.11% 0.00% | -0.36% 0.01%
Signal handler install -0.77% | -121% | -1.55% | -1.21% | -1.01% | -0.39%
Signal handler overhead | 0.26% | -0.34% | -1.14% -0.58% 1.55% 3.29%
fork+exit -2.68% | 3.26% | 0.06% 3.26% | -2.04% | -3.30%
fork+execve -1.95% | -0.90% | -0.50% | -0.90% 3.01% | -1.99%
fork+/bin/sh -¢ -0.39% | 0.06% | 0.65% 0.06% 1.07% | -2.96%
UDP latency 095% | 0.17% | -0.34% 0.17% | -0.23% 0.92%
TCP/IP connection 1.72% | 0.64% | -0.15% 0.64% 1.20% 0.10%
AF_UNIX bandwidth | -1.09% | 0.13% | 0.26% 0.13% | -154% | -0.16%
Pipe bandwidth -1.45% | 1.00% | -0.16% 1.89% 0.13% 0.04%
Avg. -0.32% | 0.05% | -0.55% 0.01% 0.20% 0.04%
Phoronix 2 cases | 4 cases | 8 cases | 16 cases | 32 cases | 64 cases
Sockperf (Msgs/sec) 0.48% | -1.33% | -1.65% -1.30% 4.20% 3.75%
OSBench (Ns/Event) -0.24% | -0.16% | -0.19% | -0.23% 1.45% 0.45%
7-Zip Compress (MIPS) | -1.88% | -1.22% | -0.50% 1.07% | -0.29% 0.41%
FFmpeg Live (FPS) 0.48% | -0.83% | -0.34% 1.63% 1.97% 0.87%
OpenSSL SHA256 (B/s) | -0.10% | -0.16% | -0.09% | -0.05% | -0.07% 0.04%
Redis SET (Regs/sec) 0.94% | -3.30% | -3.06% | -336% | -1.06% | -2.99%
SQLite Speedtest (sec) 0.37% | -0.31% | 0.57% 1.41% 0.00% 0.15%
Apache 100 (Regs/sec) | -0.30% | -0.52% | -0.71% | -0.40% | -0.55% | -0.85%
Avg. -0.28% | -0.74% | -0.33% | -0.31% 0.71% 0.22%

Table 8: Complete results for the performance of Seak scaling up
to 64 AAs. Corresponding sampled results are in Table 7.

A Additional Results

Due to the space limit, we only present sampled results in the
text. In Google Sheet [18], we present more results regarding
memory usage of existing features and Seak when running
Phoronix. In addition, Table 8 presents more complete results
regarding SeaK’s scalability in performance. Table 9 shows
the FN and FP results of static analysis for separating vulner-
ability corruption. List 2 shows an example of synthesized

eBPF program.



SYZ Title Ci| C2 |C3 Type of Identified Vulnerable Object Seak
BUG__corrupted_list_in_kobject_add_internal O | O/d | @ | hci_conn [}
KASAN__use-after-free_Read_in_sctp_auth_free O | O/d | @ | crypto_shash, sctp_endpoint [ J
KASAN__use-after-free_Write_in__sco_sock_close D | O/ | @ | hci_conn [ ]
KMSAN__uninit-value_in_geneve_xmit O | O/® | @ | sk_buff, net_device [ )
WARNING__refcount_bug_in_I2cap_chan_put O | O/> | @ | 12cap_chan [}
KASAN__slab-out-of-bounds_Read_in_tcf_exts_destroy O | O/d | @ | tc_action, tcindex_filter_result [}
KASAN__use-after-free_Read_in_rdma_listen O | O/» | ® | rdma_id_private [ ]
BUG__corrupted_list_in_nft_obj_del O | O/> | @ | nft_object [ J
BUG__corrupted_list_in_nf_tables_commit O | O/» | @ | nft_flowtable,nft_trans [
general_protection_fault_in_delayed_uprobe_remove O | O/d | @ | delayed_uprobe [ )
KASAN__use-after-free_Read_in_delayed_uprobe_remove O | O/d | @ | delayed_uprobe [}
KASAN__use-after-free_Read_in_x25_device_event O | O/ | @ | net_device, x25_neigh [ ]
WARNING__ODEBUG_bug_in_tcf_queue_work ) | O/d | @ | workqueue_struct,routed_filter [ ]
KASAN__use-after-free_Read_in_route4_get O |0 | @ Scflj)cr'(;(:::zizzxi};ﬁg:meéLhead’ sk_buff, tcf_block, tcf_chain, [ )
WARNING__ODEBUG_bug_in_route4_change O | O/® | @ | routed_filter [ )
WARNING_in_call_rcu O | O/> | @ | routed_filter [ J
KASAN__slab-out-of-bounds_Write_in_default_read_copy_kernel | O | O/® | @ snd_pem_oss_file, - snd_pcm_plugin,  snd_pem_runtime, [ ]

snd_pcm_substream,snd_pcem_plugin_channel
snd_pcm_oss_file,  snd_pcm_plugin,  snd_pcm_runtime,

KASAN__slab-out-of-bounds_Read_in_default_write_copy_kernel | O | O/® | @ snd_pom_substream,snd_pem_plugin_charmel [}
general_protection_fault_in_vb2_mmap O | O/d | @ | video_device,vb2_buffer [}
KASAN__use-after-free_Read_in_vb2_mmap O | O/d | @ | video_device,vb2_buffer [ J
KASAN__use-after-free_Read_in__list_add_valid O | O/» | @ | sockaddr, ucma_context, ucma_file,rdma_id_private [}
KASAN__null-ptr-deref_Read_in_refcount_sub_and_test_checked O | O/ | @ | vb2_vmalloc_buf [ )
KASAN__use-after-free_Write_in__ext4_expand_extra_isize O | O/d | @ | ext4_inode_info, ext4_sb_info, inode [}
KASAN__use-after-free_Read_in__nf_tables_abort O | O/d | @ | list_head, net, nft_trans, sk_buff, sock, nft_table [ ]
BUG__corrupted_list_in__nf_tables_abort O | O/® | @ | list_head, nft_flowtable, nft_rule, nft_set, nft_table [ )
WARNING_in_snd_info_get_line olom! e sjﬁj}:f;rie;u f%r;cfdlrfemry, seq_file, snd_info_private_data, °
KASAN__slab-out-of-bounds_Write_in_decode_data O | O/ | @ | tty_ldisc, tty_struct [ )
KASAN__use-after-free_Read_in_ip6_hold_safe O | O/> | @ | dst_entry [ J
KASAN__use-after-free_Write_in_ip6_hold_safe O | O/> | @ | dst_entry (]
KASAN__use-after-free_Read_in_I2cap_chan_close O | O/» | @ | 12cap_chan [ )
KASAN__slab-out-of-bounds_Read_in_cap_inode_getsecurity O | O/> | @ | vfs_cap_data [}
kernel_BUG_at_fs/userfaultfd.c O | O/d | @ | userfaultfd_ctx [ ]
KASAN__use-after-free_Read_in_handle_userfault O | O/ | ® | mm_struct, vm_area_struct,userfaultfd_ctx [ )
KASAN__use-after-free_Read_in__rhashtable_lookup O | O/d | @ | rhashtable [ J
KASAN__use-after-free_Read_in_hci_send_acl O | O/® | @ | hci_conn, hci_dev, 12cap_conn, work_struct, hei_chan [ J
WARNING_in_snd_usbmidi_submit_urb/usb_submit_urb O | O/ | @ | urb [ )
UBSAN__shift-out-of-bounds_in_dummy_hub_control O | O/® | @ | urb,usb_ctrlrequest, usb_device, usb_hed [ )
KASAN__use-after-free_Read_in_tcp_check_sack_reordering O | O/d | @ | sk_buff [ J
KASAN__use-after-free_Read_in__vb2_perform_fileio O | O/ | @ | vb2_fileio_data, video_device [ )
KASAN__slab-out-of-bounds_Read_in_bitmap_ip_add O | O/d | @ | bitmap_ip->members [}
KASAN__slab-out-of-bounds_Read_in_bitmap_ip_ext_cleanup O | O/® | @ | net, nlattr, sk_buff, sock, bitmap_ip->members [}
KASAN__slab-out-of-bounds_Write_in_bitmap_ip_del O | O/» | @ | bitmap_ip->members [ )
KASAN__use-after-free_Read_in__queue_work O | O/ | @ | atomic64_t, work_struct [ )
KASAN__use-after-free_Read_in_ep_scan_ready_list O | O/> | @ | atomic64_t, work_struct [ J
KASAN__use-after-free_Read_in_p9_fd_poll O | O/» | @ | list_head, p9_client, p9_trans_fd (]
WARNING__ODEBUG_bug_in_p9_fd_close O | O/> | @ | p9_client, p9_trans_fd [ )

Table 9: More results of Seak’s security improvement for separating vulnerability corruption. Structures in bold in “Type of Identified
Vulnerable Object” are ground truth. The remaining is FP. SeaK has no FN in all test cases. O indicates failing to prevent exploitation, @ stands
for working occasionally due to the sampling nature, @ means succeeding in preventing exploitation.
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// essential utilities
// define a map where an alloc_addr corresponds to a key
struct {

} addr2key SEC(".maps");
// define a map where a key corresponds to a cache
struct {

} key2cache SEC(".maps");
int alloc_handler (struct pt_regs* ctx,
u64 kpi_type) {
// one key is related to one kind of object
key = generate_key (ctx);
//for kmem cache_alloc,
//we should get the kmem cache first.
//Then we can read the alloc_size through kmem_cache.
if (kpi_type == kmem_cache_alloc) {
cache = (struct kmem_cache*) PT_REGS_PARMI (ctx);
alloc_size = BPF_CORE_READ (cache, size);
alloc_size = get_size(alloc_size);
}else if (kpi_type == kmalloc) {
alloc_size = PT_REGS_PARMI (ctx);
alloc_size = get_size(alloc_size);
}
//use key to find the related cache in key2cache
cache = bpf_look_up_cache (key2cache, key)
if (!cache) {
//create a cache if first allocted
cache = generate_cache (key,alloc_size);
}
//allocate an object
alloc_addr = bpf_cache_alloc (cache)
update_map (addr2key,alloc_addr, key) ;
}
int free_handler(struct pt_regs* ctx,
u64 kpi_type) {
//for kmem_cache_free
//the second parameter is alloc_addr
if (kpi_type == kmem_cache_free) {
alloc_addr = PT_REGS_PARM2 (ctx);
}else if (kpi_type == kfree) {
alloc_addr = PT_REGS_PARMI (ctx);
}
key = bpf_look_up_key (addr2key,alloc_addr)
//locate the object’s cache
cache = bpf_look_up_cache (key2cache, key)
alloc_size = BPF_CORE_READ (cache, size)
// get the alloc_size of the object
bpf_delete_object (alloc_size,alloc_addr)
}
// attach to allocation site
SEC ("kprobe/single_opent0x2a™)
int probe_alloc_seq (struct pt_regs* ctx) {
return alloc_handler (ctx, kmem_cache_alloc);
}
// attach to free site
SEC ("kprobe/single_release+0x34")
int probe_free_seq (struct pt_regs* ctx) {
return free_handler (ctx, kfree);

}

Listing 2: A simplified example of a synthesized ebpf pro-
gram. The to-be-protected object is seq_operations which is
allocated via kmem_cache_alloc in single_open() and freed via
kfree in single_release. Note that comments in the code are
not synthesized but for illustration purpose.



