
Fast (Trapless) Kernel Probes Everywhere

Jinghao Jia†, Michael V. Le‡, Salman Ahmed‡, Dan Williams⋄‡, Hani Jamjoom‡, Tianyin Xu†

†University of Illinois at Urbana-Champaign ‡IBM T.J. Watson Research Center ⋄Virginia Tech

Abstract

The ability to efficiently probe and instrument a running op-

erating system (OS) kernel is critical for debugging, system

security, and performance monitoring. While efforts to op-

timize the widely used kprobes in Linux over the past two

decades have greatly improved its performance, many fun-

damental gaps remain that prevent it from being completely

efficient. Specifically, we find that kprobe is only optimized

for ~80% of kernel instructions, leaving the remaining probe-

able kernel code to suffer the severe penalties of double traps

needed by the kprobe implementation. In this paper, we focus

on the design and implementation of an efficient and general

trapless kernel probing mechanism (no hardware exceptions)

that can be applied to almost all code in Linux. We discover

that the main limitation of current probe optimization efforts

comes from not being able to assume or change certain prop-

erties/layouts of the target kernel code. Our main insight is

that by introducing strategically placed nops, thus slightly

changing the code layout, we can overcome this main limita-

tion. We implement our mechanism on Linux kprobe, which

is transparent to the users. Our evaluation shows a 10x im-

provement of probe performance over standard kprobe while

providing this level of performance for 96% of kernel code.

1 Introduction

The ability to instrument (a.k.a. “probe”) a running OS kernel

is critical for not only debugging and event tracing [13] but

also for system security [10,11], performance monitoring [25],

and dynamic patching [12]. An efficient and fast kernel prob-

ing mechanism is key to enabling the use of these applications

directly in the field on production systems and can open up

a rich set of new use cases, such as enforcing kernel control

flow integrity (KCFI) with dynamic policies [16].

A kernel probe allows users to dynamically instrument ar-

bitrary kernel instructions to execute user-provided handlers—

pre-handlers before executing the probed instruction and post-

handlers after. To intercede on the kernel’s control flow and

invoke these handlers, typical kernel probe implementations

rely on traps. When a probe is registered, the kernel makes

a copy of the probed instruction and replaces it with a break-

point instruction. When execution hits the breakpoint instruc-

tion, a trap occurs and the control is transferred to the probe

subsystem, which executes the pre-handler, probed instruc-

tion, and post-handler before resuming normal execution at

the instruction following the probe point. The obvious draw-

back of trap-based probes is the significant overhead due to

the expensive context switches involved (more than 6,000

CPU cycles from our measurements).

To overcome the above drawback, a trapless approach is

needed. The key idea is to replace the expensive traps with

control-redirecting instructions like jump instructions. While

a trapless approach can eliminate the overhead associated

with the traps, it introduces a major challenge. Specifically,

for variable-length instruction set architectures like x86, a

jump instruction can be longer than the probed instruction,

thereby overwriting multiple instructions. This can cause the

jump instruction to span basic block boundaries and cause ex-

ecution failure. This challenge can limit where trapless probes

can be used, thus how many instructions can be trapless.

Whether using a trap-based or trapless approach, another

challenge with implementing a kernel probing mechanism is

how to execute the copy of the probed instruction efficiently.

One typical choice is to execute the copied instruction directly

on the processor. However, this direct execution does not

work for some sets of instructions such as those related to the

instruction pointer, e.g., calls and jumps. These instructions

must be emulated, which is slow and adds complexity in terms

of implementing and maintaining the emulation code.

In this paper, we present the design and implementation of

a universally fast (trapless probing on all probe-able code)

kernel probing mechanism that requires no runtime code em-

ulation. Our design allows probe handlers to be executed

synchronously in the same context that triggered the probe

and thereby avoids expensive context switches. To achieve

this design, we rely on a key insight—by strategically insert-

ing nops into the kernel code, thus slightly changing the code

layout, we can overcome the above two challenges. Specifi-

cally, for probe locations that straddle basic block boundaries,

an inserted nop can ensure the jump instruction resides in

one basic block; for instructions that require code emulation,

placing a nop before such instructions allows a probe to be

attached by overwriting the nop with a call to the kernel probe

handlers, thereby allowing the probed instruction to be exe-

cuted in place with no copy or emulation. Most importantly, in

our approach, the locations to place the nops can be automati-

cally identified and kept minimal, thus reducing the impact

on normal kernel operations when no probe is installed.

To demonstrate the efficacy of our approach, we apply

our design to Linux kprobe [3] on x86, a widely used ker-



nel probing mechanism and architecture. Kprobe has been

transformed over the years from a purely trap-based probe

mechanism to utilizing a trapless approach [12]. However,

despite persistent optimization efforts, due to many funda-

mental limitations stemming from not being able to assume

or change certain properties/layout of the kernel code at run-

time and thereby overcoming the aforementioned challenges,

kprobe is far from being universally trapless. Exacerbating

the problem, existing kprobe optimizations are often applied

in an ad hoc manner, resulting in many instructions being

unoptimized, even if it is technically possible, oftentimes due

to the sheer complexity of the implementation. We discovered

that the existing kprobe is only optimized for ~80% of kernel

instructions, leaving the remaining probe-able kernel code to

suffer the severe penalties of up to two traps when probed.

Our universally trapless kprobe implementation consists

of a new transformation pass in the LLVM x86 backend to

identify the locations where a nop is needed and perform the

insertion. To allow kprobes to be optimized using the inserted

nops, we implemented kernel support for efficient, scalable

trampolines and runtime instruction rewriting.

We evaluate both the performance and optimization cov-

erage of our design. Our kprobe implementation achieves a

speedup of up to 3x for kprobe-based KCFI enforcements on

LEBench [24] over the original kprobe, with the single-probe

performance increased by a factor of 10x. Our kprobe imple-

mentation optimizes all the kernel instructions that can be

optimized at compile time and brings the total instructions op-

timizable in the kernel to 96%. In fact, even more performance

improvement can be potentially achieved (we prioritized com-

patibility and non-disruptive changes to accommodate the

current optimizations of Linux kprobe).

In summary, this paper makes the following contributions:

• We present a fast and universal trapless kernel probe design;

• We identify fundamental limitations of existing Linux

kprobe optimization techniques;

• We implement our design on top of Linux kprobe and show

the efficacy of the approach.

The source code of our universally trapless kprobe imple-

mentation can be found at https://github.com/hardos-ebpf-

fuzzing/atc24-uno-kprobe.

2 Design

The design of our trapless kernel probe mechanism has two

main goals: 1) the kernel probe should be fast when applied

to any kernel instructions without using expensive traps (e.g.,

int3 exceptions) and 2) the mechanism should be simple to

not increase implementation and maintenance complexity of

kernel code and lightweight to not incur significant overhead.

Since a kernel probe is inserted at runtime when the code

layout is fixed, there are two main challenges with imple-

menting a universally trapless kernel probe mechanism: 1)

how to ensure the inserted jump instruction does not span

basic block boundaries – blindly rewriting these instructions

would overflow into the next basic block and corrupt branch

targets, and 2) how to allow instructions that would normally

require emulation in a typical kernel probe implementation to

be directly executed. In this section, we discuss a clean-slate

design of a universal trapless kernel probe mechanism before

describing how we apply our design to Linux kprobe (§ 3).

2.1 A Baseline Solution

Our key insight for resolving the first challenge is to use the

insertion of nops to change the code layout of the kernel.

The nops inserted at compile time can provide space and be

used as anchor points for inserting probes at runtime without

tampering with regular kernel instructions.

The first basic incarnation of this approach is to insert a

5-byte nop instruction before every kernel instruction. In this

way, probing a specific instruction works by rewriting the

preceding nop into a same-sized relative call that redirects

the control flow onto a global trampoline. The trampoline

first saves register contexts on the stack. This prevents the

user-defined handler from overwriting the current execution

context. Next, the trampoline invokes the user-defined handler

to perform actual probing. Finally, after the handler finishes,

the trampoline pops the register contexts and returns. The

returned control flow would land on the next instruction after

the call, which is exactly the probing target. Execution can

then continue with the correct context.

While this approach ensures that no trap is needed, and thus

any kernel probe is fast, inserting a nop before every instruc-

tion would introduce significant overhead when the kernel

probes are not used. Our evaluation shows a 75% slowdown

for LEBench running on Linux v6.3.6 (§ 4).

2.2 Minimal nops Design

Clearly, improving the baseline would require strategically

placing nops. Fortunately, we observe that the vast majority

of the nop instructions in the baseline can be omitted. Specif-

ically, if there is enough space before a branch target, there

is a potential opportunity of rewriting a relative jmp to the

trampoline in place [12]. As illustrated in Figure 1, the mov

instruction being probed can be rewritten into a relative jmp

to the probe trampoline, without tempering the branch target

after it. Doing this rewriting requires us to copy the target

instruction and any other instruction that could be overwrit-

ten by the 5-byte relative jmp to a temporary copy buffer.

After the trampoline invokes the user-supplied handler and

restores the register context, it executes the instructions saved

in the copy buffer and performs another relative jump back to

the normal execution path. This implementation requires the





Figure 4: Existing kprobe optimizations known as boosting

and jump-optimization.

Trap-based kprobes suffer greatly from the expensive con-

text switch overheads. Our measurement shows that such a

kprobe consumes more than 6,000 CPU cycles.

3.1.1 Existing Kprobe Optimizations

Since trap-based kprobes suffer greatly from expensive con-

text switches, optimizations have been developed to replace

expensive traps with jump instructions [12] (Figure 4). In

Linux, kprobe currently employs two optimizations, named

boosting and jump-optimization for the two traps, respectively.

Boosting. Boosting aims to replace the single-step trap with a

jump instruction. The insight is that if a kprobe does not have

a post-handler, then single-stepping may not be needed. So,

for a kprobe without a post-handler, the boosting optimiza-

tion adds a jump which jumps back to the next instruction,

replacing the single-step trap. In this way, the kernel exe-

cutes the copied instruction and the jump. Note that, unlike a

pre-handler, a post-handler is not commonly used.

Boosting is limited in scope since it cannot handle instruc-

tions that change the instruction pointer register (rip), e.g.,

call, and the instructions which may require exception fix-

ups. Instructions like call need to be emulated, instead of

being executed out-of-line, because the return address pushed

onto the stack needs to be corrected.

Jump-optimization. Jump-optimization builds upon boost-

ing, aiming to replace the breakpoint trap with a five-byte

relative jump that redirects the control flow to a pre-allocated

trampoline. The trampoline calls into the kprobe pre-handler

and then jumps back to the next instruction. In this way,

kprobe invokes the pre-handler synchronously on the same

execution context and avoids the expensive context switch.

Note that jump-optimization may need to overwrite and

copy multiple instructions, instead of only the probed instruc-

tion in the original kprobe (§3.1), because jump, as a five-byte

instruction, may be longer than the probed instruction. The un-

optimized kprobe with int3 does not encounter this problem

because int3 is a one-byte instruction. Kprobe implements an

x86 instruction decoder to recognize the instruction boundary.

Like boosting, jump-optimization is also limited. It suffers

from the same basic block spanning issues described in § 2.

The current kprobe implementation handles this limitation

conservatively, because it cannot reason about basic block

boundaries (i.e., branch targets) at runtime. Therefore, in ad-

Instruction Count (Percentage)

Non-boostable 949,396 (14.31%)

Non-jump-optmizable (boostable) 445,037 (6.71%)

Total 1,394,433 (21.02%)

Table 1: The number (percentage) of instructions in Linux

(v6.3.6) that are not optimized by kprobes. There are in total

6,632,661 kprobe-able instructions.

1. rip-changing instructions, e.g. jumps and calls

2. Instructions that may trigger exceptions (e.g. pages faults)

3. Instructions that override address size or code segment

4. x86 instructions group 2/3/4/5 with reserved opcodes.

5. Instructions with 3-byte opcodes

Table 2: Instructions that cannot be boosted (thus not jump-

optimized in the current kprobe implementation).

dition to ensuring no near jump to the region of the jump

instruction, kprobe also refuses to optimize any instructions

in a function that contains indirect jumps. Also, the imple-

mentation of jump-optimization depends on boosting; so,

non-boostable instructions cannot be jump-optimized.

3.1.2 Kprobe Limitations

The kprobe optimizations are not only limited in scope but

also applied to kernel instructions in an ad hoc way. Table 1

shows the amount of instructions that cannot be optimized

by either boosting or jump-optimization in Linux (v6.3.6).2

In total, 21.0% of the instructions in Linux cannot be fully

optimized, i.e., attaching a kprobe on around one-fifth of the

kernel text needs to pay for the context switch overhead raised

by breakpoint exceptions. Among them, the majority are non-

boostable (and thus cannot be jump-optimized).

In addition to the limitations discussed in §3.1.1, the pro-

cess of applying the two optimizations to the trap-based im-

plementation (§3.1) is often ad hoc. Linux adopts a strategy

of applying optimizations based on a few types of instructions

that are deemed to be safe. Table 2 lists the types of instruc-

tions that are not non-boostable in Linux. For example, all

Group 2, 3, and 4 instructions are deemed as non-optimizable

in the kernel, while some of them can clearly be optimized

(e.g., inc/dec for increments/decrements). In fact, the depen-

dency of the two optimizations is also an implementation

artifact; in principle, the two optimizations are independent.

3.2 Universally Fast Kprobe

Instead of continuing to manually apply existing optimiza-

tions to more types of instructions and special cases, we seek

a principled, universal implementation using our approach.

Our implementation consists of a compiler transformation

2There are ~6K instructions that are not probe-able such as trap instruc-

tions like ud2 and int3 and functions labeled as non-traceable.



that selectively inserts nops (§3.2.1) and kernel support for

efficient trampolines and instruction rewriting (§3.2.2). The

former takes 549 lines of C++ code and the latter takes 298

lines of C code. We build on top of Linux v6.3.6.

3.2.1 Compiler Transformation

We develop a compiler transformation to identify the mini-

mal set of locations where nops are needed to enable trapless

kprobes. The transformation is implemented on LLVM as a

MachineFunctionPass that works at the Machine IR (MIR)

level [4] in the code-generation backend. We chose MIR in-

stead of the generic LLVM IR because MIR closely models

native code, which makes it easy to check whether an instruc-

tion can be optimized by kprobe at runtime.

The transformation takes two iterations and operates on

each kernel function; it goes through each instruction in the

function and identifies instructions that are not boosted or

jump-optimized by Linux:

• If the instruction cannot be boosted, a nop instruction is

inserted before that instruction.

• If the instruction can be boosted but not jump-optimized

(which means that inserting a jump would overflow into

another basic block), a nop instruction is inserted before

the last instruction of the basic block.

Enabling universal boosting. Table 2 shows the categories

of non-boostable instructions. For each non-boostable instruc-

tion category that can be identified by opcode, the compiler

pass inserts a nop before the instruction.

Inserting a nop is straightforward in most cases. One spe-

cial case is to handle terminator instructions of basic blocks,

i.e., instructions at the end of the basic block that direct the

control flow to the successor basic blocks. Since such instruc-

tions modify instruction pointers, they are almost always not

boostable. The LLVM MIR implements the semantics similar

to native assembly code and permits basic blocks to have

multiple terminators (e.g., a basic block may have a condi-

tional jump (jcc) followed by a direct jump (jmp)—the direct

jump is executed when the conditional jump is not taken).

The LLVM backend requires no non-terminator instructions

between terminators. Therefore, it is invalid to insert nops

between terminators, which is required for non-boostable ter-

minators. To handle this case, our compiler pass splits the

basic blocks with multiple terminators into multiple basic

blocks, each of which has one terminator. The transformation

maintains the original control flow, and allows the insertion

of a nop in front of each terminator if needed.

The only non-boostable category that cannot be identified

by opcode directly is the instructions that may trigger excep-

tions (e.g., page faults). Our design covers these instructions,

but our current implementation does not handle them because

the kernel exception table with the actual kernel address is

not available until after linking.

Enabling universal jump-optimization. For instructions

that can be boosted but cannot be jump-optimized, our com-

piler pass aims to enable jump-optimization to avoid the

breakpoint trap. The reason that jump-optimization is not

applicable is due to the lack of space to place the five-byte

jump instruction.

The problem is straightforward to fix at compile time, be-

cause basic blocks are explicit and branches can only jump to

the entries of basic blocks. Therefore, the problem is reduced

to handling the case when rewriting a jump would overflow

to the next basic block. We address this case by inserting a

nop before the last instruction of each basic block. Note that

basic block terminators are handled by the prior iteration.

3.2.2 Kernel Support

We keep the kprobe interface for probe registration. If the

kprobe being registered is not jump-optimizable, our imple-

mentation will optimize it onto a preceding nop (if exists).

This leverages the kernel text-patching interface to replace the

5-byte nop instruction with a 5-byte relative call instruction

that redirects the control flow onto our trampoline.

Efficient, scalable trampoline design. In kprobe, the pre-

handlers expect to receive the registers (pt_regs) of the con-

text that triggered the probe. In trap-based kprobes (§3.1),

registers are automatically saved by the processor. For jump-

optimized kprobes that do not use a trap, their trampolines

explicitly save the register context and invoke the user han-

dlers with the saved context.

Currently, the kprobe jump-optimizer creates one trampo-

line for each instruction a jump-optimized kprobe is attached.

The jump-optimizer copies a pre-defined trampoline “tem-

plate” and fills it with information specific to that probe. For

example, the kernel copies the instructions overwritten by the

jmp to the end of the trampoline. Such a design is needed

because the instructions cannot be directly executed in place

after being overwritten by the jmp – they must be copied to

a trampoline customized for that kprobe. At the same time,

since jump-optimization uses a relative jmp to redirect the

control flow to the kprobe pre-handlers, the jump-back ad-

dress needs to be hardcoded into the trampoline in order to

resume the normal execution after probing.

However, creating one trampoline for every probed instruc-

tion is not only complicated but also does not scale well. We

address this issue by designing a single, global trampoline for

all the kprobes that are optimized with the nop (§2.1), because

the probed instructions can be executed in place.

Similar to the trampolines of jump-optimization, our tram-

poline pushes the registers onto the kernel stack with specific

ordering so that the pushed values form a pt_regs struct

which can be directly used by user handlers. A challenge for

our one-trampoline design is to handle the instruction pointer

register (rip). The pre-handler expects the rip to be the ad-

dress of the probed instruction. However, the rip changes



Figure 5: Optimized kprobe workflow by rewriting the nop

into a call.

at each instruction and cannot be trivially pushed onto the

stack. Unlike the per-instruction trampoline, the address of the

probed instruction is not encoded on the global trampoline.

We solve the problem by rewriting our 5-byte nop into a

5-byte relative call instruction that calls onto the trampoline,

instead of the relative jmp used by jump-optimization. The

call instruction automatically pushes the return address onto

the stack. This address is always the address of the next in-

struction after the nop, which is exactly the probed instruction

and the rip value the handler expects. In this way, the trampo-

line can just read the value of the expected rip from the stack

and store it in the pt_regs. The use of the call instruction

also allows us to jump back to normal execution as a ret will

be enough. The resulting workflow of our optimized kprobe

is shown in Figure 5.

We implement our trampoline in x86-64 assembly. The fin-

ished trampoline after compilation takes a constant 96 bytes in

the kernel, a significant improvement over the linear memory

complexity incurred by jump-optimization.

4 Evaluation

We evaluate our trapless kprobe mechanism, denoted as Uno-

kprobe, on its optimization coverage, probe performance, and

nop overhead. All measurements are performed on a bare

metal server with an 8-core Intel Xeon E-2174G CPU with

32GB of memory on a 1Gb/s network.

4.1 Trapless Kprobe Coverage

We assess the amount of kernel code that can utilize our trap-

less Uno-kprobe. Under the original kprobe implementation,

the classes of kernel instructions that are not optimizable

include instructions that cannot be boosted to execute out-of-

line (e.g., rip-modifying instructions) and instructions at the

end of basic blocks where jump-optimization could overwrite

branch targets. Both classes can now be optimized with Uno-

kprobe. Table 3 shows the amount of kernel code that can be

optimized under the original kprobe and our Uno-kprobe. Our

approach can optimize all currently unoptimized instructions

that can be identified at compile time, bringing the total in-

structions optimizable in the kernel from 79% to 96%. The

remaining non-optimizable instructions include instructions

Total instructions Vanilla Kprobe Uno-kprobe

6.63M 79% (5.24M) 96% (6.38M)

Table 3: Kernel code trapless-probe coverage of Uno-kprobe.

Vanilla Kprobe Uno-kprobe

No optimization 6235 ± 817 612 ± 407

Boost-only 2625 ± 2459 562 ± 369

Table 4: Latency (in cycles) of invoking an empty handler

using vanilla kprobe and Uno-kprobe.

that could trigger page faults and instructions from inline-

assembly blocks as well as assembly files (these instructions

cannot be trivially processed in the LLVM code generator).

4.2 Performance

We first evaluate the performance of Uno-kprobe on a mi-

crobenchmark. Our experiment consists of a single kprobe

with an empty handler attached to an instruction and measures

the total latency of the kprobe and instruction. We measure

the latency using both the original kprobe implementation and

Uno-kprobe and on both a boostable but not jump-optimizable

nop (located at the end of a basic block) and a non-boostable

shr. The results are shown in Table 4. Uno-kprobe is about

10x faster than the existing kprobe on a non-boostable instruc-

tion (i.e., with two traps) and 5x faster than that on a boostable

but not jump-optimizable instruction (i.e., with one trap) as

both of these probe sites are fully trapless with Uno-kprobe.

For existing kprobes on a non-boostable instruction, we found

that the majority of the performance overhead (86.8%) comes

from the traps and related context switches.

We then evaluate Uno-kprobe performance on applications

utilizing kprobes. Specifically, we measure the performance

of the LEBench [24] benchmark with a kprobe on all indirect

calls in the kernel that resembles a kernel CFI (KCFI) use

case. Figure 6 shows the overhead of LEBench when KCFI is

enabled using different techniques for invoking CFI handlers.

As can be seen, using the original kprobe results in the highest

overhead, with some system calls having overhead up to 3x

compared with our trapless kprobes. On average, Uno-kprobe

achieves a speedup of 1.4x across all LEBench. Kprobe has

been recognized by prior work to perform poorly in use cases

that require a high rate of invocation [10, 16]. Uno-kprobe

makes it feasible to use kprobe for such an application.

Lastly, we evaluate the overhead introduced by our inserted

nops when kprobes are not used. We measure the perfor-

mance of the LEBench under different nop insertion strate-

gies: vanilla kernel (no nop), nops before non-optimizable

instructions, and nops before every instruction. We found that

inserting nops before every instruction yields a rather large

overhead, 30% on average. Uno-kprobe, in contrast, incurs an

overhead of 10% on average on LEBench when kprobes are



Figure 6: Runtime overhead of different KCFI policies when executing LEBench, with vanilla kprobe in Linux and Uno-kprobe.

Value reported is based on median runtime of each benchmark.

not registered and achieves a performance advantage of up to

1.5x (mid mmap) over inserting nops before every instruction.

This may be acceptable for applications that heavily rely on

the probing functionality and already must incur the prob-

ing overhead, given the performance boost (up to 10x) at all

probe-able locations that can be achieved with Uno-kprobe.

5 Related Work

SystemTap [21] and DTrace [8] both use trap-based prob-

ing mechanisms. Similarly, Ptrace [1] uses traps to provide

userspace applications with a mechanism to hook onto pro-

cesses. Another trap-based probing mechanism is the Xen-

probes [22] for probing guest kernels. Mechanisms for secure

active monitoring [20], dynamic operating systems monitor-

ing [9], memory introspection [17], and intrusion detection

in the kernel [23] use forms of trap-based probing. Our work

offers a principled solution to optimize probes with handlers

sharing the same address space, but would require a different

design for probes requiring a world-switch.

Unlike trap-based techniques, many instrumentation probes

utilize trampolines instead of breakpoints. The Ftrace function

tracer [2] in the Linux kernel utilizes compiler-placed nops at

the beginning of functions and rewrites them dynamically to

jump to trampolines. A similar mechanism is also proposed

for enforcing kernel CFI due to its performance benefit [16].

Both mechanisms only work on probing specific points in

the kernel and are far from being universal, unlike our work.

At the same time, DynamoRIO [7], DynInst [6], and Intel

Pin [18] are trampoline-based tools where some of them use

emulation, which might benefit from our work and would be

an interesting future work.

6 Concluding Remarks

This paper presented a fast and universal trapless kernel probe

design based on strategically placed nops. We demonstrated

the feasibility by implementing our design on top of the Linux

kprobe subsystem, which in some cases still relies on expen-

sive traps. We show that the performance of kernel probes can

be effectively improved through this general design. To make

our work more practical, we have also engaged with the Linux

kernel community and have upstreamed patches that contain

optimizations [14] as well as bug fixes [15] for the current

kprobe implementation. For future work, we are aiming to

further optimize the Linux kprobe with trapless probes and

make it more complete.

Acknowledgement

We thank the anonymous reviewers for their useful feedback.

We especially thank Linux kprobe maintainer Masami Hi-

ramatsu for his feedback on our original nop-based probing

idea, his explanation and clarification on the design choices

of the current Linux kprobe, as well as his help for reviewing

and signing-off our kernel patches for kprobe improvements.

This work was funded in part by NSF CNS-1956007, NSF

CNS-2236966, an IBM-Illinois Discovery Accelerator Insti-

tute (IIDAI) grant, and a grant from Boeing Co.

References

[1] ptrace(2) — linux manual page. https://man7.org/linux/

man-pages/man2/ptrace.2.html.

[2] ftrace - Function Tracer. https://docs.kernel.org/trace/

ftrace.html, 2023.

[3] Kernel Probes (Kprobes). https://docs.kernel.org/

trace/kprobes.html, 2023.

[4] Machine IR (MIR) Format Reference Manual. https://llvm.

org/docs/MIRLangRef.html, 2023.

[5] Kernel level exception handling. https://docs.kernel.

org/arch/x86/exception-tables.html, 2024.

[6] BERNAT, A. R., AND MILLER, B. P. Anywhere, Any-Time

Binary Instrumentation. In Proceedings of the 10th ACM

SIGPLAN-SIGSOFT Workshop on Program Analysis for Soft-

ware Tools and Engineering (PASTE’11) (2011).

[7] BRUENING, D. Efficient, Transparent, and Comprehensive

Runtime Code Manipulation. PhD thesis, Massachusetts Insti-

tute of Technology, Department of Electrical Engineering and

Computer Science, 2004.



[8] CANTRILL, B. M., SHAPIRO, M. W., AND LEVENTHAL,

A. H. Dynamic Instrumentation of Production Systems. In

Proceedings of the 2004 USENIX Annual Technical Conference

(ATC’04) (2004).

[9] ESTRADA, Z. J., PHAM, C., DENG, F., YAN, L., KALBAR-

CZYK, Z., AND IYER, R. K. Dynamic VM Dependability

Monitoring Using Hypervisor Probes. In Proceedings of the

11th European Dependable Computing Conference (EDCC’15)

(2015).

[10] FOURNIER, G. Return to sender: Detecting ker-

nel exploits with eBPF. In Blackhat USA (2022).

https://i.blackhat.com/USA-22/Wednesday/US-22-

Fournier-Return-To-Sender.pdf.

[11] HARDENEDVAULT. Ved-ebpf: Kernel exploit and rootkit de-

tection using ebpf. https://github.com/hardenedvault/

ved-ebpf, 2023.

[12] HIRAMATSU, M. The Enhancement of Kernel Prob-

ing — Kprobes Jump Optimization. In Tracing Sum-

mit (2010). https://tracingsummit.org/ts/2010/files/

HiramatsuLinuxCon2010.pdf.

[13] IOVISOR. bpftrace. https://github.com/iovisor/

bpftrace, 2023.

[14] JIA, J. [patch v2 0/3] x86/kprobes: add exception

opcode detector and boost more opcodes. https:

//lore.kernel.org/all/20240204031300.830475-1-

jinghao7@illinois.edu/, Feb. 2024.

[15] JIA, J. [patch] x86/kprobes: fix incorrect return address

calculation in kprobe_emulate_call_indirect. https:

//lore.kernel.org/all/20240102233345.385475-1-

jinghao7@illinois.edu/, Jan. 2024.

[16] JIA, J., LE, M. V., AHMED, S., WILLIAMS, D., AND

JAMJOOM, H. Practical and Flexible Kernel CFI Enforce-

ment using eBPF. In Proceedings of the 1st Workshop on

eBPF and Kernel Extensions (eBPF’23) (2023).

[17] KLEMPERER, P. F., JEON, H. Y., PAYNE, B. D., AND HOE,

J. C. High-Performance Memory Snapshotting for Real-Time,

Consistent, Hypervisor-Based Monitors. IEEE Transactions

on Dependable and Secure Computing 17, 3 (2018), 518–535.

[18] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER,

A., LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZEL-

WOOD, K. Pin: Building customized program analysis tools

with dynamic instrumentation. In Proceedings of the 2005

ACM SIGPLAN Conference on Programming Language De-

sign and Implementation (PLDI’05) (2005).

[19] LUTOMIRSKI, A. Why do kprobes and uprobes sin-

glestep? https://lore.kernel.org/all/161469874601.

49483.11985325887166921076.stgit@devnote2/T/

#mbb8fd3431b354681310a12741adfd57fad0e7d95, 2021.

[20] PAYNE, B. D., CARBONE, M., SHARIF, M., AND LEE, W.

Lares: An Architecture for Secure Active Monitoring Using

Virtualization. In Proceedings of the 2008 IEEE Symposium

on Security and Privacy (SP’08) (2008).

[21] PRASAD, V., COHEN, W., EIGLER, F., HUNT, M., KENISTON,

J., AND CHEN, B. Locating System Problems Using Dynamic

Instrumentation. In Proceedings of the 2005 Ottawa Linux

Symposium (2005).

[22] QUYNH, N. A., AND SUZAKI, K. Xenprobes, A Lightweight

User-space Probing Framework for Xen Virtual Machine. In

Proceedings of the 2007 USENIX Annual Technical Conference

(ATC’07) (2007).

[23] REEVES, J., RAMASWAMY, A., LOCASTO, M., BRATUS, S.,

AND SMITH, S. Intrusion detection for resource-constrained

embedded control systems in the power grid. International

Journal of Critical Infrastructure Protection 5, 2 (2012), 74–

83.

[24] REN, X. J., RODRIGUES, K., CHEN, L., VEGA, C., STUMM,

M., AND YUAN, D. An Analysis of Performance Evolution of

Linux’s Core Operations. In Proceedings of the 27th ACM Sym-

posium on Operating Systems Principles (SOSP’19) (2019).

[25] SUSE. System analysis and tuning guide. https:

//documentation.suse.com/sles/15-SP3/html/SLES-

all/book-tuning.html, 2024.


