
Broadly Enabling KLEE to Effortlessly Find Unrecoverable Errors
in Rust

Ying Zhang∗

yingzhang@vt.edu
Virginia Tech

Blacksburg, VA, USA

Peng Li∗

peli@zoox.com
Zoox

Foster City, CA, USA

Yu Ding∗

dingelish@google.com
Google

Mountain View, CA, USA

Wang Lingxiang∗

lingxwang@microsoft.com
Microsoft

Redmond, WA, USA

Dan Williams
djwillia@vt.edu
Virginia Tech

Blacksburg, VA, USA

Na Meng
nm8247@vt.edu
Virginia Tech

Blacksburg, VA, USA

ABSTRACT

Rust is a general-purpose programming language designed for per-

formance and safety. Unrecoverable errors (e.g., Divide by Zero)

in Rust programs are critical, as they signal bad program states

and terminate programs abruptly. Previous work has contributed

to utilizing KLEE, a dynamic symbolic test engine, to verify the

program would not panic. However, it is difficult for engineers

who lack domain expertise to write test code correctly. Besides, the

effectiveness of KLEE in finding panics in production Rust code has

not been evaluated. We created an approach, called PanicCheck, to

hide the complexity of verifying Rust programs with KLEE. Using

PanicCheck, engineers only need to annotate the function-to-verify

with #[panic_check]. The annotation guides PanicCheck to gener-

ate test code, compile the function together with tests, and execute

KLEE for verification. After applying PanicCheck to 21 open-source

and 2 closed-source projects, we found 61 test inputs that triggered

panics; 59 of the 61 panics have been addressed by developers so far.

Our research shows promising verification results by KLEE, while

revealing technical challenges in using KLEE. Our experience will

shed light on future practice and research in program verification.

ACM Reference Format:

Ying Zhang, Peng Li, Yu Ding,Wang Lingxiang, DanWilliams, and NaMeng.

2024. Broadly Enabling KLEE to Effortlessly Find Unrecoverable Errors in

Rust. In 46th International Conference on Software Engineering: Software

Engineering in Practice (ICSE-SEIP ’24), April 14–20, 2024, Lisbon, Portugal.

ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3639477.3639714

1 INTRODUCTION

Rust was created to ensure high performance comparable to that

offered by C and C++, while emphasizing the code’s safety—the

Achilles heel of the other two languages [1]. Rust’s error handling

offers a robust and expressive mechanism that encourages develop-

ers to handle errors gracefully and explicitly.

∗Indicates authors who were previously employed by ByteDance Ltd.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0501-4/24/04.
https://doi.org/10.1145/3639477.3639714

Rust groups errors into two categories: recoverable and unre-

coverable errors [2]. A recoverable error (e.g, File Not Found) is

an error that does not cause the program to terminate abruptly.

A program can retry the failed operation or specify alternative

actions when it encounters a recoverable error [3]. For instance, if

a Rust program attempts to open a file that does not exist, it is a

recoverable error because the program can then proceed to create

the file [4]. An unrecoverable error (e.g., Index Out Of Bounds)

causes a program to fail abruptly. A program cannot revert to its

normal state if an unrecoverable error occurs. It cannot retry the

failed operation or undo the error. Namely, unrecoverable errors

are symptoms of bugs, more dangerous than recoverable ones.

Most languages do not distinguish between these two kinds

of errors; they handle both in the same way using mechanisms

such as exceptions. Rust does not have exceptions [3]. Instead, it

has the type Result<T, E> for recoverable errors and the panic! macro

(a Rust macro is like a function) that stops execution when the

program encounters an unrecoverable error. By checking whether

the return-type of a Rust function is Result<T, E>, developers can

easily identify recoverable errors, and implement code to eagerly

handle those errors before compiling or running their software.

However, it is much harder to identify unrecoverable errors. This is

because such errors are not signaled by any dedicated return-type;

developers have to reason about program semantics intensively to

reveal errors. For simplicity, this paper uses panics to consistently

refer to unrecoverable errors [5].

To explore potential panics in Rust code, prior work leverages

symbolic execution to verify Rust programs. Specifically, they tried

to compile Rust source code to LLVM bitcode, and used KLEE [6–8],

a symbolic execution engine for LLVM, to symbolically execute Rust

test code and uncover panics. For instance, Rust verification tools

(RVT) [8, 9] is a collection of tools/libraries to support both random

testing and verification of Rust programs. RVT provides libraries to

patch the LLVM IR to support KLEE features like symbolic values. It

requires users to manually define parametrized unit tests, compiles

those tests together with Rust code into bitcode files, and automates

the process of invoking KLEE on bitcode files.

However, it is challenging for developers who lack the domain

expertise to write a parametrized unit test [10]. This specialized

skill set requires an in-depth understanding of the function’s intri-

cacies, potential edge cases, and symbolic execution background

to call that function in specialized ways [11]. Besides, even with

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Ying Zhang, Peng Li, Yu Ding, Wang Lingxiang, Dan Williams, and Na Meng

Figure 1: PanicCheck consists of four phases

RVT’s help, it is still infeasible to do a large-scale evaluation due

to too much human effort to configure and write tests for every

project. This raises questions about its real-world applicability and

reliability when used in Rust-based environments. As a result, many

developers may hesitate to adopt symbolic execution until user-

friendly tools emerge or case studies emerge that demonstrate its

prowess in the Rust ecosystem.

To fill these gaps, we developed PanicCheck, a semi-push-button [12]

dynamic test verification tool tailored for Rust. PanicCheck only

requires engineers to annotate functions with #[panic_check]. It then

handles compilation, test generation, symbolic execution, and panic

checking automatically. This automation enables large-scale empir-

ical evaluation of PanicCheck on Rust code. As shown in Figure 1,

with PanicCheck, we can verify function fname(...) by annotating it

with #[panic_check]. Given the annotated program, PanicCheck goes

through four phases. Phase I compiles the program to extract the

function name and parameters. Phase II determines how to create

a symbolic variable for each parameter. Phase III creates and com-

piles a parametrized unit test to declare symbolic variables and call

fname(...) with those variables. Phase IV executes the test with KLEE,

to output any test inputs that trigger panics.

We evaluated PanicCheck and KLEE on real-world Rust projects,

guided by two goals. First, we aimed to rigorously measure KLEE’s

effectiveness at finding panics in production Rust code. Second, we

sought to identify areas for improvement in the symbolic execution

workflow for Rust. We applied PanicCheck to 21 popular open-

source Rust programs, and 2 large production-grade closed-source

Rust programs that served as key infrastructures at ByteDance. We

annotated hundreds of functions with #[panic_check], and passed all

annotated functions to PanicCheck for program verification. In total,

PanicCheck revealed 61 panics in 6 of the projects. By examining

developers’ later changes to their projects, we found that 52 of the

panics were fixed. Furthermore, we filed bug issues or pull requests

for the remaining nine panics; so far, developers have fixed seven.

The results provide new insights into KLEE’s capabilities as well as

guides future tool development.

We made the following contributions in this paper:

• We created a tool PanicCheck, which wraps the usage of

KLEE and streamlines the verification process. Because little

manual effort is required, PanicCheck enables us to conduct

the large-scale case study, and helps us avoid human errors

when creating unit tests.

• We conducted a case study by applying PanicCheck to 23

real-world Rust projects, in order to verify hundreds of Rust

functions in those projects. No prior work conducts such a

large-scale study as what we did.

• By observing the runtime behaviors of KLEE and analyzing

all 61 panics it revealed in our study, we characterized the

strengths and weaknesses presented by the tool.

In the following sections, we will first introduce the technical

background KLEE and RVT (Section 2.1), and describe a running

example (Section 2.3). Then we will explain PanicCheck (Section 3)

and our experiment in detail (Section 4).

2 BACKGROUND AND MOTIVATION

In this section, we will first introduce the technical background of

KLEE and RVT. Then we will describe a concrete scenario of Rust

code verification to motivate our research.

2.1 KLEE

KLEE is a dynamic symbolic execution engine built on top of the

LLVM compiler infrastructure [13], to automatically explore paths

through a program and decide what inputs cause which part of the

program to execute. Theoretically speaking, it can run any program

compiled to LLVM bitcode. In practice, it has been mainly applied

to C/C++ programs.

Given a function-to-verify (FTV), KLEE conducts inter-procedural

analysis to explore various possible execution paths, and synthe-

sizes the constraints on symbolic variables for explored paths. For

each path, KLEE uses the constraint solver STP to solve the path

condition, to decide whether that path is feasible. For each feasible

path, KLEE generates a concrete input triggering the path, and

checks if there are any values that can cause an unrecoverable error.

KLEE is known to have the following limitations [14].

• Path explosion: The number of paths through a program

can be exponential in the size of the program. Therefore,

unless the program under analysis is small, KLEE cannot

finish checking all possible paths in a timely manner and

users need to set a timeout to terminate its execution.

• Bounded checks for loops: In general KLEE cannot show

that a loop will always behave correctly. It only checks some

of the possible executions of a loop.

• Long time spent in constraint solving: When some path

conditions or constraints are hard to solve, STP may spend

overly long time trying to find satisfying value assignments.

The kinds of bugs KLEE can find are memory errors (e.g., buffer

overflows and null-pointer dereference), division/modulo by zero,

over shifts, and assertion violations [15].

2.2 Rust Verification Tools (RVT)

RVT [8, 9] is a collection of tools and libraries to support both

random testing and verification of Rust programs. It provides the

functionalities to compile the Rust projects to LLVM bitcodes and

invoke KLEE to verify the program against the LLVM bitcodes. To

write a test with RVT, developers need to 1) define a test function

to assert certain properties for their program (e.g., no panic will

occur), 2) specify how each parameter should be symbolized using

Broadly Enabling KLEE to Effortlessly Find Unrecoverable Errors in Rust ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

RVT’s domain-specific language (DSL) to generate the test inputs.

Then, developers invoke RVT to compile the program into LLVM

bitcode, synthesize the constraints on symbolic variables for each

execution path, and decide whether the property always holds for

the function-to-verify.

It can be challenging for developers to manually write test func-

tions with RVT due to two reasons. First, the test functions involve

the traits or APIs defined by RVT (e.g., abstract_value(...)), requir-

ing that developers have sufficient domain knowledge of RVT and

KLEE. Second, when a test function needs to prepare parameter

inputs of complex data types (e.g., u8 slice reference), developers

have to carefully prepare compound data structures (e.g., vector),

by properly composing symbolic variables.

2.3 A Motivation Example

Lines 1–13 in Listing 1 show a function from a real-world Rust

crate (i.e., compilation unit [16]): integer-encoding-rs-1.1.7 [17].

The function decode_var(...) takes in a variable of type &[u8] as input.

Here, [u8] means u8 slice—a dynamically sized type representing a

view into a contiguous sequence of elements of type u8 [18]; &[u8]

refers to any reference to a variable of type u8 slice. Once an input

is provided, the function decodes the input, and returns a tuple that

includes (1) the decoded content and (2) a value of type usize (i.e.,

the pointer-sized unsigned integer type).

To verify the function together with all functions called by that

function (e.g., zigzag_decode(result)) via RVT, developers need to man-

ually craft a test function similar to the one shown by lines 16–28

of Listing 1. The demonstrated test code prepares a value of type

&[u8], calls decode_var(...) with that value, and checks whether any

panic occurs. Specifically, to prepare the input parameter, the test

code first declares a vector of u8, with an initial size set to 30 (see

lines 18–19). Next, it defines 30 symbolic variables of type u8, by

repetitively calling the function u8::abstract_value() (see lines 20–21).

These symbolic variables are important for KLEE to later verify the

program via symbolic execution. After declaring 30 symbolic vari-

ables and storing them into the vector variable v (see lines 20–23),

the test code tentatively makes the call decode_var(&v), where &v is a

vector reference and is also of the type u8 slice reference.

In summary, when developers write a test, they need to:

• Identify the types of input parameters, no matter whether

they are primitive, compound, or collection types.

• Write code to create symbolic variables of various types that

KLEE can interpret. When a variable has a compound or

collection type, decide on the size and create elements to put

into the compound or collection variable.

• Write the code for verification and panic checking.

To save developers’ manual effort and ensure the quality of pro-

gram verification, we created PanicCheck — an automatic approach

to generate test functions and conduct program verification using

those test functions via KLEE. Given a function annotated with

#[panic_check] (see Listing 2), PanicCheck generates a test function

semantically equivalent to lines 16–28 in Listing 1.

3 PANICCHECK

As described above, it can be tedious and error-prone for developers

to manually write test functions, when they want to verify lots of

Listing 1: A Rust program under testing and the test function

manually defined for the usage of RVT’s KLEE backend

1 //Decode a zigzag encoding value from the slice. Returns the value

and the number of bytes read from the slice↩→

2 fn decode_var(src: &[u8]) -> (Self, usize) {

3 let mut result: u64 = 0;

4 let mut shift = 0;

5 for b in src.iter() {

6 let msb_dropped = b & DROP_MSB;

7 result |= (msb_dropped as u64) << shift;

8 shift += 7;

9 if b & MSB == 0 || shift > (10 * 7) {

10 break;

11 }

12 }

13 (zigzag_decode(result) as Self, shift / 7 as usize)

14 }

15

16 // the test code that a developer needs to write if s/he wants to

adopt the RVT's KLEE backend↩→

17 #[test]

18 fn test_decode_var(){

19 let len = 30;

20 let mut v = Vec::with_capacity(len);

21 for _ in 0..len {

22 let element = u8::abstract_value();

23 v.push(element);

24 }

25 let result = panic::catch_unwind(|| {

26 let _ = decode_var(&v);

27 });

28 assert!(result.is_ok());

29 }

Listing 2: A Rust program annotated with #[panic_check]

1 #[panic_check]

2 fn decode_var(src: &[u8]) -> (Self, usize) { ... }

Rust functions. To save developers’ effort and ensure verification

quality, we developed PanicCheck. Given a function annotated with

#[panic_check], PanicCheck parses that function to extract the function

name, parameters, and their data types. It then generates a test func-

tion. The test function is compiled into LLVM bitcode, so that KLEE

is applicable to verify decode_var(...). The compilation process also

injects value checks to guard critical instructions (e.g., arithmetic

or bitwise operators), and adds panic! macros when value checks fail.

PanicCheck streamlines the verification process by synthesizing

tests for given Rust code, and invoking the existing toolchain in

RVT for Rust-to-bitcode conversion as well as KLEE application.

As shown in Figure 1, PanicCheck defines Phases I–III to generate

a test function from a given annotated function, and defines Phase

IV to execute the test function with KLEE. At the end of Phase III,

PanicCheck produces two versions of the generated test function:

a human-readable Rust code and an executable version for KLEE.

Phase IV feeds KLEE with the generated executable version to

reveal panics. Given an annotated function, PanicCheck executes

all phases by issuing the command “cargo-verify --backend=KLEE --tests”.

This command performs two tasks: (T1) to build the Rust program

as well as all available test functions using the Rust compiler, and

(T2) to execute the built code with KLEE. We implemented Phases

I–III as an integral macro, which rewrites Rust code by creating

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Ying Zhang, Peng Li, Yu Ding, Wang Lingxiang, Dan Williams, and Na Meng

and adding in a parametrized test. The macro is then loaded in

the compilation process (T1), where it receives the token stream of

annotated function from compiler for syntax-tree creation, analysis,

and manipulation. Phase IV corresponds to the execution process

(T2). Because we did not do anything in particular for Phase IV, we

will focus our discussion on Phases I–III.

3.1 Context Extraction

Given the token stream of an annotated Rust function, Phase I uses

a parsing library—syn [19]—to parse tokens. It also invokes APIs

of syn to traverse the resulting syntax tree in order to locate the

function signature, which includes the function’s name, parameter

list, and parameters’ data types.

3.2 Symbolic Variable Creation

For each parameter extracted in Phase I, Phase II determines how

to create a corresponding symbolic variable processable by KLEE.

So far, PanicCheck can provide full or partial support for the sym-

bolic variable creation of 28 data types. These 28 types include 18

primitive types, 4 compound types, and 6 collection types.

3.2.1 Primitive Types. As shown in Table 1, by calling the RVT

APIs data_type::abstract_value(), PanicCheck fully supports variable gen-

eration for 16 of the 22 primitive types. It also fully supports the

unit type. Because the unit type has only one value “()”, we do not

need to generate any symbolic variable for the data type, neither

does KLEE need to enumerate values. PanicCheck partially supports

variable generation for the reference type. It can declare symbolic

variables for shared (i.e., immutable) references, but not for exclu-

sive (i.e., mutable) references. Typically, to generate a reference

variable of type T (i.e., &T), PanicCheck needs to first create a sym-

bolic variable of type T (e.g., u8), and then use the reference to that

variable as the created reference variable (e.g., of type &u8). Due to

the time limit, we did not implement PanicCheck to generate syntax

trees or code for exclusive references. We plan to address this limita-

tion in the future, by extending our current parser implementation

as well as the templates for code generation.

Among the remaining four types, PanicCheck does not support

fn or pointer as KLEE does not handle pointers well. This is because

the memory address space is huge; KLEE can easily get stuck with

the state explosion issue when symbolizing a pointer to enumer-

ate address values. Notice that our treatments for references and

pointers are totally different because in Rust, even though refer-

ences and pointers have the same underlying data—addresses for

some memory, they have different constraints and semantics with

the compiler [20]. Namely, references have rules enforced by the

compiler: (1) they cannot outlive what they refer to (the “referent”);

(2) mutable references cannot be aliased. References behave like

the variables they point to. They have a type, and developers can

interactive with that type to read it or (with mutable references)

modify it. On the other hand, pointers are semantically more about

addresses. When developers interact with pointers, they modify ad-

dresses instead of the variables pointed to.When they print pointers

without using the unsafe keyword, addresses are printed out.

Additionally, PanicCheck does not support slice or str. Both slice

and str are dynamically sized types—types without a statically

known size or alignment [21]. Because Rust must know the size

and alignment of things in order to correctly work with them,

dynamically sized types can only get used via references (e.g., &str)

and parameters of these types must be declared as references.

3.2.2 Compound Types. PanicCheck provides partial tool support

for four compound types: array, enum, struct, and tuple. Two rea-

sons can explain why the array type is not fully supported. First,

developers can declare arrays to have arbitrary lengths. When an

array variable contains a very large number of elements (e.g., >30),

PanicCheck needs to define many independent symbolic variables,

adding them to an array in order to generate a symbolic array

variable. When enumerating possible states of all those element

symbolic variables, KLEE will encounter the state explosion prob-

lem and work ineffectively to reveal panics. Second, when an array

has a compound or collection type as its element type, e.g., array

of arrays, too many primitive-typed independent variables can be

nested into the array level-by-level, making KLEE fail. Based on our

experience, KLEE can respond in a timely manner when an array

has at most 30 primitive-typed elements, so we built PanicCheck

accordingly.

PanicCheck does not fully support enum or struct because both

types allow developers to define custom data structures. While

custom data structures can be very different from each other, the

elements of a custom data structure can also have complex data

structures. It can be very challenging to properly generate sym-

bolic variables for such data types. Therefore, currently PanicCheck

only supports variable creation for three widely used built-in types:

Option, Result, and String. In the future, we will conduct more

advanced static program analysis to characterize custom data struc-

tures, and extend PanicCheck to generate symbolic variables for

those structures.

Rust allows each tuple to have 2–11 elements. However, if a tuple

has some compound-typed or collection-typed elements, the total

number of independent variables in the tuple can become too large

for KLEE to explore. To ensure that KLEE can often respond to

PanicCheck in a timely manner, we built PanicCheck to only model

tuples that are declared to have primitive-typed elements.

3.2.3 Collection Types. PanicCheck provides partial support for six

collection types: Vec, VecDeque, LinkedList, BTreeMap, BTreeSet,

and BinaryHeap. This is mainly because each collection can have

an arbitrary number of elements. When elements are symbolized

as independent variables, there is no way that KLEE can fully sup-

port the state enumeration for all variables’ value combinations.

Consequently, we set the length of Vec, VecDeque, and LinkedList

to 30 based on our experimental experience with KLEE. We noticed

that KLEE becomes extremely slow and usually produces no output

if the length goes beyond 30. We set the length of BTreeMap and

BTreeSet to 10. This length is smaller than 30, mainly because the

data types leverage B-Tree, a data structure more complex than

vectors and lists. We set the length of BinaryHeap to 5 also because

of the complexity of the internal data structure.

PanicCheck does not support HashMap or HashSet, because

KLEE often wastes time verifying the hashing algorithm used in

Rust [22, 23] instead of verifying the actual program logic.

Broadly Enabling KLEE to Effortlessly Find Unrecoverable Errors in Rust ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: PanicCheck’s creation of symbolic variables for different Rust data types

Category Data Type Tool Support Details

Primitive

Type

bool Full Call the RVT’s API bool::abstract_value() to create a symbolic variable.
char Full Call u32::abstract_value() to create a symbolic variable. Then call char::from_u32(c).unwrap_or_reject() to ensure

that the variable only holds values in [0, 0xD800) or (0xDFFF, 0x10FFFF]—corresponding to valid characters.
f32, f64 Full Call data_type::abstract_value() to create a symbolic variable, where data_type can be f32 or f64.
fn No PanicCheck does not generate any symbolic variable for function pointers (fn), as KLEE does not handle pointers well.
i8, i16, i32, i64,
i128, isize

Full Call data_type::abstract_value() to create a symbolic variable, where data_type can be i8, i16, i32, i64, i128, or isize.

pointer No PanicCheck does not generate any symbolic variable for pointers, as KLEE does not handle pointers well.
reference Partial PanicCheck generates symbolic variables for shared (i.e., immutable) references, but does not generate symbolic variables

for exclusive (i.e., mutable) references.
slice No There is no pass-in parameter to have the data type slice. Instead, a parameter can have the data type of slice reference,

which is fully supported by PanicCheck.
str No There is no pass-in parameter to have the data type str. Instead, a parameter can have the type of str reference, which is

fully supported by PanicCheck.
u8, u16, u32, u64,
u128, usize

Full Call data_type::abstract_value() to create a symbolic variable, where data_type can be u8, u16, u32, u64, u128, or
usize.

unit Full The unit type has exactly one value “()”. When a function parameter has the unit type, PanicCheck generates the constant
value instead of creating any symbolic variable, and sends that value to KLEE.

Compound

Type

array Partial PanicCheck can generate a symbolic array variable for the array type [T;n], where the element type T must be primitive
and n is in [1, 30]. To create such a variable, PanicCheck first declares an array variable with the size specified. It then
repetitively defines symbolic variables of type T and adds those variables to the array. The partial support is delimited by
KLEE’s capability.

enum Partial PanicCheck creates variables for two enum types—Option〈T〉 and Result〈T, E〉—Rust built-in types widely used to define
function parameters. Although developers are allowed to define their own enum data types, self-defined enum data types
often have distinct structures. Thus, PanicCheck now cannot generate variables for those types.

struct Partial PanicCheck generates variables for one built-in struct—String—a built-in data type widely used to define function parameters.
Although developers can also define their own struct data types, PanicCheck does not support variable generation for those
self-defined data types now.

tuple Partial PanicCheck generates variables for tuples with 2–11 primitive-typed elements, because Rust allows at most 11 elements in a
tuple.

Collection

type

Vec Partial For Vec〈T〉, PanicCheck generates a vector of 30 T-typed elements. Each element is a symbolic variable separately generated
for primitive-type T, and then added to the vector.

VecDeque Partial For VecDeque〈T〉, PanicCheck generates a queue of 30 elements, with each element a symbolic variable separately generated
for primitive-type T.

LinkedList Partial For LinkedList〈T〉, PanicCheck creates a list of 30 elements, with each element a symbolic variable of primitive-type T.
HashMap No KLEE does not handle HashMaps well.
BTreeMap Partial For BTreeMap〈K, V〉, PanicCheck generates a map of 10 entries, where each entry’s key and value are separately symbolic

variables of primitive-types K and V.
HashSet No KLEE does not handle HashSets well.
BTreeSet Partial For BTreeSet〈T〉, PanicCheck generates a set of 10 elements, with each element a symbolic variable of primitive-type T.
BinaryHeap Partial For BinaryHeap〈T〉, PanicCheck a heap with five independent symbolic variables. The type T must be primitive.

3.3 Test Generation

Since function-to-verify (FTV) shares a common pattern, we define

a template in PanicCheck. The template contains symbolic variable

declaration and FTV call. For each FTV, PanicCheck generates two

semantically equivalent versions of one test function: (1) source

code and (2) LLVM bitcode.

3.3.1 Source Code Generation. PanicCheck generates tests based

on templates. It has a code template predefined for each data type

it supports (as listed in Table 1) to declare variables; it also has a

predefined template to call FTV with the newly declared symbolic

variables. Actually, to simplify code generation and the static rea-

soning of data types, PanicCheck implements the Strategy design

pattern [24] in code templates. The pattern allows us to define alter-

native algorithms for a specific task (i.e., generating variables given

a data type), while PanicCheck decides the actual algorithms to use

at runtime depending on FTV. Fig. 2 illustrates our strategy-based

software design for the generated test code. Here, bold text high-

lights the newly generated Rust trait and implementations, while

plain text describes the trait predefined by RVT.

During the test generation for FTV, a trait (analogous to Java

interface) named Strategy1 is always declared; it declares a uniform

function interface value_gen(...) that is callable by tests to declare

symbolic variables. For each parameter type declared by FTV (e.g.,

bool), PanicCheck defines an implementation (e.g., impl Strategy1 for

bool) to implement the declared trait and function; the implemented

function invokes API AbstractValue::abstract_value() as needed to cre-

ate symbolic variables. Note that RVT declares and defines the

trait AbstractValue, so that the type that implements this trait can al-

ways generate variables processable by KLEE. Because our software

design follows the Strategy design pattern, the test function Panic-

Check creates is semantically equivalent instead of fully identical

to the one shown in Listing 1.

3.3.2 LLVM Bitcode Generation. The cargo-verify command issued

by PanicCheck (see the beginning of Section 3) automatically con-

verts the source code of generated test function into LLVM bitcode.

Thanks to the command usage, PanicCheck does not need to imple-

ment anything to enable the conversion. In this conversion process,

the command also (1) injects value checks to guard critical instruc-

tions and (2) inserts panic! macros for any potential failure of value

checks. All such insertions are automated by KLEE.

Because the compiled LLVM bitcode is hard to read and explain,

to facilitate presentation, we use Rust code in Listing 3 to present the

semantics of compiled LLVM bitcode for decode_var(...). In the code,

we use “...” to omit less important code details. As shown in the

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Ying Zhang, Peng Li, Yu Ding, Wang Lingxiang, Dan Williams, and Na Meng

Listing 3: A Rust program used to illustrate the program

semantics of compiled LLVM bitcode for decode_var(...)

1 ...

2 for b in src.iter() {

3 let msb_dropped = b & DROP_MSB;

4 // the following if-statement to check for and report

shift-operation overflow (lines 5-7) is injected in the

compilation process

↩→

↩→

5 if (shift > 64) {

6 panic!("... panicked at 'attempt to shift operation with

overflow', ...", ...);↩→

7 } else {

8 result |= (msb_dropped as u64) << shift;

9 // the following if-statement to check for and report arithmetic

overflow (lines 10-12) is also injected in the compilation

process

↩→

↩→

10 if (shift > usize::Max - 7) {

11 panic!("... panicked at 'attempt to add with overflow', ...",

...);↩→

12 } else {

13 shift += 7;

14 ...

15 }

16 }

17 } ...

simplified code, the compilation process injects two if-statements

separately for the bitwise left shift operator (<<) and the plus equals

operator (+=). The first if-statement ensures that the number of bits

specified does not go beyond the total number of bits available in a

u64 number (i.e., 64). If shift > 64, a panic is generated. Similarly, the

second if-statement ensures that the result of plus equals does not

overflow; if the result is larger than usize::Max, the program panics.

With the LLVM bitcode provided, KLEE scans instructions, un-

rolls for-loops as needed, and explores paths reaching panic-statements.

For each explored path, KLEE synthesizes and solves constraints,

to output solutions (i.e., value assignments to symbolic variables)

as panic-triggering test inputs. For our motivating example, KLEE

detects a panic as described below:
running 1 test

Value src = [128, 128, 128, 128, 128, 128, 128, 128, 128,

128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0]

test test_decode_var ... FAILED

...

thread 'test_decode_var' panicked at 'attempt to shift left

with overflow', src/varint.rs:121:23

The output shows the root cause of a panic (“attempt to shift left

with overflow”), the code location (“src/varint.rs:121:23”), and the panic-

triggering test input. Such information can help developers debug

code and fix any software flaw implied by the panic.

4 EVALUATION

We implemented PanicCheck for the Rust version 1.47.0-nightly

(2020-08-02). The LLVM release we leveraged is 10.0.0, and the com-

mit of KLEE versionwe adopted is c51ffcd377097ee80ec9b0d6f07f8ea583a5aa1d.

To investigate how PanicCheck can help with revealing panics in

Rust programs, we applied PanicCheck to both open-source and

closed-source projects. Specifically inside the company ByteDance

Ltd., we applied PanicCheck to two internal projects (closed-source)1.

1The experiment was conducted when first four authors were at ByteDance.

Additionally, we created a dataset of 21 open-source projects by

mining crates.io [25]—the Rust community’s crate registry, in order

to also apply PanicCheck to those projects. In the following part of

this section, we will first introduce our open-source dataset and the

experiment setup. Then we will describe the experiment results.

4.1 The Open-Source Dataset

To build the open-source dataset, we first used the keyword “parser”

to search on crates.io for projects with at least 400,000 downloads.

We chose this keyword based on the advice of domain experts of

formal verification, who mentioned that the Rust libraries related to

parsers are less likely to be well tested and thus more likely to suffer

from panic issues. Among the popular projects with at least 400,000

downloads, we selected projects using the following criteria:

• The project uses only syntax defined by the Rust 2018 edition,

as PanicCheck does not support the new grammar features

introduced by the Rust 2021 edition.

• The entry functions (see Section 4.2 for definition), i.e., func-

tions we will annotate with #[panic_check], do not use any self-

defined (e.g., struct) or complex data types (e.g., HashMap)

that are not supported by PanicCheck.

• The entry functions do not have any parameter decorated

with the lifetime annotation (i.e., the apostrophe character),

as PanicCheck does not analyze or validate variables declared

with the lifetime annotation.

With the criteria mentioned above, we included 20 popular projects

into our dataset. Additionally, we noticed that the open-source

project GNU core utilities (coreutils) [26] was once used to effec-

tively evaluate KLEE [13]. Thus, we also included a Rust version of

coreutils. Please refer to Table 2 for a full list of the open-source

projects in our dataset. All these projects have code publicly avail-

able at GitHub.

4.2 Experiment Setup

In our evaluation, we did not annotate every single function of

subject projects with #[panic_check] for two reasons. First, it is very

time-consuming to verify every function, although some functions

are more important or more frequently executed than the others.

Second, as KLEE conducts inter-procedural analysis, it is quite pos-

sible that the symbolic execution of some functions can fully cover

that of other functions. To verify the most frequently executed

functions without incurring too much effort of redundant verifica-

tion, we decided to annotate only entry functions in each selected

project. Among all functions within a given project, we chose entry

functions using the following criteria:

• If the project has proptests [27] already defined for some

functions, we treat those functions as entry functions be-

cause developers are likely to apply proptest to the most

important functions. Proptest is a property testing frame-

work. It randomly generates inputs to test whether certain

properties always hold for a given program; whenever a fail-

ure is found, it automatically finds the minimal test case to

reproduce the problem.

• If the project has no proptest defined but contains a file lib.rs,

we treat all application programming interfaces (APIs) listed

in that file as entry functions. The lib.rs file of a project

Broadly Enabling KLEE to Effortlessly Find Unrecoverable Errors in Rust ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

Figure 2: The UML class diagram showing our strategy-based software design for test generation

Table 2: The experiment result on 21 open-source projects

Project

of
Func-
tions
Anno-
tated

Build
Time

without
Panic-

Check (sec)

Build
Time with

Panic-

Check (sec)

Verification
Time (sec)

Result Details

https://crates.io/crates/unicode-xid 1 5 111 (22.2x) 26 Pass
The formal verification finishes in 26
seconds.

https://crates.io/crates/unsigned-varint 2 7 135 (19.3x) 3, 4 Pass (2)
The two functions are separately verified
with 3 and 4 seconds.

https://crates.io/crates/regex 1 23 118 (5.1x) >7200 State explosion
KLEE cannot verify the annotated function
due to the state explosion issue.

https://crates.io/crates/ryu 2 4 33 (8.3x)
>7200/

function
State explosion (2) Same as above.

https://crates.io/crates/yaml-rust 1 7 58(8.3x) >7200 State explosion Same as above.
https://crates.io/crates/untrusted 1 1 18 (18x) >7200 State explosion Same as above.
https://crates.io/crates/csv 1 14 47 (3.4x) >7200 State explosion Same as above.
https://crates.io/crates/utf8parse 1 1 20 (20x) >7200 State explosion Same as above.
https://crates.io/crates/html5ever 1 8 36 (4.5x) >7200 State explosion Same as above.

https://crates.io/crates/der-parser 2 12 27 (2.3x)
>7200/

function
State explosion (2) Same as above.

https://crates.io/crates/ron 1 14 75 (5.4x) >7200 State explosion Same as above.

https://crates.io/crates/url 1 18 42 (2.3x) >7200 Pass

KLEE can verify some execution paths of
the annotated function, but cannot finish
verification within 2 hours (the timeout
period we specified).

https://crates.io/crates/httparse 1 5 43 (8.6x) >7200 Pass Same as above.

https://crates.io/crates/humantime 3 5 34 (6.8x)
>7200/

function
Pass (3) Same as above.

https://crates.io/crates/nom 1 14 60 (4.3x) >7200 Pass Same as above.
https://crates.io/crates/gimli 1 5 94 (18.8x) >7200 Pass Same as above.
https://crates.io/crates/lexical 1 14 20 (1.4x) >7200 Pass Same as above.
https://crates.io/crates/minimal-lexical 1 2 23 (11.5x) 1 Panic Attempt to subtract with overflow.
https://crates.io/crates/integer-encoding 1 9 21 (2.3x) 29 Panic Attempt to shift left with overflow.

https://crates.io/crates/coreutils 100
8–21/

subproject

16–59
(1.8x–6.2x)/
subproject

>7200/
function (44),

11–886/
function (56)

Pass (44) + Clap
Panics (45) +

Other Panics(11)

The majority of panics are by Claps. When
excluding Claps, the panics are about
calling unwrap() functions on invalid
values, missing function argument,
incorrect char boundary, or unexpected
invalid UTF-8 code point.

implies the project to be a software library, while the APIs

listed in that file are accessible by library users. Thus, those

APIs are important to verify.

• If the project has no proptest or lib.rs defined but contains a

main function, we treat the function as an entry function. We

believe that the main function typically executes the most

important functionalities.

With the criteria mentioned above, we annotated in total 125 entry

functions in open-source projects and more than 40 functions in

closed-source projects. The column # of Functions Annotated

in Table 2 shows the distribution of the 125 entry functions. In

particular, there are 100 subprojects in coreutils, and each subpro-

ject defines a main function. Thus, we annotated 100 functions in

coreutils. As we conducted all experiments in May 2021–October

2021, all program versions we experimented with were downloaded

during that period.

4.3 Experiment Results

In Table 2, the column Build Time without PanicCheck shows

the time cost of purely building each project without involving any

step of PanicCheck. Build Time with PanicCheck describes the

total time cost of (1) a clean build and (2) the first three steps of

PanicCheck. Namely, any time difference between the two columns

shows the runtime overhead incurred by PanicCheck’s first three

steps. By comparing the measured values for these columns, we

found PanicCheck to incur 6–128 seconds to the build procedure.

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Ying Zhang, Peng Li, Yu Ding, Wang Lingxiang, Dan Williams, and Na Meng

Namely, PanicCheck expanded the compilation overhead by 0.4–21.2

times. Such overheads were introduced macro expansion, Panic-

Check compilation, and bitcode generation. Thanks to the Rust

conditional compilation, such overheads will not affect the build

process in production mode because PanicCheck is only executed

in the testing mode. Thus, developers do not need to remove those

macros when building the production binary.

Column Verification Time shows the runtime overhead of

KLEE execution, corresponding to the fourth step of PanicCheck.

For 56 subprojects of coreutils and 5 other projects, KLEE execution

finished quickly and spent 1–886 seconds on each project. Panic-

Check either reported no panic after exploring all paths or revealed

the first panic it encountered. However, for another 44 subprojects

of coreutils and 16 other projects, KLEE execution could not finish

within the allocated time—2 hours. In particular, for nine projects,

the verification procedure was stuck with the problem of state ex-

plosion: there were too many states for KLEE to enumerate. KLEE

could not enumerate all states or verify any function. For the re-

maining (sub) projects, KLEE could not finish its exploration within

two hours although it was not stuck with state explosion; its explo-

ration got slowed down by the value enumeration for variables of

complex/compound data types or String. We still considered these

projects to partially pass formal verification due to a time limit.

Finding 1: Among the 125 functions annotated for 21 open-source

projects, PanicCheck revealed 59 panics for 59 functions but failed

to verify 11 functions due to state explosion; 3 functions passed

complete verification and 52 functions passed partial verification

due to the time limit.

We also annotated more than 40 functions in 2 closed-source

projects of ByteDance. These two projects belong to the Key Man-

agement System (KMS). KMS is an internal keymanagement service

that other internal services leverage to perform encryption and de-

cryption. The two projects used in our experiment contain several

thousand lines of code in total (no more than 10 thousand LOC).

They are real-world crucial Rust projects, instead of toy exam-

ples crafted by the paper authors for research purposes. Internally,

ByteDance requires KMS to have no unrecoverable error, as panics

in this service can lead to serious consequences like data loss or

service disruption. In our experiment, we applied PanicCheck to

functions related to certificate parsing, encryption, and decryption,

in order to check whether those functions have unrecoverable er-

rors. PanicCheck revealed in total two panics in the projects, both

of which were later confirmed and fixed by ByteDance developers.

In total, we found 61 panics in 23 projects (21 open-source +

2 closed-source), when we performed the experiment in 2021. To

investigate developers’ responses to those panics or software bugs,

we further examined themore recent version of these programs as of

September 2023 (before submitting this paper). to see whether those

bugs were already fixed. If a program’s latest version could take in

the panic-triggering input and execute smoothly, we concluded that

developers recently fixed the bug relevant to that panic. Otherwise,

we filed a bug issue for each revealed but unresolved panic and

sought developers’ feedback. So far, we have observed that 52 panics

were already resolved by developers before we filed any issue report.

We filed 9 reports for the remaining panics; for 7 panics, developers

have confirmed the reported issues and fixed bugs accordingly;

Listing 4: An example to call unwrap() function on the value

returned by options.value_of(...) [29]

1 let duration: Duration = uucore::parse_time::from_str(

options.value_of(options::DURATION).unwrap()). unwrap();↩→

Table 3: The root cause of state explosion projects

Projects Root Cause

ryu Raw Pointer Operation

yaml-rust String Enumeration

untrusted String Enumeration

csv String Enumeration

utf8parse String Enumeration

html5ever String Enumeration

der-parser String Enumeration

ton String Enumeration

developers did not respond for 2 panics. The high fixing rate (i.e.,

59/61) indicates that KLEE detects crucially important bugs; the

high issue-confirmation rate (i.e., 7/9) implies that KLEE’s output

is quite helpful for developers to understand and fix bugs.

Finding 2: PanicCheck revealed 61 panics in 23 projects. So far,

59 of the panics have been addressed by developers. This observa-

tion indicates the great quality of PanicCheck’s outputs and high

relevance of revealed panics.

We further inspected the content of 61 panics, and recognized

two major root causes. First, 45 of the panics share the same error

message “unexpected invalid UTF-8 code point”. These panics all

occurred in subprojects of coreutils, due to the usage of a library

clap [28]. When these subprojects passed invalid UTF-8 strings

(e.g., ./expand "È") to a clap API, the API does not properly handle the

invalid inputs and thus triggers panics. Recently we observed that

the clap developers improved their API implementation, to cause

no panic in any of the projects invoking that API.

Second, nine panics are about calling unwrap() functions on invalid

values. All these panics occurred in subprojects of coreutils. For

instance, in the timeout subproject of coreutils, unwrap()was once called

on the return-value of options.value_of(...) (see Listing 4). Although

developers assumed that options.value_of(...) always returns normal

values, it turned out that the method call can return an Err-typed

value. Calling unwrap() on that value can trigger a panic and halt

the program execution. Developers fixed such bugs by conducting

value checks before calling unwrap() functions.

Finding 3: 54 of the 61 panics occurred because unexpected or

invalid values were used to call method APIs.

To pinpoint the root causes of state explosion, we annotated

functions called by the entry point during execution. However,

functions with unsupported features (e.g., lifetime scope annota-

tions) were excluded from annotating. The identified root causes

are presented in Table 3. Notably, seven projects faced issues due

to string enumeration; given the vast search space of strings or

bytes, KLEE could not verify these projects within the specified

time. For ryu, the parser’s pursuit of optimal performance led to

the conversion of unsigned integers into raw pointers. This caused

Broadly Enabling KLEE to Effortlessly Find Unrecoverable Errors in Rust ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

KLEE to enumerate the memory space, significantly expanding the

state space and consequently triggering state explosion.

Finding 4: PanicCheck cannot handle the string and raw pointers

cases well due to the limited capability of KLEE.

5 THREATS TO VALIDITY

Threats to External Validity. All the empirical observations we

made so far are based on our experimental dataset. These observa-

tions may not generalize well to other Rust programs. In the future,

we would like to include more projects into our evaluation, so that

our findings can become more representative.

Threats to Construct Validity. Our tool implementation is limited

by the Rust edition (i.e., 2018) PanicCheck currently targets and the

KLEE/LLVM versions it uses. Namely, PanicCheck does not support

new features introduced by the more recent releases of Rust, neither

does it support features that are not well supported by KLEE or

LLVM. This is mainly because PanicCheck is based on RVT, and

RVT targets Rust 2018. Currently, PanicCheck does not analyze or

validate variables declared with the lifetime annotation, neither

does it generate symbolic variables for exclusive (i.e., mutable)

references. When running PanicCheck on the newer version of

Rust code, it will throw an unknown error without producing any

unsound result. In the future, we plan to modernize RVT, and extend

the modernized version with PanicCheck’s implementation for both

old and new language features.

6 LESSONS LEARNED

By enabling large-scale usage, PanicCheck reveals both strengths

and weaknesses of KLEE when it is applied to Rust programs.

6.1 Advantages of Applying KLEE to Rust
Programs

Our study confirms that KLEE can generate meaningful test inputs,

and reveal unrecoverable errors existing in Rust programs. All er-

rors reported by KLEE are true positives; there is no false alarm

(false error) reported by KLEE. Furthermore, it can even effectively

identify the unrecoverable errors overlooked by developers or man-

ually developed test suites. One possible reason to explain this

phenomenon is that developers may not be good at thoroughly

testing Rust programs. When program logic is complex, developers

may only focus on the main paths that are frequently executed

and majorly check for design errors. Because KLEE systematically

explores feasible paths in programs, it is able to capture edged cases.

Additionally, KLEE examines software for errors relevant to mem-

ory accesses, division/modulo by zero, over shifts, and assertion

violations; thus, the errors it finds can complement the design errors

that developers focus on.

6.2 Limitations of Applying KLEE to Rust
Programs

We noticed that KLEE is inapplicable to generate test cases for many

functions in our dataset. Three major reasons can explain KLEE’s

limited applicability. First, it cannot analyze concurrent programs.

Second, it cannot symbolize the size of memory allocation. Third, it

provides very limited support for pointers (i.e., memory addresses).

Additionally, even though KLEE is applicable to verify some

functions, it cannot finish verification within a reasonable period

of time (e.g., two hours) for two reasons. First, it supports a very

limited set of built-in collection types (e.g., BinaryHeap). In partic-

ular, when a collection variable contains lots of element variables,

symbolizing each element variable can make the overall program

state space overwhelmingly large, considerably prolonging the ver-

ification procedure. Second, KLEE does not support String variables

to contain characters from big vocabularies (e.g., ASCII, UTF-8).

This is because when a variable can have strings composed of very

diverse characters, generating strings of certain format is almost

infeasible or computationally expensive.

To better verify Rust programs with KLEE, we plan to improve

PanicCheck in two ways. First, we will statically analyze programs

to learn how developers’ customized data types are formulated with

primitive data types. In this way, PanicCheck can automatically gen-

erate symbolic variables for more compound types. Second, when

a function-to-verify is called, some of the parameters it takes may

require specialized values satisfying certain requirements (e.g., syn-

tax or regular expressions), which values can be very hard for KLEE

to generate even though they are not part of the path conditions to

trigger panics. We plan to extend PanicCheck so that developers can

provide concrete inputs for those variables, to accelerate KLEE’s

exploration process and reveal more panics.

7 RELATED WORK

Our research is related to empirical studies with KLEE and Rust

verification tools.

7.1 Empirical Studies with KLEE

People conducted several empirical studies using KLEE [30–38].

Specifically, Wang et al. [31] compared KLEE-based test suites with

manually developed test suites. They observed that KLEE-based

test suites have advantages in exploring error-handling code and

exhausting options, but are less effective on generating valid string

inputs and exploring meaningful program behaviors. Such comple-

mentarity between KLEE-based tests and human-crafted tests was

also observed by Kurian et al. [38], who applied KLEE to generate

test cases for safety-critical embedded software.

As a DSE engine, KLEE provides 10 path search approaches. Two

of the approaches belong to random search, while eight approaches

belong to heuristic search. To investigate which approach performs

best, Zhang et al. [37] applied the 10 approaches to 53 GNU coreutil

applications. They found that without constraint optimization, one

approach of random search (i.e., random path) outperforms the oth-

ers in terms of the number of completed paths, statement coverage,

and branch coverage. Dong et al. [32] did a similar study through

analyzing the 33 optimization flags implemented by LLVM but used

by KLEE. They observed that on average, applying optimizations

makes symbolic execution worse for coreutils applications.

Two studies were conducted to compare alternative implemen-

tations of KLEE and its extension [33, 34]. In particular, Kapus et

al. [34] compared an implementation of KLEE using a partial solver

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Ying Zhang, Peng Li, Yu Ding, Wang Lingxiang, Dan Williams, and Na Meng

based on the theory of integers, with the standard KLEE implemen-

tation using a solver based on the theory of bit vectors. They did

not observe significant differences between the two. Liew et al. [33]

compared two alternative implementations of a KLEE extension

component: floating-point symbolic execution. They observed that

the tools complement each other, and neither offers a silver bullet.

Kim et al. [30] applied symbolic execution tools (CREST-BV and

KLEE) and a static analyzer (Coverity) to the same program, to com-

pare their results. The researchers detected six bugs through sym-

bolic execution, none of which were detected by Coverity. Busse et

al. [36] hypothesized that if a static analyzer (Clang Static Analysis

or Infer) produces (1) a partial program trace, and (2) conditions to

trigger a bug, then KLEE can (a) guide its search to prioritize paths

following that trace, and (b) prune paths using those conditions.

Their experience of implementing the technique highlights two

negative results. First, the partial traces are not that useful in guid-

ing search. Second, static analyzers can rarely find non-trivial bugs.

Xu et al. [35] developed a dataset of logic bombs and a framework

for benchmarking symbolic execution tools automatically.

Our research is different from all the studies mentioned above,

as it applies KLEE to verify Rust instead of C code.

7.2 Verification Tools for Rust Programs

Various techniques were recently created to verify Rust programs [6,

7, 39–44]. CBMC [45] is a bounded model checker for C and C++

programs. CRUST [40] and Kani [42] verify Rust programs by trans-

lating code into C-like languages and using CBMC. Facebook’s

experimental MIRAI [43] is an abstract interpreter for the Rust

compiler’s mid-level intermediate representation (MIR). It explic-

itly prioritizes a low false-positive rate for bugs rather than a low

false-negative rate, and thus does not claim to provide sound veri-

fication [42]. Similar to KLEE, Crux-MIR [44] conducts symbolic

execution to verify programs written in C/C++ and Rust. However,

it models memory usage differently from KLEE.

Prusti [41] is a Rust compiler plugin built on the Viper verifi-

cation infrastructure [46]. It analyzes information from the Rust

compiler and synthesizes a corresponding core proof for the pro-

gram. To verify correctness properties beyond memory safety, users

can annotate Rust programs with specifications at the abstraction

level of Rust expressions; the technique waives all annotations

into the core proof to verify modularly whether these specifications

hold. SMACK [39] is a software verification toolchain that translates

LLVM IR code into Boogie intermediate verification language [47],

which is verified by Boogie verifiers like Corral [48]. SMACK was

initially designed to support Clang as a frontend; Baranowski et

al. [49] extended SMACK to also verify Rust code.

Lindner et al. [6, 7] recently proposed two alternative approaches

to verify Rust programs based on the KLEE symbolic execution.

One approach is contract-based verification [6]. The researchers

demonstrated that by properly implementing contracts (i.e., pre-

and post- conditions of Rust functions) in Rust programs, they en-

abled KLEE to find contradictions between contracts, and thus to

explore the composite behaviors of functions with reduced com-

plexity. The other approach is annotation-based verification [7].

The researchers demonstrated the new approach using a safety

function (eq) from the PLCopen library. Given the function, the

researchers first formulated assertions directly from the overall

safety properties of the PLCopen specification; then they verified

the overall safety with KLEE.

The techniques mentioned above were proposed to verify Rust

programs in various ways. Our work is wrapped in the usage of

KLEE in PanicCheck to explore KLEE’s effectiveness in verifying

Rust programs. With our wrapping logic, the KLEE could be simply

changed to the verification engines mentioned above. Developers

can implement the underlying trait to support different verification

tools they desired.

8 CONCLUSION

In this paper, we developed PanicCheck that relieves the program-

mers’ burden of writing test cases and enables large-scale study of

KLEE on Rust programs. We then use PanicCheck to carry out a

case study to investigate how effectively KLEE can help developers

reveal panics in practice. The major findings of our study include:

(1) among the functions we studied, KLEE revealed in total 61 panics

that reside in 6 projects; (2) 59 of the 61 panics have been addressed

by developers; (3) 54 of the panics occurred because unexpected or

invalid values were provided to method APIs; (4) KLEE does not

work effectively when FTV involves concurrency or complex data

types. In the future, we plan to further improve PanicCheck to sup-

port more Rust-specific features (e.g., lifetime annotation) and to

integrate more formal verification techniques (e.g., SeaHorn [50]).

In this way, we can assess the verification effectiveness of more

techniques, and recommend techniques to developers accordingly.

9 DATA AVAILABILITY

Our data is available at https://github.com/NEUZhangy/ICSE-SEIP-

2024.

ACKNOWLEDGEMENT

We thank all reviewers for their valuable feedback. This work was

partially funded by NSF CCF-1845446 and NSF-1929701. The first

author started working on the project when doing an internship at

ByteDance Ltd.

REFERENCES
[1] “Why is Rust programming language so popular?” https://codilime.com/blog/

why-is-rust-programming-language-so-popular/, 2021.
[2] “Error Handling,” https://doc.rust-lang.org/book/ch09-00-error-handling.html,

2022.
[3] “Rust - Error Handling,” https://www.tutorialspoint.com/rust/rust_error_

handling.htm, 2022.
[4] “Rust Error Handling In Practice,” https://medium.com/coinmonks/rust-error-

handling-in-practice-376d86ba12ca, 2023.
[5] “Panics - Comprehensive Rust,” https://google.github.io/comprehensive-rust/

error-handling/panics.html, 2023.
[6] M. Lindner, J. Aparicius, and P. Lindgren, “No panic! verification of rust programs

by symbolic execution,” in 2018 IEEE 16th International Conference on Industrial
Informatics (INDIN). IEEE, 2018, pp. 108–114.

[7] M. Lindner, N. Fitinghoff, J. Eriksson, and P. Lindgren, “Verification of safety
functions implemented in rust - a symbolic execution based approach,” in 2019
IEEE 17th International Conference on Industrial Informatics (INDIN), vol. 1. IEEE,
2019, pp. 432–439.

[8] “project-oak/rust-verification-tools,” https://github.com/project-oak/rust-
verification-tools//, 2022.

[9] A. Reid, L. Church, S. Flur, S. de Haas, M. Johnson, and B. Laurie, “Towards
making formal methods normal: meeting developers where they are,” CoRR, vol.
abs/2010.16345, 2020. [Online]. Available: https://arxiv.org/abs/2010.16345

Broadly Enabling KLEE to Effortlessly Find Unrecoverable Errors in Rust ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

[10] N. Tillmann and W. Schulte, “Parameterized unit tests,” in Proceedings of the
10th European Software Engineering Conference Held Jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, ser.
ESEC/FSE-13. New York, NY, USA: Association for Computing Machinery,
2005, pp. 253–262. [Online]. Available: https://doi.org/10.1145/1081706.1081749

[11] “Rust/KLEE status update,” https://project-oak.github.io/rust-verification-tools/
2021/03/29/klee-status.html, 2021.

[12] H. Sigurbjarnarson, J. Bornholt, E. Torlak, and X. Wang, “Push-Button
verification of file systems via crash refinement,” in 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16). Savannah, GA:
USENIX Association, Nov. 2016, pp. 1–16. [Online]. Available: https://www.
usenix.org/conference/osdi16/technical-sessions/presentation/sigurbjarnarson

[13] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs,” in Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, ser. OSDI’08.
USA: USENIX Association, 2008, pp. 209–224.

[14] “Automatic Rust verification tools (2021),” https://alastairreid.github.io/
automatic-rust-verification-tools-2021/, 2021.

[15] “Type of bugs that KLEE can find,” http://mailman.ic.ac.uk/pipermail/klee-dev/
2020-April/001983.html, 2020.

[16] “Crates,” https://doc.rust-lang.org/rust-by-example/crates.html.
[17] “integer-encoding 1.1.7,” https://crates.io/crates/integer-encoding/1.1.7, 2021.
[18] “Primitive Type slice,” https://doc.rust-lang.org/std/primitive.slice.html.
[19] “syn,” https://docs.rs/syn/latest/syn/, 2022.
[20] “What’s the difference between references and pointers in Rust?” https://ntietz.

com/blog/rust-references-vs-pointers/, 2023.
[21] “Basic-Topic-String-and-string-Slice,” https://users.rust-lang.org/t/basic-topic-

string-and-string-slice/41479, 2020.
[22] “HashMap in std::collections - Rust,” https://doc.rust-lang.org/std/collections/

struct.HashMap.html, 2022.
[23] “HashSet in std::collections - Rust,” https://doc.rust-lang.org/std/collections/

hash_set/struct.HashSet.html, 2022.
[24] “Strategy - Rust Design Patterns,” https://rust-unofficial.github.io/patterns/

patterns/behavioural/strategy.html, 2022.
[25] “crates.io: Rust Package Registry,” https://crates.io, 2022.
[26] “Coreutils - GNU core utilities,” https://www.gnu.org/software/coreutils/, 2022.
[27] “Proptest Book,” https://altsysrq.github.io/proptest-book/intro.html, 2022.
[28] “clap – Rust,” https://docs.rs/clap/latest/clap/, 2022.
[29] ““timeout” needs better errormessage,” https://github.com/uutils/coreutils/issues/

3040, 2022.
[30] Y. Kim, M. Kim, Y. Kim, and Y. Jang, “Industrial application of concolic testing

approach: A case study on libexif by using crest-bv and klee,” in Proceedings of
the 34th International Conference on Software Engineering, ser. ICSE ’12. IEEE
Press, 2012, pp. 1143–1152.

[31] X. Wang, L. Zhang, and P. Tanofsky, “Experience report: How is dynamic
symbolic execution different frommanual testing? a study on klee,” in Proceedings
of the 2015 International Symposium on Software Testing and Analysis, ser. ISSTA
2015. New York, NY, USA: Association for Computing Machinery, 2015, pp.
199–210. [Online]. Available: https://doi.org/10.1145/2771783.2771818

[32] S. Dong, O. Olivo, L. Zhang, and S. Khurshid, “Studying the influence of standard
compiler optimizations on symbolic execution,” in 2015 IEEE 26th International
Symposium on Software Reliability Engineering (ISSRE), 2015, pp. 205–215.

[33] D. Liew, D. Schemmel, C. Cadar, A. F. Donaldson, R. Zähl, and K.Wehrle, “Floating-
point symbolic execution: A case study in n-version programming,” in Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering,
ser. ASE ’17. IEEE Press, 2017, pp. 601–612.

[34] T. Kapus, M. Nowack, and C. Cadar, “Constraints in dynamic symbolic execution:
Bitvectors or integers?” in Tests and Proofs: 13th International Conference, TAP
2019, Held as Part of the Third World Congress on Formal Methods 2019, Porto,
Portugal, October 9–11, 2019, Proceedings. Berlin, Heidelberg: Springer-Verlag,
2019, pp. 41–54. [Online]. Available: https://doi.org/10.1007/978-3-030-31157-5_3

[35] H. Xu, Z. Zhao, Y. Zhou, and M. R. Lyu, “Benchmarking the capability of symbolic
execution tools with logic bombs,” IEEE Transactions on Dependable and Secure
Computing, vol. 17, no. 6, pp. 1243–1256, 2020.

[36] F. Busse, P. Gharat, C. Cadar, andA. F. Donaldson, “Combining static analysis error
traces with dynamic symbolic execution (experience paper),” in Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2022. New York, NY, USA: Association for Computing Machinery,
2022, pp. 568–579. [Online]. Available: https://doi.org/10.1145/3533767.3534384

[37] Z. Zhang, Z. Wang, F. Yang, J. Wei, Y. Zhou, and Z. Huang, “Random or
heuristic? an empirical study on path search strategies for test generation
in klee,” Journal of Systems and Software, vol. 188, p. 111269, 2022. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0164121222000334

[38] E. Kurian, D. Briola, P. Braione, and G. Denaro, “Automatically generating
test cases for safety-critical software via symbolic execution,” Journal
of Systems and Software, vol. 199, p. 111629, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121223000249

[39] Z. Rakamarić andM. Emmi, “Smack: Decoupling source language details from ver-
ifier implementations,” in International Conference on Computer Aided Verification.
Springer, 2014, pp. 106–113.

[40] J. Toman, S. Pernsteiner, and E. Torlak, “Crust: a bounded verifier for rust (n),” in
2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 2015, pp. 75–80.

[41] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers, “Leveraging rust types for
modular specification and verification,” Proc. ACM Program. Lang., vol. 3, no.
OOPSLA, oct 2019. [Online]. Available: https://doi.org/10.1145/3360573

[42] A. VanHattum, D. Schwartz-Narbonne, N. Chong, and A. Sampson, “Verifying
dynamic trait objects in rust,” in 2022 IEEE/ACM 44th International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP), 2022, pp.
321–330.

[43] Facebook, “MIRAI,” https://github.com/facebookexperimental/MIRAI, 2019.
[44] “Crux-MIR,” https://github.com/GaloisInc/crucible/blob/master/crux-mir, 2020.
[45] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ansi-c programs,” in

Tools and Algorithms for the Construction and Analysis of Systems, K. Jensen
and A. Podelski, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp.
168–176.

[46] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verification infrastructure
for permission-based reasoning,” in Verification, Model Checking, and Abstract
Interpretation, B. Jobstmann and K. R. M. Leino, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 41–62.

[47] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino, “Boogie:
A modular reusable verifier for object-oriented programs,” in Formal Methods
for Components and Objects, F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-
P. de Roever, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.
364–387.

[48] A. Lal, S. Qadeer, and S. K. Lahiri, “A solver for reachability modulo theories,”
in Computer Aided Verification, P. Madhusudan and S. A. Seshia, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 427–443.

[49] M. Baranowski, S. He, and Z. Rakamarić, “Verifying rust programs with smack,”
in International Symposium on Automated Technology for Verification and Analysis.
Springer, 2018, pp. 528–535.

[50] “Seahorn,” https://github.com/seahorn/seahorn, 2011.

