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Abstract

Current causal inference approaches for esti-
mating conditional average treatment effects
(CATEs) often prioritize accuracy. However,
in resource constrained settings, decision mak-
ers may only need a ranking of individuals
based on their estimated CATE. In these sce-
narios, exact CATE estimation may be an
unnecessarily challenging task, particularly
when the underlying function is difficult to
learn. In this work, we study the relation-
ship between CATE estimation and optimiz-
ing for CATE ranking, demonstrating that
optimizing for ranking may be more appro-
priate than optimizing for accuracy in cer-
tain settings. Guided by our analysis, we
propose an approach to directly optimize for
rankings of individuals to inform treatment
assignment that aims to maximize beneőt.
Our tree-based approach maximizes the ex-
pected beneőt of the treatment assignment
using a novel splitting criteria. In an empirical
case-study across synthetic datasets, our ap-
proach leads to better treatment assignments
compared to CATE estimation methods as
measured by expected total beneőt. By pro-
viding a practical and efficient approach to
learning a CATE ranking, this work offers an
important step towards bridging the gap be-
tween CATE estimation techniques and their
downstream applications.

1 INTRODUCTION

The problem of resource allocation or prioritizing inter-
ventions is common across various őelds (Brown, 1984;
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Korhonen and Syrjänen, 2004; National Academies of
Sciences et al., 2020; Cookson et al., 2008). In health-
care, for instance, clinicians must triage patients for
different levels of care (Robertson-Steel, 2006). In
marketing, companies must prioritize customers for
marketing campaigns and retention programs (Ascarza,
2018; Radcliffe, 2007). Similarly, in education, targeted
interventions can lower dropout rates or improve aca-
demic performance (Bakosh et al., 2016; Olaya et al.,
2020). While numerous other examples exist, in this
work, we use the healthcare setting as a motivating
example.

In many healthcare settings, the optimal situation may
be to treat all at-risk patients. However, due to resource
constraints such as time, workforce, and availability
of treatments, healthcare workers often have to make
important and difficult decisions on how to allocate
resources (Kluge, 2007; Guindo et al., 2012). For exam-
ple, clinicians may prioritize monitoring and additional
care for a subset of individuals at risk of deteriorating
due to sepsis (Filbin et al., 2018). This problem setting
is especially relevant during a global pandemic (Jöbges
et al., 2020), but even prior to the pandemic healthcare
systems around the world were already strained with
long wait times and burnt out clinicians (Dzau et al.,
2018). Accordingly, in some settings, clinicians may be
forced to triage patients. These triaging decisions may
be based, at least in part, on a ranking of who is likely
to beneőt most from a particular intervention (i.e., the
treatment effect) (Kluge, 2007; Schwappach, 2002; Yad-
lowsky et al., 2021; Inoue et al., 2023). Tools that could
help clinicians in estimating beneőt from observational
data could help in assisting clinicians in deőning this
ranking. However, estimating treatment effects from
observational data is rarely straightforward.

Conditional average treatment effects (CATEs) quan-
tify the effect of a treatment on an outcome given an
individual’s covariates. However, estimating CATEs
using observational data is challenging due to potential
confounding (Foster et al., 2011; Hernan and Robins,
2020). Accordingly, past research has worked to im-
prove accuracy and sample efficiency in CATE estima-
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tion through novel machine learning techniques (Glass
et al., 2013; Alaa and van der Schaar, 2017; Shalit et al.,
2017; Wager and Athey, 2018; Hernan and Robins, 2020;
Hassanpour and Greiner, 2020; Zhang et al., 2020;
Kennedy, 2020). However, these methods are often
optimized for and evaluated based on their ability to
accurately estimate CATEs.

More recently, there has been interest in how causal
inference techniques translate to downstream decision
making. Speciőcally, researchers have studied when ex-
act causal effect estimation may be unnecessary when
the goal is to identify whom to treat, framing a new
problem of causal classiőcation for identifying treat-
ment responders (Kallus, 2019; Athey and Wager, 2021;
Fernández-Loría and Provost, 2022). In these settings,
the goal is to learn whether an individual will beneőt
from treatment, as deőned by some threshold on the
estimated CATE, and prioritize treatment for these
individuals. Past work has both studied the disconnect
between this problem and CATE estimation and has
studied methods for directly optimizing for this use-
case. In this work, we build upon this recent paradigm
shift and extend this idea beyond a binary classiőcation
problem. Speciőcally, we study study the problem of
optimal ranking policies without the need for an a pri-
ori threshold to treat, similar to triage. As thresholds
for determining whom to treat may vary depending on
the application, and may change even within the same
application, we need approaches that are agnostic to a
particular threshold and provide an overall ranking.

There are strong parallels between these causal infer-
ence tasks and the őeld of reinforcement learning. Our
problem setting of interest could be framed as a ban-
dit problem in which a model estimates a ranking to
maximize overall beneőt, rather than the standard ap-
proaches of measuring the value of different treatment
policies (akin to causal effect estimation) or learning
treatment assignments for each example (similar to
causal classiőcation). We study the potential for a
model-based approach that directly optimizes for max-
imizing overall beneőt in comparison to these standard
approaches.

Recent research in the őeld of uplift modelling
has begun to study this problem (Rzepakowski and
Jaroszewicz, 2012; Betlei et al., 2021; Zhao et al., 2017;
Zhou et al., 2023). For example, Zhou et al. (2023)
propose a new objective function that does not focus on
the accuracy of the CATE estimates to obtain unbiased
CATE estimates that may be used to rank individu-
als for resource allocation. While related, past work
assumes access to data from a randomized controlled
trial or with binary outcomes. These differences in
the problem setting change the problem substantially,
such that their proposed estimators and the theory

underlying their estimators, no longer apply, as the
outcomes and treatments are not independent in our
observational setting.

We study the disconnect between the problem of opti-
mizing for optimal treatment allocation and unbiased
CATE estimation, which is often an objective of past
work (Zhou et al., 2023). Building on recent work,
we focus on a theoretical and empirical exploration of
the disconnect between these two problem setups. We
focus on a setting in which the treatment may be ben-
eőcial to many people, but due to resource constraints,
it must be allocated to those who beneőt most from
the treatment. We take inspiration from the őeld of
learning to rank to tackle this problem and consider
how to adapt these methods to our setting (Cao et al.,
2007).

In the context of resource allocation, accurate CATE
estimates will produce an accurate ordering of who is
most likely to beneőt from the resources. While suffi-
cient, accuracy in CATE estimation is not necessary.
Inaccurate or biased estimates can still lead to the op-
timal ranking, i.e., one that maximizes beneőt across
all treatment thresholds. In this paper, we study the
disconnect between accurate CATE estimation and the
ultimate goal of prioritization for resource allocation.
We theoretically analyze the mismatch between opti-
mizing for CATE estimation accuracy and optimizing
for a ranking that maximizes overall beneőt. Based on
our őndings, we develop a novel tree-based approach
that produces a ranking of individuals that maximizes
expected beneőt across all treatment thresholds. We
show that our approach, in low sample settings, is
more sample-efficient and outperforms CATE estima-
tion techniques that focus on accuracy. Overall, our
contributions are as follows:

• We analyze the problem of learning accurate rank-
ing models for maximum beneőt compared to learn-
ing accurate CATE estimation models.

• We propose a novel tree-based method to directly
maximize expected beneőt as measured by CATEs
across all treatment thresholds.

• Empirically, we explore the potential for directly
maximizing expected beneőt compared to opti-
mizing for CATE accuracy. Across a range of
settings with limited data, our approach is more
sample-efficient and outperforms methods that fo-
cus primarily on accurate CATE estimation in
low-data regimes.
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2 PROBLEM SET-UP AND

BACKGROUND

Setup. We study a setting where the decision maker
aims to identify the top u% of individuals who will
beneőt most from some intervention, for all u. We
assume access to an observational dataset containing n
individuals with tuples S = (xi, ti, yi)

n
i=1, where each

individual i has covariates xi ∈ X ⊂ Rd, assigned
treatment ti ∈ {0, 1}, and experiences the observed
outcome under the assigned treatment yi ∈ R (for
continuous outcomes) or yi ∈ {0, 1} (for binary out-
comes). We follow the potential outcomes framework
(Rubin, 1974; Splawa-Neyman et al., 1990). Speciő-
cally, for an individual i, we deőne potential outcomes
as the outcomes under different treatment choices (i.e.,
treated and not treated), and use Yi(0), Yi(1) to de-
note the potential outcomes under non-treatment and
treatment respectively. Under the rules of do-calculus,
E[y|xi, do(t = 1)] corresponds to the potential out-
come Yi(1) (Pearl, 2009). We deőne the CATE as:
τi = CATE(xi) = E[y|xi, do(t = 1)] − E[y|xi, do(t =
0)] = Yi(1)− Yi(0).

Goal. To identify the top u% of individuals who will
beneőt (i.e., have the greatest CATE) for all u, we
seek a function f such that ∀i, j ∈ S where τi > τj ,
f(xi) > f(xj). Given this function, we may then apply
a threshold u at inference time to identify the top u%
of individuals for treatment, for any u. Given an order-
ing of individuals, we evaluate the potential value of it
across all thresholds u. Traditional discriminative rank-
ing metrics used to measure ranking in classiőcation,
such as the AUROC or concordance index, calculate the
proportion of individuals misranked, based on the exis-
tence of a pairwise truth function (Rudin and Schapire,
2009; Steck et al., 2007). In our setting, in addition to
the pairwise truth function, we also have ground-truth
continuous treatment effects. Classiőcation metrics do
not take these effects into account and as a result, do
not capture the full impact of a misranking on the
expected beneőt. In our setting, we utilize a metric
that incorporates the ground-truth treatment effects,
to better understand the expected beneőt of a given
ranking.

Measuring Expected Benefit. Given a ranking,
we aim to measure the overall beneőt from treatment
across all possible thresholds. To measure the expected
beneőt of treating the top u% of patients in sample S,
as identiőed by model f , we assume that the CATE
τi is observed and may be used for evaluation. For-
mally, we deőne Du

S(f) as the top u% of individu-
als ranked by the model, i.e., Du

S(f) = {i|f(xi) ≥
ψ({f(xi)i∈S}, u)}, where ψ(a, u) is the uth percentile
of the empirical distribution of a. The average bene-

őt from treatment for these individuals is deőned as
ATEu

S(f) = 1
|Du

S
(f)|

∑
i∈Du

S
(f) τi. A larger ATEu

S(f)

value corresponds to a function f that better identiőes
who beneőts most from treatment at threshold u%.
As in past work, we normalize this value to measure
improvement over a random ranking by deőning the
targeting operator characteristic (TOC) at u as the dif-
ference between the ATE of the top u% of patients as
ordered by f , and the ATE of treating all individuals,

i.e., TOCu
S(f) = ATEu

S(f)−
1
|S|

∑|S|
k=1 τk (Yadlowsky

et al., 2021). A value of 0 represents no improvement
over random. Finally, to measure this across all treat-
ment thresholds u, we use the Area Under the TOC
(AUTOC). For an arbitrary function f and a sample
S,

AUTOCS(f) =
1

|S|

|S|∑

i=1

TOC
100∗ i

|S|

S (f)

(Yadlowsky et al., 2021). The AUTOC measures the
average beneőt from treatment of those identiőed in
the top u% by f , averaged across all thresholds u,
relative to the ATE (i.e., the average treatment beneőt
of a random sample) (Yadlowsky et al., 2021). Hence,
calculating the AUTOC aligns directly with the goal
of measuring the overall beneőt from treatment if a
model is used to triage examples across every possible
threshold. Larger values of AUTOC represent more
accurate identiőcation of the top u% of individuals,
while an AUTOC of 0 represents a random ranking.
The AUTOC may be negative if worse than random.
While there exist similar metrics, such as the Qini curve,
that reweight the objective at different thresholds u, we
use the AUTOC due to its strong theoretical properties
and unbiasedness when estimated using doubly robust
proxies (Yadlowsky et al., 2021).

Causal Identifiability Assumptions. As measuring
the AUTOC relies on the true values of τ , it is not
identiőable from observational data without additional
assumptions. In line with the majority of work in causal
inference, we assume no hidden confounding, overlap,
and consistency. These assumptions are sufficient for
the identiőcation of causal effects, and hence, are also
sufficient for the ranking of causal effects (Shalit et al.,
2017; Hernan and Robins, 2020; Imbens and Rubin,
2015). We discuss the implications of these assumptions
in the conclusion.

3 THEORETICAL ANALYSIS

In this section, we study the relationship between ac-
curate CATE estimation and optimal ranking for max-
imizing overall beneőt deőned based on the treatment
effect (Figure 1). We begin by exploring what it
means to maximize beneőt across all treatment thresh-
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Figure 2: The importance of global splits. We deőne a
subtree with data S, in which we aim to split at decision
node M , resulting in either tree A or B. A ‘local’ split
based on only data in SM results in tree A, as the sum
of ATEu at the őrst two thresholds (7.6 + 7.6+2.5

2 ) is
greater than that of tree B (6.3+ 6.3), with the ATEu

at all other thresholds being equal. Globally, tree B is
optimal as the sum of ATEu for the second and third
threshold ( 10+6.3

2 + 10+5+7.6
3 ) is greater than that of

tree A ( 10+7.6
2 + 10+7.6+2.5

3 ). Many small differences
can result in drastically different performance, so it
is important to consider the entire decision tree when
selecting splits.

timizing directly for AUTOC, at the cost of CATE
estimation performance, could lead to better perfor-
mance as measured by ranking for maximal beneőt.
We expect this will hold in low and őnite sample set-
tings and especially when the margin γ is large and
easy to learn, where estimating the CATE function
exactly might be challenging, but optimizing AUTOC
could be easier. We test this hypothesis empirically
and seek approaches that optimize for AUTOC directly
in Section 4.

Though we focus on the AUTOC, our major theoret-
ical results apply to other ranking-related evaluation
metrics, which can be viewed as modiőcations to the
AUTOC (e.g., Qini curve and AUPEC) (Yadlowsky
et al., 2021; Imai and Li, 2023). For all of these metrics,
our main propositions hold, such that accurate CATEs
are not required for accurate ranking, and better CATE
performance does not guarantee better ranking. How-
ever, we continue with the AUTOC, and leave empirical
explorations of other ranking metrics for future work.

4 METHODS

Up to now, we have shown that the solution set for op-
timal AUTOC is at least as large as the solution set for
accurate CATEs and may be larger. Moreover, in őnite
settings, a perfect CATE estimator may not directly
translate to a better AUTOC. We hypothesize that in
some settings, such as low sample settings, optimizing
directly for AUTOC may result in better treatment

allocation. To test this hypothesis, we next develop a
technique for explicitly optimizing for AUTOC within
a sample S.

Optimizing For and Calculating AUTOC. Maxi-
mizing AUTOC for a sample S is difficult due to the
non-differentiability of the AUTOC. Thus, we propose
a tree-based approach. Tree-based techniques can be
used to tackle arbitrary optimization problems through
the use of novel splitting rules. A splitting rule for
creating new nodes in a decision tree is not required to
be differentiable. We utilize decision trees to directly
optimize for AUTOC over a sample S. Moreover, we
extend splitting rules to use training examples beyond
those seen in the current node in the tree, inspired by
past work in learning to rank (Ibrahim and Carman,
2016).

To begin, for any decision tree T , the AUTOC for a
sample S can be calculated as follows:

1. Assign a score T (xi) to each individual i in S
based on the average outcome of the leaf node in
which xi falls.

2. Calculate AUTOCS(T ) using the scores T (xi). To
handle ties where multiple examples have the same
predicted score, average across all possible order-
ings to simulate breaking ties at random (Yad-
lowsky et al., 2021).

Learning Decision Trees to Maximize AUTOC.
We propose an approach for building a tree T to op-
timize for AUTOC. To aid in our explanation, őrst
assume we have access to τi for all individuals in our
sample S, later relaxing this assumption. At any deci-
sion node M in a tree, we denote the current samples
at that node as SM and the current tree as TM . De-
note TM

k,v as the tree when the current decision node
M is split into two leaf nodes based on the feature k
and value v. Standard regression trees choose k and
v that splits the data into S

M
k,v
1

and S
M

k,v
2

by min-

imizing the weighted variance of the outcomes over
resulting nodes. We propose őnding k, v by maximiz-
ing the AUTOC for the full sample S. More formally,
at each split, we solve the following optimization prob-
lem: k∗, v∗ = argmaxk,v AUTOCS(T

M
k,v). We use the

current estimates at the leaf nodes throughout the deci-
sion tree (i.e., the average τi value of the leaf node that
each example is currently placed at) to calculate the
AUTOC. In utilizing these ‘global’ splits, we overcome
potential limitations of local splits (Figure 2). While
all data are considered at each split, the tree is still
grown greedily, thus computation time increases only
slightly (i.e., this is not a globally optimal decision
tree). The order in which the ‘global split’ tree is built
is important, as the values of all nodes are used at each
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split. We build decision trees in a breadth-őrst manner
to ensure every portion of the tree is growing equally,
and splits at each node are made using nodes at similar
depths (Ibrahim and Carman, 2016). Given this train-
ing procedure, we bootstrap our data multiple times
and build many decision trees to overcome overőtting
and improve performance, as in standard random forest
(Breiman, 2001). At inference time, each test sample is
evaluated by each tree, and the outputs are averaged.
These estimates are used to rank test data.

Using Doubly Robust Proxies for Training. Re-
laxing the assumption of oracle access to the ground
truth CATE τi in our training sample, we use a doubly
robust proxy of the treatment effect τ̃i for each indi-
vidual i. The doubly robust estimate is deőned as

τ̃i = m̂(xi, 0)− m̂(xi, 1) +
ti−ê(xi)

ê(xi)(1−ê(xi))
(yi − m̂(xi, ti)),

where ê(xi) is an estimate of the propensity score con-
ditioned on observed covariates, and m̂(xi, ti) is an
estimate of the expected outcome given an individual’s
covariates and treatment assignment (Chernozhukov
et al., 2018; Kennedy, 2020). The nuisance parame-
ters m̂ and ê represent nonparametric estimates of the
ground-truth propensity score and potential outcome
functions. Under our assumptions, E[τ̃i|xi] → τi as
n→ ∞. To calculate the AUTOC, we őrst calculate the
ATE at each threshold using these proxies in place of

the true CATEs, i.e., ÃTE
u

S(T ) =
1

|Du
S
(T )|

∑
i∈Du

S
(T ) τ̃i.

From here, we calculate the TOC and the AUTOC

respectively as T̃OC
u

S(T ) = ÃTE
u

S(T ) −
∑S

k=1 τ̃k

and ˜AUTOCS(T ) =
1
|S|

∑|S|
i=1 T̃OC

100∗ i
|S|

S (T ). Impor-

tantly, ˜AUTOCS(T ) calculated using τ̃i in place of
the true τi is an asymptotically unbiased and normal
estimate of the true AUTOCS(T ) under mild condi-
tions (Yadlowsky et al., 2021). These doubly robust
proxies can be built using cross-őtting. Then, when
making a split at decision node M , we őnd the k, v pair

that maximizes ˜AUTOCS(T
M
k,v). A model that directly

maximizes the AUTOC using the doubly robust proxy
will also, in expectation, maximize the true AUTOC.

5 EXPERIMENTS & RESULTS

Empirically, we test our hypothesis that directly op-
timizing for AUTOC can outperform models focused
on CATE estimation in low-sample sample settings
with large margins between examples. First, we de-
scribe our experimental setup and baseline methods.
From here, we present the datasets used in our experi-
ments, as well as the evaluation metrics used to measure
performance. We then present results comparing the
techniques across both datasets.

5.1 Experimental Set-Up

Baseline. As a baseline, we compare to a strong
CATE estimation baseline from past work known as
the DR-Learner (Kennedy, 2020). The doubly robust
proxy τ̃i for each example can only be built for in-
dividuals for whom treatments and outcomes are ob-
served. Hence, at inference time, on a new set of
examples for whom the treatment and outcome is not
observed, these proxies are not available. To over-
come this, the DR-Learner learns a mapping from
an example’s covariates to an estimate of the CATE
by regressing τ̃i on an individual’s covariates. For-
mally, the DR-Learner is a two-stage approach similar
to our proposed technique. However, in the second
stage, the model is trained to accurately estimate the
doubly robust proxy using standard metrics such as
mean-squared-error. To build the DR-Learner, we train
a random forest algorithm similarly to our proposed
method. However, at each decision node M , k, v are
selected to minimize the balanced variance of outcomes
τ̃i; the split at decision node M with data-points SM

can be deőned as argmink,v
|S

M
k,v
1

|

|SM | V ar({τ̃i}i∈S
M

k,v
1

) +

|S
M

k,v
2

|

|SM |
V ar({τ̃i}i∈S

M
k,v
2

). At inference, outputs in each

tree are aggregated by taking the average doubly ro-
bust outcome. Although numerous other CATE esti-
mation models have been proposed recently, we opt
for a strong baseline approach that is similar to our
proposed method to test our primary hypothesis. We
use the same doubly robust proxies for training for both
methods such that any observed differences between
the two approaches can be attributed to differences
in the splitting criteria. To give all methods the best
opportunity to learn, we use cross-őtting with decision
trees to estimate the potential outcomes and accurate
propensity scores to build the doubly robust proxy.
For the second step, we train all methods using the
same underlying random forest architecture, while only
varying the split procedure. We tune the same hyper-
parameters for both methods using the same search
space. We tune number of trees, the proportion of
data in each tree, the maximum depth of each tree, the
threshold for improvement, the minimum number of
samples needed for a split, and the minimum number of
samples at a leaf as hyperparameters for both models
(see Appendix D for more details and set-up) 1.

Datasets. While CATE estimation arises frequently
in practice, validating these techniques in real data
requires close collaboration with domain experts since
there is no well-accepted approach to evaluate without

1Code can be found at https://github.com/
MLD3/Learning-to-Rank-for-Optimal-Treatment-
Allocation-Under-Resource-Constraints



Fahad Kamran, Maggie Makar, Jenna Wiens

ground truth. Hence, as a őrst step, in this work we fo-
cus on existing synthetic datasets in which the counter-
factual is available. We test our proposed approach us-
ing synthetic data generating procedures adapted from
past work (Athey and Wager, 2021; Caron et al., 2021).
Speciőcally, we generate two datasets. In Dataset
1, the ground truth τi function is built to create dif-
ferent groups of individuals with different treatment
effects, resulting in large margins on average between
individuals.

Dataset 1

xi ∼ N (0, I10x10),

ti|xi ∼ Bern(
1

1 + e−xi,3
),

ϵi|xi, ti ∼ N (0, 1),

τi|xi=((xi,1)+ + (xi,2)+ − 1)/2,

yi|xi, τi, ϵi, ti=max(0, xi,3 + xi,4) + tiτi + ϵi

This is a setting in which we expect our proposed
approach to perform well.

Using Dataset 2, we test our approach in a more
complex setting in which the underlying CATE and
outcome functions involve more non-linear terms.

Dataset 2

xi ∼ N (0, I10x10),

ti|xi ∼ Bern(
1

1 + e−xi,3
),

ϵi|xi, ti ∼ N (0, 1),

τ(xi) = 1 + 2|xi,4|+ x2
i,10,

yi|xi, τi, ϵi, ti = 5(2 + 0.5 sin(πxi,1)

− 0.5xi,2 + 0.75xi,3xi,9) + tiτi + ϵi

Though semi-synthetic causal inference datasets have
been studied in the past, we use fully synthetic datasets
to control every portion of the data generating process
as a őrst step for validating the proposed method. This
decision is supported by recent work calling into ques-
tion the use of common benchmark datasets, such as
the IHDP and ACIC 2016 dataset, for comparing treat-
ment effect models (Curth and van der Schaar, 2021).
For example, the IHDP dataset violates the overlap
assumption necessary for causal effect estimation and
inherently favors some techniques over others. More-
over, other semi-synthetic datasets, such as the TCGA
dataset are not immediately applicable to our setting
with binary treatments. Hence, we use synthetic data
to provide a better understanding of the potential of
the proposed methodology.

Evaluation Metrics. We assess the performance
of our proposed approach and the baseline on both
datasets, each with 30 unique replications for train-
ing and testing. To understand how the proposed
method performs with varying amounts of training
data, we sweep the amount of training data N through
{100, 250, 500, 1000}, while keeping the test set size
őxed at 5000. We focus on a low-sample regime as
in many domains, obtaining interventional trial data
is challenging. For example, in healthcare, many dis-
eases are rare and many patient populations have less
representation in the data. Due to this, many prob-
lems in the őeld of healthcare are plagued with issues
due to a limited number of examples (Desautels et al.,
2017; Chen et al., 2021). Efficiently learning accurate
rankings in these regimes remains imperative. We eval-
uate the performance of the methods on held-out test
sets in terms of the AUTOC, reporting the median
and interquartile range (IQR) across all 30 replications.
Additionally, since each dataset may have different opti-
mal AUTOC values, we report the number of times the
proposed method outperforms the baseline across the
30 random seeds. We also evaluate the ATEu, which
helps in understanding the difference in realized beneőt
at speciőc thresholds. We test u ∈ {10, 20, 30, 40, 50},
to evaluate realistic settings in which the treatment can
only be administered in a fraction of individuals. Rela-
tive to the baseline, we report the median improvement
in ATEs at each threshold across 30 replications. For
completeness, we report both the % of replications the
proposed method outperforms the baseline across the
30 random seeds for each u and TOCu performance
across all thresholds in Appendix E.

5.2 Results

AUTOC Performance: At low-sample settings, our
proposed approach outperforms the baseline CATE
estimation technique on a large majority of replications
(N = 100: 24 and 23 /30 replications, N = 250: 22 and
23/30 replications, respectively) (Figure 3). As the
sample size increases, both approaches perform simi-
larly. In data-rich settings (N = 1000), the baseline may
be preferable due to its simplicity. Notably, this trend
holds even when using local splits (i.e., only maximiz-
ing AUTOC using data in the current splitting node)
(Appendix E). Empirically, local splitting results in
similar splits early on in the tree-building process, but
diverges at greater depths. More recently, researchers
have proposed an honest framework for training deci-
sion trees for CATE estimation (Athey and Imbens,
2016). In the honest framework, when training, only
half of the data is used to create the splits, and the
other half is used to impute outcomes at each leaf node
during inference. To show that our approach is robust
to the honest framework, we repeat our analysis and
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Appendix

A RELATED WORK

CATE Estimation. In recent years, there has been in-
creased interest in estimating the heterogeneous effects
of treatments from confounded observational data (Yao
et al., 2020). A majority of past works have proposed
solutions for overcoming the issue of confounding. Past
work has considered learning balanced representations
(Shalit et al., 2017; Johansson et al., 2018, 2020; Hassan-
pour and Greiner, 2020), reweighting using propensity
scores (Hassanpour and Greiner, 2019, 2020; Assaad
et al., 2021; Li et al., 2018), and using doubly robust
proxies (Kennedy, 2020) across a wide variety of ma-
chine learning architectures, namely neural networks
(Shalit et al., 2017) and random forests (Wager and
Athey, 2018). However, these works tend to optimize
for and evaluate the performance of techniques for their
ability to accurately estimate CATEs. However, in ő-
nite samples when these models are not perfect, how
performance, as measured by accuracy, translates to
maximizing beneőt has not been well-explored. Finally,
past work has considered evaluating treatment effects
under different resource constraints (Sarvet et al., 2020).
However, this work has focused on estimating the ATE
under different potential treatment strategies, while we
focus on the goal of understanding who to treat across
different potential treatment thresholds.

Causal Decision Making. There has been recent in-
terest in how causal inference techniques may translate
to downstream decision making. Recent work has stud-
ied when causal effect estimation may be insufficient
when the goal is to identify whom to treat and framed
a new problem of causal classiőcation for identifying
treatment responders (Fernández-Loría and Provost,
2022; Athey and Wager, 2021; Kallus, 2019). This path
represents a step towards bridging the gap between the-
ory and practice for causal inference. In this work, we
extend this idea even further beyond a binary classiőca-
tion problem and study the problem of optimal ranking
policies without the need for an a priori threshold to
label individuals as responders or non-responders (Yad-
lowsky et al., 2021). As these thresholds for deőning
responders vs. non-responders may vary depending on
the application, and may change many times for the
same application, it remains essential to build mod-
els agnostic to a particular threshold. Recent work
has studied how confounded data may affect the task
of ranking causal effects (Fernández-Loría and Loría,
2022). In this work, we continued with the no hid-
den confounders assumption and focus on building a
technique for optimal ranking for maximizing beneőt.

Uplift Modeling. Uplift modeling is the őeld of work

closely related to our setting. Uplift modeling focuses
on directly targeting interventions and measuring in-
cremental gain as individuals become intervened upon
(Rzepakowski and Jaroszewicz, 2012; Betlei et al., 2021).
Uplift modeling is a common method used particularly
in business and marketing problems (Rzepakowski and
Jaroszewicz, 2012; Yadlowsky et al., 2021). One ap-
proach towards uplift modeling is to estimate pointwise
effects of interventions on an individual basis, similar to
CATE estimation (Gutierrez and Gérardy, 2017; Nandy
et al., 2022). A secondary approach is to optimize for
cumulative gain across intervention thresholds, similar
to our goal (Zhao et al., 2017; Devriendt et al., 2020).
However, uplift modeling uses data obtained from a
randomized controlled trial, and hence, methods for
optimizing for cumulative gain are not built to handle
confounded data. For example, contextual treatment
selection is built under the assumption of randomness,
and build approximations to optimize for under this
assumption (Zhao et al., 2017). In this work, we ex-
tend ideas from uplift modeling to directly optimize for
optimal rankings for maximum beneőt when learning
from observational data. Moreover, we study optimiz-
ing for optimal rankings for maximum beneőt across
all potential treatment thresholds as deőned by the
AUTOC in the context of resource constraints where
treatment may beneőt everyone, a problem not studied
in past work. Perhaps most similar to our work is
recent work by Zhou et al (Zhou et al., 2023). Though
they also consider the problem of ranking, their work
differs in several ways. First, Zhou et al. focus on a set-
ting in which randomized controlled trials are available.
However, we focus on expanding the idea of ranking
for optimal treatment allocation to settings with only
observational data (e.g., much of healthcare). Though
techniques like inverse weighting using the propensity
score can be used in observational data settings, it is
not immediately obvious how one should adapt the
approach proposed by Zhou et al. to the observational
setting. Second, we demonstrate the beneőt of directly
optimizing for optimal treatment allocation as deőned
by maximizing expected beneőt compared to accurate
CATE estimates. We focus on a theoretical and empir-
ical exploration of the disconnect between these two
problem set-ups. Meanwhile, the loss function in Zhou
et al. relies on converging to an unbiased CATE esti-
mate to correctly order individuals, and hence, does not
directly optimize for treatment allocation. We present
a case study to show how and when direct optimization
may be of most beneőt through our empirical results.

Learning to Rank (LtR). LtR methods focus on
learning optimal rankings, particularly for search rele-
vancy problems (Cao et al., 2007). Pointwise methods,
which estimate the exact relevancy of a document for
a query, remain analogous to a majority of past work
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in CATE estimation. However, past literature in the
őeld of LtR has also focused on pairwise techniques,
which focus on learning optimal ordering for pairs of
inputs, and listwise techniques, which aim to directly
optimize a list of inputs towards a measure of down-
stream measure of performance, either through direct
optimization of using proxy loss functions (Ibrahim and
Carman, 2016; Cao et al., 2007; Xia et al., 2008; Shi
et al., 2010). A common measure of performance stud-
ied thoroughly is the normalized discounted cumulative
gain (NDCG), focused on recommending the most rel-
evant items to a query őrst (Järvelin and Kekäläinen,
2002; Wang et al., 2013). The NDCG is a commonly
accepted metric in the LtR őeld but does not have a
meaningful interpretation for our setting in measuring
the expected beneőt from treatment across all thresh-
olds u. Meanwhile, AUTOC measures both the ranking
of examples as well as the cumulative treatment effect
across any policy. Listwise learning to rank techniques
have recently been studied for the related őeld of uplift
modeling. However, these methods often assume binary
outcomes from randomized controlled trials, two limita-
tions unsuitable for our general application (Devriendt
et al., 2020; Betlei et al., 2021). In this work, we take
inspiration from the őeld of listwise techniques built
for optimizing NDCG and study how to extend these
methods towards the problem of maximizing beneőt
for resource allocation, as measured by AUTOC, when
learning from observational data (Ibrahim and Carman,
2016).

B ADDITIONAL PROOFS

(Restated) Proposition 1. For a sample S, there
exists a function f ∈ F such that AUTOCS(f) =
AUTOCS(f

∗), yet LM
S (f) > 0.

Proof. Deőne f(xi) = f∗(xi) +
γi

3 . Note that for this
f , we have that AUTOCS(f) = AUTOCS(f

∗), yet:

LM
S (f) =

1

n

∑

i

(f(xi)− τi)
2

=
1

n

∑

i

(f∗(xi)−
γi
3

− τi)
2

=
1

n

∑

i

(
γi
3
)2 > 0

(Restated) Proposition 2. For any model f : X → R

and sample S such that LM
S (f) > 0, there exists a

model g such that LM
S (f) < LM

S (g) and AUTOCS(g) >
AUTOCS(f).

Proof. We may build a model g that achieves perfect
ranking, but arbitrarily poor LM

S (g) = C as follows: 1)
Deőne α such that

∑n
i=1 α

2 = C, and 2) ∀xi, g(xi) =
f∗(xi)+α. Note that AUTOC(g) = AUTOC(g∗), yet:

LM
S (g) =

1

n

∑

i

(f(xi)− τi)
2

=
1

n

∑

i

(f∗(xi)− α− τi)
2

=
1

n

∑

i

(α)2 = C

Setting C to be larger than LM
S (f) leads to the desired

result.

C METHODS

In Algorithm 1, we describe the proposed splitting
procedure at any decision node M . We choose features
and corresponding values to split on that result in
trees that maximize the proxy of the AUTOC when
considering all samples in the data.

Algorithm 1 Calculating Split Value to Maximize
AUTOC

Input: S: Complete dataset; SM , T
M : Current

dataset and tree at decision node M
Output: Feature k and value v to split data for
maximizing AUTOC

Calculate best value as ˜AUTOCS(T
M ) by travers-

ing sample S through current tree TM

for k,v in SM that result in valid partitions do
Build TM

k,v by splitting current node M by feature
k and value v

Calculate proposed value as ˜AUTOCS(T
M
k,v)

by traversing sample S through TM
k,v

if proposed value improves over best value
then

Update best value to proposed value
Update best k,v to be proposed k,v

end if
end for
return best k and v if they exist

D EXPERIMENTAL SET-UP

Model Training. Our proposed and baseline method-
ologies consist of two steps: 1) Build doubly robust
proxies for training, and 2) Train a random forest algo-
rithm using a certain split procedure using the doubly
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