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Abstract

Nonparametric estimates of the distance between

two distributions such as the Maximum Mean Dis-

crepancy (MMD) are often used in machine learn-

ing applications. However, the majority of existing

literature assumes that error-free samples from the

two distributions of interest are available.We re-

lax this assumption and study the estimation of

the MMD under ϵ-contamination, where a possi-

bly non-random ϵ proportion of one distribution

is erroneously grouped with the other. We show

that under ϵ-contamination, the typical estimate of

the MMD is unreliable. Instead, we study partial

identification of the MMD, and characterize sharp

upper and lower bounds that contain the true, un-

known MMD. We propose a method to estimate

these bounds, and show that it gives estimates that

converge to the sharpest possible bounds on the

MMD as sample size increases, with a convergence

rate that is faster than alternative approaches. Us-

ing three datasets, we empirically validate that our

approach is superior to the alternatives: it gives

tight bounds with a low false coverage rate.

1 INTRODUCTION

Many machine learning methods rely on comparing dis-

tances between distributions, with applications ranging from

single cell sequencing [Schiebinger et al., 2019] to causal

inference [Johansson et al., 2016]. The Maximum Mean

Discrepancy (MMD) [Gretton et al., 2012] has emerged

as a particularly useful nonparametric notion of distance

between distributions. It has been widely used in robust

predictive and reinforcement learning [Kumar et al., 2019,

Makar et al., 2022, Li et al., 2017, Oneto et al., 2020, Veitch

et al., 2021, Goldstein et al., 2022], fairness applications

[Prost et al., 2019, Madras et al., 2018, Makar and D’Amour,

2022, Louizos et al., 2015] and distributionally robust opti-

mization [Staib and Jegelka, 2019, Kirschner et al., 2020]

among others. Despite its importance and widespread use,

the majority of existing work using the MMD assumes that

observed samples are measured without error. As we show

in this work, if this assumption does not hold, the typical

MMD estimate is unreliable.

Here, we study the estimation of the MMD where one of the

samples observed is measured with error. Specifically, we

consider ϵ-contamination, where a possibly non-random

ϵ proportion of one of the two variables is erroneously

grouped with the other. This mismeasurement mechanism

arises in many important applications. One example of this

setting arises from the fairness literature. For example, in set-

tings where we wish to assess if a model gives different pre-

dictions across different race groups. Here ϵ-contamination

arises if some non-random ϵ proportion of one race group

is incorrectly grouped with the other. Beyond fairness, ϵ-
contamination arises ± for example ± when trying to identify

if there are biomarkers for Myocardial Infarction (MI). In

this setting, we can use the MMD to detect differences in

genome sequences between healthy individuals and patients

with myocardial MI. Detecting differences between the two

groups is complicated due to undiagnosed ªsilentº MI cases.

These silent MI cases represent ϵ-contamination that occurs

non-randomly: women’s MI cases are more likely to go

undiagnosed compared to men [Merz, 2011].

In this paper, we show that the typical MMD estimates are

unreliable when the data is collected with ϵ-contamination.

Instead, we resort to a partial identification approach, where

we estimate upper and lower bounds on the MMD. We char-

acterize upper and lower bounds that are credible, mean-

ing that they contain the true unknown MMD, and sharp,

meaning they cannot be made tighter without additional as-

sumptions. Importantly, these bounds are identifiable using

the observed contaminated data and an estimate of ϵ. We

develop an estimation approach to compute the upper and

lower bounds and analyze its behavior in finite samples. Our

analysis shows that our approach gives estimates that con-



verge to the sharpest possible upper and lower bounds as the

sample size increases at a rate faster than the alternatives.

Our contributions are summarized as follows: (1) We

show that under ϵ-contamination the typical estimates of the

MMD are unreliable, (2) We characterize sharp upper and

lower bounds on the unknown MMD that are identifiable

using only the observed contaminated data, and an estimate

of ϵ, (3) We propose an estimation approach to compute the

upper and lower bounds and analyze its behavior in finite

samples showing that its convergence to the true upper and

lower bounds depends on the sample size and the value of

ϵ, (4) We apply our approach to 3 datasets showing that it

achieves a superior performance compared to alternative

approaches, (5) We analyze the sensitivity of our approach

to incorrect values of ϵ and give practical guidance on what

to do if the true value of ϵ is unknown.

Related work. Most existing work on the MMD focuses

on establishing statistically and computationally efficient

estimators of the difference between two distributions un-

der the assumption that the observed samples are error-free

[Gretton et al., 2012, 2009, Schrab et al., Domingo-Enrich

et al., 2023]. However, to our knowledge, the only exist-

ing work that tackles the challenge of measurement error

is in the context of survival analysis, where the measure-

ment error model arises from the classical right-censoring

of the data [Fernández and Rivera, 2021]. By contrast, we

study a different measurement error mechanism and suggest

methods for partial identification of the MMD.

In the fairness literature, where comparisons between out-

comes of different groups is important, Kallus et al. [2022]

consider measurement error in the sensitive attribute. They

consider a setting where we only have access to an im-

perfect proxy of the protected class membership and show

that typical fairness metrics such as demographic parity and

equalized odds are not identifiable. Similar to our work, they

develop methods for partial identification of these metrics.

A key difference between Kallus et al. [2022] and our work

is that the former focuses on comparing a single moment

(the mean) of two distributions whereas our work allows

a more rigorous comparison of infinitely many moments

of two distributions. We also stress that while the methods

presented here could be used in a fairness context, they are

more widely applicable to any setting where we wish to

compare two distributions.

2 PRELIMINARIES

Our goal is to measure the distance between two dis-

tributions PX and PY . However, instead of observing

X = {xi}ni ∼ PX , Y = {yi}ni ∼ PY , we observe ϵ-
contaminated X ′ and Y ′, where a possibly non-random ϵ
proportion of one of the two variables is incorrectly grouped

with the other for 0 < ϵ < 1. Without loss of generality,

we assume that the two samples have the same size = n
and that an ϵ-proportion of X is incorrectly grouped with Y .

Specifically, let C∗ = {c∗i }mi , with m = ⌊ϵn⌋ be the unob-

served subset of X that is grouped with Y . We can express

the distributions over the observed samples in relation to the

true distributions and the unknown contaminated samples

as follows:

PY ′ = (1− α)PY + αPC∗

PX′ = (1 + α̃)PX − α̃PC∗ ,

where α = ϵ/(1 + ϵ) and α̃ = ϵ/(1− ϵ). We do not make

any additional assumptions about PC∗ . Importantly, we do

not assume that the contamination is random, meaning we

do not assume that PC∗ = PX′ = PX .

We assume that the value of ϵ is known a priori, or can be

empirically estimated from other data sources. However, in

section 5.5, we conduct a sensitivity analysis to examine the

performance of our approach and others under violations of

this assumption. We use EPA
[A] to denote the expectation

of A according to the distribution PA(A), A ∪B to denote

the union of the set A and B, and A \ B to denote the

difference between the two sets A and B. We use #(A) to

denote the cardinality of the set A. We use X ′ and Y ′ to

denote the support of X ′ and Y ′ respectively.

We focus on the MMD as a measure of distance between

distributions [Gretton et al., 2012]:

Definition 1 For Z ∼ PZ , Z ′ ∼ PZ′ , F such that F :
Z → R, and k : Z × Z → R with k being a positive

definite kernel matrix, the MMD is defined as

MMD(F , PZ , PZ′) = supf∈F

(
EPZ

f(Z)− EPZ′
f(Z ′)

)
,

and the witness function f∗ is defined as the function at-

taining the supremum in expression above, with f∗(t) =
EPZ

[k(Z, t)] − EPZ′
[k(Z ′, t)], up to a normalization con-

stant.

When F is set to be a general reproducing kernel Hilbert

space (RKHS), the MMD defines a metric on probability

distributions, and is equal to zero if and only if PZ = PZ′ .

Throughout, we fix F to be the RKHS with ∥f∥F ≤ 1
for all f ∈ F and drop F from the MMD arguments to

simplify notation. We use k(z, z′) to denote the reproducing

kernel of F , and assume that 0 ≤ k(x′, y′) ≤ κ for all

x′, y′ ∈ X ′,Y ′.

Gretton et al. [2012], showed that when there is no measure-

ment error, the following empirical estimate of the MMD is

unbiased:

M̂MD(X,Y ) =
1

n(n− 1)

∑

i,j ̸=i

k(xi, xj) (1)

+
1

n(n− 1)

∑

i,j ̸=i

k(yi, yj)−
2

n2

∑

i,j

k(xi, yi). (2)



As we show in the appendix section E, in the ϵ-

contamination setting, M̂MD is not guaranteed to be an

unbiased estimate, meaning M̂MD(X ′, Y ′) might not con-

verge to MMD(PX′ , PY ′). So instead we study partial iden-

tifiability of MMD(PX , PY ). Meaning, our goal is to es-

timate credible and informative lower and upper bounds

on the unknown MMD(PX , PY ). For those bounds to be

informative, they should be sharp, meaning they cannot be

made tighter without any additional assumptions.

3 THEORY

Our goal is to estimate upper and lower bounds that reflect

our uncertainty in the MMD due to measurement error.

To proceed with our analysis, it is helpful to parameterize

the MMD as function of the contaminated samples C. With

some abuse of notation, for an arbitrary distribution PC , we

have that:

MMD(PC , PX′ , PY ′) = sup
f∈F

[
(1− ϵ)EPX′

f(X ′)

− (1 + ϵ)EPY ′
f(Y ′) + 2ϵEPC

f(C)
]
, (3)

with MMD(PX , PY ) = MMD(PC∗ , PX′ , PY ′). Our first

result characterizes the sharpest possible bounds that can be

attained without additional assumptions.

Proposition 1 Let (Y ′,Ω) be a measurable space with

Y ′ ∈ Y ′ and let P be all the probability distributions

on (Y ′,Ω). Define P(α) to be all the possible proba-

bility distributions over the unknown C∗, i.e., P(α) =
{(PY ′(Y ′) − (1 − α)φ)/α : φ ∈ P}, then the following

bounds are sharp:

inf
PC∈P(α)

MMD(PC , PX′ , PY ′) ≤ MMD(PC∗ , PX′ , PY ′)

≤ sup
PC∈P(α)

MMD(PC , PX′ , PY ′),

The proofs for proposition 1 and all other statements are

presented in the appendix. The intuition for proposition 1 is

simple: without any additional assumptions, C∗ can take on

any values in Y ′, and hence its corresponding distribution

can be any distribution consistent with the observed data

(i.e., any distribution ∈ P(α)). This means that the sharpest

possible upper (lower) bound must be defined with respect to

distributions over PC that maximize (minimize) the MMD.

We use PC to denote the distribution that maximizes the

third term in proposition 1 and define PC similarly. Proposi-

tion 1 gives us a recipe for constructing empirical bounds

on the true MMD(PC∗ , PX′ , PY ′). To get an estimate of

the upper bound, we need to identify the values of C that

render X ′ ∪ C and Y ′ \ C most dissimilar. For a lower

bound, we need to identify values of C that render X ′ ∪ C
and Y ′ \ C most similar. Unless otherwise noted, we will

focus on the analysis of the upper bound of the MMD since

the arguments for the lower bound are nearly identical.

We further expand the empirical version of equation 3 to

isolate the terms that depend on C, which gives us the em-

pirical objective to optimize. First, we define a weighted

version of the empirical witness function,

ψ(C,X ′, Y ′) :=
(1− ϵ)

n

∑

i

∑

j

k(x′i, cj)

− (1 + ϵ)

n

∑

i

∑

j

k(y′i, cj)

+
ϵ

n

∑

i

∑

j ̸=i

k(ci, cj).

As we show in Lemma A1, in order to estimate

MMD(PC , PX′ , PY ′), we first need to identify Ĉ:

Ĉ = argmax
C∈Y ′,#(C)=m

ψ(C,X ′, Y ′). (4)

Note that optimizing ψ under a cardinality constraint in this

manner is an NP-hard optimization problem. Instead, we

analyze approximation strategies in two regimes: when ϵ
can take on any value in [0,1] and when ϵ is sufficiently

close to 0. Our analysis relies on analyzing the stability of

the estimation algorithms [Bousquet and Elisseeff, 2002].

Approximation strategy for ϵ ∈ [0, 1]. For any value

of ϵ, we can directly maximize equation 4. Noting that:

maxC ψ(C ∈ Y ′, X ′, Y ′) ≤ maxC ψ(C ∈ Y ′, X ′, Y ′),
we can utilize, for example, iterative optimization algo-

rithms to estimate an approximate Ĉ. Specifically,

Ĉ◦ = argmax
C∈Y′,#(C)=m

ψ(C,X ′, Y ′). (5)

The difference between equation 4 and 5 is that 5 can return

any value for Ĉ◦ ∈ Y ′, whereas 4 requires that Ĉ◦ ∈ Y ′.

While many iterative optimization algorithms can be used

to optimize equation 5, we follow Jitkrittum et al. [2016]

in using Quasi-Newton methods such as the L-BFGS-B

algorithm [Byrd et al., 1995]. For this reason we refer to

this iterative optimization approach as the Quasi-Newton

optimization QNO approach. We stress that our analysis

holds for any valid optimization approach.

In proposition 2, we study how fast the estimate based on

Ĉ◦ converges to the true upper bound.



Proposition 2 For MMD(PC , PX′ , PY ′) as defined in

proposition 1, Ĉ◦ as defined in equation 5, with 0 ≤
k(x′, y′) ≤ κ for all x′, y′ ∈ X ′,Y ′, we have that:

PX′,Y ′

{
|MMD(PC ,PX′ , PY ′)− M̂MD(Ĉ◦, X

′, Y ′)|

> b0 + ε

}
≤ 2 exp

(−ε2n
b1

)
,

for b0 = 4
√
κ(n−1/2 + ϵm) and b1 = 2κ((1− ϵ)(1− ϵ +

ϵm)2 + (1 + ϵ)(1 + ϵ+ ϵm)2).

The proposition shows that the rate of convergence of the

empirical MMD defined with respect to Ĉ◦ to the sharp

upper bound depends on the sample size, the value of ϵ and

the size of the contaminated set m. As ϵ decreases, the esti-

mated M̂MD(Ĉ◦, X
′, Y ′) converges faster to its population

counterpart MMD(PC , PX′ , PY ′). At ϵ = 0, we recover

the convergence rate of the uncontaminated M̂MD (Gretton

et al. [2012], theorem 7). As expected, as the sample size

increases, the estimate gets closer to its population coun-

terpart. However, the ϵm term in the denominator of the

exponent means that the rate of convergence depends unfa-

vorably on the size of the contaminated sample. The next

section addresses this.

Approximation strategy for a sufficiently small ϵ. This

approach relies on the fact that for a fixed n, and as ϵ→ 0
the third term in equation 4 vanishes.

Specifically for ϵ ≈ 0:

ψ(C,X ′, Y ′) ≈ (1− ϵ)

n

∑

i

∑

j

k(x′i, cj)−

(1 + ϵ)

n

∑

i

∑

j

k(y′i, cj) =
1

m

∑

i

f̂ ′(ci). (6)

where f̂ ′ is a weighted version of the empirical estimate of

the witness function definted with respect to the observed

contaminated samples.

This means that for ϵ close to 0, maximizing ψ is equiva-

lent to computing the value of the witness function for every

sample in Y ′, and then taking the subset with the highest val-

ues to be the estimate of Ĉ. Consider the following estimate

of Ĉ:

Ĉγ̂ = {y′ : f̂ ′(y′) ≥ γ̂} with γ̂ = q(f̂ ′(Y ′), 1− α), (7)

where q(f̂ ′(Y ′), 1− α) is defined as the 1− α quantile of

f̂ ′(Y ′). That is, q(f̂ ′(Y ′), 1 − α) = inf{f̂ ′(y′) ∈ f̂ ′(Y ′) :

(1 − α) < CDF(f̂ ′(y′))}. Equation 7 describes taking the

y′ samples with weighted witness function values in the top

1− α quantile as the candidates for contaminated samples.

Next, we show that Ĉγ̂ is a valid estimate of C.

Proposition 3 Let Cγ be the solution to equation 7 as n→
∞. For a sufficiently small ϵ, we have that PCγ

= PC ,

where PC is defined as the distribution that maximizes the

third term in proposition 1.

While the full proof is stated in the appendix, we find it

helpful to highlight the key insight behind proposition 3.

The key insight here is that the distribution over Cγ stochas-

tically dominates any other distribution over Y ′ with respect

to the transformation f ′(Y ′). Meaning, there exists no other

distribution over a subset of Y ′ with measure α that can give

a larger EC [f
′(C)] than ECγ

[f ′(Cγ)]. We note in passing

that this construction extends the classical seminal work by

Horowitz and Manski [1995] on estimation of population

means using contaminated data to nonparametric estimation

of distances between distributions. We refer to this approach

as the stochastic dominance (SD) approach.

It remains to show that the estimate of the MMD defined

with respect to Ĉγ̂ as estimated using a finite sample con-

verges to the true upper bound. We do that in the following

proposition.

Proposition 4 For MMD(PC , PX′ , PY ′) as defined in

proposition 1, Ĉγ̂ as defined in equation 7 and κ such that

0 ≤ k(x, y) ≤ κ for all x, y ∈ X . Then as for a sufficiently

small ϵ:

PX′,Y ′

{
|MMD(PC , PX′ , PY ′)− M̂MD(Ĉγ̂ , X

′, Y ′)|

> b0 + ε

}
≤ 2 exp

(−ε2n
b1

)

for b0 = 4(κ/n)
1/2(1 + ϵ) and b1 = 2κ

(
(1 − ϵ)3 + (1 +

ϵ)(1 + 3ϵ)2
)
.

Proposition 4 shows that unlike QNO, SD avoids the un-

favorable dependence on m leading to faster convergence.

Similar to proposition 2, at ϵ = 0, we recover the conver-

gence rate of the uncontaminated M̂MD.

The key advantage of SD over QNO is that it reduces the

problem of estimating Ĉ to estimating the quantile of the

univariate distribution, Pf ′(Y ′), which is a single scalar. By

contrast, the iterative optimization-based approach needs to

identify an m× d matrix, with d being the dimension of the

data. While helpful, the SD approach is limited by the fact

that it is a valid approximation only for ϵ sufficiently close

to 0. Next, we present our main approach that extends the

SD approach making it valid for any value of ϵ.

4 APPROACH

In this section, we describe our main approach to estimating

tight and credible upper and lower bounds on the MMD.



Algorithm 1 Our approach (S-SD) for estimating upper

bounds

Input: X ′, Y ′, ϵ, S
Ĉ := {}, α(s) = ϵ/(ϵ+ S)
for s = 1 . . . S do

X(s) = X ′ ∪ Ĉ, Y (s) = Y ′ \ Ĉ
Compute f̂ (s)(Y (s)) as per equation 8

γ̂(1−ϵ) = q(f̂ (s)(Y (s)), 1− α(s))

Ĉs = {y(s) : f̂ (s)(y(s)) ≥ γ̂(1−ϵ)}
Ĉ := Ĉ ∪ Ĉs

return M̂MD(Ĉ,X ′, Y ′)

Algorithm 2 Our approach (S-SD) for estimating lower

bounds

Input: X ′, Y ′, ϵ, S
Ĉ := {}, α(s) = ϵ/(ϵ+ S)
for s = 1 . . . S do

X(s) = X ′ ∪ Ĉ, Y (s) = Y ′ \ Ĉ
Compute f̂ (s)(Y (s)) as per equation 8

γ̂ϵ = q(f̂ (s)(Y (s)), α(s))

Ĉs = {y(s) : f̂ (s)(y(s)) ≤ γ̂ϵ}

Ĉ := Ĉ ∪ Ĉs

return M̂MD(Ĉ,X ′, Y ′)

Unless otherwise noted, we describe the estimation proce-

dure for constructing the upper bound since the lower bound

is nearly identical. Our strategy hinges on identifying Ĉ,

an m-sized subset of Y ′ which, when removed from Y ′

and added to X ′, would render Y ′ most dissimilar to X ′,

giving us a valid estimate of the the upper bound on the

unknown M̂MD(C∗, X ′, Y ′). Estimating Ĉ allows us to es-

timate M̂MD(Ĉ,X ′, Y ′) in a straightforward manner: we

can simply substitute Ĉ for C in the empirical version of

equation 3.

Our main approach builds upon the SD approach stud-

ied in section 3 by addressing its main limitation: that it

gives a valid estimate of Ĉγ̂ only for ϵ sufficiently close

to 0. Our approach overcomes this limitation by dividing

the task of estimating Ĉγ̂ into multiple, easier tasks each

with an effective ϵ(s) that is smaller than the true ϵ. Specif-

ically, we divide the estimation process into S steps, in

each step we estimate Ĉ
(s)

γ̂(s) , for ϵ(s) = ϵ/S. Dividing

the estimation into S steps, with each step having ϵ/S-

contamination means that each step of the estimation pro-

cess will have an effective ϵ that is close enough to 0 mak-

ing equation 7 a valid approximation, and overcoming the

main limitation of SD. In the step s of our algorithm, we

calculate Ĉ
(s)

γ̂(s) = {y′ ∈ Ŷ (s) : f̂ (s)(Ŷ (s)) ≥ γ̂(s)}, for

γ̂(s) = q(f̂ (s)(Ŷ (s)), 1− α(s)) for α(s) = ϵ(s)/(1 + ϵ(s)),
where

f̂ (s)(Ŷ (s)) =
(
1− ϵ

S

) 1

n

∑

i

∑

j

k(x̂
(s)
i , ŷ

(s)
j )

−
(
1 +

ϵ

S

) 1

n

∑

i

∑

j

k(ŷ
(s)
i , ŷ

(s)
j ), (8)

with Ŷ (s) = Y ′\{Ĉ(1)

γ̂(1) , Ĉ
(2)

γ̂(2) , . . . Ĉ
(s−1)

γ̂(s−1)}, and X̂(s−1) =

X ′ ∪ {Ĉ(1)

γ̂(1) , Ĉ
(2)

γ̂(2) , . . . Ĉ
(s−1)

γ̂(s−1)}.

We refer to our Stepwise Stochastic Dominance based ap-

proach as S-SD. We summarize our procedure for estimating

the upper and lower bounds in algorithms 1 and 2 respec-

tively. We use Ĉ to denote the counterpart of Ĉ defined with

respect to the lower bound.

We note that S is a user-specified parameter that takes

on values between 0 and m. In section 5.5 we give

practical guidance on how to set S. Code for our ap-

proach and the experiments in section 5 is available on

github.com/mymakar/mmd_uncertainty.

5 EXPERIMENTS

In this section, we (1) analyze the credibility and tightness of

our approach and baselines under varying data dimensions,

varying sample sizes, and varying values of ϵ. In addition, (2)

we examine the computational efficiency of our approach

as it compares to baselines. Finally, (3) we examine the

sensitivity of our approach to misspecification of ϵ and under

varying number of steps S.

To analyze the credibility and the tightness of the bounds es-

timated using our approach, we compute the False Coverage

Rate (FCR) and Mean Interval Width (MIW). For L draws

of X ′, Y ′ each of size (1 − ϵ)n and (1 + ϵ)n respectively,

the FCR and the MIW are defined as follows:

FCR = 1− 1

L

∑

i

1{M̂MD(Ĉ,X ′
i, Y

′
i )

≤ M̂MD(C∗, X ′
i, Y

′
i ) ≤ M̂MD(Ĉ,X ′

i, Y
′
i )},

MIW =
1

L

∑

i

|M̂MD(Ĉ,X ′, Y ′)− M̂MD(Ĉ,X ′, Y ′)|

Ablations. We study the following ablations of our ap-

proach: (1) SD: For S = 1, S-SD becomes the same as

SD. The performance of SD compared to S-SD highlights

the importance of splitting the estimation procedure into S
steps. (2) Stepwise-QNO (S-QNO): Follows the same steps

outlined in algorithm 1, however, instead of estimating Ĉ
(s)
γ̂

and Ĉ
(s)
γ̂ as a subroutine, it estimates Ĉ

(s)
◦ and Ĉ

(s)
◦ follow-

ing equation 4 using the L-BFGS-B optimization algorithm.



MIMIC (N = 100, d = 2) FOREST (N = 100, d = 54) BIO (N = 72, d = 7128)

Approach FCR MIW FCR MIW FCR MIW

S-SD (Ours) 0.0± (0.0) 0.137± (0.008) 0.0± (0.0) 0.088± (0.003) 0.1± (0.03) 0.075± (0.001)
S-QNO 0.08± (0.067) 0.119± (0.006) 0.02± (0.02) 0.084± (0.004) 1.0± (0.0) 0.059± (0.001)
QNO 0.58± (0.069) 0.13± (0.006) 0.62± (0.069) 0.033± (0.006) 1.0± (0.0) 0.037± (0.001)
SD 0.64± (0.068) 0.082± (0.01) 0.9± (0.042) 0.027± (0.005) 0.13± (0.034) 0.069± (0.001)
SM 0.66± (0.067) 0.08± (0.01) 0.9± (0.042) 0.026± (0.004) 0.82± (0.038) 0.037± (0.001)
Bootstrap 0.94± (0.034) 0.048± (0.002) 0.4± (0.069) 0.034± (0.001) 0.25± (0.043) 0.036± (0.001)

Table 1: MIW and FCR for all datasets at ϵ = 0.2. Numbers in bold correspond to lowest FCR with smallest MIW. Standard

errors (in parentheses) computed by averaging over 100 trials. Results show that our approach performs better than all other

approaches when the sample size is small and the dimension is large. In easier settings, our performs comparably to S-QNO.

In each step s, this approach gives an estimate for an m/S
subset of candidate contaminated samples. This ablation

study highlights the importance of using the SD approach

as a subroutine. (3) QNO: Similar to S-QNO with S = 1.

Baselines. In addition to our main approach and the abla-

tions, we investigate the following baselines: (1) Submodu-

lar optimization (SM): based on the approach suggested in

Kim et al. [2016]. It estimates Ĉ by converting equation 4

into a submodular function by adding a submodular regu-

larizer. Specifically, it greedily selects samples which max-

imise the function, maxm f̂ ′(C) + log det k(C,C), where

f̂ ′(C) is the witness function defined with respect toX ′ and

Y ′, and log det k(C,C) is the log-determinant regularizer.

(2) Bootstrap: a simple bootstrapping approach, which con-

structs bounds by resampling both observed groups with

replacement and computing the MMD multiple times. The

upper and lower bounds are then defined as the (1− α)-th
and α quantiles respectively over the distribution of resam-

pled MMD values. The bootstrap estimates are centered

around the typical MMD estimate (equation 1), and hence

they show how it behaves under ϵ-contamination 1.

For our approach, baselines and ablations, we fix the ker-

nel to be the radial basis kernel (RBF) and use the median

heuristic on the contaminated samples to determine band-

width. Unless otherwise noted, we set the number of steps

S for S-SD and S-QNO to be S = min(m, 10); we take

this minimum for when the total number of contaminated

samples is less than the total number of steps. We examine

the performance of different values of S in section 5.5.

Setup. Since the true value of the contaminated samples C∗

is unobserved in real datasets, we resort to semi-simulated

data where X,Y represent real data, but the contaminated

samples are simulated. We examine the performance of our

approach, ablations and baselines in two settings. First, is the

nonrandom contamination setting. In this setting, we pick

the data points that maximize the difference between the two

distributions to be the true contaminated samples. Specif-

1In the appendix, we explicitly show how the typical estimate

of the MMD behaves with varying ϵ

ically, we simulate contamination by randomly sampling

C∗, a set of size m from the min (2m,n) samples in X
with the largest witness function values, where the witness

function here is defined with respect to the uncontaminated

X,Y . We then create the observed samples X ′ = X \ C∗

and Y ′ = Y ∪ C∗. Second, is the random contamination

setting, where C∗ is sampled at random from X . Since the

nonrandom contamination setting is more challenging, we

present the results from that setting in the main text. Results

from the random contamination setting are presented in the

appendix. We define N = #(X) +#(Y ), the total number

of samples, and consider 3 tasks corresponding to 3 datasets:

1. FOREST: A publicly available dataset containing mea-

surements of 54 cartographic variables such as elevation and

slope [Blackard, 1998]. We consider the task of measuring

the distance between the distribution over cartographic prop-

erties of two forest types: Lodgepole Pine and Spruce-Fir.

We simulate ϵ contamination by flipping an ϵ proportion

of Lodgepole Pine (n = 283, 301) labels to Spruce-Fir

(n = 211, 840).

2. MIMIC: A publicly available chest radiographs and

corresponding clinical data with over 377,000 chest X-ray

images and radiology reports [Johnson et al., 2019a,b, Gold-

berger et al., 2000]. Here, we consider the task of mea-

suring the distance between pneumonia predictions across

two race groups ± a common task in the fairness liter-

ature. In this setting, the sensitive attribute is measured

with ϵ-contamination. We use 60% of the data for training

the model, 20% for validation, and the remaining 20% for

MMD estimation. We use the training and validation data

to fine tune a Densenet-121 [Huang et al., 2016] that was

pretrained on Imagenet [Deng et al., 2009]. After training

the model, we obtain the 2-dimensional logit predictions

of the 20% of the data held out for MMD estimation, and

simulate ϵ-contamination by changing an ϵ proportion of

Black (n = 3897) patients to White (n = 11293).

3. BIO: Unlike the 2-dimensional MIMIC data and 54-

dimensional FOREST data, in the third task we examine a

more extreme case of high dimensional data with few sam-

ples. We use publicly available leukemia gene expression







S-SD (Ours)

No. of Steps FCR MIW

2 0.21± (0.091) 0.082± (0.001)
3 0.13± (0.034) 0.079± (0.001)
5 0.0± (0.0) 0.088± (0.001)
10 0.0± (0.0) 0.08± (0.001)
20 0.0± (0.0) 0.091± (0.001)
50 0.0± (0.0) 0.091± (0.001)

Table 2: Varying number of steps for S-SD in FOREST

(N = 2000, d = 54) with ϵ = 0.2. Standard errors (in

parentheses) over 100 trials. Results imply that setting S to

be large gives lower FCR.

n = 2000 from FOREST, vary the value of S, and examine

the performance of our main approach, S-SD. We repeat

the experiment 100 times using 100 different samples from

FOREST, each of size 2000 to compute the standard errors

around the FCR and MIW.

Table 2 shows the results. The results imply that we can get

bound estimates that give a FCR of zero even with a very

few number of steps. The MIW increase slightly and starts

to plateau as the number of steps increases. This implies that

a reasonable choice of S to ensure a low FCR would be the

largest possible value which does not lead to a computation-

ally prohibitive number of iterations. Recall that there is a

natural upper bound on S = m. In the appendix, we repeat

this experiment for S-QNO showing similar robustness.

6 CONCLUSION

We studied the problem of comparing two distributions

when the data is collected with some measurement error.

Specifically, we showed that typical estimates of kernel

based distances are unreliable when the data is measured

with some ϵ contamination, where an ϵ proportion of one

sample is erroneously included with the other. We showed

both empirically and theoretically that a straightforward

optimization approach to measuring uncertainty has an un-

favorable dependence on the size of the contaminated set.

Instead, we proposed a stepwise approach to estimate cred-

ible and tight upper and lower bounds and showed that it

converges faster than alternatives to the true upper and lower

bounds. Empirically, we showed that our approach outper-

forms all baselines. Looking beyond this work, it would

be interesting to study other commonly occurring measure-

ment error mechanisms and study their effect on measuring

the MMD and other related estimates such as the Hilbert

Schmidt independence criterion.

Extensions of this work. While beyond the scope of this

work, it might be interesting to understand how our sug-

gested approaches can be used in the context of hypothesis

testing, where the goal is to formally test if the two distri-

butions are similar. We note that such a test can be done by

combining approaches for hypothesis testing using ªinterval

test statisticsº (see Kreinovich et al. [2008] for a summary)

with approaches for acquiring empirical estimates of the

MMD under the null distribution Gretton et al. [2009].

We also note that extending our approach to settings where

both variables are contaminated is likely a trivial extension

of our work. Specifically, it might be appropriate to conduct

an iterative procedure where we find Ĉx: the samples ob-

served in Y ′ that are truly sampled from PX and then find

Ĉy the samples observed in X ′ that are truly sampled from

PY iteratively until meeting some convergence criteria.
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A PROOF FOR PROPOSITION 1

Proposition A1 (Restated Proposition 1 in the main text) Let (Y ′,Ω) be a measurable space with Y ′ ∈ Y ′ and let P be

all the probability distributions on (Y ′,Ω). Define P(α) to be all the possible probability distributions over the unknown

C∗, i.e., P(α) = {(PY ′(Y ′)− (1− α)φ)/α : φ ∈ P}, then the following bounds are sharp:

inf
PC∈P(α)

MMD(PC , PX′ , PY ′) ≤ MMD(PC∗ , PX′ , PY ′) ≤ sup
PC∈P(α)

MMD(PC , PX′ , PY ′),

Proof. Consider the upper bound, supPC∈P(α) MMD(PC , PX′ , PY ′), and let PC =
arg supPC∈P(α) MMD(PC , PX′ , PY ′). Note that without additional assumptions, it is possible that PC∗ = PC . In

this case, the upper bound holds with equality. I.e., MMD(PC∗ , PX′ , PY ′) = supPC∈P(α) MMD(PC , PX′ , PY ′). Hence

the upper bound is sharp. A similar argument can be constructed to show that the lower bound is sharp.

B PROOF FOR PROPOSITION 2

Before proceeding to the main proof, we restate the following definition from Gretton et al. [2012].

Definition A1 (Restated definition 30 in Gretton et al. [2012]) . Let F be the unit ball in an RKHS, with kernel bounded

according to 0 ≤ k(x, y) ≤ κ. Let Z be an i.i.d. sample of size n drawn according to a probability measure PZ and let σi
be i.i.d and take values in {−1, 1} with equal probability and σ = {σi}ni=1. We define the Rademacher average:

Rn(F , Z) = Eσ sup
f∈F

∣∣∣ 1
n

∑

i

f(zi)
∣∣∣ ≤

(κ
n

)1/2

Proposition A2 (Restated Proposition 2 in the main text) For MMD(PC , PX′ , PY ′) as defined in proposition 1, Ĉ◦ as

defined in equation 5, with #(Ĉ◦) = m, 0 ≤ k(x′, y′) ≤ κ for all x′, y′ ∈ X ′,Y ′, we have that:

PX′,Y ′

{
|MMD(PC , PX′ , PY ′)− M̂MD(Ĉ◦, X

′, Y ′)| > b0 + ε

}
≤ 2 exp

(−ε2n
b1

)
,

for b0 = 4
√
κ(n−1/2 + ϵm) and b1 = 2κ((1− ϵ)(1− ϵ+ ϵm)2 + (1 + ϵ)(1 + ϵ+ ϵm)2)

Proof. Define ĉ◦i such that Ĉ◦ = {ĉ◦i }mi=1 and consider the absolute difference term:

|MMD(PC , PX′ , PY ′)− M̂MD(Ĉ◦, X
′, Y ′)|

=

∣∣∣∣ sup
f∈F

[
(1− ϵ)EPX′

f(X ′)− (1 + ϵ)EPY ′
f(Y ′) + 2ϵECf(C)

]



− sup
f∈F

[ (1− ϵ)

n

∑

i

f(x′i)−
(1 + ϵ)

n

∑

i

f(y′i) +
2ϵ

n

∑

i

f(ĉ◦i )
]∣∣∣∣

≤ sup
f∈F

∣∣∣(1− ϵ)EPX′
f(X ′)− (1 + ϵ)EPY ′

f(Y ′) + 2ϵECf(C)

− (1− ϵ)

n

∑

i

f(x′i) +
(1 + ϵ)

n

∑

i

f(y′i)−
2ϵ

n

∑

i

f(ĉ◦i ))
∣∣∣

:= ∆(X ′, Y ′, PX′ , PY ′)

We will next attempt to bound the difference between ∆D(PX′ , PY ′ , X ′, Y ′) and its expectation by applying McDiarmid’s

inequality. To do so, we first need to verify that ∆D(PX′ , PY ′ , X ′, Y ′) satisfies the bounded difference property. We do so in

two steps. In the first step, we consider the case where we replace one of the X ′ samples. Specifically, we consider the data

DX′

πj = {X ′
πj , Y

′}, where X ′
πj = {x′1, x′2, . . . , x′i−1, x

′
j , x

′
i+1, . . . x

′
(1−ϵ)n}. Let C̃◦ denote the estimate of Ĉ according to

equation 5 using DX′

πj rather than D. In that case, we have that:

|∆D(PX′ , PY ′ , X ′, Y ′)−∆DX′

j
(PX′ , PY ′ , X ′

πj , Y
′)|

≤ sup
f

∣∣∣ (1− ϵ)

n
(
∑

i

f(x′i)− f(x′i) + f(x′j))−
(1 + ϵ)

n

∑

i

f(y′i)

+
2ϵ

n

∑

i

f(c̃◦i )−
(1− ϵ)

n

∑

i

f(x′i) +
(1 + ϵ)

n

∑

i

f(y′i)−
2ϵ

n

∑

i

f(ĉ◦i )
∣∣∣

≤ sup
f

∣∣∣ (1− ϵ)

n
(−f(x′i) + f(x′j)) +

2ϵ

n

∑

i

f(c̃◦i )−
2ϵ

n

∑

i

f(ĉ◦i )
∣∣∣

≤ (1− ϵ)

n
(sup

f
|f(x′i)|+ sup

f
|f(x′j)|) +

2ϵ

n
sup
f
(
∑

i

f(c̃◦i )−
∑

i

f(ĉ◦i ))

≤ (1− ϵ)

n
(2
√
κ) +

2ϵ

n
(m

√
κ) =

2
√
k

n
(1− ϵ+ ϵm) (9)

Second, we consider the case where we replace one of the Y ′ samples. Specifically, we consider the data DY ′

πj = {X ′, Y ′
πj},

where Y ′
πj = {y′1, y′2, . . . , y′i−1, y

′
j , y

′
i+1, . . . y

′
(1+ϵ)n}. In that case, by a similar construction to the previous case, we have

that:

|∆D(PX′ , PY ′ , X ′, Y ′)−∆DY ′

j
(PX′ , PY ′ , X ′, Y ′

πj)| ≤
2
√
k

n
(1 + ϵ+ ϵm) (10)

Combining the results from equations 9 and 10, we can apply McDiarmid with denominator:

(1− ϵ)n
(2

√
k

n
(1− ϵ+ ϵm)

)2

+ (1 + ϵ)n
(2

√
k

n
(1 + ϵ+ ϵm)

)2

=
4κ

n

(
(1− ϵ)(1− ϵ+ ϵm)2 + (1 + ϵ)(1 + ϵ+ ϵm)2

)
.

I.e.,:

PX′,Y ′

{
∆D(PX′ , PY ′ , X ′, Y ′)− EX′,Y ′

[
∆D(PX′ , PY ′ , X ′, Y ′)

]
> ε

}
≤ 2 exp

(−ε2n
b1

)
, (11)

where b1 = 2κ((1− ϵ)(1− ϵ+ ϵm)2 + (1 + ϵ)(1 + ϵ+ ϵm)2).

It remains to control EX′,Y ′

[
∆D(PX′ , PY ′ , X ′, Y ′)

]
. To do so we use the β-stability property and symmetrization Van

Der Vaart et al. [1996]. We note that the β-stability of the hypothesis is a direct consequence of the boundedness of k(., .) by

κ. Let X• and Y • be i.i.d samples of sizes (1− ϵ)n and (1 + ϵ)n respectively, we have that:

EX′,Y ′

[
∆D(PX′ , PY ′ , X ′, Y ′)

]



= EX′,Y ′ sup
f

∣∣∣(1− ϵ)EPX′
f(X ′)− (1 + ϵ)EPY ′

f(Y ′) + 2ϵECf(C)

− (1− ϵ)

n

∑

i

f(x′i) +
(1 + ϵ)

n

∑

i

f(y′i)−
2ϵ

n

∑

i

f(ĉ◦i ))
∣∣∣

= EX′,Y ′ sup
f

∣∣∣(1− ϵ)EX•

(
1

n

∑

i

f(x•i )

)
− 1− ϵ

n

∑

i

f(x′i)− (1 + ϵ)EY •

(
1

n
f(y•i )

)
+

1 + ϵ

n

∑

i

f(y′i)

+ 2ϵEX•,Y •

(
1

n
f(ċ◦i )

)
− 2ϵ

n

∑

i

f(ĉ◦i )
∣∣∣

≤ EX′,Y ′,X•,Y • sup
f

∣∣∣1− ϵ

n

∑

i

f(x•i )−
1− ϵ

n

∑

i

f(x′i)−
1 + ϵ

n

∑

i

f(y•i ) +
1 + ϵ

n

∑

i

f(y′i)

+
2ϵ

n

∑

i

f(ċ◦i )−
2ϵ

n

∑

i

f(ĉ◦i )
∣∣∣

≤ EX′,Y ′,X•,Y • sup
f

∣∣∣1− ϵ

n

∑

i

f(x•i )−
1− ϵ

n

∑

i

f(x′i)−
1 + ϵ

n

∑

i

f(y•i ) +
1 + ϵ

n

∑

i

f(y′i)
∣∣∣

+ EX′,Y ′,X•,Y • sup
f

∣∣∣2ϵ
n

∑

i

f(ċ◦i )−
2ϵ

n

∑

i

f(ĉ◦i )
∣∣∣

≤ EX′,Y ′,X•,Y •,σ′,σ• sup
f

∣∣∣1− ϵ

n

∑

i

σ′
i(f(x

•
i )− f(x′i)) +

1 + ϵ

n

∑

i

σ•
i (f(y

•
i )− f(y′i))

∣∣∣

+ sup
X′,Y ′,X•,Y •

∣∣∣2ϵ
n

∑

i

f(ċ◦i )−
2ϵ

n

∑

i

f(ĉ◦i )
∣∣∣

≤ EX′,X•,σ sup
f

∣∣∣∣
1− ϵ

n

∑

i

σ′
i(f(x

•
i )− f(x′i))

∣∣∣+ EY ′,Y •,σ sup
f

∣∣∣1 + ϵ

n

∑

i

σ•
i (f(y

•
i )− f(y′i))

∣∣∣

+
2ϵ

n
sup

X′,Y ′,X•,Y •

∣∣∣
∑

i

f(ċ◦i )−
∑

i

f(ĉ◦i )
∣∣∣

≤ 2[(1− ϵ)Rn(F , X ′) + (1 + ϵ)Rn(F , Y ′)] + 2ϵm
√
κ]

≤ 2[(1− ϵ)(κ/n)1/2 + (1 + ϵ)(κ/n)1/2 + 2ϵmκ1/2]

≤ 4
√
κ(n−1/2 + ϵm).

Substituting 4
√
κ(n−1/2 + ϵm) for EX′,Y ′

[
∆D(PX′ , PY ′ , X ′, Y ′)

]
in equation 11 gives the desired result.

C PROOF FOR PROPOSITION 3

Before stating the main proof, we begin by outlining the following definition, and lemmas.

Definition A2 Random variable Z has first-order stochastic dominance (or stochastic dominance for short) over random

variable Z ′ if for any outcome t, Z gives at least as high a probability of receiving at least t as does Z ′, and for some t, Z
gives a higher probability of receiving at least t.

Lemma A1 Let (Y ′,Ω) be a measurable space with Y ′ ∈ Y ′, and let P be all the probability distributions on (Y ′,Ω). For

P(α) = {(PY ′(Y ′)− (1− α)φ)/α : φ ∈ P}. We have that

arg supPC∈P(α)MMD(PC , PX′ , PY ′) = arg supPC∈P(α)EPC
[f̃ ′(C)],

where

f̃ ′(C) = (1− ϵ)EPX′
[k(C,X ′)]− (1 + ϵ)EPY ′

[k(C, Y ′)] + ϵEPC
k(C,C) (12)

Proof. The proof is a straight forward derivation from the definition of the MMD and the witness function. We present the

derivation below, with all supPC
to be understood as supPC∈P(α). We use X̃ to denote X ′ ∪ C and Ỹ to denote Y ′ \ C for

an arbitrary C.



arg supPC

[
MMD(PC , PX′ , PY ′)

]

= arg supPC

[
sup
f∈F

[
EP

X̃
[f(X̃)]− EP

Ỹ
[f(Ỹ )]

]]

= arg supPC

[
EP

X̃
[k(X̃, X̃)]− EP

X̃
EP

Ỹ
[k(X̃, Ỹ )]− EP

X̃
EP

Ỹ
[k(X̃, Ỹ )] + EP

Ỹ
[k(Ỹ , Ỹ )]

]

= arg supPC

[
(1− ϵ)2EPX′

[k(X ′, X ′)] + (1 + ϵ)2EPy′
[k(y′, y′)]

− 2(1 + ϵ)(1− ϵ)EPX′
EPY ′

[k(X ′, Y ′)] + 4ϵ
(
(1− ϵ)EPC

EPX′
[k(C,X ′)]

− (1 + ϵ)EPC
EPY ′

[k(C, Y ′)] + EPC
EPC

[k(C,C)]
]

= arg supPC

[
EPC

[
(1− ϵ)EPX′

[k(C,X ′)]− (1 + ϵ)EPY ′
[k(C, Y ′)] + EPC

[k(C,C)]
]]

= arg supPC

[
f̃ ′(C)],

which completes the proof.

Note that the empirical version of equation 12 corresponds to equation 4 in the main text.

Corollary A1 Under the same conditions as Lemma A1, and for a sufficiently small ϵ, we have that

arg supPC∈P(α)MMD(PC , PX′ , PY ′) ⪅ arg supPC∈P(α)EPC
[f ′(C)],

where

f ′(C) = (1− ϵ)EPX′
[k(C,X ′)]− (1 + ϵ)EPY ′

[k(C, Y ′)]

Proof. The proof directly follows from Lemma A1 and the fact that for a sufficiently small ϵ, we have that f ′(C) ≈ f̃ ′(C).

Proposition A3 (Restated proposition 3 from the main text) Let Cγ be the solution to equation 7 as n → ∞. For a

sufficiently small ϵ, we have that PCγ
= PC , where PC is defined as the distribution that maximizes the third term in

proposition 1.

Proof. Recall that:

PY ′(Y ′) = (1− α)PY (Y ) + αPC∗(C∗),

and note that the kernel k is a measurable mapping, hence f ′ is also a measurable mapping. This implies that f ′(Y ′) is

measurable with respect to Y ′ and we can express the distribution over f ′(Y ′). Letting QY ′ := PY ′(f ′(Y ′)), QY :=
PY (f

′(Y )), and QC∗ := PC∗(f(C∗)), we have that:

QY ′(Y ′) = (1− α)QY (Y ) + αQC∗(C∗).

Using the notation QY ′ [−∞, t] to denote the cumulative distribution function (CDF) of QY ′(Y ′) from values −∞ to t, we

can write the CDF over Cγ as the CDF of a truncated distribution, which gives us the following:

QCγ
[−∞, t] =

{
0 if t < γ(
QY ′ [−∞, t]− (1− α)

)
/α if t ≥ γ.

Consider the following distribution:

φ0[−∞, t] =

{
QY ′ [−∞, t]/(1− α) if t < γ

1 if t ≥ γ.



Note that:

(1− α)φ0[−∞, t] + αQCγ
[−∞, t] = QY ′ [−∞, 1]

which means that QCγ
∈ P(α). Next we will make the argument that QCγ

stochastically dominates all other distributions

in P(α). Note that for any φ1, if t < γ

QCγ
[−∞, t]− φ1[−∞, t] = 0− φ1[−∞, t] ≤ 0.

However, suppose that there exists some φ1 ∈ P(α), and that it stochastically dominates QCγ
. I.e., for t ≥ γ:

φ1[−∞, t] < QCγ
[−∞, t]

⇒ φ1[−∞, t] <
(
QY ′ [−∞, t]− (1− α)

)
/α

⇒ αφ1[−∞, t] < QY ′ [−∞, t]− (1− α),

Hence we have that (1−α)φ+αφ1 < QY ′ [−∞, 1] for all φ ∈ P , which implies that φ1 ̸∈ P(α), which is a contradiction.

This shows that QCγ
[−∞, t] stochastically dominates all distributions in P(α), which means that:

EQCγ
[f ′(Cγ)] > EQC

[f ′(C)]

⇒ EPCγ
[f ′(Cγ)] > EPC

[f ′(C)]

for all PC ̸= PCγ
. Since EPC

[f ′(C)] > EPC
[f ′(C)] for all PC ̸= PC , and by Corollary A1, we have that EPCγ

[f ′(Cγ)] =

EPC
[f ′(C)], which completes the proof.

D PROOF FOR PROPOSITION 4

Proposition A4 (Restated proposition 4 in main text) For MMD(PC , PX′ , PY ′) as defined in proposition 1, Ĉγ̂ as de-

fined in equation 7 and κ such that 0 ≤ k(x, y) ≤ κ for all x, y ∈ X . Then as for a sufficiently small ϵ:

PX′,Y ′

{
|MMD(PC , PX′ , PY ′)− M̂MD(Ĉγ̂ , X

′, Y ′)| > b0 + ε

}
≤ 2 exp

(−ε2n
b1

)

for b0 = 4(κ/n)
1/2(1 + ϵ) and b1 = 2κ

(
(1− ϵ)3 + (1 + ϵ)(1 + 3ϵ)2

)

Proof. Consider the absolute difference term

|MMD(PC , PX′ , PY ′)− M̂MD(Ĉγ̂ , X
′, Y ′)|

=

∣∣∣∣ sup
f

[
(1− ϵ)EPX′

f(X ′)− (1 + ϵ)EPY ′
f(Y ′) + 2ϵECf(C)

]

− sup
f

[ (1− ϵ)

n

∑

i

f(x′i)−
(1 + ϵ)

n

∑

i

f(y′i) +
2ϵ

n

∑

i

f(ĉγ̂i )
]∣∣∣∣

≤ sup
f

∣∣∣(1− ϵ)EPX′
f(X ′)− (1 + ϵ)EPY ′

f(Y ′) + 2ϵECf(C)

− (1− ϵ)

n

∑

i

f(x′i) +
(1 + ϵ)

n

∑

i

f(y′i)−
2ϵ

n

∑

i

f(ĉγ̂i )
∣∣∣

= sup
f

∣∣∣(1− ϵ)EPX′
f(X ′)− (1 + ϵ)EPY ′

f(Y ′) + 2ϵECf(C)

− (1− ϵ)

n

∑

i

f(x′i) +
(1 + ϵ)

n

∑

i

f(y′i)−
2ϵ

n

∑

i

1{f(y′i) ≥ γ̂}f(y′i)
∣∣∣

:= ∆D(PX′ , PY ′ , X ′, Y ′)



We will next attempt to bound the difference between ∆D(PX′ , PY ′ , X ′, Y ′) and its expectation by applying McDiarmid’s

inequality. To do so, we first need to verify that ∆D(PX′ , PY ′ , X ′, Y ′) satisfies the bounded difference property. We do so

in two steps. In the first step, we consider the case where we replace one of the X ′ samples. Specifically, we consider the

data DX′

πj = {X ′
πj , Y

′}, where X ′
πj = {x′1, x′2, . . . , x′i−1, x

′
j , x

′
i+1, . . . x

′
(1−ϵ)n}. In that case, we have that:

|∆D(PX′ , PY ′ , X ′, Y ′)−∆DX′

j
(PX′ , PY ′ , X ′

πj , Y
′)|

= sup
f

∣∣∣(1− ϵ)EPX′
f(X ′)− (1 + ϵ)EPY ′

f(Y ′) + 2ϵECf(C)

− (1− ϵ)

n

∑

i

f(x′i) +
(1 + ϵ)

n

∑

i

f(y′i)− 2ϵ
1

n

∑

i

1{f(y′i) ≥ γ̂}f(y′i)
∣∣∣

− sup
f

∣∣∣(1− ϵ)EPX′
f(X ′)− (1 + ϵ)EPY ′

f(Y ′) + 2ϵECf(C)

− (1− ϵ)

n

∑

i

f(x′i) +
(1 + ϵ)

n

∑

i

f(y′i)− 2ϵ
1

n

∑

i

1{f(y′i) ≥ γ̃}f(y′i) +
1− ϵ

n
(f(x′j)− f(x′i))

∣∣∣

≤ sup
f,γ

∣∣∣(1− ϵ)EPX′
f(X ′)− (1 + ϵ)EPY ′

f(Y ′) + 2ϵECf(C)

− (1− ϵ)

n

∑

i

f(x′i) +
(1 + ϵ)

n

∑

i

f(y′i)− 2ϵ
1

n

∑

i

1{f(y′i) ≥ γ}f(y′i)
∣∣∣

− sup
f

∣∣∣(1− ϵ)EPX′
f(X ′)− (1 + ϵ)EPY ′

f(Y ′) + 2ϵECf(C)

− (1− ϵ)

n

∑

i

f(x′i) +
(1 + ϵ)

n

∑

i

f(y′i)− 2ϵ
1

n

∑

i

1{f(y′i) ≥ γ}f(y′i) +
1− ϵ

n
(f(x′j)− f(x′i))

∣∣∣

≤ 1− ϵ

n
sup
f

∣∣∣(f(x′i)− f(x′j))
∣∣∣

≤ 1− ϵ

n

(
sup
f

|(f(x′i)|+ sup
f

|f(x′j))|
)

≤ 2(1− ϵ)

n

√
κ (13)

Second, we consider the case where we replace one of the Y ′ samples. Specifically, we consider the data DY ′

πj = {X ′, Y ′
πj},

where Y ′
πj = {y′1, y′2, . . . , y′i−1, y

′
j , y

′
i+1, . . . y

′
(1+ϵ)n}. In that case, we have that:

|∆D(PX′ , PY ′ , X ′, Y ′)−∆DY ′

j
(PX′ , PY ′ , X ′, Y ′

πj)|

≤ sup
f

∣∣∣(1− ϵ)EPX′
f(X ′)− (1 + ϵ)EPY ′

f(Y ′) + 2ϵECf(C)

− (1− ϵ)

n

∑

i

f(x′i) +
(1 + ϵ)

n

∑

i

f(y′i)− 2ϵ
1

n

∑

i

1{f(y′i) ≥ γ̂}f(y′i)
∣∣∣

− sup
f

∣∣∣(1− ϵ)EPX′
f(X ′)− (1 + ϵ)EPY ′

f(Y ′) + 2ϵECf(C)

− (1− ϵ)

n

∑

i

f(x′i) +
(1 + ϵ)

n

∑

i

f(y′i)− 2ϵ
1

n

∑

i

1{f(y′i) ≥ γ̃}f(y′i)

− 1 + ϵ

n
(f(y′i)− f(y′j)) +

2ϵ

n
(1{f(y′i) ≥ γ̂}f(y′i)− 1{f(y′j) ≥ γ̃}f(y′j))

∣∣∣

= sup
f

∣∣∣− 1 + ϵ

n
(f(y′i)− f(y′j)) +

2ϵ

n
(1{f(y′i) ≥ γ̂}f(y′i)− 1{f(y′j) ≥ γ̃}f(y′j))

∣∣∣

≤ 1 + ϵ

n
sup
f

∣∣∣(f(y′i)− f(y′j))
∣∣∣+ 2ϵ

n
sup
f

∣∣∣(1{f(y′i) ≥ γ̂}f(y′i)− 1{f(y′j) ≥ γ̃}f(y′j))
∣∣∣



≤ 1 + ϵ

n
sup
f

∣∣∣(f(y′i)− f(y′j))
∣∣∣+ 2ϵ

n
sup
f

|f(y′i)− f(y′j)
∣∣∣

≤ 1 + ϵ

n

(
sup
f

|(f(y′i)|+ sup
f

|f(y′j))|
)
+

2ϵ

n

(
sup
f

|f(y′i)|+ sup
f

|f(y′j)|
)

≤ 2(1 + ϵ)

n

√
κ+

4ϵ

n

√
κ =

2
√
κ

n
(1 + 3ϵ) (14)

Combining the results from equations 13 and 14, we get that we can apply McDiarmid with the following denominator:

(1− ϵ)n
(2(1− ϵ)

n

√
κ
)2

+ (1 + ϵ)n
(2√κ

n
(1 + 3ϵ)

)2

=
4κ

n

(
(1− ϵ)3 + (1 + ϵ)(1 + 3ϵ)2

)
,

to obtain

PX′,Y ′

{
∆D(PX′ , PY ′ , X ′, Y ′)− EX′,Y ′

[
∆D(PX′ , PY ′ , X ′, Y ′)

]
> ε

}
(15)

≤ 2 exp

( −ε2n
2κ

(
(1− ϵ)3 + (1 + ϵ)(1 + 3ϵ)2

)
)
. (16)

Next, we seek to control the expectation, EX′,Y ′

[
∆D(PX′ , PY ′ , X ′, Y ′)

]
. To do so we use symmetrization Van Der Vaart

et al. [1996]. Let X• and Y • be i.i.d samples of sizes (1− ϵ)n and (1 + ϵ)n respectively, we have that:

EX′,Y ′

[
∆D(PX′ , PY ′ , X ′, Y ′)

]

= EX′,Y ′ sup
f

∣∣∣(1− ϵ)EPX′
f(X ′)− 1− ϵ

n

∑

i

f(x′i)− (1 + ϵ)EPY ′
f(Y ′) +

1 + ϵ

n

∑

i

f(y′i)

+ 2ϵECf(C)−
2ϵ

n

∑

i

1{f(y′i) ≥ γ̂}f(y′i)
∣∣∣

= EX′,Y ′ sup
f

∣∣∣(1− ϵ)EX•

(
1

n

∑

i

f(x•i )

)
− 1− ϵ

n

∑

i

f(x′i)

− (1 + ϵ)EY •

(
1

n
f(y•i )

)
+

1 + ϵ

n

∑

i

f(y′i)

+ 2ϵEY •

(
1

n
1{f(y•i ) ≥ γ•}f(y•i )

)
− 2ϵ

n

∑

i

1{f(y′i) ≥ γ̂}f(y′i)
∣∣∣

≤ EX′,Y ′,X•,Y • sup
f

∣∣∣1− ϵ

n

∑

i

f(x•i )−
1− ϵ

n

∑

i

f(x′i)−
1 + ϵ

n

∑

i

f(y•i ) +
1 + ϵ

n

∑

i

f(y′i)

+
2ϵ

n

∑

i

1{f(y•i ) ≥ γ•}f(y•i )−
2ϵ

n

∑

i

1{f(y′i) ≥ γ̂}f(y′i)
∣∣∣

≤ EX′,Y ′,X•,Y • sup
f,γ

∣∣∣1− ϵ

n

∑

i

f(x•i )−
1− ϵ

n

∑

i

f(x′i)−
1 + ϵ

n

∑

i

f(y•i ) +
1 + ϵ

n

∑

i

f(y′i)

+
2ϵ

n

∑

i

1{f(y•i ) ≥ γ}f(y•i )−
2ϵ

n

∑

i

1{f(y′i) ≥ γ}f(y′i)
∣∣∣

≤ EX′,Y ′,X•,Y •,σ′,σ• sup
f,γ

∣∣∣1− ϵ

n

∑

i

σ′
i(f(x

•
i )− f(x′i)) +

1 + ϵ

n

∑

i

σ•
i (f(y

•
i )− f(y′i))

+
2ϵ

n

∑

y′

i,y
•

i ≥γ

σ•
i (f(y

•
i )− f(y′i))

∣∣∣

≤ EX′,X•,σ sup
f,γ

∣∣∣∣
1− ϵ

n

∑

i

σ′
i(f(x

•
i )− f(x′i))

∣∣∣+ EY ′,Y •,σ sup
f,γ

∣∣∣1 + ϵ

n

∑

i

σ•
i (f(y

•
i )− f(y′i))

∣∣∣

+ EY ′,Y •,σ sup
f,γ

∣∣∣2ϵ
n

∑

y′

i,y
•

i ≥γ

σ•
i (f(y

•
i )− f(y′i))

∣∣∣












	Introduction
	Preliminaries
	Theory
	Approach
	Experiments
	Performance under different data dimensions
	Performance under different sample sizes
	Performance under different values of 
	Computational efficiency
	Sensitivity analyses

	Conclusion
	Proof for proposition 1
	Proof for proposition 2
	Proof for proposition 3
	Proof for proposition 4
	Additional results from the nonrandom contamination setting
	Additional results using MIMIC data
	Additional results using BIO data
	Step Size Sensitivity

	Experimental results from the random contamination setting
	Additional sensitivity analysis results

