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ABSTRACT

Previous research has shown that high math anxiety (HMA) detrimentally impacts math
performance; however, limited work has examined how math anxiety may impact math learning.
The present study drew on our understanding of disparate long-term learning and memory systems
to provide a framework for how HMA potentially disrupts specific types of math learning. Adult
participants completed unfamiliar multiplication trials (e.g., 219x4=?) in 2' sessions \across
consecutive days. Repeated Problems enabled retrieval arithmetic learning by repeating the same
4 problems a total of 72 times each (288 total trials). Unrepeated Problems enabled procedural
arithmetic learning by repeating a consistent problem structure but without ever repeating a
specific problem (288 total trials). HMAs showed impaired learning of Unrepeated Problems
suggesting MA may have disrupted procedural math learning. Conversely, learning of Repeated
Problems was accelerated in HMAs relative to LMAs, suggesting enhanced retrieval learning. We
interpret these results within the context of effort-aveidance and well-established learning and
memory systems, suggesting that HMAs enhance effort on declarative memory mediated retrieval
learning possibly at the expense of efficiency gains in procedural memory mediated learning of
computational procedures. This work also suggests that the mechanisms linking math anxiety with
math performance may differ in important ways from how math anxiety impacts math learning.
Further, this work highlights the potential value of considering how math anxiety interacts with
multiple types of math learning.
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1. INTRODUCTION

We live in a world that increasingly relies on numerical and mathematical skills. Consequently,
anxiety about numerical and mathematical situations may be an important challenge for
individuals to overcome in cultivating and understanding mathematics. Math anxiety refers to
negative and nervous feelings associated with anticipating or completing mathematical tasks
(Ashcraft, 2002; Ramirez et al., 2018; Suérez-Pellicioni et al., 2015). Short-term, the impacts of
high math anxiety (HMA) can be seen in poor performance on arithmetic problems,and lowered
performance in math coursework relative to peers. Long term, HMA individuals (HMAs) may take
fewer math classes and are less likely to choose a career-that relies on quantitative or numerical

skills (Ashcraft, 2002; Daker et al., 2021; Hembree,1990).

Despite the prevalence of research on the impact of math anxiety on math performance, very little
work has directly examined whether — and in what manner — math anxiety impacts math learning
(Dowker et al., 2016). While an examination of math learning to the fullest extent is outside the
scope of a single empirical paper, the current study examines a subset of math learning which
involves both multiple cognitive mechanisms, while also allowing for careful experimental

control: complex mental arithmetic.

In the context of math anxiety, it is important to distinguish between explanations or mechanisms
underlying performance and those underlying learning. For example, prior work has firmly
established that an important explanation for why math anxiety is associated with decrements in
math performance is a temporary decrement in working memory resources (Friso-van de Bos et
al.,2013; Ji & Guo, 2023; Raghubar et al., 2010; Ashcraft & Krause, 2007a). However, decrements
in performance are not the same as decrements in learning. For instance, a musician might

challenge themself by attempting to play a composition at a tempo that is just outside their current
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skill level. Doing so may lead to an immediate decrement in performance, but ultimately lead to
greater learning (relative to continuing to play the piece at the same tempo; Ericsson, 2008). Even
in cases where decrements in performance and learning are observed in tandem, the mechanism
underlying poor performance may be different from the mechanism underlying poor learning. For
instance, sleep deprivation negatively impacts both cognitive performance and learning, but the
mechanisms underlying each are not always the same (e.g., Curcio et al., 2006; Killgore, 2010).
For these reasons, it is important not to confuse current explanations of arithmetic performance
decrements among highly math anxious individuals (HMAs) with explanations of how such
individuals may or may not learn (or fail to learn) arithmetic relative to-their low math anxious
peers (LMAs). Readers should note this is not meant as a criticism of those explanations of
performance decrements in math anxiety, as, to our knowledge, they were not intended to serve as

explanations of learning.

With respect to arithmetic learning, prior work has differentiated learning math facts from learning
procedural calculations (Ashcraft, 1992; Delazer, 2003; Dowker, 2023). Importantly, prior
literature has proposed that-different cognitive mechanisms may underscore learning for these
different types of math (Dowker, 2023; Menon, 2016b). For instance, researchers have suggested
the declarative memory (DM) system supports recall of math facts, while additional, skills-based
cognitive systems may contribute to learning of procedural computations (Dowker, 2023; Menon,
2016b). As such, it is important to consider the possibility that math anxiety may impact different

types of arithmetic learning in different ways.

In particular, we are interested in examining whether math anxiety predicts reductions in two types
of arithmetic learning: direct retrieval of arithmetic facts, and efficiency gains in executing

procedural computations. The former occurs when a person sees many repetitions of the same



Math Anxiety and Arithmetic Learning Page 5 of 48

problem (Ashcraft, 1983; Zbrodoff & Logan, 1986). For instance, most numerate adults have
encountered problems like 2x3 many times, and so solve them by directly retrieving the answer
from memory (Ashcraft, 1992). Adults can of course learn to retrieve less familiar items, such as
8%319, if they are presented with many repetitions of this same problem — indeed this is the basis
of quite a few lab-based studies of arithmetic learning (e.g., Zbrodoff & Logan, 1986; Compton &
Logan, 1991; Delazer et al., 2003; Rickard et al., 2008; Grabner et al., 2009; Battista, 2013). In
our examination, the first question we ask is whether math anxiety distrupts retrieval learning of

new arithmetic facts.

Efficiency gains in executing procedural arithmetic computations occur primarily by practicing
execution of those procedures (Imbo & Vandierendonck, 2008). Note that this can be differentiated
from direct retrieval learning by including problems where the structure of the problem is held
constant, but specific instances (i.e., specific combinations of numbers) are repeated infrequently
or not at all (e.g., Zbrodoff & Logan, 1986; Compton & Logan, 1991; Delazer et al., 2003; Rickard
et al., 2008; Grabner et al., 2009; Battista, 2013). Perhaps a familiar example is long division,
where there is often a common sequence of calculation steps that is largely invariant to the specific
numerical inputs. Repeated practice with a fixed set of calculation steps can lead to increased
efficiency in executing them, even if specific problems are repeated infrequently or not at all (e.g.,
Delaney et al., 1998; Imbo & Vandierendonck, 2008; Rickard et al., 2008; Battista, 2013). Note
that execution-of calculations for procedural arithmetic problems does make use of executive
functioning and working memory capacity to enable mental manipulation of numerical values
(Dowker, 2023). Importantly, the critical mechanism by which gains in efficiency for procedural

arithmetic computations occur remains unclear. Thus, the second question we address is whether
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HMAs experience reduced gains in arithmetic computation efficiency after practicing complex

arithmetic problems with a fixed structure.

Why might math anxiety impact one or both of these types of arithmetic learning? Broadly
speaking, heightened anxiety is associated with a change in how attention is allocated — typically
toward exogenous (especially threatening) stimuli, and away from endogenous goals and
representations (Pizzie & Kraemer, 2017; Dusek et al., 1976; Mogg et al., 1990; Moriya & Tanno,
2009). Similar attentional biases are thought to occur for math anxious individuals, and this bias
is thought to be a leading cause of the performance decrements seen amongst highly math anxious
individuals (HMAs) when they are doing math (Beilock, 2008; Ashcraft, 2002; Ramirez et al.,
2018; Li et al., 2023; Daker et al., 2023). But as noted above, performance and learning are not the
same, so the question at present is whether-disruption of endogenous, goal-oriented attentional

processes due to math anxiety disrupts different facets of arithmetic learning.

With respect to learning for arithmetic fact-retrieval, endogenous attention is an important
component of explicit memory formation in the declarative memory (DM) system (Forsberg et al.,
2021; Madore et al., 2020), which plays a crucial role in arithmetic retrieval learning (Dowker,
2023; Menon, 2016a, 2016b; Cho et al., 2012; Delezar et al., 2019; Grabner et al., 2009; Qin et al.,
2014). Thus, by disrupting DM-mediated mechanisms, math anxiety could lead to disruption of

arithmetic retrieval learning.

With respect to learning for computational procedures, one possibility is that math anxiety
negatively impacts math practice. Here it is important to distinguish between quantity and quality
of practice. Math anxiety is thought to lead to math avoidance (Dew et al., 1984; Pizzie & Kramer,
2017; Daker et al., 2021), potentially leading to a reduction in practice quantity. In the current

study, the amount of practice was equated across all participants, so we are instead interested in
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how math anxiety might impact practice quality. That is, even if a high and a low math anxious
person practiced a given arithmetic procedure the same amount, would the HMA person still
experience reduced efficiency gains? HMAs reduce their effort on more challenging math
problems (Choe et al., 2019; Jenifer et al., 2022), and procedural computations are generally
perceived as more effortful than direct retrieval strategies (Ashcraft, 1992; Imbo &
Vandierendonck, 2008; De Smedt, 2016). Thus, one possibility is that reduced effort by HMAs on
more challenging problems involving computational procedures could lead to reduced practice
quality. Because lower input quality can compromise procedural learning in general (Gupta &
Cohen, 2002, Miller & Shettleworth, 2007), this in turn may lead to reduced efficiency gains in
arithmetic computations among HMAs. While this proposal-is admittedly somewhat speculative,
the bottom line is that it is important to test whether HMAs, show reduced computational, as well

as retrieval, learning in arithmetic.

1.3. Current Study

1.3.1 Hypotheses
We propose three hypotheses for how math anxiety may impact arithmetic learning: (1) Math

anxiety impairs arithmetic fact-learning; (2) Math anxiety impairs efficiency gains in a fixed
computational context (e.g:; computing the same #ype of arithmetic problem, without repeating

any one specific problem); (3) Math anxiety impairs both.

1.3.2. Approach
The present study examined how math anxiety predicts the initial stages of adult learning of

relatively difficult, multi-digit multiplication problems. These problems were chosen to be
challenging, and unlikely to have been previously memorized (e.g., 189x4=?), and participants

were given a 10-second time-limit per problem to encourage the cultivation of more efficient
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computational procedures. Participants completed an intensive battery (over 600 total trials) of
multiplication problems divided evenly over two sessions that occurred on two consecutive days.
All problems were open-ended, requiring participants to provide the answer themselves, and
feedback in the form of the correct answer was given after each trial. Crucially, problems were
divided into Repeated Problems, and Unrepeated Problems. Repeated Problems 'comprised a set
of four multiplications problems that were each repeated 72 times throughout the experiment,
enabling participants to rely primarily on declarative memory to recall the answers to these
problems. Unrepeated Problems were all the same computational class (three-digit X one-digit
number), but specific problems were never repeated. This meant that direct retrieval of answers to
specific to Unrepeated Problems was not possible, but efficiency gains in consistent sequences of

computational steps were possible (and encouraged by the time-limit).

To systematically address the hypotheses noted above, we investigated four research questions
addressing different aspects of the impact of math anxiety on arithmetic learning. First, we sought
to establish whether different Problem Types (Unrepeated Problems vs. Repeated Problems) show
differential learning trajectories. We did this by examining the overall learning trajectories for each
Problem Type across/the course of the experiment and sought to establish whether learning on
Unrepeated and Repeated problems indeed reflected differential types of arithmetic learning.
Second, we tested whether HMAs are capable of each type of arithmetic learning — namely, we
tested for the presence of learning among HMAs on each type of problem. Third, it is possible that
HMAs demonstrate evidence of learning for a given problem type, but learning trajectories
nevertheless differ from their LMA counterparts. To that end, we tested whether learning
trajectories differed as a function of Math Anxiety for one or both problem types. Fourth, we tested

whether the potential differential impact of math anxiety on a given type of learning is evident in
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the short-term (within a single session) or emerges primarily beyond a single testing session (i.e.,

after a 24-hour period).

On a broader scale, this work has the potential to advance our understanding of whether, in what
manner, and on what timescale, math anxiety impacts math learning. Our results may also provide

a bridge between math anxiety, math learning and long-term memory literatures.

2. METHODS

2.1. Participants

Participants were recruited from the student population at Georgetown University (n=84) and other
adults in the surrounding community (n=5). (Note that results did not meaningfully differ if the
community participants were omitted.) Participants were first recruited to participate in an online
study and subsequently invited to participate in two in-lab sessions on consecutive days. 89
participants completed both in-lab sessions.Of those, survey data from 1 was lost due to a technical
error; 6 others were dropped from:the analysis because insufficient responses did not allow for
response-times to be computed. Note that exclusion due to insufficient responses was unrelated to
math anxiety [7=.06, p=.60]. The final analytic N was thus 82 (58 female, mean age: 22.45yrs,

range: 18-49yrs).

2.2. Procedure

The initial online study was part of a larger dataset comprising a battery of questionnaires and
several online tasks collected via Qualtrics. Task-order was counterbalanced across participants.
Of primary relevance here are the measures of math anxiety, general trait anxiety, and the basic
demographics data. Participants were subsequently invited to participate in the in-lab portion of

the study. The in-lab portion consisted of two testing sessions over two consecutive days. The in-
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lab portion involved completion of an intensive multiplication task (see below for details).
Electrodermal activity was recorded throughout both sessions, though here we focus solely on
behavioral indicators of learning and their relation to math anxiety. Each lab session took
approximately 90 minutes on average to complete. All procedures were approved by the University

Institutional Review Board, and participants provided written consent to be a part of the study.

2.2.1 Transparency and Openness

We report how we determined our sample size, all data exclusions, manipulations, and measures.
This study’s design and analyses were not preregistered. Analyses were conducted using SPSS
software Version 29. All data have been made publicly available at'the APA’s Open Science
Framework (OSF) repository and can. be |, accessed at the following link:

https://osf.io/zcOnf/?view only=2ef79dd4cbe64421b9f6447daa6f80f1Y.

2.3. Measures
2.3.1. Math Anxiety

Math anxiety was measured using the 25-item shortened math anxiety rating scale (SMARS;
Alexander & Martray, 1989). Ratings on this scale range between 0 and 100. The mean rating in

the current dataset was 35.2, with a standard deviation of 17.3.

2.3.2. General Trait Anxiety

General trait anxiety was measured using the 20-item trait portion of the state-trait anxiety index
(TAI; Spielberger et al., 1970). Ratings on this scale range from 20 to 80. The mean rating in the

current dataset was 47.1, with a standard deviation of 4.4.

10
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Figure 1
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Figure 1 Notes. Figure 1 shows the experimental paradigm for a single session. On the left is a
depiction of the type of randomization used for problem type presentation. Along the bottom we
display the sectioning of the 12 Blocks within ‘each 'session. Each Block contained 27
multiplication trials and lasted about 5 to 10 minutes. Participants were given short breaks in
between Blocks. On the diagonal is a sample of the screen shown during each trial illustrating the
initial fixation, the problem presentation and solving, feedback, and the subsequent return to
fixation.

2.3.3. Multiplication Task

The multiplication task was presented via E-Prime 3.0 and displayed on a 1280x1024 standard
Dell flat screen monitor. Multiplication problems were open-ended and required participants to
type their ‘/answers via the number pad on a standard keyboard. Problems were designed to be
moderately challenging and relatively unfamiliar. Problems consisted of two multiplicands
presented horizontally in the form a x b= __ . The left multiplicand (a) was always three-digits,
ranging from 101-399. The second multiplicand (b) was a single-digit: 2, 3, 4, 6, 7, 8, 9. To equate
the number of required key presses across problems, the solutions to all problems were three-digit

integers (problems with products > 999 were excluded). The participant’s answer appeared to the

11
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right of the equals sign as they typed their response. Stimuli were centered on the screen with
problem text in 36pt Arial font. Each day, prior to the start of the main experiment, participants

completed 5 practice problems. Practice problems were not repeated elsewhere in the experiment.

After a given trial appeared on the screen, participants had 10 seconds to complete their response.
This 10-second response window was designed to create a certain amount of time-pressure and
encourage learning, either via acquisition of more efficient strategies, such as memorization, or
more efficient overall calculation processing. Responses were typed via the number pad and
confirmed by pressing the Enter key (also on the number pad). Participants were allowed to correct

their answers prior to pressing Enter, by using the Backspace key.

After each trial (either after pressing enter or after the, 10-second time-limit expired), any typed
response was scored, and participants received feedback. Feedback was either “Correct”,
“Incorrect”, or “No Response Detected” (the latter occurred if participants failed to provide a
response within the time limit). Font color for feedback was blue, red, or orange, respectively.
Below the feedback text, was the following text in white: “The correct answer is:”, followed by
the complete problem, including the correct answer (e.g., 189 x 4=756). The feedback screen was
presented for 2 seconds, followed by an inter-trial fixation period of 3 seconds, after which the
next trial began. The experiment was paused roughly every 5-10 minutes, and participants were

given the option to take a short break.

Participants'completed a total of 648 problems. These were divided evenly across two sessions
that occurred on two consecutive days. Hence, participants completed 324 problems on Day 1 and
324 problems on Day 2. The 648 total problems were divided into 288 Repeated Problems, and
360 Unrepeated Problems. Note that the larger (three-digit) multiplicand in 72 of the 360

Unrepeated Problems involved a zero in the ones place (e.g., 280, 160, etc.). Due to concerns that

12
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this type of problem might afford qualitatively different types of strategies, they were omitted from
analysis. Doing so also equalized the number of Repeated and Unrepeated Problems at 288 each.
An equal number of each problem type was presented in each session (144 of each type on each
day). Furthermore, problems were pseudo randomly presented so that, at any given point in a
session, a participant would have completed roughly an equal number of Repeated and Unrepeated

Problems (after excluding the 72 problems ending in a zero).

2.3.3.1. Repeated Problems

Repeated problems comprised the same four problems that were repeated throughout the
experiment, including across both testing days. The four problems were 104 x 7, 142 x 3, 139 x
4, and 371 x 2. Each problem was repeated a total'of 72 times across both sessions (36 times per
session), which together comprised the 288 Repeated Problems participants saw in total. Note that
these problems were chosen to be broadly representative of the types of problems (in terms of

multiplicand place-value pairings) participants saw for the Unrepeated Problems.

Repeated Problems were designed so that learning — more specifically, accelerated learning
beyond what is seen for Unrepeated Problems — on these problems would most likely be driven by
direct memory retrieval. Feedback in the form of the correct answer was provided after each
problem. Thus, by repeating a problem, one has the opportunity to accelerate learning by directly
recalling the answer on subsequent problems — be that the answer one successfully produced
oneself, or the answer provided via feedback (or both). Repeated Problems were randomly
interspersed among a large number of Unrepeated Problems, meaning that participants could not

simply memorize a single response routine.

13



Math Anxiety and Arithmetic Learning Page 14 of 48

2.3.3.2. Unrepeated Problems

Unrepeated Problems were never repeated throughout the experiment. Thus, all 360 Unrepeated
Problems (288 of which were analyzed here) were presented exactly once. Unrepeated Problems
were divided into two equal sets, and which set was presented on which Day 1 or Day 2 was

counterbalanced across participants.

Unrepeated Problems were designed so that improved performance on this elass of problems
would most likely be driven by efficiency gains in computational procedures. No problem in this
set was ever repeated, so participants could not rely on memorization of specific exemplars.
However, the structure of the problem was held constant; allowing for consistent deployment of a
small set of calculation procedures. Taken together, this meant that, if learning performance
improvements over time were to occur for these problems, it would likely be due to improvements

in the efficiency of the execution of that set of calculation procedures.

Note that, due to a technical error, the same set of Unrepeated Problems was accidentally presented
on both days to 3 participants.. Hence, those 3 participants in effect saw only 180 unique
Unrepeated Problems which were presented exactly twice — once on each day. Including or
excluding these participants did not affect the results. Two repetitions, when compared with 72
total repetitions of each Repeated Problem, is an order of magnitude less. On the other hand, one
might expect the repetition across testing days could bias the effect of Day on learning trajectories
for Unrepeated Problems, but this effect was in fact unchanged whether the 3 participants were
excluded or not. Hence, for the sake of retaining as much data as possible, these 3 participants are

included in subsequent analyses.

14
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2.4. Analysis Framework
2.4.1. Z-Scores and Speed-Accuracy Trade-Offs

Our two measures of performance were accuracy and response time (RT). However, our focus in
this study was on learning, which we quantified as changes in these performance variables. In
particular, we were interested in directly contrasting changes as a function of Problem Type and
math anxiety, which requires one use the same base variable (e.g., accuracy vs. accuracy, RT vs.
RT). The issue is that speed-accuracy trade-offs are expected to differ across the two types of
problems. For Repeated Problems, participants are expected to teach ceiling performance in terms
of accuracy relatively quickly, at which point subsequent.gains in processing would be more likely
to be reflected by changes in RT. For Unrepeated Problems, no such switch in relative importance
is expected. Thus, comparing learning in terms of either RT or accuracy could lead to inflated or
deflated estimates of relative learning, depending on the measure chosen. Moreover, for Repeated
Problems, precisely when the potential switch from changes in accuracy to changes in RT occurs
is likely to differ across participants,-which has implications for associating learning with an

individual differences factor like math anxiety.

To avoid introducing these confounds into our analyses, we used a combined variable approach,
in which we computed a composite measure of RT and accuracy. This implicitly accounts for
potential trade-offs in relative gains in each of the two variables, resulting in an index of overall
learning that is more directly comparable across Repeated and Unrepeated conditions.
Furthermore, this approach halves the number of statistical comparisons needed, and reduces the
chance that one is ‘cherry picking’ the outcome measure that is most convenient for one’s
hypotheses. Finally, the approach also implicitly accounts for individual variation in speed-

accuracy trade-offs that might arise from idiosyncratic strategy selection.

15
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To combine RT and accuracy, we used a z-score approach. We avoided inverse efficiency
(Townsend & Ashby, 1983) as this weights accuracy non-linearly; we also opted not to use the
Combined Performance (CP) metric introduced by Lyons et al. (2014), as that approach is more
optimal in forced-choice situations, whereas here responses were open-ended. To compute z-
scores, trials for each of the Problem Types were binned across 6 Timepoints as noted in the section
on Assessing Learning Trajectories above. For each participant, average RT and error-rate (ER, %

incorrect) was calculated for each Problem Type at each Timepoint. Z<scores were then computed

RT;—RTym
RT

and Z(ERL-)Z%. The i

as z; = —mean(z(RTi),z(ERi)), where z(RT;) =
subscript indicates the value for a given participant for a given problem type for a given Timepoint.
The M subscript indicates the grand mean across all participants, Problem Types and Timepoints.
The s subscript indicates overall standard deviation across all participants, Problem Types and
Timepoints. We used error-rates instead of accuracy because the former is in conceptually the

same direction as RT (a lower value indicates ‘better’ performance). Z-scores were multiplied by

-1 to aid in interpretation, such that.a higher z-score indicated better overall performance.

2.4.2. Invalid Trials and Triaging Participants

To incentivize performance improvements, trials had a 10-second timeout; however, on trials
where a timeout occurred, RT cannot be calculated, and it is unclear what this means in terms of
accuracy. Hence, these trials were excluded from analysis. Some participants performed overall
very poorly. on the task, which often manifested as a very high number of timeout trials. Hence,
we sought to triage such participants using a 75/25 rule: to be included in the sample, a given
participant needed at least 75% valid (non-time-out) trials overall and at least 25% valid trials in

each cell (Type x Timepoint). Six participants failed to meet one or both criteria and were excluded

16
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from further analysis. Neither the total number of invalid trials nor the likelihood of being excluded

was significantly related to math anxiety (ps > .05).

2.4.3. Assessing Learning Trajectories

To assess learning trajectories for each of the Problem Types (Questions 1-3), we divided trials so
that each Day contains 3 Timepoints, for a total of 6 Timepoints across the experiment. Note that
this approach also allowed us to test for short-term learning across 3 Timepoints within-a Day vs
consolidation learning between daily Timepoints (Question 4). Each Timepointcomprised 48 trials
of each Problem Type (Repeated, Unrepeated), and included 12 instances of each specific problem
within the Repeated Problem set. In this way, we aimed to balance the capacity of our metrics to
reasonably test each study question by estimating‘performance on the different problem types at
each Timepoint. We used within-subjects contrast-effects to evaluate overall learning trajectories
across timepoints. Note that contrast effects fit differences across levels in a given factor (e.g., the
6 levels in the Timepoint factor) to a specific mathematical function. Standard effects, conversely,

detect only simple differences between levels, regardless of overall pattern.

2.4.4. Modeling Math Anxiety

Math anxiety is traditionally treated as a continuous measure (Dowker et al., 2016), though there
is considerable precedent for comparing separate ‘high’ and ‘low’ math anxiety groups (e.g.,
Supekar'et al., 2015; Passolunghi et al., 2020; Schaeffer et al., 2021; Jenifer et al., 2022; see also
Ashcraft etal., 2007b). The argument against using groups is that group cutoffs are arbitrary, and
this division often reduces statistical power. On the other hand, comparing groups is often
conceptually easier to communicate, visualize, and understand. Also, Question 2 in the present

study tests for learning in those classified as high math anxiety, necessitating group classification.

17
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In the current sample, we first checked whether the association between math anxiety and overall
performance varied as a function of whether math anxiety was treated continuously or in a group-
based manner (using a median split). The median SMARS score in the sample was 33.5. Those
with SMARS scores > 34 were classified as high in math anxiety (HMA, n=41). Those with
SMARS scores < 33 were classified as low in math anxiety (LMA, n=41). For Repeated Problem:s,
modeling math anxiety continuously was slightly stronger (Continuous: r=-.30, Group: =-.26);
for Unrepeated Problems, modeling math anxiety group-wise was slightly stronger (Continuous:
r=-33, Group: r=-.36); the two approaches were nearly identical with respect to overall
performance (Continuous =-.34, Group: r=-.34) (all ps<.05). Furthermore, within each group, we
did not see a consistent association between continuous math anxiety and performance (LMA
group: r=+.06, HMA group: r=-.24). Together, these preliminary results suggest (1) the statistical
benefit of modeling MA continuously was not present in the current dataset, and (2) it may even
be the case that there were qualitative differences between high and low math anxiety groups,
making continuous treatment of MA potentially problematic for the current dataset. There is
precedent for such qualitative differences elsewhere in the literature (e.g., Lyons & Beilock, 2012).
Regardless, given that the potential benefits of modeling MA continuously in the present dataset
did not seem to outweigh the benefits of modeling it group-wise, we opted to model MA in terms
of high and low groups. Perhaps unsurprisingly given the above, none of the main conclusions of

the paper are substantially altered if one were to choose to model MA continuously.

2.4.5. Accounting for General Anxiety

To establish specificity of math anxiety effects, it is customary to control for general anxiety,
which we measured here using the trait portion (TAI) of the STALI In the current dataset, we found

no significant relation between math anxiety and general anxiety (r=.16, p=.150) or between

18
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general anxiety and overall performance (r=.17, p=.123). Further, general anxiety was not
associated with any learning effects (all ps>.05; to estimate this, the ANOVAs from the results
section were re-run substituting general anxiety for math anxiety, and by checking relevant
interaction terms). Finally, results remained unchanged even after adjusting for general anxiety.
Hence, in the current dataset, it does not seem necessary to control for general anxiety to establish
specificity of math anxiety effects, and so for the sake of model simplicity, the main analyses omit

trait anxiety as an additional factor.

3. RESULTS

3.1. Question 1: Do the different Problem Types show differential learning trajectories?

The first goal of the study was to establish whether in this paradigm, we see evidence of a reliance
on differential learning and memory mechanisms for each Problem Type. We tested for learning
on Unrepeated Problems (evidence for learning of computational procedures), and for learning on
Repeated Problems (evidence for learning of direct retrieval). Figure 2 shows mean performance
at each Timepoint for the two-Problem Types. As this first research question does not concern

math anxiety, the math anxiety group variable was omitted, and we consider all subjects together.

Note that the first timepoint in Figure 2 makes it appear as though there was a pre-existing
difference’ between Repeated and Unrepeated Problems. For statistical estimation purposes
Timepoint 1 infact includes the first 48 trials of each problem type (in particular, 12 repetitions of
each of the repeated problems), so some degree of learning may have already occurred within
Timepoint 1. Thus, if we isolated accuracy on the very first instance that participants saw each of
the four (soon-to-be) Repeated Problems, as well as accuracy on the first four Unrepeated

Problems, there was no difference in accuracy between the problem types [Repeated: M=56%,
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5e=2.97%; Unrepeated: M=55%, se=2.92%; t(81)=-0.21, p=.84]. Recall that responses were open-
ended (i.e., not verification), so the low accuracy rates on these first four problems are still well
above chance. More to the point, there was no reliable difference between Repeated and
Unrepeated problems, at least at the very outset of the experiment. We next turn to examining

variation in learning trajectories.

3.1.1. Log versus Linear Learning Trajectories

As illustrated in Figure 2, learning trajectories for both Problem Types was better fit by a log as
opposed to a linear function of Timepoint at the group average level. A more quantitative approach
confirmed this by using a one-way, within-subjects analyses of variance (ANOVA), and by
examining the within-subjects contrast-effect, which provided the best estimate of overall learning
trajectories, across the 6 Timepoints. We ran'two ANOV As for each Problem Type, modeling the
contrast-effect of Timepoint either linearly and or a natural log function. The contrast-effect F-
statistics for Timepoint from those models were as follows: Repeated Problems (Linear):
F=608.55, Repeated Problems. (Log): F=630.40; Unrepeated Problems (Linear): F=159.84,
Unrepeated Problems (Log): F=215.69 (all dfs: 1, 81; all ps<.001). For both Problem Types, the

contrast effect of Timepoint was better fit by a log function as indicated by higher F-statistics.

Also of interest is the difference between learning trajectories on the two Problem Types. We
checked'whether the contrast effect for the interaction between Problem Type and Timepoint was
better fit by a log, relative to a linear function. The contrast effect for the interaction term showed
a better fit when Timepoint was modeled in a log (F=237.03) vs a linear manner (F=224.69). In
sum, overall learning trajectories for both Repeated and Unrepeated Problems, as well as the
difference between these two trajectories, were all better fit by a log function. We therefore model

Timepoint as In(Timepoint) moving forward.
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3.1.2. Final Model

The final model for this section was 2(Type: Repeated, Unrepeated) x 6[Timepoint: /n(1-6)].
Within subjects’ contrast effects are reported in-text, while full ANOVA results are in Appendix
A. The main effect of Type was significant [F(1,81)=875.04, p=4E-45, d=0.96], such that
Repeated performance was overall better than Unrepeated performance. The log contrast effect of
Timepoint was significant [/n(Timepoint): F(1,81)=707.01, p=9E-42, d4=0.95].. Substantial
learning thus occurred overall. However, learning trajectories for the‘two different problem types
were not equal, as evidenced by a significant interaction contrast-effect [Type % /n(Timepoint):
F(1,81)=237.03, p=9E-26, d=0.86]. Significant learning was observed for Unrepeated Problems
[/n(Timepoint): F(1,81)=215.69, p=2E-24, d=0.85],/but learning was significantly accelerated for

Repeated Problems [/n(Timepoint): F(1,81)=630.39, p=6E-40, d=0.94].

We thus show differential learning trajectories for the two problem types. We also find evidence
that these different trajectories may be underlain by separate learning mechanisms: While overall
performance across Problem Types was highly correlated [#(80)=.679, p=2E-12], learning
trajectories for the two Problem Types were not [#(80)=.133, p=.234]. Furthermore, Unrepeated
Problems showed evidence of learning in a context where problem structure was held constant,
but without any’specific problem ever being repeated. Repeated problems showed significantly
accelerated learning in a-context where a small subset of items was repeated. Taking the above
together, it seems reasonable to conclude that learning on Unrepeated Problems and Repeated
Problems were underlain by distinct memory mechanisms (We would of course not rule out some
overlapping contribution of the two memory systems, though the lack of correlation between

learning trajectories does speak against this to a degree.) In the next sections, we turn to the
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question of whether and how math anxiety potentially impacts math learning in each of these

memory systems.

Figure 2
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Figure .2 Caption: Figure 2 shows performance as a function of Problem Type and
Timepoint.. Performance is shown as z-scores. A higher z-score indicates better
petformance. Repeated Problems are in red; Unrepeated Problems are in blue. Learning is
operationalized as consistent changes in performance and analyzed as log-contrast effects.
To represent log-contrast effects, bold lines show fitted log functions: /n(Timepoint), along
with R? values for the fitted lines. Shaded lines with error-bars (standard-errors) are actual
timepoint means.
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3.2. Question 2: Do HMAs have intact learning and memory mechanisms for arithmetic?

Here, we tested whether HMAs have fundamental deficits in one or both types of arithmetic
learning (retrieval or procedural). Similar to Question 1, we tested for the existence of significant
learning trajectories for each problem type, but here we focused exclusively on the HMA group
(n=41). Within subjects’ contrast effects are reported in-text, while full ANOVA results are in

Appendix Table B-1 (LMA results are given in Table B-2 for completeness).

First, we checked for intact learning of computational procedures by testing for the presence of a
significant learning trajectory among HMAs on Unrepeated Problems. We tested for the presence
of a log-contrast effect across the 6 Timepoints. This contrast effect was indeed significant
[/n(Timepoint): F(1,40)=90.33, p=8E-12, d=0.83]; indicating learning mechanisms for arithmetic

computational procedures remain intact among HMAs when learning math.

Second, we checked for intact retrieval learning by testing for the presence of an accelerated
learning trajectory for Repeated relative to Unrepeated Problems. The log-contrast effect for
Repeated Problems among HMAs was significant [/n(Timepoint): F(1,40)=345.11, p=2E-21,
d=0.95]; moreover, this effect was:significantly stronger than the effect for Unrepeated Problems
above [Type x In(Timepoint): F(1,40)=199.08, p=4E-17, d=0.91]. Arithmetic retrieval learning

mechanisms thus appear to remain intact for HMAs when learning math.

3.3. Question 3: Do learning trajectories differ as a function of Math Anxiety?

While the previous section does not identify a fundamental deficit in retrieval or procedural
arithmetic learning in HMAs, it is still possible that one or more mechanisms may be partially
disrupted, preserved, or even enhanced among HMA s relative to their LMA counterparts. Here we

test for these subtler differences by contrasting learning trajectories between HMAs and LMAs.
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Figure 3 shows learning trajectories for each Problem Type and Math Anxiety Group. Within
subjects’ contrast effects (see Methods) are reported in-text, while full ANOVA results are in

Appendices B and C.

The previous sections established a difference in learning trajectories as a function of Problem
Type. Thus, in this section, we first tested whether this difference in learning trajectories in turn
differed as a function of math anxiety. The three-way log-contrast effect was indeed. significant
[MA x Type X I[n(Timepoint): F(1,80)=11.92, p=9E-04, d=0.36; Table.C-1]. One way to
understand this result is from the perspective of each Problem Type. While HMAs showed greater
learning on Repeated Problems [MA x /n(Timepoint): F(1,80)=5.36, p=.023, d=0.25; Table C-2],
LMAs showed marginally greater learning on Unrepeated Problems [MA X /n(Timepoint):
F(1,80)=3.67, p=.059, d=0.21; Table C-3]. The differential learning trajectories in Figure 3 suggest
different implications for MA-related arithmetic-learning deficits. There is an initial performance
deficit for HMAs on both Problem Types. However, for Repeated Problems, due to accelerated
learning, this performance deficit diminishes over time; for Unrepeated Problems, due to

decelerated learning, the performance deficit increases with time.
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Figure 3
Math Anxiety x Problem Type x Timepoint
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Figure 3 Caption: Figure 3 shows performance as a function of Problem Type and
Timepoint, separated into low (LMA) and high math anxious (HMA) groups. Performance
is shown as z-scores. A higher z-score indicates better overall performance. LMAs are
shown with solid lines; HMAs are shown with hollow lines. Repeated Problems are in red;
Unrepeated Problems are in blue. Learning is operationalized as consistent changes in
performance and analyzed as log-contrast effects. Bold lines show fitted log-contrast-effect
functions: /n(Timepoint), along with R? values for the fitted lines. Faded lines (both solid
and hollow) with error-bars (standard-errors) are actual timepoint means.

Another way to think about the three-way contrast effect is that HMAs show accelerated learning
on Repeated Problems (relative to Unrepeated Problems) to a greater extent than their LMA peers.
This is reflected in the fact that HMAs showed a stronger Type x /n(Timepoint) effect

[F(1,40)=199.08, p=4E-17, d=0.91; Table B-1] than did LMAs [F(1,40)=82.99, p=3E-11, d=0.82;
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Table B-2]. Earlier, we interpreted accelerated learning on Repeated relative to Unrepeated
problems as evidence of retrieval learning. Taken together with the above paragraph, these results

suggest that MA disrupts procedural learning, but potentially enhances retrieval learning.

As a final note, after averaging over Problem Type, there was no significant difference in overall
learning between HMAs and LMAs [MA x [n(Timepoint): F(1,80)=0.74, p=.391, d=0.10; Table
C-1]. In other words, HMAs showed no evidence of differential learning relative LMAS when
considering the arithmetic task as a whole. However, as we saw from above, this masks divergent
learning trajectories as a function of Problem Type. This in turn highlights the importance of
considering different types of learning and memory mechanisms when examining the impact of
math anxiety on arithmetic learning. In sum, the evidence reviewed above supports Hypothesis
(2): Math anxiety impairs learning in the form of enhanced arithmetic computational efficiency.
Notably, the evidence contradicts Hypothesis (1): Math anxiety impairs learning of arithmetic

facts (which thus also contradicts Hypothesis 3).

3.4. Question 4: Do differential Math Anxiety learning trajectories emerge in the short-term,

or after 24 hours?

Having established the presence of differential learning trajectories by Problem Type between
Math Anxiety groups, we looked to identify the time at which these differences emerge between
groups. First, we tested whether trajectories diverge primarily within a given testing session. We
operationalized this as learning within a testing Day. Second, we tested whether learning
trajectories diverge in the (modestly) longer-term, possibly after memory consolidation processes

have begun to occur. We operationalized this as learning across the two testing Days.
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The current model was 2(MA: LMA, HMA) x 2(Type: Repeated, Unrepeated) x 2(Day: 1, 2) x
3(Timepoint: /n(1-3)). Note that in the current model there are only 3 levels to the factor Timepoint,
because Timepoint here averages across Days (Timepoints 1 and 4 are averaged, as are 2 and 5,

and 3 and 6).

Of primary interest here are two effects: (1) The MA x Type X In(Timepoint) interaction contrast
effect quantifies differential learning as a function of MA and Problem Type across Timepoints
(within a given testing session), ignoring the influence of Day. (2) The - MA X Type X Day
interaction effect quantifies differential learning as a function’of MA and Problem Type across

Days (between testing sessions), ignoring the influence of specific Timepoints within those Days.

Results showed, at best, limited support for divergent learning trajectories within a given testing
session [MA x Type x [n(Timepoint): F(1,80)=2.30, p=:133, d=0.17], but robust support for
divergent learning trajectories across days [MA x Type x Day: F(1,80)=10.66, p=.002, d=0.34].
Note that the four-way interaction did not approach significance (¥<1), indicating these two effects
did not interact with one another. In sum, it appears that the differential Math Anxiety learning
trajectories seen for the different.Problem Types in Question 3 (Figure 3) did not fully emerge
until the second of two testing days, which may suggest that the impact of Math Anxiety on
retrieval and procedural learning may be driven by memory mechanisms that unfold over a

timeframe that exceeds a single-session experiment.
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4. DISCUSSION

Substantial work has demonstrated that high math anxiety is detrimental to math performance
(Ashcraft & Ridley, 2005; Daker et al., 2021), which may give rise to the intuition that math
anxiety is also detrimental to math learning. However, there is a lack of direct evidence for this
intuition, and the limited evidence which does exist relies on longitudinal correlation studies
identifying associations between math anxiety and outcome measures of previously learned math
material. At the same time, there is a dearth of theoretical explanations in:the literature outlining
precisely sow math anxiety might affect the process of math learning specifically. Taking an initial
step towards filling this gap, the present study examined how math anxiety relates to two different
types of arithmetic learning thought to be underlain‘by disparate learning mechanisms (Dowker,
2023; Menon, 2016b). Our results provide some of the first direct experimental evidence that math
anxiety relates to impaired math learning — specifically, reduction of efficiency gains when
practicing arithmetic calculation procedures. This result is broadly consistent with the notion that
HMAs avoid effortful math, extending it to show that this avoidance may have negative
implications for learning. Importantly, our results also show that math anxiety is not predictive of
poor math learning across the board, as HMAs show preserved or even enhanced arithmetic fact-
retrieval learning. This latter result underscores the need to consider how math anxiety impacts
different types of math learning. In the discussion that follows, we provide a tentative
interpretation of these results couched in literature on long-established learning and memory
systems. The current work thus has the potential to provide a bridge-point between the math

anxiety, math learning and long-term memory literatures.
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4.1. Summary of Research Questions

Question 1. We operationalized the distinction between types of learning by examining how math
anxiety interacted with learning of Repeated vs. Unrepeated Problems. Repeated Problems were
designed to reflect retrieval learning, allowing participants to engage in rote memorization of the
repeated arithmetic problems. Unrepeated Problems were designed to reflect gains in arithmetic
calculation efficiency. To provide support for this operationalization of Problem Types (Question
1), we first sought to verify that different Problem Types (Repeated Problems vs. Unrepeated
Problems) showed differential learning trajectories (regardless of math anxiety level). Indeed, they
did (see Fig. 1), and while performance on the two problem types were highly related, learning
trajectories were unrelated to one another. Specifically, we found significant learning for
Unrepeated Problems, despite repetition only of problem structure (and not of individual items),
providing evidence of efficiency gains in arithmetic caleulation procedures. When problems were
repeated (Repeated Problems), learning was significantly accelerated, providing evidence for the

involvement of retrieval-based arithmetic learning.

Question 2. We next assessed whether HMAs’ (retrieval and procedural) learning and memory
mechanisms remained intact for math (Question 2). Specifically, we tested for the presence of
significant learning trajectories in HMAs for each Problem Type. HMAs indeed demonstrated
significant positive learning trajectories for both problem types, indicating that both retrieval and
procedural learning mechanisms appear to remain intact for HMAs while learning math (Figure 3,
hollow lines). However, demonstrating that neither type of arithmetic learning is completely

compromised is not the same thing as demonstrating that they are not impaired (relative to LMAs).
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Question 3. We thus directly compared HMA and LMA learning trajectories for each Problem
Type (Question 3). HMAs showed an initial performance deficit compared to LMAs in both
problem types (Timepoint 1, Figure 3); however, this deficit diminished over time for Repeated
Problems, and increased over time for Unrepeated Problems (learning trajectories in Figure 3).
This result, supported by the significant three-way interaction (MA X Type % /n(Timepoint); Table
C-1), indicates that the impact of math anxiety on math learning depends on the type of learning
involved. Overall, retrieval learning was accelerated, and this acceleration was. significantly
greater for HMAs (compare Type % /n(Timepoint) contrast effects in Tables B1 and B2). This
greater acceleration was in turn driven by significantly accentuated retrieval learning for HMAs
(Table C-2) and (marginally) attenuated proceduraldearning for HMAs (Table C-3). Put simply,
HMAs were able to learn Repeated Problems (arithmetic retrieval) better than LMAs but learned
Unrepeated Problems (arithmetic procedures) worse than LMAs. These results from Question 3
provide support for the second hypothesis put forth in the Introduction that high math anxiety may
reduce quality of math practice, resulting in impaired efficiency gains on arithmetic calculation
procedures. However, our results-alsovargue directly against our first hypothesis that high math
anxiety impairs learning of arithmetic facts. Consequently, results also refute our third hypothesis

that math anxiety concurrently impairs retrieval and procedural arithmetic learning.

Question 4. Lastly, we sought to determine whether the differential effect of math anxiety on
different types-of arithmetic learning manifested in the short-term (within a single session) or after
24 hours (between two testing days; Question 4). Results indicated that differential trajectories
primarily emerged between, as opposed to within, testing days, as evidenced by a stronger MA x
Type x Day effect than an MA x Type x Time effect (Table D-1). Put simply, math anxiety’s

differential impact on retrieval and procedural arithmetic learning is most evident after a 24 hour,
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overnight, period. One potential driver of this effect may be the process of overnight consolidation,
which is the neurocognitive process by which new memories are stabilized (Ullman & Lovelett,
2018; Marshall & Born, 2007). Consolidation is generally considered to improve learning in long-
term memory systems (Mednick et al., 2011; Rasch and Born, 2013; Ullman, 2016). However,
research indicates that there may be differential effects of overnight consolidation on different
types of learning, with factors such as stress, sleep quality, and the content of learned materials
affecting subsequent memory system function (Stamm et al., 20145 Diekelmann et al., 2009;
Ullman & Lovelett, 2018). Consolidation processes are complex, and our results indicate that,
particular to math learning, 24-hour spaced sessions which allow for overnight consolidation may
produce differential effects on retrieval vs procedural arithmetic learning as a function of math
anxiety. Future studies investigating the impact of math anxiety on math learning may need to
examine learning over more than one session, and across multiple days to observe similar results.
4.2. Interpretation of Results in the Context of Effort and Long-Term Memory Systems

4.2.1. Long-Term Memory Systems and Arithmetic Learning
As noted in the Introduction, previous researchers have suggested that the two types of arithmetic

learning considered here —+ retrieval.vs procedural — may rely on disparate long-term learning and
memory mechanisms (Dowker, 2023; Menon, 2016b). In particular, the declarative memory (DM)
system may supportarithmetic fact-retrieval, while a skills-based system — like procedural memory

(PM) - may support procedural computations.

The DM system is optimally suited for acquisition of both arbitrary facts, but also for extraction
of the types of semantic associations that are thought to underly much of arithmetic understanding
(Ashcraft, 1983, 1982; Campbell, 2015). Moreover, brain structures that support DM have been
implicated in arithmetic fact-retrieval learning (Cho et al., 2012; Delezar et al., 2019; Grabner et

al., 2009; Qin et al., 2014; Menon, 2016b). It is thus not unreasonable to imagine that retrieval-
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based learning of Repeated Problems in the current context was at least partially mediated by DM

learning mechanisms.

Conversely, the PM system is optimally suited for identifying and accelerating processing of high-
frequency sequences (Ferbinteanu, 2019; Seger, 2006). Multi-step arithmetic in particular involves
concatenation of discrete calculation steps, often in a specific sequential order (Ashcraft, 1992).
Performance improvements in arithmetic (e.g., faster response times) can arise from increasing the
efficiency of these specific calculation sequences (Compton & Logan, 1991; Imbo &
Vandierendonck, 2008; Thevenot et al., 2007, 2020), even when participants are sometimes unable
to identify such patterns (Rosenbaum, 2001; Wenger & Carlson, 1996; Seger, 2006; Menon,
2016b; Barrouillet & Thevenot, 2013). Indeed, there is mounting evidence that previously assumed
hallmarks of arithmetic retrieval, such as size‘effects, may at least partially reflect efficiency gains
in calculation procedures (Thevenot et al., 2007, 2020; Barrouillet & Thevenot, 2013). Work at
the neural level has shown that PM brain regions are parametrically modulated by ‘classic’
arithmetic effects, including problem-size effects as well as memory interference effects
(Tiberghien et al., 2019). Furthermore, Fias et al. (2021) found — in an alphabet arithmetic learning
context — that it was primarily PM regions that showed activation curves consistent with learning
and improvement of efficiency for calculation procedures (but not retrieval learning). In the current
study, given that Unrepeated Problems comprised a highly consistent structure, but without
repetition of specific problems, we suggest that learning — in the form of efficiency gains in
executing computational procedures — on these problems was at least partially mediated by PM

learning mechanisms.

In sum, prior theoretical and empirical work — at both the behavioral and neural level — supports

the idea that the DM system contributes to arithmetic retrieval learning, and the PM system
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contributes to efficiency gains in executing arithmetic calculation procedures. In turn, though
admittedly speculative, we suggest that learning on Repeated Problems may have been mediated

by DM systems and that on Unrepeated Problems by PM systems.

4.2.2. Math Anxiety, Arithmetic Learning, and Memory Systems — The Role of Effort

In formulating our first hypothesis, we assumed that math anxiety would be a strictly disruptive
force with respect to endogenous attention and would thus compromise retrieval leatning. Our data
show this assumption was incorrect. In light of our findings, we now offer an alternative
interpretation of our results. Work by Choe et al. (2019) and Jenifer et al. (2022) has shown that
high math anxiety leads to avoidance of high-effort math problems and‘math problem-solving
strategies during math performance (though see also. Thronsen et al., 2022). Here we suggest that
this anxiety-related avoidance may lead HMAs to allocate resources toward reducing future
effortful engagement during an arithmetic learning paradigm. Retrieval is comparatively less
effortful than calculation (Ashcraft, 1982; Imbo & Vandierendonck, 2008), and — across the
timescale of our experiment — retrieval /earning may be relatively less effortful than procedural
learning as DM-mediated learning is capable of operating over shorter-time scales (on the order of
a few trials in adult humans; Ullman, 2016). Hence, in seeking the quickest route to reducing
effortful arithmetic engagement, HMAs may have allocated greater resources to mastering

retrieval of Repeated Problems via rapid DM-mediated learning mechanisms.

Conversely, while PM-mediated efficiency gains can ultimately lead to reduced effort, these gains
generally come only after many repetitions (Ullman, 2016). Hence in the current experiment, there
was no simple path for HMAs to reduce effort on Unrepeated Problems, leading HMAs to
potentially allocate fewer resources to them. This in turn may have degraded the quality of practice

on these items, and because PM-mediated learning relies not just on quantity but also quality of
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practice (Gupta & Cohen, 2002), degraded practice may have reduced the efficacy of PM-mediated
learning mechanisms. For HMAs, accelerated retrieval learning on Repeated Problems and
decelerated learning on Unrepeated problems my thus have widened the gap in the amount of effort
required to complete each class of problems, thereby creating an insalubrious feedback loop. Math
anxiety is known to lead to undesirable feedback cycles (Gunderson et al., 2018; Ashcraft, 2019;
Dowker, 2019), and the current results may thus be another such example: HMAs commit less
effort to practicing Unrepeated Problems, which increases the disparityineffort needed to compute

them relative to Repeated Problems, leading to still less effort on Unrepeated Problems, and so on.

While the interpretations provided in this section are admittedly speculative — and in the case of
Repeated Problems also post-hoc — they are nevertheless grounded in multiple literatures. Our
primary aim in presenting these interpretations is of course not to definitively claim they are
correct, but to offer them as speculative but plausible hypotheses that may prove useful for future

research across multiple literatures.

4.2.3. Working Memory

It is important to consider an.alternative interpretation of our result showing impaired learning for
HMAs on Unrepeated Problems — namely that the negative impact of MA on these problems
operated primarily via well-known impairments of working memory (WM) among HMAs when
doing math (Friso-van de Bos et al., 2013; Ji & Guo, 2023; Raghubar et al., 2010; Ashcraft &
Krause, 2007a). Temporarily reduced WM among HMAs generally leads to lower performance
for HMAs on more WM-demanding problems (e.g., Ashcraft & Krause, 2007a; Lyons & Beilock,
2012). The question is whether differences in WM demands on the two problem types would
predict the HMA-related learning patterns observed here. To understand how WM might relate to

learning in the current context, it is useful to turn to literature on different memory systems.
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Ablation work with animals (Packard et al., 1989) and research in the domain of language
acquisition (Ullman, 2020) indicate that WM engagement may in fact disrupt PM learning. In
another example from category learning, higher WM capacity is associated with more rapid
learning of explicit, rule-based categorical structures thought to be mediated by DM, and
decelerated learning of implicit, integrative categorical structures thought to be mediated by PM
(DeCaro et al., 2008). In the current experiment, when completing the arithmetic task, the group
we expect to have greater WM resources is LMAs, due to WM being partially compromised in
HMAs (Friso-van de Bos et al., 2013; Ji & Guo, 2023; Raghubat et al., 2010; Ashcraft & Krause,
2007a). Extrapolating from the work reviewed above, we would thus expect LMAs to show an
advantage in arithmetic retrieval learning, and a disadvantage in arithmetic procedural learning —
that is, accelerated learning (relative to HMAs) on Repeated Problems and decelerated learning on

Unrepeated Problems. However, our results showed precisely the opposite.

In sum, while we certainly agree with prior-work that a WM-based account can help explain why
HMAs and LMAs perform on math tasks differently, it appears that, at least in the current context,
it fails to account for how HMAs and LMAs learn (different types of) arithmetic differently. More
broadly, we see this ag an important example of how mechanisms that explain performance are not
necessarily those that explain learning.

4.3. Implications and Methodological Considerations

One potential implication of these results is that the impact of math anxiety may be different for
arithmetic performance vs arithmetic learning. Similarly, mental arithmetic relies on a highly
varied set of distinct and overlapping cognitive processes (Campbell, 2005; Dowker, 2023), and
improvements in those disparate processes appears to entail disparate learning mechanisms

(Menon, 2016b; De Smedt, 2016; Dowker, 2023). Thus, how math anxiety impacts arithmetic
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learning also varies as a function of the relevant learning mechanism. This observation may have
implications for teaching arithmetic. For instance, perhaps contrary to claims that rote retrieval-
based approaches to arithmetic learning (e.g., ‘drill and kill’) are especially debilitating for HMAs
(e.g., Boaler, 2015), our results suggest this may be one area of arithmetic learning where HMAs
might in fact excel. Indeed, work on foundational arithmetic retrieval might present an opportunity
to build confidence in HMAs, while also cementing at least a subset of crucial arithmetic fluency
skills. On the other hand, over-reliance on memorization-based strategies might come at the
expense of fluency with executing more generalizable computation algorithms, which might put

HMAs at a disadvantage when rote retrieval of certain items is not applicable.

Our results also point to two methodological implications. First, they highlight the importance of
considering different types of learning, even-n the limited context of mental arithmetic learning.
Differential learning trajectories between math anxiety groups only emerged when we isolated
learning within each Problem Type (Repeated vs. Unrepeated). Had we aggregated the total
learning trajectories across Problem Types, results would have suggested a net zero effect of math

anxiety on learning (the MA«x /n(Timepoint) effect did not approach significance in Table C-1).

Second, differential learning trajectories between Problem Types emerged only when examined
across two days. These results indicate that 24-hour spaced practice, possibly allowing for
overnight conselidation, may be necessary to observe and unpack the various ways in which math
anxiety does and does not impact math learning. Future examinations of math learning may do
well to take these methodological points into consideration, utilizing different types of math

problems and being cognizant of choosing timescales within which learning is anticipated to occur.
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4.4. Limitations

One important limitation of the current research is that we considered how math anxiety impacts
only a very small subset of math learning. Further, while we examined two forms of arithmetic
learning, we would certainly not claim to therefore have examined all possible types of arithmetic
learning. Indeed, as our results clearly point to the conclusion that math anxiety impacts different
types of arithmetic learning differently, this perhaps makes it all the more important for future
work to examine how math anxiety impacts not just other aspects of arithmetic learning, but

various types of math learning more broadly.

A second limitation is that while we assessed the effect of 24-hour spacing on arithmetic learning,
our study did not examine longer-term learning, and we cannot say whether the patterns of learning
seen in our results would extend across these longer timescales. Future work investigating different
timescales of math learning would be especially important given that timescales greater than 24-
hours are common in math education settings. It is also important to note that the retrieval and
procedural arithmetic learning in the present study was experienced in tandem, with different
problem types interspersed with one another throughout the math learning task. If one were to

offer discrete arithmetic learning tasks, results may differ.

A third limitation is that one of our main assumptions — and thus our first hypothesis — was wrong.
While we presented a potential interpretation of our results by learning on prior literature on long-
term memory systems and how math anxiety impacts avoidance and effort allocation, this
interpretation is admittedly speculative. Future work might put this interpretation to the test in (at
least) two ways. First, future work might more explicitly test whether there is a link between
learning on Repeated Problems and DM mechanisms, and between learning on Unrepeated

Problems and PM mechanisms. Second, neural or psychophysiological correlates of effortful
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processing might be deployed to more expressly test whether HMAs expend cognitive effort

differently than HMAs in arithmetic learning.

Despite these shortcomings, we hope the current study provides a reasonable initial step toward
expanding research on the intersection between math anxiety, arithmetic learning and long-term

memory systems.

4.5. Conclusions

Broadly, our results suggest that HMAs redirect cognitive resources away from practicing
computationally intensive arithmetic calculation procedures and toward rapid rote-memorization
of arithmetic facts. Further, the current work highlights the importance of distinguishing between
performance and learning when considering the implications of math anxiety. Perhaps of particular
interest, our results also show that math anxiety is nof predictive of poor math learning across the
board; even in the limited context of arithmetic:learning, HMAs showed preserved or even
enhanced arithmetic fact-retrieval learning. This latter result underscores the need to consider how
math anxiety impacts different types of math learning, and it may provide a leverage point for
initiating confidence-building interventions with math anxious individuals. On the other hand, the
tendency to neglect. effortful practice of arithmetic calculation procedures may lead to an
undesirable feedback loop, with ever increasing reliance on inflexible retrieval-based strategies
among HMAs. While we believe this work provides insight into how math anxiety impacts
different types of arithmetic learning, we believe it is merely a starting point. Substantial future
work is needed to fully unpack the myriad ways in which math anxiety may interact with the

different forms of math learning.
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APPENDIX A
Table A-1
2(Type: Repeated, Unrepeated) x 6[ Timepoint: In(1-6)]
Dfn Dfd F Cohen’s D P
Within Subjects Effects
Type 1 81 875.04 0.96 3.54E-45
Timepoint 5 405 325.55 0.89 2.09E-139
Type x Timepoint 5 405 111.19 0.76 9.95E-74
Within Subjects
Contrasts
Timepoint 1 81 707.01 0.95 8.98E-42
Type x Timepoint 1 81 237.03 0.86 8.96E-26

Table A-1 Notes. Table A-1 shows the results of the final model from Research Question 1.
Note that contrast effects are the natural log of Timepoint [In(1-6)].. As Type has only two
levels, the contrast effect of Type is identical to the Within-Subjects effect of Type.
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APPENDIX B

Table B-1

HMA: 2(Type: Repeated, Unrepeated) x 6] Timepoint: In(1-6)]

Dfn Dfd F Cohen’s D P

Within Subjects
Effects
Type 1 40 401.61 0.954 1.81E-22
Timepoint 5 200 142.31 0.884 7.09E-64
Type x Timepoint 5 200 87.04 0.828 2.85E-48
Within Subjects
Contrasts
Timepoint 1 40 328.54 0.944 6.82E-21
Type x Timepoint 1 40 199.08 0.913 4.04E-17

Table B-1 Notes. Table B-1 shows the results of the HMA model from Research Question 2.
Note that contrast effects are the natural log of Timepoint [In(1-6)]. As Type has only two

levels, the contrast effect of Type is identical to the Within-Subjectseffect of Type.

Table B-2
LMA: 2(Type: Repeated, Unrepeated) x 6] Timepoint: In(1-6)]

Dfn Dfd F Cohen’s D P
Within Subjects
Effects
Type 1 40 511.56 0.96 2.10E-24
Timepoint 5 200 193.90 0.91 1.17E-74
Type x Timepoint 5 200 37.02 0.69 9.15E-27
Within Subjects
Contrasts
Timepoint 1 40 385.10 0.95 3.89E-22
Type x Timepoint 1 40 82.99 0.82 2.65E-11

Table B-2 Notes. Table B-2 shows the results of the LMA model from Research Question 3.
Note that contrast effects are the natural log of Timepoint [In(1-6)]. As Type has only two

levels, the contrast effect of Type is identical to the Within-Subjects effect of Type.

45



Math Anxiety and Arithmetic Learning Page 46 of 48

APPENDIX C

Table C-1

2(Type: Repeated, Unrepeated) x 6[ Timepoint: In(1-6)] x 2(Math Anxiety: HMA, LMA)

Dfn Dfd F Cohen’s D P

Between Subjects
Effects
Math Anxiety 1 80 10.65 0.34 0.002
Within Subjects
Effects
Type 1 80 887.31 0.96 4.66E-45
Timepoint 5 400 324.01 0.9 3.38E-138
Type x MA 1 80 2.14 0.16 0.148
Timepoint x MA 5 400 0.62 0.09 0.687
Type x Timepoint 5 400 117.13 0.77 4.60E-76
Type x Timepoint x MA 5 400 5.33 0:25 9.43E-05
Within Subjects
Contrasts
Timepoint 1 80 704.78 0.95 2.02E-41
Timepoint x MA 1 80 0.74 0.1 0.391
Type x Timepoint 1 80 268.98 0.88 2.60E-27
Type x Timepoint x MA 1 80 11.92 0.36 8.91E-04

Table C-1 Notes. Table C-1 shows the results of the primary model from Research Question
3. Note that contrast effects are the natural log of Timepoint [In(1-6)]. As Type has only two
levels, the contrast effect of Type is identical to the Within-Subjects effect of Type.
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Table C-2
Repeated Problems: 6[ Timepoint: In(1-6)] x 2(Math Anxiety: HMA, LMA)
Dfn Dfd F Cohen’s D P

Between Subjects
Effects
Math Anxiety 1 80 5.98 0.26 0.017
Within Subjects
Effects
Timepoint 5 400 372.67 0.91 4.65E-148
Timepoint x MA 5 400 2.98 0.19 0.012
Within Subjects
Contrasts
Timepoint 1 80 664.28 0.94 1.69E-40
Timepoint x MA 1 80 5.36 0.25 0.023

Table C-2 Notes. Table C-2 shows the results of the model for Repeated Problems from
Research Question 3. Note that contrast effects are the natural log of Timepoint [In(1-6)].

Table C-3
Unrepeated Problems: 6] Timepoint: In(1-6)] x 2(Math Anxiety: HMA, LMA)
Dfn Dfd F Cohen’s D P

Between Subjects
Effects
Math Anxiety 1 80 11.86 0.36 9.18E-04
Within Subjects
Effects
Timepoint 5 400 93.28 0.73 6.31E-65
Timepoint x MA 5 400 1.86 0.15 0.1
Within Subjects
Contrasts
Timepoint 1 80 222.79 0.86 7.79E-25
Timepoint x MA 1 80 3.67 0.21 0.059

Table/C-3 Notes. Table C-3 shows the results of the model for Unrepeated Problems from
Research Question 3. Note that contrast effects are the natural log of Timepoint [In(1-6)].
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APPENDIX D

Table D-1
2(Type: Repeated, Unrepeated) x 2(Day: 1, 2) x 2(Math Anxiety: HMA, LMA) x 3[Timepoint:
In(1-3)]

Dfn Dfd F Cohen’s D p
Between Subjects Effect
Math Anxiety 1 80 10.65 0.34 0.002
Within Subjects Effects
Type 1 80 887.31 0.96 4.66E-45
Day 1 80 410.00 0.91 3.18E-33
Timepoint 2 160 301.09 0.89 5.82E-55
Type x MA 1 80 2.14 0.16 0.148
Day x MA 1 80 0.10 0.03 0.757
Timepoint x MA 2 160 1.22 0.12 0.298
Type x Day 1 80 138.59 0.8 3.83E-19
Type x Timepoint 2 160 160.40 0.82 5.93E-39
Day x Timepoint 2 160 18558 0.84 2.05E-42
Type x MA x Day 1 80 10:66 0.34 0.002
Type x MA x Timepoint 2 160 342 0.2 0.035
Day x MA x Timepoint 2 160 0.60 0.09 0.551
Type x Day x Timepoint 2 160 41.31 0.58 3.44E-15
Type x Day x Timepoint x MA | 2 160 0.69 0.09 0.501
Within Subjects Contrasts Din Did ¥ Cohen’s D p
Day 1 80 410.00 0.91 3.18E-33
Timepoint 1 80 321.74 0.89 9.15E-30
Day x MA 1 80 410.00 0.91 3.18E-33
Timepoint x MA 1 80 1.34 0.13 0.251
Type x Day 1 80 138.59 0.8 3.83E-19
Type x Timepoint 1 80 172.19 0.83 1.21E-21
Day x Timepoint 1 80 270.69 0.88 2.14E-27
Type x MA % Day 1 80 10.66 0.34 0.002
Type x MA x Timepoint 1 80 2.30 0.17 0.133
Day x MA x Timepoint 1 80 0.86 0.1 0.357
Type x Day x Timepoint 1 80 56.29 0.64 7.57E-11
Type x Day x Timepoint x MA | 1 80 0.72 0.09 0.4

Table D-1 Notes. Table D-1 shows the results of the model for Research Question 4. Note that
contrast effects are the natural log of Timepoint [In(1-3)]. As Day and Type have only two
levels, the contrast effects of Day and Type are identical to the Within-Subjects effects of Day
and Type, respectively.
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