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Abstract

Non-convex gradient descent is a common ap-
proach for estimating a low-rank n×n ground
truth matrix from noisy measurements, be-
cause it has per-iteration costs as low as O(n)
time, and is in theory capable of converging
to a minimax optimal estimate. However, the
practitioner is often constrained to just tens
to hundreds of iterations, and the slow and/or
inconsistent convergence of non-convex gra-
dient descent can prevent a high-quality es-
timate from being obtained. Recently, the
technique of preconditioning was shown to be
highly effective at accelerating the local con-
vergence of non-convex gradient descent when
the measurements are noiseless. In this pa-
per, we describe how preconditioning should
be done for noisy measurements to accelerate
local convergence to minimax optimality. For
the symmetric matrix sensing problem, our
proposed preconditioned method is guaran-
teed to locally converge to minimax error at a
linear rate that is immune to ill-conditioning
and/or over-parameterization. Using our pro-
posed preconditioned method, we perform a
60 megapixel medical image denoising task,
and observe significantly reduced noise levels
compared to previous approaches.

1 INTRODUCTION

We consider the low-rank matrix recovery problem,
which seeks to recover an n×n ground truth matrix M⋆

of low rank r⋆, given a small number m of measurement
matrices Ai and noisy observations yi = ⟨Ai,M

⋆⟩+ εi,
for indices i ∈ {1, . . . ,m}. The main challenge lies
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Figure 1: Preconditioned gradient descent for a
60 megapixel medical image denoising task. We
denoise a 2400-frame ultrafast ultrasound image of a rat
rain (200×130 pixels per frame) by running 30 iterations of
the low-rank denoising procedure in Demené et al. (2015).
Top-left: original noisy input. Top-right: image denoised
and reconstructed by our preconditioning scheme in (3).
Bottom-left: image obtained via the preconditioning scheme
in Zhang et al. (2021), which is the previous state-of-the-art.
Bottom-right: image obtained by naive non-convex gradient
descent without preconditioning.

in the fact that the presence of measurement noise εi
reduces the “amount of useful information” contained
within the observations; it usually becomes impossible
to recover M⋆ exactly. Instead, one aims to compute a
minimax optimal estimate M ≈ M⋆, which is roughly
defined as the closest estimate of the ground truth M⋆

for the worst-possible scenario Candes and Plan (2010,
2011). Informally, a minimax optimal estimate is the
best achievable given the finite amount of useful infor-
mation contained with the noisy observations Lehmann
and Casella (2006).
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Minimax optimal estimations are highly desirable for
real-world applications of low-rank matrix recovery.
In medical imaging, for example, minimax optimality
would assure the highest possible level of reconstruction
accuracy, in order to minimize the chances of diagnostic
errors, detect subtle changes or anomalies, and reduce
the need for repeated scans or reanalysis. In response,
an extensive body of literature has been developed over
the past two decades on techniques for solving low-rank
matrix recovery to guaranteed minimax optimality; see
our detailed literature review in Section 1.4 below.
Unfortunately, despite significant progress, existing
state-of-the-art algorithms still have trouble achieving
minimax optimality on many real-world applications,
due to two perennial difficulties.

The first perennial difficulty is the enormous scale of
real-world datasets. Today, the most common approach
is non-convex gradient descent (Zheng and Lafferty
(2015); Zhao et al. (2015); Tu et al. (2016); Sun and
Luo (2016)), or factored gradient descent (Chen and
Wainwright (2015); Park et al. (2017, 2018)), which
is to factor a candidate estimate M = UV T , and to
directly optimize over its n×r low-rank factor matrices
U, V , as in

min
U,V ∈Rn×r

f(U, V ) =
1

m

m∑
i=1

(yi − ⟨Ai, UV T ⟩)2 (1)

using an iterative local optimization algorithm like
gradient descent

Unew = U − α∇Uf(U, V ),

Vnew = V − α∇V f(U, V ),
(2)

in which α ∈ (0, 1] is the step-size / learning rate.
With a small rank r ≪ n, each iteration costs as low
as O(m + n) time and memory, and so in principle,
the approach can scale to arbitrarily large values of m
and n. But real-world datasets routinely have m and
n on the order of tens to hundreds of millions, and in
practice, even a single iteration can take many minutes
to several hours.

The considerable expense of performing even a single
iteration often constrains the practitioner to just a few
tens to low hundreds of iterations. But this further
exacerbates the second perennial difficulty, which is the
inconsistent and sometimes extremely slow convergence
of non-convex gradient descent. While the method
is known to converge to minimax optimality given
a sufficiently large number of iterations (Chen and
Wainwright (2015)), for many real-world datasets it is
unable to do so with a reasonable number of iterations.

1.1 Accelerating convergence via
preconditioning

Recently, there has been exciting progress on the use
of preconditioning to accelerate the local convergence
of non-convex gradient descent for low-rank matrix re-
covery (Mishra et al. (2012); Tong et al. (2020); Zhang
et al. (2021, 2022); Xu et al. (2023); Zhang et al. (2023)).
This line of work is motivated by the observation that
real-world ground truth matrices M⋆ often have exces-
sively large condition numbers κ = λ1(M

⋆)/λr(M
⋆).

In particular, if the search rank is over-parameterized as
r > r⋆ with respect to the unknown true rank r⋆, then
the condition number even diverges as κ → ∞. Non-
convex gradient descent is known to locally converge
with a linear convergence rate like ρ = 1 − c/κ with
absolute constant c > 0 (Zheng and Lafferty (2015); Tu
et al. (2016)), and therefore experiences a significant
slow-down with an excessively large or even diverging
κ. In both cases, suitable preconditioning was shown
to restore the linear convergence rate back to ρ = 1− c
(Tong et al. (2020); Zhang et al. (2021)), as if the
condition number were perfect κ = 1.

However, the existing literature on preconditioning pri-
marily focuses on the noiseless instance of low-rank
matrix recovery, which assumes εi = 0 for all i. In-
deed, it remains unclear how preconditioning should
be done in the presence of measurement noise εi ≠ 0.
Experimentally, existing preconditioning methods for
the noiseless case do not consistently accelerate con-
vergence in the presence of noise; the acceleration is
either lost at a much coarser error level than minimax
optimal, or the iterates sporadically diverge. (See our
experiments in Section 4)

The existence of a significant gap between the noiseless
and noisy cases is less surprising if we consider the
underlying mechanism that allow preconditioning to
work in the first place. Intuitively, preconditioning
works by inverting one ill-conditioned matrix against
another ill-conditioned matrix, in order to “cancel out”
their ill-conditioning and obtain a well-conditioned
matrix. This mechanism necessarily requires a precise
alignment between the two matrices; in the presence of
noise, slight “misalignments” can nullify the cancellation
and render the preconditioning ineffective, or at worst
even amplify the noise and cause divergence to occur.

1.2 Our contribution: How to precondition in
the presence of measurement noise?

Our primary goal in this paper is to provide a principled
way to perform preconditioning on non-convex gradient
descent, that is both effective and reliable for real-world
applications of noisy low-rank matrix recovery. To this
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end, we propose the following iterations for solving (1):

Unew = U − α∇Uf(U, V )(V TV + ηI)−1,

Vnew = V − α∇V f(U, V )(UTU + ηI)−1,

ηnew = βη,

(3)

where α ∈ (0, 1] is the step-size / learning rate as be-
fore in (2), and β ∈ [0, 1) is a geometric decay rate for
the regularization parameter η. Here, each gradient
∇Uf(U, V ) and ∇V f(U, V ) is an n× r matrix, so the
equation (2) says that each r× r matrix preconditioner
(V TV + ηI)−1 and (UTU + ηI)−1 should be applied
as a right matrix-matrix product onto the respective
gradient. It is easily verified that the additional over-
head of computing and applying the preconditioner is
O(r3 + nr2) = O(n) time and O(r2) = O(1) memory,
again assuming a small rank r ≪ n.

The basic form of the preconditioned iterations (3) is
reminescent of previous work on noiseless low-rank ma-
trix recovery ( Mishra et al. (2012); Mishra and Sepul-
chre (2016); Tong et al. (2020); Zhang et al. (2021,
2022, 2023); Xu et al. (2023)). In the noisy setting,
we provide strong theoretical and empirical evidence
to argue that the most principled way to adjust the
regularization parameter η is to make it decay geomet-
rically. This is in contrast to prior work, that either set
η =

√
f(U, V ) at each iteration (Zhang et al. (2021)),

or simply fix η to a constant for all iterations (Xu et al.
(2023)). Our main message in this paper is that choos-
ing η correctly has a significant and outsized impact
on the quality of acceleration in the noisy setting; the
previous choices deliver an acceleration only at coarser
error levels, and could even cause divergence. As shown
in Figure 1, our method significantly improves upon
the previous state-of-the-art on a real-world instance
of low-rank matrix recovery arising in medical image
denoising.

Rigorously, we prove, for the symmetric matrix sensing
instance of low-rank matrix recovery, that the precondi-
tioned iterations in (3) with a geometrically decaying η
locally converges to minimax optimality, at an acceler-
ated linear rate that is immune to ill-conditioning and
over-parameterization. It was previously shown that,
if the measurements A1, . . . , Am satisfy the restricted
isometry property (RIP) and that the measurement
noise come from a zero-mean Gaussian εi ∼ N (0, σ2),
then non-convex gradient descent with rank r = O(r⋆)
converges to an estimate M with Frobenius norm error
∥M −M⋆∥F = O(σ2nr⋆ log n) (Chen and Wainwright
(2015); Zhuo et al. (2021)), which is indeed minimax op-
timal up to log factors (Candes and Plan (2011)). How-
ever, the actual convergence rate can be dramatically
slowed by ill-conditioning and over-parameterization,
to be as slow as sublinear (Zhuo et al. (2021); Zhang
et al. (2021)). A variant of (3) known as PrecGD was

proposed in Zhang et al. (2021) to accelerate conver-
gence to minimax error, but this prior work required
either perfect knowledge of the noise variance σ2 (which
is clearly unreasonable in practice), or a complicated
and expensive cross-validation procedure to estimate
the noise variance σ2.

Our main result is that, under the same setting as
the above, the preconditioned iterations in (3) with
geometrically decaying η is guaranteed to converge to
minimax optimal error, at the same local convergence
rate as non-convex gradient descent with a perfect con-
dition number κ = 1. In particular: (i) the accelerated
convergence rate is maintained all the way down to
the minimax optimal error level of O(σ2nr⋆); (ii) the
acceleration is applicable to all initial points within a
neighborhood of the ground truth. To the best of our
knowledge, our result is the first to rigorously guaran-
tee both two properties. Our analysis reveals a simple
mechanism that explains the inconsistent performance
of previous preconditioners in the noisy setting: the
accelerated convergence is only maintained until the
current error norm ∥UV T − M⋆∥F reaches the same
order of magnitude as the regularization parameter
η, but an excessively small η can actually cause the
iterations to diverge. Therefore, the most natural and
principled way to set η is to allow it to geometrically
decay alongside the error norm ∥UV T −M⋆∥F , which
is exactly what we proposed in (3).

1.3 Limitations

There are two main limitations with our theoretical
analysis. First, we make two idealized assumptions (via
the symmetric matrix sensing problem) that may not
be satisfied in real-world datasets: (i) the underlying
ground truth M⋆ is symmetric positive definite; (ii)
that the measurements Ai satisfy RIP. Here, we empha-
size that the purpose of our theoretical analysis is to
provide a rigorous justification for the geometric decay
of the regularization parameter η; in particular, it is
not to guarantee performance on real-world datasets,
as these will rarely satisfy the idealized assumptions
(like RIP and incoherence) needed for a theoretical
analysis to be possible. The symmetry assumption is
primarily made to simplify our presentation; it can
be mechanically overcome by repeating the analyses
in Park et al. (2017); Tong et al. (2020), but we ex-
pect our conclusions to transfer largely verbatim to
the non-symmetric case. We leave the extension of our
theoretical results to the non-symmetric RIP setting
as future work, and emphasize that our large-scale ex-
periments on real-world datasets are indeed performed
for a non-symmetric dataset that does not satisfy RIP.

Second, our theoretical analysis focuses on local con-
vergence given a sufficient good initialization. For the
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sake of an end-to-end guarantee, we initialize our theo-
retical analysis using the standard technique of spectral
initialization (Tu et al. (2016); Chen et al. (2021a)).
In practice, the enormous scale of real-world datasets
often constrains the practitioner to just a few tens to
low hundreds of iterations, so heuristic warm starts are
widely used to maximize the effectiveness of these few
iterations (Bercoff et al. (2011); Zhang et al. (2019)). It
is important to point out that slow convergence remains
a critical issue even when a high-quality heuristic warm
start is provided, as further progress towards minimax
optimality is slowed by the slow convergence of the
iterative algorithm. In this regard, our work in this
paper answers the practical question: “given a heuristic
warm start, how do we refine this warm start to the
best accuracy possible, while using as few iterations as
possible?”

1.4 Related Work

Non-convex gradient descent converges to min-
imax optimality For a wide range of problems re-
lating to low-rank matrix recovery, if we are given a
warm-start solution, local refinements via GD is often
capable of converging towards the ground truth. This
has been shown rigorously for matrix sensing (Tu et al.
(2016); Zheng and Lafferty (2015); Charisopoulos et al.
(2021)), matrix completion (Sun et al. (2015); Jain et al.
(2013); Chen et al. (2020)), phase retrieval (Candes
et al. (2015); Netrapalli et al. (2013); Ma et al. (2018))
and other related problems (Li et al. (2019); Yi et al.
(2016); Chen et al. (2021b)).

For matrix sensing in particular, both Chen and Wain-
wright (2015) and Zhuo et al. (2021) showed that gradi-
ent descent achieves a statistical error of O(σ2nr log n),
where r is the search rank. Under the assumption that
r = O(r⋆), this error matches the minimax error noted
in Candes and Plan (2011) up to log factors. In this
work we prove that our method converges to the same
statistical error as both Chen and Wainwright (2015);
Zhuo et al. (2021), under exactly the same assumptions.
In other words, our method does preconditioning with-
out amplifying the statistical error at all. Under the
warm-start setting, the question of whether the assump-
tion r = O(r⋆) is necessary for achieving minimax error
is an open question even without preconditioning, and
we do not attempt to resolve it in this work.

Accelerating local convergence via precondi-
tioning The basic idea to precondition the gradient
against (V TV )−1 and (UTU)−1 was first suggested in
Mishra et al. (2012), and its convergence properties for
the noiseless case were later studied in detail in Tong
et al. (2020) resulting in a method known as ScaledGD.
Its extension to SGD was first proposed in Mishra and

Sepulchre (2016), and studied in Zhang et al. (2022).
The idea to regularize with an identity perturbation and
precondition against (V TV + ηI)−1 and (UTU + ηI)−1

was first suggested in Zhang et al. (2021) as a means to
counteract the effects of over-parameterization r > r⋆,
which resulted in a method known as PrecGD. A simi-
lar regularization was subsequently studied in Xu et al.
(2023).

All of these methods, as well as our proposed method,
are able to overcome the slow convergence of non-convex
gradient descent in the the noiseless setting. However,
previous methods do not provide theoretical guarantees
in the noisy setting. Empirically, their behaviors are
inconsistent under noise. Specifically, the ScaledGD of
Tong et al. (2020) can diverge in the case r > r∗. While
this divergence is avoided by adding a regularization
parameter as in Zhang et al. (2013) and Xu et al.
(2023), the regularization parameter itself can cause
these methods to stagnate at a higher noise level, as
seen in our experimental section (Figures 2 and 3). In
contrast, our method is the only one that maintains its
acceleration all the way down to minimax optimality.

Small random initialization While most early
work in non-convex gradient descent focused on lo-
cal refinement of a warm-start initialization, a sep-
arate line of recent work focused on using a small
random initialization (Li et al. (2018); Stöger and
Soltanolkotabi (2021); Ma and Fattahi (2021); Ding
et al. (2021); Jin et al. (2023)). For matrix sensing in
particular, global convergence of GD was first proven
in Li et al. (2018) in the case r = n, and later refined in
Stöger and Soltanolkotabi (2021) for the general over-
parameterized case. Similar results have also been ob-
tained in the asymmetric case (Jiang et al. (2023); Chou
et al. (2023)). For preconditioned methods, a similar
analysis has been done in Xu et al. (2023) for a variant
of the ScaledGD Tong et al. (2020). In the noisy set-
ting, Ding et al. (2022) first showed that GD with small
random initialization converges to the minimax error
by extending the analysis in Stöger and Soltanolkotabi
(2021). A major strength of their theoretical analysis
is that it no longer requires the assumption r = O(r∗).

However, we emphasize that these theoretical results
for small random initialization are not directly com-
parable to the results in this work. First, we provide
theoretical guarantees for all initializations close to the
ground truth. In contrast, small initialization relies on
tracing a very specific and rapidly converging trajec-
tory. In fact, we believe that this is the main reason
that small random initialization achieves minimax op-
timality without requiring r = O(r∗). However, in
order to trace this specific trajectory, small random
initialization forces an already good initial solution to
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be thrown away. In our experience, this means that
GD has to use many more iterations to get back the
warm-start that was thrown away (see Figure 4).

Notations We use ∥ · ∥F to denote the Frobenius
norm and ∥ · ∥ to denote the spectral norm of a matrix.
We use ⟨A,B⟩ = tr(ATB) to denote the standard ma-
trix inner product. We use ≲ to denote an inequality
that hides a constant factor. For a scalar function
f : Rn×r → R, the gradient ∇f(X) is a matrix of size
n× r. For any matrix M , the eigenvalues and singular
values are denoted by λi(M) and σi(M), arranged in
decreasing order.

2 MAIN RESULTS

In our theoretical analysis, we consider the variant of
low-rank matrix recovery known as symmetric matrix
sensing, which aims to recover a positive semidefinite,
rank-r⋆ ground truth matrix M⋆ ⪰ 0, from a small
number m of possibly noisy measurements y = A(M⋆)+
ε, where the linear measurement operator A is defined

A(M⋆) = [⟨A1,M
⋆⟩, ⟨A2,M

⋆⟩, . . . , ⟨Am,M⋆⟩]T .

Without loss of generality, we assume that the mea-
surement matrices Ai are symmetric. In addition, we
will adopt the standard assumption that the unknown
measurement noise modeled via the length-m vector ϵ
is normally distributed

ϵi ∼ N (0, σ2) for all i ∈ {1, . . . ,m}

and that A satisfies the restricted isometry property
(RIP) Candes (2008).

Definition 2.1 (Restricted Isometry). The linear op-
erator A satisfies RIP with parameters (2r, δ) if there
exists constant 0 ≤ δ < 1 such that, for every rank-2r
matrix M , we have

(1− δ)∥M∥2F ≤ ∥A(M)∥2 ≤ (1 + δ)∥M∥2F . (4)

Specifically, we will always assume throughout the pa-
per that A satisfies RIP with parameters (2r, δ). We
note that the RIP assumption is in line with existing
work on the statistical optimality of gradient descent
(Chen and Wainwright (2015); Zhuo et al. (2021)) and
preconditioned gradient descent (Tong et al. (2020);
Zhang et al. (2021)). Under the mild assumption
r = O(r∗), it is also in line with prior work on con-
vex methods (Candes (2008); Candes and Plan (2010);
Candès et al. (2011)) and small random initialization
(Li et al. (2018); Stöger and Soltanolkotabi (2021); Ma
and Fattahi (2021); Ding et al. (2021); Jin et al. (2023);
Xu et al. (2023)).

Given a warm-start close to the ground truth, our goal
is to refine this warm-start by using gradient descent.
In particular, we want to minimize the non-convex loss
function in (1) up to minimax optimal error.

Since the ground truth M⋆ and the measurement ma-
trices Ai’s are symmetric, if both the left and right
factors U, V in (3) start at the same initial point, they
will always stay the same. Therefore, if we denote
X = U = V , with X ∈ Rn×r, then the iterations
simplify to

Xnew = X − α∇f(X)(XTX + ηI)−1

ηnew = βη
. (5)

Now we are ready to state our main result, which says
that our algorithm always converges linearly to the
minimax optimal error, at a linear rate that is affected
by neither ill-conditioning nor over-parameterization.

In particular, in equation (5), let the initial regular-
ization η0 satisfy η0 ≥ 2

√
fc(X0), and let the decay

rate β satisfy 1 > β ≥
√
1− µ

4L . Here fc(X0) is the
noiseless function value defined in (6), and µ,L are
both constants depending only on r, r∗ and δ, which
we define rigorously in Appendix A.2. Then we have
the following result.

Theorem 2.1. Suppose that the initial point X0 sat-
isfies ∥A(X0X

T
0 −M∗)∥2 < ρ2(1− δ)λr∗(M

⋆)2 with a
radius ρ > 0 that satisfies ρ2/(1 − ρ2) ≤ (1 − δ2)/2.
Let the step-size α satisfy α ≤ 1/L, where L > 0 is a
constant that only depends on δ. At the t-th iteration,
with high probability, we have

∥XtX
T
t −M⋆∥2F ≲ max

{
β2t · ∥X0X

T
0 −M⋆∥2F , Eopt

}
,

where Eopt = σ2nr logn
m . Here the inequality ≲ hides a

constant that only depends on δ.

A complete proof of Theorem 2.1 is presented in the
appendix. In the next section, we sketch out the key
ideas behind its proof. First, we make a few important
observations.

In Theorem 2.1, we require an initial point that sat-
isfies ∥A(X0X

T
0 −M∗)∥2 < ρ2(1 − δ)λr∗(M

⋆)2. This
requirement is standard and appeared in all previous
works on preconditioned methods (Tong et al. (2020);
Zhang et al. (2021, 2023)). The only exception is Xu
et al. (2023), which uses a small random initialization.
In practice, a common way to obtain such an initial
point is through domain specific heuristics. In ultra-
fast ultrasound (Bercoff et al. (2011)) for instance, the
noisy version of the ultrasound image itself can serve
as a warm-start, since it is already close to the ground
truth. However, even without heuristics, such an ini-
tial point can be achieved using spectral initialization
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(see Proposition 6 of Zhang et al. (2021)), in which we
simply need to compute one SVD factorization.

In addition, we also need a decay rate that satisfies
1 > β ≥

√
1− µ

4L . Although µ and L are in general
hard to estimate, we find that in practice β is extremely
robust. In our experiments, any value of β satisfying
0.5 ≤ β < 1 was sufficient for linear convergence.

We also note that in Theorem 2.1, the convergence rate
is crucially independent of the condition number κ,
since µ and L has no dependence on κ. In addition, the
statistical error that our algorithm converges to exactly
matches that of Chen and Wainwright (2015) and Zhuo
et al. (2021), which proved that GD converges to an
error of O(σ2nr log n). In other words, our precondi-
tioner exponentially accelerates GD without amplifying
the noise at all. Under the mild assumption r = O(r∗),
this rate matches the minimax rate in Candes and Plan
(2011).

3 KEY IDEA and PROOF SKETCH

The recent work of Zhang et al. (2021) proposed a pre-
conditioned variant of gradient descent called PrecGD
to restore its linear convergence rate:

Xt+1 = Xt − α∇f(Xt)(X
T
t Xt + ηtI)

−1,

Clb∥XtX
T
t −M⋆∥ ≤ ηt ≤ Cub∥XtX

T
t −M⋆∥,

where Clb, Cub are fixed constants. To understand
why our algorithm achieves minimax optimality and
immunity to ill-conditioning and over-parameterization
all at the same time, it is instructive to first see how
PrecGD can fail in the noisy case.

To maintain linear convergence, the key contribution of
Zhang et al. (2021) is the crucial observation that the
regularization parameter ηt must be within a constant
factor of the error ∥XtX

T
t − M⋆∥. In the noiseless

case, simply setting ηt =
√
f(Xt) will imply ηt =

Θ(∥XtX
T
t −M⋆∥). However, in the noisy setting finding

the right ηt requires an accurate estimate of the noise
variance, which is in general very difficult.

3.1 Key Innovations

Maintaining the right amount of regularization of is
the most important ingredient for our method to suc-
ceed. The regularization ηt used in PrecGD has to be
perfect because linear convergence requires two contra-
dictory properties to intersect, namely gradient domi-
nance (also known as the PL-inequality) and Lipschitz
smoothness. When ηt is too large, gradient dominance
is lost. When ηt is too small, Lipschitz smoothness is
lost. The analysis in Zhang et al. (2021) suggests that
the choice of ηt is extremely fragile and delicate.

Surprisingly, we find that this is not the case. In fact,
we will show that the choice of ηt is not delicate, but
rather robust. Our method avoids the need to choose
the optimal regularization parameter altogether by sim-
ply letting η decay with some rate β < 1. It turns out
that this extremely simple choice of the regularization
parameter will automatically maintain the right amount
of regularization needed for linear convergence due to
a phenomenon we call “coupling”.

This phenomenon can be intuitively understood as a
race in which the two runners ηt and Et=∥XtX

T
t −

M⋆∥F , are connected using a rubber band. When ηt
and Et begin to grow apart, the rubber band will exert
a counteracting force and pull them back together. As
a result, the amount of regularization is always right.
This happens because that ηt itself controls how fast
Et decays. If the regularization parameter ηt is large
compared to Et, then our algorithm behaves more like
gradient descent. As a result, our algorithm briefly
stagnates, allowing ηt to catch up and become close to
Et again. Similarly, if ηt is small, our algorithm begins
to converge faster. Thus, the error Et decays quickly,
and will eventually catch up to ηt.

This coupling of the regularization parameter and the
error is precisely why we can avoid the expensive pro-
cedure used in PrecGD to estimate the noise variance
and approximate Et. We implicitly maintain the right
amount of regularization, so that our algorithm al-
ways converges linearly, even in ill-conditioned, over-
parameterized, and noisy settings.

3.2 Proof Sketch

In this section we sketch the main steps of the proof of
our main result, Theorem 2.1, and defer the full proof
to the appendix. Our proof consists of two components:
the first is the observation that the PL-inequality, which
is lost in the case r > r⋆, can be restored under a change
of norm, as long as the preconditioner P = (XT

t Xt +
ηt · I)−1 has the “correct” amount of regularization ηt.
The second component is the observation that ηt and
Et = ∥XtX

T
t −M⋆∥ are coupled together, meaning that

they can never be too far apart.

To begin, note that the objective function in (1) can
be written as

f(X) = fc(X) +
∥ε∥2

m
− 2

m
⟨A(XXT −M⋆), ε⟩, (6)

where fc(X) = 1
m∥A(XXT −M⋆)∥2 is defined to be

the objective function with clean measurements that
are not corrupted by noise.

The first component in our proof consists of show-
ing that the iterates of (5) can be viewed as gradient
descent under a change of norm. In particular, let
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P = XTX + ηtI be a real symmetric, positive definite
r × r matrix. We define a corresponding P -norm and
its dual P -norm on Rn×r as follows

∥X∥P
def
= ∥XP 1/2∥, ∥X∥P∗

def
= ∥XP−1/2∥. (7)

Consider a descent direction D. Suppose that the
following inequality holds with some constant L:

fc(X − αD) ≤ fc(X)− α⟨∇fc(X), D⟩+ α2L

2
∥D∥2P

(8)

and that the PL-inequality holds under the P -norm:
∥∇fc(X)∥2P∗ ≥ µ(fc(X)) with µ > 0. Then plugging
in the descent direction D = ∇fc(X)P−1 yields linear
convergence since fc(X − αD) ≤

(
1− µ

2L

)
fc(X).

Therefore, to complete our proof, we need to demon-
strate the following conditions:

1. The inequality (8) holds with some constant L

2. The PL-inequality holds under the P -norm:
∥∇fc(X)∥2P∗ ≥ µ(fc(X)).

First, we consider an ideal case: suppose that there
exists some constant C > 1 such that ηt ≤

√
fc(Xt) ≤

Cηt. This is exactly the regime for ηt where our algo-
rithm is well-behaved: both Lipschitz gradients and
the PL-inequality is satisfied in the P -norm. The proof
of these two facts, especially the second one, is quite
involved, but it is similar to the proof of Corollary
5 in Zhang et al. (2021), so they are deferred to the
appendix.

As a result, in the ideal case where ηt ≤
√
fc(Xt) ≤

Cηt, if we go in the direction D = ∇fc(X)P−1, then
linear convergence is already achieved. However, due
to noise, the descent direction is ∇f(X), instead of

∇fc(X), since we cannot access the true gradient. For-
tunately, if the norm of the gradient is large compared
to a statistical error, we can prove that the difference
between ∇fc(X) and ∇f(X) is negligible, and our algo-
rithm will still make enough progress at each iteration
to ensure linear convergence.

Essentially, if ηt ≈
√
fc(Xt), then our algorithm will

converge linearly up to some statistical error. Unfor-
tunately, ηt ≈

√
fc(Xt) does not always hold, because

both ηt and
√
fc(Xt) are changing. Instead, we have

to consider scenarios where ηt deviates from this ideal
range. To complete the proof of Theorem 2.1, we need
to show that ηt never deviates too far from the ideal
range. This is the key difficulty in our proof. Intuitively,
if
√
fc(Xt+1) becomes too small compared to ηt, our

algorithm will start to behave more like gradient de-
scent and slow down. Hence with a fixed decay rate, ηt
will quickly be on the same order as

√
fc(Xt+1) again.

As a result, linear convergence is always maintained.

4 NUMERICAL SIMULATIONS

In this section, we compare our method against two
state of the art preconditioned methods: PrecGD
Zhang et al. (2021) and ScaledGD(λ) Xu et al. (2023).
To validate our theoretical results, we first perform
experiments using Gaussian measurements on a syn-
thetic low-rank matrix. In addition, we also perform
experiments on a real-world medical imaging applica-
tion, specifically in denoising an ultrafast ultrasound
scan as shown in Figure 1. We leave the details of this
experiment to the appendix.

With spectral initialization, we show that our method
is the only algorithm that is able to consistently achieve
minimax error at a linear rate. In Figures 2 and 3, both
PrecGD and ScaledGD(λ) have trouble converging to
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Figure 2: Convergence of our algorithm and ScaledGD(λ) using spectral initialization. Left: Noiseless
measurements. Right: Noisy measurements with noise variance σ = 10−6.
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Figure 3: Convergence of our algorithm and PrecGD using spectral initialization. Left: Noiseless
measurements. Right: Noisy measurements with noise variance σ = 10−6.
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Figure 4: Convergence of our algorithm (spectral init.), ScaledGD(λ) (small init.) and GD (small
init.) for Gaussian matrix sensing. Left: Noiseless measurements. Right: Noisy measurements with noise
variance σ = 10−6.

the minimax optimal unless a perfect regularization
parameter is chosen. Without the perfect choice, they
either stagnate at a high noise level, or even diverge.

In Figure 4, we see that with small initialization, both
ScaledGD(λ) and GD seem to stagnate for a signifi-
cantly long time before converging to the next eigen-
value. Therefore, in cases where a good heuristic ini-
tialization is available, throwing such a initialization
away and using small initialization instead can come
at a great cost, since it can take many iterations to get
it back.

4.1 Gaussian matrix sensing

In this experiment, we consider a matrix recovery prob-
lem on a 10× 10 ground truth matrix M⋆ with truth
rank r⋆ = 2. The condition number of M⋆ is set to

κ = 102. We take measurements on M⋆ using lin-
early independent measurement matrices A1, . . . , Am

drawn from the standard Gaussian distribution. In
Figure 2, 3 and 4, we set the search rank to be
r = 8 and draw m = 2nr measurements from M⋆.
In noisy setting, we corrupt the measurements with
noise ε ∼ N (0, σ2) where σ = 10−6. For our algo-
rithm, we set η0 =

√
f(X0) and the decay rate for ηt

as β = 0.85 in noiseless case, and β = 0.5 in noisy case.

Our algorithm v.s. ScaledGD(λ) In Figure 2, we
plot the convergence of our algorithm and ScaledGD(λ)
under four values of λ = {10−2, 10−4, 10−6, 10−9}. We
spectrally initialized both methods at the same initial
point and set the learning rate to be α = 0.1. In
noiseless case, we see that our algorithm converges
to minimax error at a linear rate, while ScaledGD(λ)
converges to an error of O(λ). It is important to note
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that we cannot set λ to be too small because it would
cause ScaledGD(λ) to diverge or become numerically
unstable, as depicted in Figure 2. In noisy case, we
obtain similar results as in the noiseless case. The only
difference is that ScaledGD(λ) can converge to the
same error as our algorithm when λ = {10−6, 10−9}
as the minimax error in the noisy case is around 10−6.
However, we again observe that ScaledGD(λ) becomes
numerically unstable when λ is too small.

Our algorithm v.s. PrecGD In Figure 3, we plot
the convergence of our algorithm and PrecGD. We
spectrally initialize both methods at the same initial
point and set the learning rate to be α = 0.1. Here,
PrecGD is implemented with a proxy variance σ̂ so
that ηt =

√
|f(Xt)− σ̂2|. We see that our algorithm

converges linearly to the minimax error in both the
noiseless and noisy case. While PrecGD also converges
linearly to the minimax error in the noiseless case, in
the noisy case, however, its error depends crucially on
the value of proxy variance σ̂; it requires σ̂ ≈ σ to
achieve minimax error.

Small init. v.s. spectral init. In Figure 4, we plot
the convergence of our algorithm, ScaledGD(λ) and
GD. In this experiment, our algorithm is initialized
using spectral initialization, and both ScaledGD(λ)
and GD are initialized using small initialization with
initialization scale 10−12. We set the learning rate for
all three methods to be α = 0.1. Again, our algorithm
converges linearly to the minimax error in both noiseless
and noisy setting. Both ScaledGD(λ) and GD learn
the solution incrementally (see Jin et al. (2023) for a
precise characterization of incremental learning) and
hence reach the minimax error a lot slower than our
algorithm.
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A Proof of Main Results

A.1 Prelminaries

In addition to the notation used in the main paper, we define some additional notation that will be used throughout
the appendix. Let X by an n× r matrix, and let P ≻ 0 be a fixed r × r positive definite matrix. We define a
corresponding P -norm and its dual P -norm on Rn×r as follows

∥X∥P
def
= ∥XP 1/2∥, ∥X∥P∗

def
= ∥XP−1/2∥. (9)

We use vec(X) to denote the vectorization operator that stacks the column of X into a single column vector. As
before, we use ⊗ to denote the Kronecker product between two matrices. For a scalar-valued function of a matrix,
f(X), we use ∇2f(X)[V ] to denote the Hessian vector product, defined by

∇2f(X)[V ] = lim
t→0

∇f(X + tV )−∇f(X)

t
.

Note that here ∇2f(X)[V ] is a matrix of the same size as ∇f(X). With a slight abuse of notation, we use lower
case letters xt to denote the vectorized version of Xt, so xt = vec(Xt). We denote the corresponding gradient by
∇f(xt).

For symmetric matrix sensing, we denote our ground truth by M⋆ = ZZT ∈ Rn×n. We denote the true
rank by r∗ = rank(M∗). Our goal is to recovery M⋆ from a small number of measurements of the form
y = A(ZZT ) + ϵ ∈ Rm. Here ϵ is a vector with independent Gaussian entries with zero mean and variance σ2.
To do so, we minimize the non-convex objective function

f(X) =
1

m
∥A(XXT )− y∥2 = fc(X) +

1

m
∥ϵ∥2 − 2

m
⟨A(XXT −M⋆), ϵ⟩,

where fc(X)
def
= 1

m∥A(XXT −M⋆)∥2 is the objective function with clean measurements that are not corrupted
with noise. Here X is a matrix of size n× r, where r is known as the search rank.

We make a few additional simplifications on notations. As before, we will use α to denote the step-size and D to
denote the local search direction. In our proof below, it will often be easier to use the vectorized form of our
gradient updates: vectorizing both sides of the update Xt+1 = Xt − α∇f(Xt)(X

T
t Xt + ηtI)

−1, we get

vecXt+1 = vecXt − α vec∇f(Xt)(X
T
t Xt + ηtI)

−1

= vecXt − ((XT
t Xt + ηtI)⊗ I)−1 vec(∇f(Xt)),

where in the second line we used the standard identity vec(AXB) = (BT ⊗A) vec(X) for the Kronecker product.
Using lower case letters x and d to refer to vec (X) and vec (D) respectively, the update above can be written as
xt+1 = xt − αP−1∇f(xt), with P = (XT

t Xt + ηtI)⊗ I.

A.2 Auxiliary Results

In this section we collect two results from Zhang et al. (2021) that will be used in the proof of our main result. The
first theorem shows that when the regularization η is small, the PL-inequality holds within a small neighborhood
around the ground truth.

Theorem A.1 (Noiseless gradient dominance). Let minX f(X) = 0 for M⋆ ≠ 0. Suppose that X satisfies
f(X) ≤ ρ2 · (1− δ)λ2

r⋆(M
⋆) with radius ρ > 0 that satisfies ρ2/(1− ρ2) ≤ (1− δ2)/2. Then, we have

η ≤ Cub∥XXT −M⋆∥F =⇒ ∥∇f(X)∥2P∗ ≥ 2µf(X)

where

µ =

(√
1 + δ2

2
− δ

)2

·min


(

C1√
2− 1

)−1

,

(
1 + 3C1

√
(r − r⋆)

1− δ2

)−1
 . (10)

Here C1 is a constant that only depend on δ.



Gavin Zhang, Hong-Ming Chiu, Richard Y. Zhang

We recall that in the theorem above ∥ · ∥P∗ denotes the dual norm of ∥ · ∥P defined in (9), with P = XTX + ηI.
Essentially, this theorem says that when η is small compared to the true error ∥XXT −M⋆∥, the PL-inequality
is restored under the local norm defined by P . The difficulty of applying this theorem directly in our case arises
from two issues: first, if η is too small, then the gradients of f(X) are no longer Lipschitz under the P -norm. As
a result, the iterates can diverge. Moreover, it is very difficult to gauge the ‘right’ size of η in the noisy setting,
since we have no access to the true error. The proof of Theorem A.1 can be found in Zhang et al. (2021) so we do
not repeat it here.

We also state an lemma from Zhang et al. (2021) that directly characterizes the progress of gradient descent at
each iteration in a fashion similar to the descent lemma (see e.g. Nesterov (2018)). For general smooth functions
with Lipschitz gradients, the decrement in the function value at each iteration can be characterized by a quadratic
upper bound (the so-called descent lemma). However, for matrix sensing, we can in fact obtain a tighter upper
bound because fc(X − αD) itself is just a quartic polynomial. This allows us to characterize the progress made
at each iteration directly, using the following result.
Lemma A.2. For any descent direction D ∈ Rn×r and step-size α > 0 we have

fc(X − αD) ≤ fc(X)− α⟨∇fc(X), D⟩+ α2

2
⟨D,∇2fc(X)[D]⟩ (11)

+
(1 + δ)α3

m
∥D∥2F

(
2∥DXT +XDT ∥F + α∥D∥2F

)
. (12)

The proof of this lemma is quite straightforward so we do not repeat it here. The Lemma follows simply from
expanding the function fc(X − αD) and bounding the third and fourth order terms using the restricted isometry
property of A.

In section 3 of the main paper, we sketched out the main idea behind our proof of Theorem 2.1. In particular, we
stated that our proof mainly consists of two parts. First, in the ideal case where ηt ≤

√
fc(Xt) ≤ Cηt, if we go in

the direction D = ∇fc(X)P−1, then linear convergence is already achieved in the sense that the function value
decreases by a constant factor. Second, in the case where ηt ≤

√
fc(Xt) ≤ Cηt is no longer satisfied, we want

to show that ηt will automatically return to the ideal interval ηt ≤
√

fc(Xt) ≤ Cηt after a few iterations. Thus
overall, we have linear convergence. In the following sections, we make these two parts of our proof precise.

A.3 Linear Convergence in Ideal Case

For the PrecGD algorithm of Zhang et al. (2021) to succeed, it is crucial that the regularization parameter satisfies
ηt ≤

√
fc(Xt) ≤ Cηt. If so, then within a local neighborhood of the ground truth, Theorem A.1 and Theorem

A.2 can be used to establish linear convergence in the noiseless setting. However, as we have argued in the main
paper, this requirement for ηt is difficult if not impossible to maintain explicitly in the noisy setting. This makes
it extremely difficult for PrecGD to achieve a minimax optimal error.

Our main result, Theorem 2.1, states that letting ηt decay with some constant rate β suffices to guarantee the
linear convergence of our algorithm, even in the noisy setting. One of our key observations is that the condition
ηt ≤

√
fc(Xt) ≤ Cηt does not have to be satisfied at all times. In fact, we can allow ηt to dip below

√
fc(Xt) in

our algorithm, because of the “coupling” effect that we discussed previously: ηt can never deviate too far from√
fc(Xt).

Therefore, in our proof of Theorem 2.1, we will consider two cases:

1. ηt ≤
√

fc(Xt) ≤ Cηt

2.
√

fc(Xt) ≤ ηt.

The first case is the “good” situation, because the conditions for linear convergence is satisfied by assumption. In

this case, we show that as long as the gradient is large compared to the noise, i.e., ∥∇fc(Xt)∥∗P ≳
√

σ2rn logn
m ,

our algorithm will converge linearly. This behavior is stated rigorously in the following lemma.
Lemma A.3. Suppose that at the t-th iteration, the regularization parameter ηt satisfies ηt ≤

√
fc(Xt) ≤ Cηt

for some C > 1. Furthermore, suppose that ∥∇fc(Xt)∥∗P ≳
√

σ2rn logn
m . Then for α ≤ 1/L, with high probability
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we have

fc(Xt+1) ≤
(
1− µ

2L

)
fc(Xt).

Here L = O(C2) is the constant defined in (16), and µ is the constant defined in Theorem A.1.

The proof of Lemma A.3 is long but it is mainly computational. The overall idea is similar to the proof of Theorem
20 in Zhang et al. (2021): our goal is to show that when the local norm of the gradient is large compared to the
noise level, the decrement we make at each iteration ‘overcomes’ the error caused by the noisy measurements.
Our main tool here is Lemma A.2, which allows us to directly compute the decrement and bound the error terms.

It turns out that in this proof, it will be slightly easier to deal with the vectorized version of this problem: we use
f(x) to denote original objective function f(X) as a function of the vector x = vec(X). Consequently, we write
f(x) ∈ Rnr and ∇f(x) ∈ Rnr as the vectorized versions of f(X) and its gradient. We use the same vectorized
notation for the “true” function value fc(X). Thus, in vectorized form, the iterates of our algorithm can be
written as

xk+1 = xk − αP−1∇f(x), where P = (XTX + ηIr)⊗ In.

We note that all the norms we consider remain unchanged after vectorization, meaning that ∥∇f(x)∥P =
∥∇f(X)∥P and ∥∇f(x)∥P∗ = ∥∇f(X)∥P∗ . Now we are ready to prove this lemma.

Proof. The main idea of the proof is to use the inequality ηt ≤
√
fc(Xt) ≤ Cηt to bound the progress of our

algorithm at each iteration. In particular, when ηt is small, i.e., ηt ≤
√

fc(Xt), then Theorem A.1 guarantees
the gradient dominance. On the other hand, the lower bound

√
fc(Xt) ≤ Cηt allows us to apply Lemma A.2 to

guarantee that the step-size α can be large enough so that we get linear convergence.

First, note that vectorized version of the gradient update X+ = X − αD (where D = ∇f(X)P−1) can be written
as x+ = x− αd, where

d = vec (∇f(X)P−1) = P−1∇fc(x)−
2

m
P−1

(
Ir ⊗

m∑
i=1

ϵiAi

)
x. (13)

Here we have dissected the gradient descent direction into two parts: P−1∇fc(x), which corresponds to “correct”
gradient and a remaining error term P−1E(x), where

E(x) def
=

2

m

(
Ir ⊗

m∑
i=1

ϵiAi

)
x.

In other words we have d = P−1(∇fc(x)− E(x)). If E(x) = 0, then our proof reduces to the noiseless case. Here
we want to show that the error is small compared the decrement we make in the function value. As we will see,

this happens precisely in the regime where the gradient is large, i.e., ∥∇fc(X)∥∗P ≳
√

σ2rn logn
m .

In vectorized notation, Lemma A.2 can be written as

fc(x− αd) ≤ fc(x)− α∇fc(x)
T d+

α2

2
dT∇2fc(x)d+

(1 + δ)α3

m
∥d∥2

(
2∥Jd∥+ α∥d∥2

)
, (14)

where we define J : Rnr → Rn2

as the linear operator satisfying Jd = vec(XDT +DXT ) (recall that d = vec(D)).
Now setting d = P−1(∇fc(x)− E(x)) in the formula above yields

fc(x− αd) ≤fc(x)− α∥∇fc(x)∥2P∗ + T1 + T2 + T3

where

T1 =α∇fc(x)
TP−1E(x)

T2 =
α2

2

(
∇fc(x)

TP−1∇2fc(x)P
−1∇fc(x) + E(x)TP−1∇2fc(x)P

−1E(x)

− 2∇fc(x)
TP−1∇2fc(x)P

−1E(x)
)

T3 =(1 + δ)α3
(
∥P−1∇fc(x)−P−1E(x)∥2

) (
2∥JP−1∇fc(x)∥+ 2∥JP−1E(x)∥

+ α∥P−1∇fc(x)−P−1E(x)∥2
)
.
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Our goal is to show that all three terms T1, T2, T3 are small compared to the decrement that we make at each
iteration. The key observation here is that all of these terms depend on E(x) and P. With the right choice of η,
i.e., with

√
fc(Xt) ≤ Cηt, the preconditioner P is well-conditioned, so that all the errors in T1, T2, T3 will remain

small as long as E(x) is small. Specifically, we can bound the error term as

∥E(x)∥2P∗ = E(x)TP−1E(x) =

∥∥∥∥∥
(

2

m

m∑
i=1

ϵiAi

)
X(XTX + ηI)−1/2

∥∥∥∥∥
2

F

≤

∥∥∥∥∥
(

2

m

m∑
i=1

ϵiAi

)∥∥∥∥∥
2

2

∥∥∥X(XTX + ηI)−1/2
∥∥∥2
F

(i) ≤ Ce
σ2n log n

m

(
r∑

i=1

σ2
i (X)

σi(X)2 + η

)

≤ Ce
σ2rn log n

m
,

where Ce is an absolute constant and (i) follows from a standard concentration bound (see Candes and Plan
(2011) or Lemma 16 of Zhang et al. (2021)).

Now, denoting ∆ = ∥∇fc(x)∥P∗ and using the bound for the error above, we get after some computations that

T1 ≤ α∆

√
Ceσ2rn log n

m
,

T2 ≤ 2α2Lδ∆
2 + 2α2Lδ

σ2rn log n

m

T3 ≤ 4(1 + δ)α3

η

(
∆2 +

Ceσ
2rn log n

m

)(
α∆2

η
+

αCeσ
2rn log n

ηm
+ 2

√
2∆ + 2

√
2

√
Ceσ2rn log n

m

)
.

Here Lδ is a constant that depends only on the RIP constant δ. Now plugging these error bounds back into (11)
yields

fc(x− αd) ≤ fc(x)− α∆2 + α∆

√
Cσ2rn log n

m
+ 2α2Lδ∆

2 + 2Cα2Lδ
σ2rn log n

m

+
4(1 + δ)α3

η

(
∆2 +

Cσ2rn log n

m

)(
α∆2

η
+

αCσ2rn log n

ηm
+ 2

√
2∆ + 2

√
2

√
Cσ2rn log n

m

)
. (15)

In the case ∆ ≥ 2
√

Ceσ2rn logn
m all the terms above can be bounded so that the decrement in the function value

dominates all the error. In particular, plugging this lower bound into the inequality above yields

fc(x− αd) ≤ fc(x)−
α

2
∆2

(
1− 5

2
Lδα− 60

√
2α2(1 + δ)− 25α3(1 + δ)2

)
.

Now, assuming that the step-size satisfies

α ≤ min

{
Lδ

60
√
2(1 + δ) + 25(1 + δ)2

,
1

7Lδ

}
def
=

1

L
(16)

we obtain fc(x− αd) ≤ fc(x)− t∆2

4 ≤
(
1− αµ

4

)
fc(x), where in the last step we used the fact that ηt ≤

√
fc(Xt),

so the conditions of Theorem A.1 are satisfied, so gradient dominance holds. This completes the proof.

B Proof of Theorem 2.1

In this section we provide a complete proof of Theorem 2.1, filling out some of the missing details left out in the
main paper.
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Proof. Let T > 0 be the smallest index such that ηT < 2
√

C0σ2rn logn
µm . Suppose that t < T . Similar to the

noiseless case, we will show that there exists some constant C > 1, which depends only on δ, such that the
following holds: if at the t-th iterate we have

√
fc(Xt) ≤ Cηt, then

√
fc(Xt+1) ≤ Cηt+1. As before, this implies

that fc(Xt) ≤ C2β2tη0 for all t ≤ T .

At the t-iterate, suppose that
√
fc(Xt) ≤ Cηt. We consider two cases:

1. ηt ≤
√
fc(Xt) ≤ Cηt

2.
√

fc(Xt) ≤ ηt.

We will show that in either case, the next iterate satisfies
√

fc(Xt+1) ≤ Cηt+1. The core idea behind this proof is
that the values of ηt and

√
fc(Xt+1) are “coupled”, meaning that they can not deviate too far from each other.

In the first case, where ηt ≤
√
fc(Xt) ≤ Cηt, the behavior of our algorithm plus is exactly the same as PrecGD,

since ηt is bounded both above and below by a constant factor of
√
fc(Xt+1). Thus, according to Lemma A.3,

we converge linearly (at least for the current iteration). In fact, we have chosen the decay rate β so that fc(X)
will decay faster than β when ηt ≤

√
fc(Xt) ≤ Cηt. Specifically, we have

√
fc(Xt+1) ≤

√(
1− µ

4L

)√
fc(Xt) ≤ β · Cηt = Cηt+1

where the second inequality follows from β =
√(

1− µ
8L

)
and the assumption

√
fc(Xt) ≤ Cηt. Thus, in this case,√

fc(Xt+1) will continue to be upper bounded by Cηt+1. If this remains true for all t, then we are already done
since ηt decays exponentially, which means that the function value will also decay exponentially fast. However, if√
fc(Xt+1) decays too fast, the condition for applying Lemma A.3, i.e., ηt ≤

√
fc(Xt) ≤ Cηt, will no longer hold.

However, in this case, the function values are still decaying monotonically. Since the stepsize satisifies α ≤ 1/L,
where L is the constant defined in (16), we can use Lemma A.3 again to get fc(Xt+1) ≤ fc(Xt). Thus√

fc(Xt+1) ≤
√
fc(Xt) ≤ ηt = β−1ηt+1 ≤ Cηt+1.

Here we note that for the last step to hold we need β−1 < C, which is equivalent to
√
1− µ

4L ·C > 1. In fact, this
is the key step that keeps us from choosing the decay rate β to be too small so that we get any linear convergence
rate we like. By definition L = Cδ · C2, where Cδ is a constant that only depends on δ. Thus this condition is
always satisfied for some C ≥ Clb, where Clb is a constant lower bound that only depends on δ.

Finally, at the T -th iteration, we have
√
fc(XT ) ≤ C · ηT ≲

√
σ2rn logn

m . Now for all t > T , we again consider
two cases:

1. ∥∇fc(Xt)∥∗P ≤
√

σ2rn logn
m

2. ∥∇fc(Xt)∥∗P ≥
√

σ2rn logn
m .

In the first case, we can use Theorem A.1 to conclude that µf(Xt) ≤ (∥∇fc(Xt)∥∗P )
2. Since µ is a constant, we

have f(Xt) ≲
σ2rn logn

m . Now consider second case. Here we can apply Lemma A.3 again which guarantees that
f(Xt+1) ≤ f(Xt), so the function value is decreasing. Consequently, we have f(Xt) ≲

σ2rn logn
m for all t > T .

This completes the proof.
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C Experimental details

Experimental setups We perform all the experiments in this paper on an Apple MacBook Pro, running
a silicon M1 pro chip with 10-core CPU, 16-core GPU, and 32GB of RAM. We implement our algorithm in
MATLAB R2021a.

Initialization

• Spectral initialization: For spectral initialization with respect to a ground truth matrix M⋆ = QΣQT , we
initialized X0 = QΣ1/2 + 0.1 · Q̂, where Q̂ ∈ Rn×r is drawn from standard Gaussian.

• Small initialization: For small initialization, we set X0 = α̂ · Q̂, where α̂ is the initialization scale and Q̂ is
a n× r matrix drawn from standard Gaussian.

Datasets The datasets we use for the experiments in the main paper and Appendix E are described below.

• Gaussian matrix sensing: For the experiment results shown in Figure 2, 3, 4 and 5 we synthetically
generate a 10× 10 ground truth matrix M⋆. The rank of M⋆ is set to 2. To generate M⋆, we first randomly
generate an orthonormal matrix Q ∈ R10×2 and then set M⋆ = QΣQT . For Figure 2, 3 and 4, we set
Σ = diag(1, 10−2) so that M⋆ is ill-conditioned with condition number κ = 102. For Figure 5, we set
Σ = diag(1, 1) so that M⋆ is well-conditioned with condition number κ = 1.

• 1-bit matrix sensing: For the experiment results shown in Figure 7, the ground truth matrix M⋆ is exactly
the same as the one in Figure 5.

• Phase retrieval: For the experiment results shown in Figure 8, we synthetically generate a length 10
complex ground truth vector z and set M⋆ = zzT . The real and imaginary parts of z are drawn from
standard Gaussian.

• Ultrafast ultrasound image denoising task: For the experiment results shown in Figure 1 and 9. We
take an ultrafast ultrasound scan on a rat brain provided from our collaborator. The ultrasound scan consists
of 2400 frames of size 200× 130 images. We note that in order to show the entire ultrasound scan in 2D,
in Figure 1 and 9, the ultrasound scans are shown in power Doppler Bercoff et al. (2011). In particular,
let Mi ∈ R200×130 be the i-th frame of the ultrasound scan, the power Doppler of the scan is defined as
PM = 20 log

(
µM

∑
i M

2
i

)
where µM is a normalization constant that normalizes the entries in µM

∑
i M

2
i to

between 0 and 1. Here, M2
i denotes the elementwise squaring. In this case, the ultrasound image denoising

problem can be treated as a low-rank matrix completion problem on a size 26000× 2400 ground truth matrix
M⋆, which we will elaborate in Appendix D.

D Ultrafast ultrasound image denoising task

Ultrafast ultrasound is an advanced imaging technique that leverages high frame rate of plane wave imaging,
reaching up to thousands of frames per second. The significant increase in frame rate has revolutionized ultrasound
imaging, particularly in ultrafast Doppler Bercoff et al. (2011), providing enhanced temporal resolution for precise
evaluation of high-speed blood flows and improved sensitivity in detecting subtle flow within small vessels.
However, clutter signals originated from stationary and slow moving tissue introduce significant artifacts during
the acquisition of ultrasound image, preventing it from capturing a clear visualization of vascular paths, and
measuring blood flows in small vessels. Therefore, effective denoising techniques for removing these artifacts are
often required to obtain a high-quality ultrasound image, in order to minimize the chances of diagnostic errors,
detect subtle changes or anomalies, and reduce the need for repeated scans or reanalysis.

One effective denoising technique to suppress clutter signals is based on computing the truncated SVD on a
space-time matrix Demené et al. (2015). In particular, let Mi be the i-th frame of the m frames ultrasound scan,
Demené et al. (2015) proposed to compute the SVD on the space-time matrix M = [vec(M1) . . . vec(Mm)] = QΣST

where Q and S are orthonormal matrices and Σ is diagonal. The noiseless space-time matrix M⋆ can then be
computed by keeping the top r singular values in Σ, i.e. M⋆ = QrΣrS

T
r where Qr and Sr denotes the first r

columns of Q and S, respectively, and Σr denotes the top r × r block of Σ. This technique is effective as signals
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from stationary and slow moving tissue generally correspond to low frequency components in the spectral domain,
as they change slowly over time. However, due to the high frame rates of the ultrafast ultrasound, with prolonged
acquisition, it would require sufficiently large memories to store M . In many cases, computing the SVD on a
large M also become computationally prohibit as its complexity is cubic in the number of frames m.

One possible way to address these limitations is to downsampled the space-time matrix M and then use it to
approximate the noiseless space-time matrix M⋆ through low-rank matrix completion. Specifically, we treat the
noiseless space-time matrix M⋆ as the ground truth, and perform low-rank matrix completion M⋆ = UV T using
noisy measurements yij = M⋆

i,j + ϵi,j = Mi,j . Here, U and V are matrices with exactly r ≪ m columns. Notice
that if the matrix completion problem achieves minimax error, it is exactly coincides with the truncated SVD, i.e.
U = QrΣ

1/2 and V = SrΣ
1/2.

In the experimental results shown in Figure 1, we are interested in denoising a 60 megapixel (2400-frames, 200×130
pixels per frame) ultrafast ultrasound image by running 30 iterations of the low-rank denoising procedure in
Demené et al. (2015) with 50% sampling rate. As described above, this ultrasound image denoising task can be
viewed as a matrix completion problem on a size 26000×2400 ground truth matrix M⋆ given 50% of its noisy entries.
In our experiment, we randomly sample (without replacement) 50% of the entries in M = [vec(M1) . . . vec(M2400)]
as our noisy measurements: each measurement takes the form yij = ⟨eieTj ,M⟩ = ⟨eieTj ,M⋆⟩+ ϵi,j , which is a
noisy measurement on M⋆. We approximate the noiseless ground truth by first setting M⋆ = UV T and minimize
the following loss function over rank-r matrices U and V

f(U, V ) =
1

|Ω|
∑

(i,j)∈Ω

(
⟨eieTj , UV T ⟩ − yij

)2
where the set Ω = {(i, j)} contains indices for which we know the value of Mij .

In Figure 1, we show the ultrasound image recovered from our algorithm, PrecGD (best previous) and GD (no
preconditioning) in power Doppler Bercoff et al. (2011). As shown in Figure 1, our algorithm is the only algorithm
that achieves the best denoising effect, making the image even sharper. We also emphasize that the per-iteration
cost of our algorithm is almost identical to gradient descent. All three experiments take approximately 3 minutes.

Time complexity for gradient evaluation In this experiment, because the measurements is of the form
yij = ⟨eieTj ,M⟩, the two gradient terms ∇Uf(U, V ) and ∇V f(U, V ) in (3) can be efficiently calculated in O(n1r|Ω|)
time and O(n2r|Ω|) time, respectively. Here, we let n1 denote the number of rows in U and n2 denote the
number of rows in V . To see why this is the case, observe that the two gradient terms can be expressed as
∇Uf(U, V ) = EV and ∇V f(U, V ) = ETU where

E =
2

|Ω|
∑

(i,j)∈Ω

⟨eieTj , UV T ⟩ · eieTj

is a size n1 × n2 sparse matrix with exactly |Ω| nonzero entries, which can be efficiently formed in O(r|Ω|) time
and O(|Ω|) memory. Hence, despite the large number of measurements in this experiment (|Ω| = 31.2 million),
in our practical implementation, evaluating both gradient terms at each iteration only takes approximately 6
seconds.

Ultrasound image denoising task In the experiment results shown in Figure 1, we set the search rank to
be r = 100, so that U is a size 26000× 100 matrix and V is a size 2400× 100 matrix. We apply our algorithm,
PrecGD and GD to minimize f(U, V ) for 30 iterations. Here, our algorithm is implemented with β = 0.05, and
PrecGD is implemented with proxy variance σ̂ = 5 × 10−3 so that ηt =

√
|f(Ut, Vt)− σ̂2|. The learning rate

for our algorithm, PrecGD and GD are chosen to be as large as possible. For our algorithm and PrecGD, the
learning rate is set to be α = 107. For GD, the learning rate is set to be α = 103.
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E Additional experiments

In this section, we perform an additional experiment on Gaussian matrix sensing. We also perform additional
experiments to gauge the performance of our algorithm for applications outside of the assumptions of our
theoretical results. In particular, we consider two common problems considered in the existing literature that
do not satisfy conditions under which Theorem 2.1 applies: phase retrieval and 1-bit matrix sensing. For these
problems, we see almost identical results to Gaussian matrix sensing: our algorithm succeeds in converging to a
minimax optimal error, while GD, PrecGD and ScaledGD(λ) struggle.

E.1 Gaussian matrix sensing

The problem formulation is described in the main paper. In this experiment, we take 80 measurements
yi = ⟨Ai,M

⋆⟩ on the ground truth matrix M⋆ ∈ R10×10 using 80 linearly independent measurement matrices
Ai ∈ R10×10 drawn from standard Gaussian. Substituting M⋆ = XXT , the loss function for Gaussian matrix
sensing is defined as

f(X) =
1

80

80∑
i=1

(
⟨Ai, XXT ⟩ − yi

)2
.

We perform Gaussian matrix sensing under four different settings.

The exactly-parameterized, noiseless case Recall that the truth rank of M⋆ is 2. In the exactly-
parameterized case, we set X to be a size 10 × 2 matrix and minimize f(X) using our algorithm, PrecGD,
ScaledGD(λ) and GD for 500 iterations. We set β = 0.1 in our algorithm, and λ = 0 in ScaledGD(λ). The
learning rate for all four methods are set to α = 0.1.

The over-parameterized, noisy case In this setting, we corrupt the measurements with noise εi ∼ N (0, 10−6)
such that yi = ⟨Ai,M

⋆⟩ + εi. We set X to be a size 10 × 4 matrix and minimize f(X) using our algorithm,
PrecGD, ScaledGD(λ) and GD for 500 iterations. Here, our algorithm is implemented with β = 0.1, PrecGD is
implemented with proxy variance σ̂ = 10−5 so that ηt =

√
|f(Xt)− σ̂2|, and ScaledGD(λ) is implemented with

λ = 0.01. The learning rate for all four methods are set to α = 0.1.

Figure 5 plots the convergence of our algorithm, PrecGD, ScaledGD(λ) and GD. The first setting corresponds to
the case where r⋆ is known, and our measurements are perfect. In this highly unrealistic scenario, we see that the
all four methods behave identically, converging linearly to machine error. In the second setting, we see that our
algorithm converges to a minimax error of around 10−6, while PrecGD, ScaledGD(λ) and GD struggles to attain
the same error. Here the slow down of GD is due to over-parameterization, while the showdown of PrecGD and
ScaledGD(λ) are due to an inaccurate estimate of scaling parameters.

High noise setting In the first plot of Figure 6, we plot the convergence of our algorithm under higher noise
setting. In particular, we corrupt the measurements with noise ϵi ∼ N (0, 10−1). To accommodate higher noise,
we set X to be a size 10× 8 matrix and minimize f(X) using our algorithm and PrecGD for 500 iterations. In
this experiment, our algorithm is implemented with β = 0.97 and PrecGD is implemented with four different
proxy variance σ̂ = 1, 0.7, 0.5 and 0.1 so that ηt =

√
|f(Xt)− σ̂2|. The learning rate for both methods are set to

α = 0.01. From Figure 6, we again see that our algorithm converges linearly to the minmax error while PrecGD
slows down when the proxy variance is incorrectly estimated.

Comparison with small initialization In the second plot of Figure 6, we compare the runtime of our
algorithm (which is initialized using spectral initialization) against ScaledGD(λ) and GD that are initialized
using small initialization. We note that we include the time for calculating the spectral initial point into the
runtime of our algorithm. In this experiment, we set X to be a size 10 × 8 matrix and minimize f(X) using
our algorithm, ScaledGD(λ) and GD for around 0.5 seconds. Here, our algorithm is implemented with β = 0.5,
and ScaledGD(λ) is implemented with λ = 0.01. The learning rate for all three methods are set to α = 0.1. In
Figure 6, we see that, despite having to spend extra time to computing the spectral initial points, our algorithm
is still significantly faster than ScaledGD(λ) and GD.
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Figure 5: Convergence of our algorithm, PrecGD, ScaledGD(λ) and GD for Gaussian matrix sensing.
Left: Noiseless measurements with r = r⋆. Right: Noisy measurements with r > r⋆.
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Figure 6: Comparison under higher noise setting and small initialization.. Left: Comparison between
our algorithm and PrecGD under higher noise setting. Right: Runtime comparison between our algorithm (with
spectral initialization), and ScaledGD(λ) and GD (with small initialization).

E.2 1-bit matrix sensing

The goal of 1-bit matrix sensing is to recover a ground truth matrix M⋆ from 1-bit measurements of each entry in
M⋆. In particular, the measurements yij of each entry M⋆

ij are quantized, so that they are 1 with some probability
σ(M⋆

ij) and 0 with probability 1− σ(M⋆
ij) where σ(·) is the sigmoid function. In our experiment on a size 10× 10

ground truth matrix M⋆, we measure each yij for a number of times and let αij denote the percentage of yij that
is equal to 1. To recover the ground truth matrix M⋆, we substitute M⋆ = XXT and minimize the following loss
function

f(X) =
1

100

10∑
i=1

10∑
j=1

−αij log
(
σ(xT

i xj)
)
− (1− αij) log

(
1− σ(xT

i xj)
)

where xT
i is the i-th row in X, i.e. X = [x1 . . . x10]

T . We perform 1-bit matrix sensing under two settings: the
exactly-parameterized, noiseless case; and the over-parameterized, noisy case.

The exactly-parameterized, noiseless case Recall that the truth rank of M⋆ is 2. In the exactly-
parameterized case, we set X to be a size 10 × 2 matrix and minimize f(X) using our algorithm, PrecGD,
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ScaledGD(λ) and GD for 200 iterations. We set β = 0.4 in our algorithm, and λ = 0 in ScaledGD(λ). The
learning rate for all four methods are set to α = 1.

The over-parameterized, noisy case In this setting, we corrupt the measurements with noise εij ∼ N (0, 10−6)
such that yij = 1 with probability σ(M⋆

ij + εij) and yij = 0 with probability 1− σ(M⋆
ij + εij). We set X to be a

size 10× 4 matrix and minimize f(X) using our algorithm, PrecGD, ScaledGD(λ) and GD for 200 iterations.
Here, our algorithm is implemented with β = 0.4, PrecGD is implemented with proxy variance σ̂ = 10−5 so that
ηt =

√
|f(Xt)− σ̂2|, and ScaledGD(λ) is implemented with λ = 0.01. The learning rate for all four methods are

set to α = 1.

From Figure 7, we again see that the results are almost identical to that of Figure 5: our algorithm is able
to converge linearly to a minimax error rate as soon as r > r⋆, but PrecGD, ScaledGD(λ) and GD showdown
dramatically.
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Figure 7: Convergence of our algorithm, PrecGD, ScaledGD(λ) and GD for 1-bit matrix sensing.
Left: Noiseless measurements with r = r⋆. Right: Noisy measurements with r > r⋆.

E.3 Phase retrieval

The goal of phase retrieval is to recover a vector z ∈ Cn from the phaseless measurements of the form yi = |⟨ai, z⟩|2
where ai ∈ Cn are the measurement vectors. Equivalently, we can view this problem as recovering a complex
matrix M⋆ from measurements yi = ⟨aiaTi ,M⋆⟩, subjecting to a constraint that M⋆ is rank-1. In our experiment
on a length 10 ground truth vector z, we set M⋆ = zzT and take 80 measurements on M⋆ ∈ C10×10 using 80
linearly independent measurement vectors ai ∈ C10 drawn from standard Gaussian. Substituting M⋆ = XXT ,
the loss function of phase retrieval is defined as

f(X) =
1

80

80∑
i=1

(
⟨aiaTi , XXT ⟩ − yi

)2
.

We again perform phase retrieval under two settings: the exactly-parameterized, noiseless case; and the over-
parameterized, noisy case.

The exactly-parameterized, noiseless case Recall that the truth rank of M⋆ is 1. In the exactly-
parameterized case, we set X to be a size 10 × 1 complex matrix and minimize f(X) using our algorithm,
PrecGD, ScaledGD(λ) and GD for 1000 iterations. We set β = 0.1 in our algorithm, and λ = 0 in ScaledGD(λ).
The learning rate for all four methods are set to α = 0.02.

The over-parameterized, noisy case In this setting, we corrupt the measurements with noise εi ∼ N (0, 10−6)
such that yi = ⟨aiaTi ,M⋆⟩+ εi. We set X to be a size 10× 2 matrix and minimize f(X) using our algorithm,
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PrecGD, ScaledGD(λ) and GD for 1000 iterations. Here, our algorithm is implemented with β = 0.1, PrecGD is
implemented with proxy variance σ̂ = 10−5 so that ηt =

√
|f(Xt)− σ̂2|, and ScaledGD(λ) is implemented with

λ = 0.01. The learning rate for all four methods are set to α = 0.02.

Figure 8 shows the convergence of our alogirthm, PrecGD, ScaledGD(λ) and GD. Again, our algorithm again
converge linearly to the minimax error.

0 200 400 600 800 1000

10
-15

10
-10

10
-5

10
0

0 200 400 600 800 1000

10
-6

10
-4

10
-2

10
0

Figure 8: Convergence of our algorithm, PrecGD, ScaledGD(λ) and GD for phase retrieval. Left:
Noiseless measurements with r = r⋆. Right: Noisy measurements with r > r⋆.

F Additional Experiments on Ultrasound Image Recovery

We repeat the experiment on ultrasound image denoising task under 7 downsampling rates: 50%, 45%, 40%,
35%, 30%, 25% and 20%. In all 7 cases, we set the search rank to be r = 100 and apply our algorithm, PrecGD,
ScaledGD(λ) and GD to minimize the corresponding loss function f(U, V ) for 30 iterations. Our algorithm,
PrecGD and GD are implemented using the same hyperparameters and learning rates in Figure 1. ScaledGD(λ)
is implemented with λ = 5 × 10−2 and learning rate α = 107. As shown in Figure 9, our algorithm is able to
almost perfectly denoise the ultrasound image when the downsampling rate is above 25%.
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Figure 9: Denoising an ultrafast ultrasound image under different downsampling rate. We denoise the
ultrasound image in Figure 1 under 7 downsampling rates: 50%, 45%, 40%, 35%, 30%, 25% and 20%. The ultrasound
images are shown using power Doppler Bercoff et al. (2011). Column 1: original image. Column 2: image denoised from
our algorithm (3). Column 3: image denoised from ScaledGD(λ). Column 4: image denoised from PrecGD. Column 5:
image denoised from GD.


