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ABSTRACT

K-means clustering is a widely used machine learning method for identifying pat-
terns in large datasets. Recently, semidefinite programming (SDP) relaxations have
been proposed for solving the K-means optimization problem, which enjoy strong
statistical optimality guarantees. However, the prohibitive cost of implementing an
SDP solver renders these guarantees inaccessible to practical datasets. In contrast,
nonnegative matrix factorization (NMF) is a simple clustering algorithm widely
used by machine learning practitioners, but it lacks a solid statistical underpinning
and theoretical guarantees. In this paper, we consider an NMF-like algorithm that
solves a nonnegative low-rank restriction of the SDP-relaxed K-means formulation
using a nonconvex Burer–Monteiro factorization approach. The resulting algorithm
is as simple and scalable as state-of-the-art NMF algorithms while also enjoying
the same strong statistical optimality guarantees as the SDP. In our experiments,
we observe that our algorithm achieves significantly smaller mis-clustering errors
compared to the existing state-of-the-art while maintaining scalability.

1 INTRODUCTION

Clustering remains a common unsupervised learning technique, for which the basic objective is
to assign similar data points to the same group. Given data in the Euclidean space, a widely used
clustering method is K-means clustering, which quantifies “similarity” in terms of distances between
the given data and learned clustering centers, known as centroids (MacQueen, 1967). In order to
divide the data points X1, . . . , Xn ∈ Rp into K groups, K-means clustering aims to minimize the
following cost function:

min
β1,...,βK∈Rp

n∑
i=1

min
k∈[K]

∥Xi − βk∥22, (1)

where βk is the centroid of the k-th cluster for k ∈ [K] := {1, . . . ,K}. It is well-known that exactly
solving problem (1) is NP-hard in the worst-case (Dasgupta, 2007; Aloise et al., 2009), so computa-
tionally tractable approximation algorithms and relaxed formulations have been extensively studied
in the literature. Notable examples include Lloyd’s algorithm (Lloyd, 1982), spectral clustering (von
Luxburg, 2007; Ng et al., 2001), nonnegative matrix factorization (NMF) (He et al., 2011; Kuang
et al., 2015; Wang and Zhang, 2012), and semidefinite programming (SDP) (Peng and Wei, 2007;
Mixon et al., 2017; Royer, 2017; Fei and Chen, 2018; Giraud and Verzelen, 2018).

Among those popular relaxations, the SDP approach enjoys the strongest statistical guarantees under
the standard Gaussian mixture model in that it achieves an information-theoretic sharp threshold
for exact recovery of the true cluster partition (Chen and Yang, 2021). Unfortunately, the SDP and
its strong statistical guarantees remain completely inaccessible to real-world datasets, owing to the
prohibitively high costs of solving the resulting SDP relaxation. Given n data points, the SDP is a
matrix optimization problem, over a dense n × n membership matrix Z, that is constrained to be
both positive semidefinite Z ⪰ 0 as well as elementwise nonnegative Z ≥ 0. Even ignoring the
constraints, a basic but fundamental difficulty is the need to store and optimize over the n2 individual
elements of the matrix. Even a small dataset with n ≈ 1000, such as the banknote authentication
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Figure 1: Log-scale trade-off plot of CPU time versus mis-clustering error, under an increasing number of
data points n. Here, NLR corresponds to our proposed non-negative low-rank factorization method, KM
corresponds to K-means++ (Arthur and Vassilvitskii, 2007), SC corresponds to spectral clustering (Ng et al.,
2001), SDP (Peng and Wei, 2007) uses the SDPNAL+ solver (Yang et al., 2015), and NMF corresponds to
non-negative factorization (Ding et al., 2005). We follow the same setting as the first experiment in Section 5,
where the theoretically optimal mis-clustering error decays to zero as n increases to infinity.

dataset (Dua and Graff, 2017), translates into an SDP with n2 ≈ 106 optimization variables, which is
right at the very limit of state-of-the-art SDP solvers like SDPNAL+ (Yang et al., 2015).

On the other hand, NMF remains one of the simplest and practically useful approaches to clustering
due to its scalability (He et al., 2011; Kuang et al., 2015). When the clustering problem at hand
exhibits an appropriate low-dimensional structure, NMF gains significant computational savings
by imposing elementwise nonnegativity over an n × r low-rank factor matrix U ≥ 0, in order
to imply positive semidefiniteness Z ⪰ 0 and elementwise nonnegativity Z ≥ 0 over the n × n
membership matrix Z = UUT . While highly scalable, there remains unfortunately very little
statistical underpinning behind NMF-based algorithms.

Our contributions. In this paper, we propose an efficient, large-scale, NMF-like algorithm for the K-
means clustering problem, that meanwhile enjoys the same sharp exact recovery guarantees provided
by SDP relaxations. We are motivated by the fact that the three classical approaches to K-means
clustering, namely spectral clustering, NMF, and SDP, can all be interpreted as techniques for solving
slightly different relaxations of the same underlying K-means formulated as a mixed integer program;
see our exposition in Section 2. This gives us hope to break the existing computational and statistical
bottleneck by investigating the intersection of these three classical approaches.

At its core, our proposed algorithm is a primal-dual gradient descent-ascent algorithm to optimize
over a nonnegative factor matrix, inside an augmented Lagrangian method (ALM) solution of the SDP.
The resulting iterations closely resemble the projected gradient descent algorithms widely used for
NMF and spectral clustering in the existing literature; in fact, we show that the latter can be recovered
from our algorithm by relaxing suitable constraints. We prove that the new algorithm enjoys local
linear convergence within a primal-dual neighborhood of the SDP solution, which is unique whenever
the centroids satisfy a well-separation condition from (Chen and Yang, 2021). In practice, we observe
that the algorithm converges globally at a linear rate. As shown in Figure 1, our algorithm achieves
substantially smaller mis-clustering errors compared to the existing state-of-the-art.

The main novelty of our algorithm is the use of projected gradient descent to solve the difficult primal
update inside the ALM. Indeed, this primal update had been the main critical challenge faced by prior
work; while a similar nonnegative low-rank ALM was previously proposed by Kulis et al. (2007), their
inability to solve the primal update to high accuracy resulted in a substantial slow-down to the overall
algorithm, which behaved more like an inexact ALM. In contrast, our projected gradient descent
method can solve the primal update at a rapid linear rate to machine precision (see Theorem 1), so
our overall algorithm is able to enjoy the rapid primal-dual linear convergence that is predicted and
justified by classical theory for exact ALMs. As shown in Figure 4 in Appendix B, our algorithm is
the first ALM that can solve the SDP relaxation to arbitrarily high accuracy.

Organization. The rest of the paper is organized as follows. In Section 2, we present some
background on several equivalent and relaxed formulations of the K-means clustering problem. In
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Section 3, we introduce a nonnegative low-rank SDP for solving the Burer–Monteiro formulation
of K-means problem. In Section 4, we establish the linear convergence guarantee for our proposed
primal-dual gradient descent-ascent algorithm in the exact recovery regime. Numerical experiments
are reported in Section 5. Proof details are deferred to the Supplementary Material.

2 BACKGROUND ON K-MEANS AND RELATED COMPUTATIONAL METHODS

Due to the parallelogram law in Euclidean space, the centroid-based formulation of the K-means
clustering problem in (1) has an equivalent partition-based formulation (cf. Zhuang et al. (2022)) as

max
G1,...,GK

{ K∑
k=1

1

|Gk|
∑

i,j∈Gk

⟨Xi, Xj⟩ :
K⊔

k=1

Gk = [n]
}
, (2)

where the Euclidean inner product ⟨Xi, Xj⟩ = XT
i Xj represents the similarity between the vectors

Xi and Xj , the clusters (Gk)
K
k=1 form a partition of the data index [n], |Gk| denotes the cardinality

of Gk and ⊔ denotes disjoint union. The objective function in (2) is the log-likelihood function of the
cluster labels (modulo constant) by profiling out the centroids in (1) as nuisance parameters under
the standard Gaussian mixture model with a common isotropic covariance matrix across all the K
components (Zhuang et al., 2023). Using the one-hot encoding of the partition G1, . . . , GK , we
can uniquely associate it (up to label permutation) with a binary assignment matrix H = (hik) ∈
{0, 1}n×K such that hik = 1 if i ∈ Gk and hik = 0 otherwise. Then the K-means clustering
problem in (2) can be written as a mixed integer program (MIP) as follows:

min
H

{
⟨A,HBHT ⟩ : H ∈ {0, 1}n×K , H1k = 1n

}
, (3)

where A = −XTX is the n × n negative Gram matrix of the data Xp×n = (X1, . . . , Xn), B =
diag(|G1|−1, . . . , |GK |−1) is a normalization matrix and the constraint H1k = 1n with 1n being
the n-dimensional vector of all ones reflects the row sum constraint of assignment, i.e., each row of
H contains exactly nonzero entry with value one.

It is well-known that the problem in (3) is NP-hard in the worst-case (Dasgupta, 2007; Aloise et al.,
2009), so various relaxations for the K-means constraint are formulated in the literature to tractably
approach problem (3) with the same objective function. Popular methods include: (i) spectral
clustering (von Luxburg, 2007; Ng et al., 2001) which only maintains the weakened orthonormal
constraint H̃T H̃ = IK for H̃ := HB1/2; (ii) nonnegative matrix factorization (NMF) (He et al.,
2011; Kuang et al., 2015) which only enforces the elementwise nonnegativity constraint on H̃ ≥ 0;
(iii) semidefinite programming (SDP) (Peng and Wei, 2007; Royer, 2017; Giraud and Verzelen, 2018)
which reparameterizes the assignment matrix H as the positive semidefinite (psd) membership matrix
Z := HBHT ⪰ 0 and additionally preserves the constraints tr(Z) = K, Z1n = 1n and Z ≥ 0,
namely we solve

min
Z∈Sn+

{
⟨A,Z⟩ : tr(Z) = K, Z1n = 1n, Z ≥ 0

}
, (4)

where Sn+ stands for the convex cone of the n× n real symmetric psd matrices.

Among those popular relaxations, the SDP approach enjoys the strongest statistical guarantees under
the Gaussian mixture model (14). It is shown by Chen and Yang (2021) that the above SDP achieves
an information-theoretic limit for exact recovery of the true cluster partition. Precisely, the sharp
threshold on the centroid-separation for phase transition is given by

Θ
2
= 4σ2

(
1 +

√
1 +

Kp

n log n

)
log n (5)

in the sense that for any α > 0 and K = O(log(n)/ log log(n)), if the minimal centroid-separation
Θmin := min1≤j ̸=k≤K ∥µj − µk∥2 ≥ (1 + α)Θ, then with high probability solution of (4) is unique
and it perfectly recovers the cluster partition structure; while if Θ ≤ (1− α)Θ, then the maximum
likelihood estimator (and thus any other estimator) fails to exactly recover the cluster partition.
In simpler words, the SDP relaxed K-means optimally solves the clustering problem with zero
mis-clustering error as soon as it is possible to do so, i.e., there is no relaxation gap.
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It is important to point out that Θmin → ∞ is necessarily needed to achieve exact recovery with
high probability. When the centroid-separation diverges, spectral clustering is shown to achieve the
minimax mis-clustering error rate exp(−(1 + o(1))Θ2

min/8) under the condition p = o(nΘmin) (or
p = o(nΘ2

min) with extra assumptions on singular values of the population matrix E[X]) (Löffler
et al., 2021). This result implies that, in the low-dimensional setting, spectral clustering asymptotically
attains the sharp threshold (5) as lim infn→∞

Θ2
min

8 log n > 1. However, it remains unclear how spectral
cluster performs in theory under the high-dimensional regime when nΘ2

min = O(p) because running
K-means on the eigen-embedded data would also depend on the structure of the population singular
values (Han et al., 2023). Thus, in practice, spectral clustering is less appealing for high dimensional
data, in view of more robust alternatives such as the SDP relaxation in (4).

Despite the K-means clustering problem solved via SDP enjoys statistical optimality, it optimizes
over an n × n dense psd matrix to make it completely inaccessible to practical datasets with
even moderate size of a few thousand data points. By contrast, the NMF approach using a typical
workstation hardware can handle much larger scale datasets as in the documents and images clustering
applications (Cichocki and Phan, 2009; Kim et al., 2014; Xu et al., 2003). Nonetheless, little is
known in the literature about the provable statistical guarantee for a general NMF approach. For the
clustering problem, our goal is to break the computational and statistical bottleneck by simultaneously
leveraging the implicit psd structure of the membership matrix and nonnegativity constraint. In
Section 3, we propose a novel NMF-like algorithm that achieves statistical optimality by solving a
nonnegative low-rank restricted SDP formulation.

3 OUR PROPOSAL: K-MEANS VIA NONNEGATIVE LOW-RANK SDP

The non-negative low-rank (NLR) factorization is a nonconvex approach for solving SDP when its
solution is expected to be low rank (Burer and Monteiro, 2003). Standard SDP problem with only
equality constraints on the psd matrix variable Z ∈ Sn+ can be factorized as Z = UUT where U is
an n × r matrix with r ≪ n. In our SDP relaxed K-means formulation (4), the true membership
matrix Z∗ is a block diagonal matrix containing K blocks, where each block has size nk × nk with
all entries equal to n−1

k and nk = |G∗
k| is the size of the true cluster G∗

k. Thus we can exploit this
low-rank structure and recast the SDP in (4) as a nonconvex optimization problem over U ∈ Rn×r:

min
U∈Rn×r

{
⟨A,UUT ⟩ : ∥U∥2F = K, UUT1n = 1n, U ≥ 0

}
, (6)

where we replaced the constraint UUT ≥ 0 with the stronger constraint U ≥ 0 that is easier to
enforce (Kulis et al., 2007) as in the NMF setting. Note that the NLR reformulation (6) can be viewed
as a restriction of the rank-constrained SDP formulation since U ≥ 0 implies Z = UUT ≥ 0. Even
though the NLR method turns a convex SDP into a nonconvex problem, it leverages the low-rank
structure to achieve substantial computational savings. In addition, the solution Û to (6) has a
natural statistical interpretation: rows of Û can be interpreted as latent positions of n data points
when projected into Rr, and thus can be used to conduct other downstream data analyses in reduced
dimensions. Under this latent embedding perspective, formulation (6) can be viewed as a constrained
PCA respecting the clustering structure through constraint ∥U∥2F = K.

The NLR formulation (6) also has a close connection to a class of NMF-based clustering algorithms,
which instead solve the following optimization problem

min
U∈Rn×r

{
∥A+ UUT ∥2F : U ≥ 0

}
. (7)

The NMF formulation (7) is advocated in a number of papers (Ding et al., 2005; Kuang et al., 2015;
Zhu et al., 2018) for data clustering in the NMF literature due to its remarkable computational
scalability, and is equivalent to a simpler version of (6) by dropping the two equality constraints.
Our empirical results in Section 5 and Figure 1 show that keeping these two equality constraints is
beneficial: the resulting method significantly improves the classification accuracy while maintaining
comparable computational scalability. More importantly, we have the theoretical certification that
the resulting method from (6) achieves the information-theoretic limit for exact recovery of the true
cluster labels (see Section 4).

We will now derive a simple primal-dual gradient descent-ascent algorithm to solve the NLR formu-
lation in (6). To begin, note that we can first turn the nonsmooth inequality constraint U ≥ 0 together
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Algorithm 1 Primal-dual algorithm for solving NLR formulation (6) of K-means clustering
Input. Dissimilarity matrix A = −XTX , clustering parameter K ≥ 1, rank parameter r ≥ K,
augmentation parameter β > 0, step size α > 0.
Output. A second-order locally optimal point U .
Algorithm. Initialize y = 0. Do the following:

1. (Primal descent; projected gradient descent steps) Recursively run the following until
convergence: U0 = U ; for t ∈ N,

U t+1 = ΠΩ

(
U t−α∇ULβ(U

t, y)
)

with ΠΩ(V ) =
√
K·(V )+/∥(V )+∥F , ∀V ∈ Rn×r,

where∇ULβ(U
t, y) = (2A+ 2L · Id + 1ny

T + y1T
n )U

t and y = y+ β(U tU tT1n − 1n).
Upon convergence at iteration count t0, set Unew = U t0 .

2. (Dual ascent; augmented Lagrangian step) Update dual variable via

ynew = y + β(UnewU
T
new1n − 1n).

3. (Stopping criterion) If max{∥Unew − U∥F , ∥UnewU
T
new1n − 1n∥F } falls below some

tolerance threshold, then return Unew. Otherwise, set U ← Unew and y ← ynew, and repeat
Steps 1 and 2.

with the trace constraint to the subset
Ω := {U ∈ Rn×r : ∥U∥2F = K, U ≥ 0}. (8)

The projection operator to Ω can be easily computed as

ΠΩ(V ) := arg min
U∈Ω
∥U − V ∥F =

√
K · (V )+
∥(V )+∥F

, (9)

where (V )+ = max{V, 0} denotes elementwise positive part of V . Then the NLR can be converted
to the equality-constrained problem over Ω:

min
U∈Ω

{
⟨A,UUT ⟩ : UUT1n = 1n

}
. (10)

Using the standard augmented Lagrangian method (Nocedal and Wright, 2006, Chapter 17), we see
that the above (6) is also equivalent to

min
U∈Ω

{
⟨L · Idn +A,UUT ⟩+ β

2
∥UUT1n − 1n∥22 : UUT1n = 1n

}
, (11)

where β > 0 is a penalty parameter and L ∈ (0, λ) for some proper choice of λ motivated from the
optimal dual variable for the trace constraint ∥U∥2F = tr(Z) = K. The augmented Lagrangian for
problem (11) is

Lβ(U, y) := ⟨L · Idn +A,UUT ⟩+ ⟨y, UUT1n − 1n⟩+
β

2
∥UUT1n − 1n∥22. (12)

Therefore, we consider the augmented Lagrangian iterations

Unew = arg min
U∈Ω
Lβ(U, y), ynew = y + β(UnewU

T
new1n − 1n). (13)

Now, we consider minimizing Lβ(U, y) over U , with a fixed β and y. Here, we observe that Lβ(U, y)
is a quartic polynomial over U , and therefore its gradient can be easily derived as ∇ULβ(U, y) =
(2A+ 2L · Id + 1ny

T + y1T
n )U where y = y + β(UUT1n − 1n). Combining this with the insight

that it is easy to project onto Ω, we can perform the following projected gradient descent iterations
Unew = ΠΩ(U − α∇ULβ(U, y))

until Lβ(U, y) is minimized. The complete algorithm is summarized in Algorithm 1, whose per
iteration time and space complexity are both O(nr). We point out that the NMF formulation (7) is
a simpler version of our NLR formulation (6), a projected gradient descent algorithm for solving
the former corresponds to the primal decent step of Algorithm 1 with y = 0, β = 0 and a simpler
projection operator ΠRn×r

+
(V ) = (V )+. Upon obtaining the optimal solution U , a rounding procedure

will be applied. More details about the rounding procedure and the choice of tuning parameters are
mentioned in Appendix A.
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4 THEORETICAL ANALYSIS

In this section, we establish the local linear convergence rate of the NLR algorithm (Algorithm 1) for
solving the K-means clustering. We shall work with the standard Gaussian mixture model (GMM)
that assumes the data X1, . . . , Xn are generated from the following mechanism: if i ∈ G∗

k, then

Xi = µk + εi, (14)

where G∗
1, . . . , G

∗
K is a true (unknown) partition of [n] we wish to recover, µ1, . . . , µK ∈ Rp are the

cluster centers and εi ∼ N(0, σ2Ip) are i.i.d. Gaussian noises. Let nk = |G∗
k| denote the size of

G∗
k and by convention n0 = 0. Since in the exact recovery regime (Assumption A below), there is

no relaxation gap — any global optimum U∗ of the NLR problem (4) at r = K corresponds to the
unique global optimum Z∗ of the SDP problem (6) through the relation Z∗ = U∗U∗T , it is sufficient
to focus our analysis on the r = K case. We note that the r = K case corresponds to an exact
parameterization of the matrix rank, which is standard in the analysis of algorithms based on the
NLR formulation (Ge et al., 2017; Chi et al., 2019).

Algorithm 1 is formulated as an exact augmented Lagrangian method, in which the primal subproblem
minU∈Ω Lβ(U, y) in Step 1 is solved to sufficiently high accuracy (i.e., machine precision) as to
be viewed as an exact solution for Step 2.1 This contrasts with inexact methods, in which the
primal subproblem over U is only solved to coarse accuracy (i.e., 1-2 digits), usually owing to slow
convergence in Step 1. We will soon prove in this section that projected gradient descent enjoys rapid
linear convergence within a local neighborhood of the primal-dual solution, and it is therefore very
reasonable to run Step 1 until it reaches the numerical floor.

Under exact minimization in Step 1, it is a standard result that the dual multipliers converge at a linear
rate in Step 2 under second-order sufficiency conditions. This, in turn, implies the linear convergence
of the primal minimizers in Step 1 towards the true solution. The wording for the following is taken
directly from Proposition 1 and 2 of Bertsekas (1976), though a more modern proof without constraint
qualification assumptions is given in Fernández and Solodov (2012). (See also Bertsekas (2014,
Proposition 2.7)) More details and explanations can be found in Appendix A.
Proposition 1 (Existence and quality of primal minimizer). Let U∗ denote a local minimizing
point that satisfies the second-order sufficient conditions for an isolated local minimum with respect
to multipliers y∗. Then, there exists a scalar β∗ ≥ 0 such that, for every β > β∗ the augmented
Lagrangian Lβ(U, y) has a unique minimizing point U(y, β) within an open ball centered at U∗.
Furthermore, there exists some scalar M > 0 such that ∥U(y, β)− U∗∥F ≤ (M/β)∥y − y∗∥.
Proposition 2 (Linear convergence of dual multipliers). Under the same assumptions as Proposi-
tion 1, define the sequence

yk+1 = yk + β(UkU
T
k 1n − 1n) where Uk = U(yk, β) ≡ argmin

U
Lβ(U, yk).

Then, there exists a radius R > 0 such that, if ∥y0 − y∗∥ ≤ R, then yk → y∗ converges linearly

lim sup
k→∞

∥yk+1 − y∗∥
∥yk − y∗∥

≤ M

β
.

Propositions 1 and 2 are directly applicable to Algorithm 1 when r = K, because the global minimum
U∗ is made isolated by the nonnegativity constraint U ≥ 0. In fact, it is possible to generalize both
results to all r ≥ K, even when the global minimum U∗ is no longer isolated, although this would
require further specializing Propositions 1 and 2 to our specific problem. The key insight is that, in
the r > K case, the closest global minimum U∗ to the current iterate U continues to satisfy all the
properties satisfied by the isolated global minimum when r = K. This is essentially the same idea as
(Ge et al., 2017, Definition 6) and (Chi et al., 2019, Lemma 4). Nevertheless, we leave the extension
to the r > K case as future work and focus on the r = K case in this paper.

In view of Propositions 1 and 2, all of the difficulty that remains is to show that projected gradient
descent is able to solve the primal subproblem minU∈Ω Lβ(U, y) efficiently. Below is our main
theorem for establishing the local linear rate of convergence of the proposed NLR solution for
K-means clustering under GMM. In fact, this local linear convergence result holds for all r ≥ K.

1Note that with finite precision arithmetic, any “exact solution” is exact only up to numerical precision. Our
use of “exact” in this context is consistent with the classical literature, e.g., Bertsekas (1976).
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Assumption A (Exact recovery regime). For notation simplicity, we consider the equal cluster size
case, where the minimal separation Θmin := min1≤j ̸=k≤K ∥µj − µk∥2 satisfies Θmin ≥ (1 + α̃)Θ

for some α̃ > 0, where Θ is the information-theoretic optimal threshold given in (5).

In Appendix C, we provide the theorem (Theorem 9 in Appendix C.4) for the general case where
the cluster sizes are unbalanced (Assumption 1 in Appendix C.3). Analogous to the minimal
separation, we define the maximal separation Θmax := max1≤j ̸=k≤K ∥µj − µk∥2. For any block
partition sizes m = (m1,m2, . . . ,mK) satisfying mk ≥ 1,

∑
k mk = r, we let Gm denote the

set of all m-block diagonal matrices with nonnegative entries (see Appendix C.1 for a precise
definition). For any within block weights ak = (ak,1, ak,2, . . . , ak,mk

), we also let Ua,∗ denote the
associated optimal solution, defined as (17) in Appendix C.1. Let a = mink∈[K] minℓ∈[mk]{ak,ℓ},
ā = maxk∈[K] maxℓ∈[mk]{ak,ℓ}, and Or be the orthogonal transformation group on Rr. We will
consider a fixed dual variable ỹ that is close to y∗. Let U0 denote the initialization of the algorithm,
and Ũ denote the unique stationary point2 of the projected gradient descent updating formula under
this dual value ỹ, i.e., Ũ satisfies Ũ = ΠΩ

(
Ũ − α∇ULβ(Ũ , ỹ)

)
.

Theorem 1 (Local convergence of projected gradient descent). Suppose y∗ is the optimum
dual for the SDP problem (see Assumption 2 in Appendix C.3) and Assumption A holds. Assume
p = O(

√
n log n), Θmax ≤ CΘmin, for some C > 0, and there exists some block partition sizes m

and an associated optimal solution Ua,∗ satisfying ā ≤ ca, c > 0. Moreover, assume that the tuning
parameters (L, β) in augmented Lagrangian (12) satisfy β = O(Θ2

min/K
3), L = O(nΘ2

min/K)
and step size α of the projected gradient descent satisfies α−1 = O(K2nΘ2

min). If ∥ỹ − y∗∥ ≤ δ for
some δ > 0, and the initialization discrepancy ∆0 = U0 − Ua,∗ satisfies
∥∆0

S(a)c∥∞ = O(K/
√
nr) and ∥∆0∥F = O

(
r−0.5K−5.5 min{1, K−2.5Θ2

min/ log n)}
)
,

then it holds with probability at least 1− c1n
−c2 that for any t ≥ I = O(K3),

U t ∈ Gm and inf
Q∈Or;ŨQ∈Gm

∥U t+1 − ŨQ∥F ≤ γ inf
Q∈Or;ŨQ∈Gm

∥U t − ŨQ∥F ,

for γ = 1−O(K−6). Here, c1 and c2 are some constants.

Proof sketches. The proof strategy is to divide the convergence of the projected gradient descent for
solving the primal subproblem into two phases. In phase one, we show that after at most I iterations,
the iterates will become block diagonal, that is, fall into set Gm provided that the initialization is
close to certain optimum point with some block diagonal form in Gm. We then show that once
the iterate becomes m-block diagonal, the algorithm enters phase two, where the iterate remains
m-block diagonal. Moreover, the projected gradient descent attains a linear convergence rate, since
the objective function L( · , ỹ) is restricted strongly convex at Ũ within Gm. More precisely, there
exists some β̃ > 0, such that for any U ∈ Gm, we have

⟨∇2
UL(Ũ , ỹ)[∆],∆⟩ ≥ β̃ ∥∆∥2F , for ∆ = UQT

U − Ũ ,

where QU = argminQ∈Or;ŨQ∈Gm
∥U − ŨQ∥F . More details can be found in Appendix C.

Implications of the theorem. According to Theorem 1, if we choose L = O(nΘ2
min/K), β =

O(Θ2
min/K

3) and α−1 = O(K2nΘ2
min), then phase one will last at most I = O(K3) iterations; and

after entering phase two, the contraction rate of the projected gradient descent is γ = 1−O(K−6).
These choices make the iteration complexity of the projected gradient descent for solving the primal
subproblem of order O(K6) (modulo logarithmic factors), and the overall time complexity of the
primal-dual algorithm becomes of order O(K6nr). In addition, given that the stationary point Ũ
satisfies ∥Ũ∥∞ = O(

√
K/n) and ∥Ũ∥F = O(

√
K), the initialization condition only demands a

constant relative error with respect to n, making it a reasonable requirement. For example, under
mild conditions, rapid K-means algorithms like Lloyd’s algorithm (Lloyd, 1982; Lu and Zhou, 2016)
can be employed to construct an initialization that meets this condition with high probability. ■

5 NUMERICAL EXPERIMENTS

We present numerical results to assess the effectiveness of the proposed NLR method. We first conduct
two simulation experiments using GMM to evaluate the convergence and compare the performance

2Note that its existence and uniqueness is guaranteed in the proof of Theorem 1 when ỹ is close to y∗.
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Figure 2: Log-scale plots with error bars of mis-clustering error (leftmost) and time cost (in the middle) as
sample size n increases and the convergence of NLR over iterations (rightmost). The plots are partial for SC
(SDP) due to their huge space (time) complexity when the sample size is large.

of NLR with other methods. Then, we perform a comparison using two real datasets. One of the
competing methods in our comparison is clustering based on solving the NMF formulation (7).
Specifically, we employ the projected gradient descent algorithm, which is a simplified version of
Algorithm 1 discussed in Section 3, to implement this method. We adopt random initialization and
set the same r for both NMF and NLR to ensure a fair comparison. Finally, we conduct further
experiments on three datasets in UCI.

Performance for NLR for GMM. Our goal is to compare the statistical performance and time
complexity of NLR, NMF, the SDPNAL+ solver (Yang et al., 2015) for solving SDP, spectral
clustering (SC), and K-means++ (KM) under GMM. In our setting, we choose cluster numbers
K = 4 and place the centers of Gaussian distributions at the vertices of a simplex such that
Θ2

min = γΘ
2

with γ = 0.64, where Θ is the sharp threshold defined in Equation (5). The sample
size ranges from n = 400 to n = 57, 600, the dimension is p = 20, and we set the rank parameter
of the NLR to be r = 2K. The results are summarized in the first two plots of Figure 2, with each
case repeated 50 times. From the first plot, we observe that the mis-clustering error of SDP and
NLR coincides; the error remains stable and decreases as the sample size n increases. However,
NMF, KM, and SC exhibit large variances and are far from achieving exact recovery. The second
plot indicates that SDP has super-linear time complexity, while the log-scale curves of our NLR
approach, KM, and NMF are nearly parallel, indicating that they all achieve linear time complexity.
In particular, SDP becomes time-consuming when n is larger than 2, 000. Further comparisons of
statistical performance and time complexity with increasing dimension p or varying numbers of
clusters K can be found in Appendix B.

Linear convergence of NLR. To analyze the convergence of Algorithm 1, we maintain the same
setting as described earlier. However, we now fix n = 1, 000 and consider minimum distance
between centers Θ2

min = γΘ
2

with γ = 1.44. We explore three cases: r = K, r = 2K, and
r = 20K, and set the number of iterations for Step 1 (primal update) to be 100. The convergence
of our NLR approach is shown in the third plot of Figure 2, with each result based on 30 replicates.
We measure the relative difference of U compared to optimal solution U∗ using the Frobenius
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Figure 3: Boxplots of mis-clustering error (with means) for CyTOF dataset (on the left) and CIFAR-10 (on the
right) among five different methods. The plots are partial for SC (SDP) due to their huge space (time) complexity
when the sample size is large.
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Table 1: Mis-clustering error (SD) for clustering three datasets in UCI: Msplice, Heart and DNA. We
randomly sample n = 1, 000 (n = 300 for Heart) many data points for 10 replicates. DNA1 (DNA2)
stands for the perturbation with t-distribution (skewed normal distribution) random noise.

NMF KM NLR SC SDP
Msplice 0.372 (0.073) 0.283 (0.112) 0.161 (0.034) 0.288 (0.024) 0.194 (0.091)

Heart 0.470 (0.024) 0.348 (0.057) 0.230 (0.014) 0.472 (0.011) 0.248 (0.007)
DNA 0.449 (0.063) 0.294 (0.082) 0.188 (0.020) 0.291 (0.014) 0.196 (0.022)
DNA1 0.416 (0.048) 0.337 (0.084) 0.243 (0.055) 0.326 (0.039) 0.263 (0.044)
DNA2 0.435 (0.061) 0.268 (0.035) 0.235 (0.031) 0.317 (0.025) 0.252 (0.040)

norm ∥UUT − U∗(U∗)T ∥F /∥U∗(U∗)T ∥F . From the third plot, we observe that our NLR approach
achieves linear convergence in this setting. The curves overlap closely, indicating that the choice of r
does not significantly affect the convergence rate. Additional experiments for the comparison of the
convergence rate between our algorithm (based on projected gradient descent) and the conventional
algorithm (which lifts all constraints into the Lagrangian function) can be found in Appendix B.

CyTOF dataset. This mass cytometry (CyTOF) dataset consists of protein expression levels for
N = 265, 627 cells with p = 32 protein markers. The dataset contains 14 clusters or gated cell
populations. In our experiment, we select the labeled data for individual H1. From these labeled data,
we uniformly sample n data points from K = 4 unbalanced clusters, specifically clusters 2, 7, 8, and
9, which together contain a total of 46, 258 samples. The results are presented in Figure 3, where we
conduct all methods for 100 replicates for each value of n. We consider two cases: case 1 corresponds
to n = 1800 and case 2 corresponds to n = 46, 258. From the plot, we observe that NLR and SDP
remain stable, while KM exhibits significant variance, and NMF produces many outliers. In case
1, the mis-clustering error of NLR is comparable to that of SDP, indicating that the performance of
NLR can be as good as SDP. However, when n is on the order of 1, 000, the time complexity of SDP
becomes dramatically high, which is at least O(n3.5).

CIFAR-10 dataset. We conduct a comparison of all methods on the CIFAR-10 dataset, which
comprises 60,000 colored images of size 32× 32× 3, divided into 10 clusters. Firstly, we apply the
Inception v3 model with default settings and perform PCA to reduce the dimensionality to p = 50.
The test set consists of 10,000 samples with 10 equal-size clusters. In our experiment, we focus on
four clusters ("bird", "deer", "ship", and "truck") with K = 4. We consider two cases: case 1 involves
random sub-sampling with n = 1, 800 to compare NLR with SDP, and case 2 uses n = 4, 000. The
results are displayed in the second plot of Figure 3, based on 100 replicates. Similar to the previous
experiment, we observe that NLR and SDP exhibit similar behavior and achieve superior and more
consistent performance compared to KM, SC, and NMF. NMF displays significant variance, while
KM, SC produce many outliers.

UCI datasets. To empirically illustrate the advantages and robustness of our method against the
GMM assumption, we conduct further experiments on three datasets in UCI: Msplice, Heart and
DNA. The results of mis-clustering errors (with standard deviation) are summarized in Table 1,
where we randomly sample n = 1, 000 (n = 300 for Heart dataset) many data points for a total 10
replicates. From the table we can observe the superior behavior of NLR (our algorithm) and SDP
over the rest competitors. DNA1 (DNA2) stands for the results of DNA dataset after perturbation
with t-distribution (skewed normal distribution) random noise. In both experiments, each data point
xi is perturbed with xi + 0.2ϵi. In the first experiment (DNA1), the injected noise ϵi is i.i.d. random
vector with i.i.d. entries following t-distribution with 5 degree of freedom, which has a much heavier
tail than the normal. In the other experiment (DNA2), the injected noise follows a skewed normal
distribution with variance 1 and skewness 0.2. From the table we can observe that, compared to DNA,
the performances of all methods for DNA1 and DNA2 are impacted; but NLR performs better around
all cases, which is comparable with the original SDP as expected. Moreover, from the QQ-plots of
Figure 5 in Appendix B, the GMM assumption is also clearly violated for the Heart dataset; however,
we can still observe the superior behavior of NLR (our algorithm) and SDP over the rest competitors.
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SUPPLEMENTARY MATERIAL

This supplementary material provides additional details of the algorithm and propositions, further
experimental results, the proof of the main theoretical result (Theorem 1) presented in the paper and
a concluding discussion.

A ADDITIONAL DETAILS OF THE ALGORITHM AND PROPOSITIONS

Choices of tuning parameters and rounding procedure for Algorithm 1. In practice, we start
with small step size α = 10−6 and increase α until α = 10−3. Similarly, we start with a small
augmentation term β = 1 and increase β until β = 103. The second experiment shows that the choice
of r does not significantly affect the convergence rate. In practice, we found that r = K will result in
many local minima for small separations. Therefore, we slightly increase r and choose r = 2K for
all applications, which turns out to provide desirable statistical performance that is comparable to or
slightly better than SDP.

After getting the second-order locally optimal point U in Algorithm 1 (NLR), a rounding procedure
is applied, where we extract the first K eigenvectors of U as columns of new matrix V and then
use K-means to cluster the rows of V to get the final assignments. The same rounding procedure is
applied to the outputs from both SDP and NMF.

Additional explanations to the propositions. Proposition 1 indicates that if U∗ is the local minimum
of problem (6) that satisfies constraint qualification assumptions (Assumption (S) in Bertsekas (1976)),
then we can get unique minimizing point around U∗ of augmented Lagrangian Lβ(U, y) for any
y provided that we have large augmented coefficient β. A more modern proof without constraint
qualification assumptions is given in Fernández and Solodov (2012). Proposition 2 indicates that the
dual variable yk in Algorithm 1 will converge to y∗ at exponential rate locally provided that Uk solves
minU Lβ(U, yk). Therefore, Algorithm 1 can achieve a local exponential rate provided that we can
solve the local min of Lβ(U, y) for y ≈ y∗ with an exponential rate, which is proved by Theorem 1.

B ADDITIONAL EXPERIMENTAL RESULTS

Comparison of different ways to solve NLR. We conduct an experiment under the same settings
as described in Section 5’s “Linear convergence of NLR" except that here we consider a smaller
scale with n = 300 and p = 4. We aimed to compare the convergence rate towards the optimum
per dual update between our algorithm (based on projected gradient descent) and the conventional
algorithm (which lifts all constraints into the Lagrangian function). As seen in Figure 4, our algorithm
successfully converges to the SDP solution, whereas the conventional algorithm’s convergence halts
at a specific step. Furthermore, the average time required to compute the minimum of the augmented
Lagrangian (as denoted by (12) in the main paper) is 0.002 seconds for our algorithm. In contrast,
the conventional algorithm takes an average of 8 seconds, even when employing the state-of-the-art
limited memory BFGS method.

Comparison of computational complexity w.r.t. K. Here we want to compare the time complexity
of NLR, NMF, the SDPNAL+ solver (Yang et al., 2015) for solving SDP, spectral clustering (SC),
and K-means++ (KM) under Gaussian mixture models (GMM) when the number of cluster K is
moderate in practice. Under the same setting as our second experiment (“Performance for NLR for
GMM”) in Section 5, except that now we consider fixed sample size n = 1000, dimension p = 50,
and different number of clusters K = 5, 10, 20, 40, 50. The results are summarized in the first plot of
Figure 6, where we can observe that the log-scale curve of NLR is nearly parallel to the log-scale
curve of KM and NMF, indicating that the growth of CPU time cost for NLR with respect to K is
reasonable (nearly O(K)) and would not achieve the loose upper bound O(K6) derived from the
analysis. The curve of computational time cost for SDP is relatively stable for different K since the
dominant term of computational complexity for SDP is the sample size n, which is of as large as
order O(n3.5).

Performance of NLR under different p. Our goal is to compare the statistical performance and time
complexity of NLR, NMF, the SDPNAL+ solver (Yang et al., 2015) for solving SDP, and K-means++
(KM) with increasing dimension p. Here we consider the same setting as our second experiment
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Figure 4: Log-scale plots of the convergence of NLR algorithms over iterations per dual update.
Left: the NLR algorithm where the Lagrangian function contains all constraints and the minimum of
the augmented Lagrangian function is solved based on limited memory BFGS. Right: Our algorithm
where the minimum of the augmented Lagrangian function is solved based on projected GD.

Figure 5: QQ-plots for Heart dataset. The first (second) row corresponds to three randomly selected
covariates for the first (second) cluster in the Heart dataset.

“Performance for NLR for GMM” in Section 5 except that now we consider fixed sample size
n = 2500. The dimension ranges from p = 125 to p = 1000. The results are summarized in Table 2
and the second plot of Figure 2, with each case repeated 10 times. From Table 2 we observe that
the mis-clustering errors for both SDP and NLR coincide and stay optimal when the dimension p
increases, while K-means++ has large variance and NMF would fail when the dimension is as large
as p = 1000. The second plot in Figure 2 shows that the log-scale curve for NLR is nearly parallel to
the log-scale curves for both KM and NMF. This indicates the same order of CPU time cost with
respect to the dimension p for NLR, KM and NMF, which are nearly of order O(p). Similar to the
case when K changes, the curve of computational time cost for SDP is relatively stable for different
p since the dominant term of computational complexity for SDP is the sample size n.
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Figure 6: Log-scale plots with error bars of computational cost with increasing number of clusters K
(left) and computational cost with increasing dimension p (right). NLR corresponds to our proposed
method, KM corresponds to K-means++, SDP uses the SDPNAL+ solver, and NMF corresponds to
non-negative factorization.

Table 2: Mis-clustering error (SD) vs dimension p for different methods.

p 125 250 500 1000
SDP 0.0018 (0.0008) 0.0024 (0.0010) 0.0037 (0.0005) 0.0024 (0.0009)
NLR 0.0018 (0.0008) 0.0024 (0.0010) 0.0037 (0.0005) 0.0024 (0.0009)
KM 0.0754 (0.1647) 0.0721 (0.1556) 0.0634 (0.1332) 0.1244 (0.1688)

NMF 0.0728 (0.1594) 0.0026 (0.0010) 0.0037 (0.0007) 0.7496 (0)

C PROOF OF THEOREM 1

In this section, we prove the theorem for the general case with explicit constants, which extends
Theorem 1 from the equal cluster size case to the unequal cluster size case (Theorem 9). The
section is organized as follows. First, we will introduce the notations that will be used in the
proof (Appendix C.1). Then, we characterize the optimum feasible solutions of the NLR algorithm
(Theorem 2 in Appendix C.2). Next, we present the convergence results at the optimum dual
y = y∗ (Appendix C.3). After that, we extend the proof of convergence at the optimum dual to
y ≈ y∗ (Appendix C.4). The proofs of all technical lemmas are placed at the end of the section
(Appendix C.5).

C.1 NOTATIONS

We shall work with the standard Gaussian mixture model (GMM) that assumes the data X1, . . . , Xn

are generated from the following mechanism: if i ∈ Gk, then

Xi = µk + εi, (15)

where G1, . . . , GK is a true (unknown) partition of [n] we wish to recover, µ1, . . . , µK ∈ Rp are the
cluster centers and εi ∼ N(0, σ2Ip) are i.i.d. Gaussian noises. Let nk = |Gk| denote the size of Gk.
Let Z∗ = U∗(U∗)T , where

U∗ =


1√
n1

1n1
0 · · · 0 0 · · · 0

0 1√
n2

1n2
· · · 0 0 · · · 0

...
...

. . .
... 0

...
...

0 0 · · · 1√
nK

1nK
0 · · · 0

 ∈ Rn×r. (16)
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Define the minimum of cluster size n := mink∈[K]{nk}, the maximum of cluster size
n̄ := maxk∈[K]{nk} and m = mink ̸=l

2nknl

nk+nl
. Define the minimal separation Θmin :=

min1≤j ̸=k≤K ∥µj − µk∥2, and the maximal separation Θmax := max1≤j ̸=k≤K ∥µj − µk∥2. For
any block partition sizes m = (m1,m2, . . . ,mK) satisfying mk ≥ 1,

∑
k mk = r, we define the set

Fm as consisting of all (orthogonal transformation) matrices Q such that U = U∗Q has the form
a1,11n1 , . . . , a1,m11n1 0 · · · 0

0 a2,11n2 , . . . , a2,m21n2 · · · 0
...

...
. . .

...
0 0 · · · aK,11nK

, . . . , aK,mK
1nK

 , (17)

for some
∑

l a
2
k,l =

1
nk

, ∀k ∈ [K],
∑

k mk = r. We will call any matrix U whose sparsity/nonzero
pattern coincides with (17) (up to column permutations) as an m-block diagonal matrix. Let Gm
denote the set of all m-block diagonal matrices with nonnegative entries. Note that Q exists for any
U of the form since UUT = (U∗)(U∗)T . We denote the set of all such Q as Fm. Now we denote
ak = (ak,1, ak,2, . . . , ak,mk

) and Ua,∗ as (17). Define a := mink,l{ak,l}, ā := maxk,l{ak,l}. For
any matrix A ∈ Rn×r, we use AS(a) to denote the matrix of the same size as the restriction of A
onto the support S(a) of Ua,∗, that is, [AS(a)]ij = Aij if [Ua,∗]ij ̸= 0 and [AS(a)]ij = 0 otherwise;
and let AS(a)c = A−AS(a). Let Or be the orthogonal transformation group on Rr.

Let ΠΩ be the projection map on to the set Ω. i.e.,

v = ΠΩ(u)⇐⇒ v ∈ Ω, ∥v − u∥ ≤ ∥ũ− u∥, ∀ũ ∈ Ω.

Let C(Ω) to be the convex hull of Ω. Recall that Ω := {U ∈ Rn×r : ∥U∥2F = K,U ≥ 0}. Then
C(Ω) = {U ∈ Rn×r : ∥U∥2F ≤ K,U ≥ 0}. We define

V = ΠΩ(W ), W = U − α∇f(U), α > 0.

In particular, we define Π+(U) to be the positive part of U. Let U0 be the initialization. For t ∈ N+,
we define U t recursively by

U t+1 = ΠΩ

(
U t − α∇ULβ(U

t, y)
)
.

Denote Q,Qt ∈ Fm as

Q = argminQ̃∈Fm
∥U − U∗Q̃∥F , Qt = argminQ̃∈Fm

∥U t − U∗Q̃∥F , ∀t ∈ N.

C.2 CHARACTERIZATION OF GLOBAL OPTIMA OF NLR PROBLEM

Theorem 2 (Feasible solutions). For any U ∈ Rn×r such that UUT = Z∗ and U ≥ 0, U must take
the following block form (up to column permutations), due to the nonnegative constraint U ≥ 0:

U =


a1,11n1 , . . . , a1,m11n1 0 · · · 0

0 a2,11n2 , . . . , a2,m21n2 · · · 0
...

...
. . .

...
0 0 · · · aK,11nK

, . . . , aK,mK
1nK

 , (18)

for some block partition sizes m = (m1,m2, . . . ,mK) satisfying mk ≥ 1,
∑

k mk = r and within
block weights ak = (ak,1, ak,2, . . . , ak,mk

) satisfying ak,ℓ ≥ 0,
∑

ℓ a
2
k,ℓ =

1
nk

for all k ∈ [K].

Proof. Recall

U∗ =


1√
n1

1n1
0 · · · 0 0 · · · 0

0 1√
n2

1n2
· · · 0 0 · · · 0

...
...

. . .
... 0

...
...

0 0 · · · 1√
nK

1nK
0 · · · 0

 .

Then for any Q = [q1, . . . , qr] ∈ Or, the orthogonal transformation group on Rr, we have

U := U∗QT =

[
1
√
n1

q11
T
n1
, . . . ,

1
√
nK

qK1T
nK

]T
.
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U is feasible hence U∗QT ≥ 0 =⇒ qi ≥ 0, ∀i. Note that ⟨qi, qi⟩ = 1, ⟨qi, qj⟩ = 0, ∀i ̸= j, then U
must have the form (18) (up to column permutations). ■

In the rest of the proof, we first show the convergence of projected gradient descent at y∗ as
Theorem 3 below, and then extend the theorem to a general dual variable ỹ in a neighborhood of y∗
in Appendix C.4.

C.3 PROOF OF LINEAR CONVERGENCE WITH y = y∗

We list below the assumption on the minimal separation for the general unequal cluster size case.
This is a generalized version of Assumption A, where cluster sizes are equal:

Assumption 1 (Assumptions for Theorem II.1 in (Chen and Yang, 2021)). If there exist constants
C1 ∈ (0, 1), C3 > 0 such that

log n ≥ (1− C1)
2

C2
1

D1n

m
, C3 ≤

C2
1

(1− C1)2
D2

K
, m ≥ 4(1 + C3)

2

C2
3

,

Θ2
min ≥ Θ

2

a :=
4σ2(1 + 2C3)

(1− C1)2

1 +

√
1 +

(1− C1)2

1 + C3

p

m log n
+D3Rn

 log n,

with

Rn =
(1− C1)

2

(1 + C3) log n

(√
p log n

n
+

log n

n

)
,

where n := mink∈[K]{nk} and m = mink ̸=l
2nknl

nk+nl
. Here D1, D2, D3 are universal constants.

This assumption requires the minimum squared separation Θ2
min to be of order O(log n). Recall that

we use n̄ := maxk∈[K]{nk}, and Θ2
max to denote the maximum squared separation.

Assumption 1 will be reduced to Assumption A in the main paper when the cluster sizes are equal.
This is due to the fact that for any α̃ > 0, we can find C1 and C3 s.t. (1+2C3)

(1−C1)2
< (1 + α̃). Moreover,

m = n/K in this case.

Assumption 2 (The optimum dual y∗). Choose (λ, y∗, B) to be the dual variables of the SDP defined
by equations (20), (21), (22) and (25) in (Chen and Yang, 2021). In particular, λ = p+ C1

4 mΘ2
min;

B ≥ 0, BGk,Gk
= 0, ∀k ∈ [K], and y∗ equals α in (Chen and Yang, 2021).

Theorem 3 (Convergence of projected gradient descent at y∗). Suppose Assumption 1 & 2 hold.
Consider the projected gradient descent updating formula at the dual y∗:

U t = ΠΩ

(
U t−1 − α∇ULβ(U

t−1, y∗)
)
, t ∈ Z+.

If there exists some block partition sizes m and an associated optimal solution Ua,∗ with some within
block weights ak = (ak,1, ak,2, . . . , ak,mk

) satisfying ā ≤ ca, c > 0, such that the initialization
discrepancy ∆0 = U0 − Ua,∗ satisfies

∥∆0
S(a)c∥∞ ≤

C1an

p/Θ2
min +m

and ∥∆0∥F ≤
C3

[1 + C2α(L+ nβ +Θ2
max)]

I

· min

{
n

n
,

anΘ2
min

rn2ā3(L+ nβ + nΘ2
max)

,
(1− γ)anΘ2

min/K

Θmax

√
K log n+ p+ log2 n)

, (1− γ)a
√
n

}
,

where m = mink ̸=l
2nknl

nk+nl
, n = min{nk}, Θmax = max1≤j ̸=k≤K ∥µj−µk∥2, and I = (4α)−1(p+

C1mΘ2
min)

−1. If we take β =
C1anΘ

2
min

16rn2ā3 , L = p +
C1Θ

2
min

4 (m − an2

8rn2ā3 ) in (12) and choose step

size α =
C4an

2Θ2
min

rn2ā3(L+nβ)2 , then it holds with probability at least 1− n−C5 that for any t ≥ I ,

U t ∈ Gm and inf
Q∈Fm

∥U t+1 − U∗Q∥F ≤ γ inf
Q∈Fm

∥U t − U∗Q∥F ,

where γ2 = 1− C6(an
2Θ2

min)
2

(rn2ā3)2(L+nβ)2 and C1, . . . , C6 are universal constants.
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In scenarios where the dimension p is moderate (p = O(
√
n log n)) and the cluster sizes are equal,

the parameters and initialization criteria can be simplified to the expression presented in Theorem 1
once we substitute p = O(

√
n log n) and n̄ = n = n/K. The proof of Theorem 3 consists of four

parts (Appendix C.3.1, C.3.2, C.3.3 and C.3.4). First, we will prove some key propositions which are
derived from the theoretical analysis of K-means SDP (Chen and Yang, 2021) in Appendix C.3.1,
and some important properties of the NLR formulation of the SDP in Appendix C.3.2. Then we will
analyze the behavior of convergence in two phases. For Phase 1 (C.3.3), we will prove a constant
speed convergence (Theorem 4) of the algorithm until it reaches the same block form as the optimum
point, where we call it Phase 2. We then show that the algorithm converges exponentially quickly
to the optimum solution in Phase 2 (Theorem 5, which combined with Phase 1 result leads to the
overall convergence of Projected-GD (Theorem 3). Proofs of all intermediate lemmas are placed in
Appendix C.5.

C.3.1 PROPERTIES FOR SDP

First, we list our main assumptions and propositions from (Chen and Yang, 2021) below. We
will assume Assumption 1 and Assumption 2 to hold throughout the rest of the proof. Recall that
Assumption 1 (general version of Assumption A for the case of unbalanced cluster sizes) requires
the minimal separation Θmin to be larger than a certain threshold (with order O(

√
log n)). The

minimal separation can be interpreted as the signal-to-noise ratio of the clustering problem. Under
such an assumption, the solution of SDP can achieve exact recovery under Gaussian mixture models
(GMM) (Chen and Yang, 2021).

The following propositions are derived from the original SDP problem (Chen and Yang, 2021), which
characterize the bounds for eigenvalues of the matrices related to the dual construction of the original
SDP (Proposition 3, 4 and Corollary 1) that will be used mainly to describe the smoothness of
augmented Lagrangian function (ALF) (Lemma 1) and Hessian of the ALF (Lemma 5). Proposition
5 will be used for characterizing the behavior of the gradient of ALF in Phase 1 at some optimum
point (Lemma 2 and Lemma 3)
Proposition 3. For any v ∈ Rn, define S(v) := vTAv, ΓK := span{1Gk

: k ∈ [K]}⊥, which is the
orthogonal complement of the linear subspace of Rn spanned by the vectors 1G1

, . . . ,1GK
. Then

Lemma VI.1 (Chen and Yang, 2021) implies

P
(

max
v∈ΓK , ∥v∥=1

|S(v)| ≥ (
√
n+
√
p+
√
2t)2

)
≤ e−t, ∀t > 0.

Proof. Refer to the argument after Lemma IV.1 in (Chen and Yang, 2021) (right below equation (26)
in (Chen and Yang, 2021)) The exact formula is showed right above Lemma IV.2 in (Chen and Yang,
2021).
Proposition 4 (Theorem II.1 in (Chen and Yang, 2021)). Define

Wn := λId +
1

2
(y∗1T

n + 1n(y
∗)T )−B +A

If Assumptions 1 and 2 hold, then with high probability the following equation holds:

∥Wn∥op ≤ λ+ C2(n+
√
mp log n), Wn ≻ 0, Wn1Gk

= 0, ∀k ∈ [K]

for some constant C2 > 0. Furthermore, SDP achieves exact recovery with a high probability at least
1−D4K

2n−C3 , for some constant D4.

Proof. Wn ≻ 0, Wn1Gk
= 0, ∀k ∈ [K] and SDP achieves exact recovery have been shown from the

proof of Theorem II.1 in (Chen and Yang, 2021). From the argument after Lemma IV.1 in (Chen
and Yang, 2021) we have the upper bound vTWnv ≤ λ∥v∥2 − T (v). Then from the bound of |T (v)|
(Lemma IV.2 in (Chen and Yang, 2021)) we have

∥Wn∥op ≤ λ+ C2(n+
√
mp log n),

for some constant C2 > 0 with high probability. ■
Proposition 5. Recall the minimal separation Θmin := min1≤j ̸=k≤K ∥µj − µk∥2, and the maximal
separation Θmax := max1≤j ̸=k≤K ∥µj − µk∥2. If Assumption 1 and 2 hold, then we have ∀j ∈
Gl, k ̸= l, (k, l) ∈ [K]2,

Dk,l(j) := [(2A+ 1n(y
∗)T + y∗1T

n )Gl,Gk
1nk

]j ∈ [C1nΘ
2
min, n̄Θ

2
max],

with probability at least 1− 12n−C3 . In particular, Bij ≤ 2/C1Θ
2
max, ∀i, j ∈ [n].
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Proof. From equation (19) (21) (26) in (Chen and Yang, 2021), we know that

Dk,l(j) = [BGl,Gk
1nk

]j ≥ C1/2nk∥µl − µk∥ ≥ C1/2nΘ
2
min.

In particular, c
(k,l)
j in (Chen and Yang, 2021) is defined to be [BGl,Gk

1nk
]j and Bi,j :=

Dk,l(j)Dl,k(i)/
∑

j∈Gl
Dk,l(j), ∀i ∈ Gk, j ∈ Gl (refer to the paragraph right below (22) in (Chen

and Yang, 2021)). On the other hand, from (21) in (Chen and Yang, 2021) we know

Dk,l(j) = −
nl + nk

2nl
λ+

nk

2
(∥X̄k −Xj∥2 − ∥X̄l −Xj∥2),

where X̄k = n−1
k

∑
i∈Gk

Xi is the empirical mean of points in cluster k. From the proof of Lemma
IV.1 in (Chen and Yang, 2021), recall Xj = µl + εj and denote θ = µl − µk we can write

∥X̄k −Xj∥2 − ∥X̄l −Xj∥2 = ∥θ + εj − ε̄k∥2 − ∥εj − ε̄l∥2 ≤ ∥θ + ε̄l − ε̄k∥2.
Hence

Dk,l(j) ≤
nk

2
(∥X̄k −Xj∥2 − ∥X̄l −Xj∥2) ≤

nk

2
∥θ + ε̄l − ε̄k∥2.

Then we can get the high dimensional upper bound nk∥θ∥2 for Dk,l(j) by bounding the Gaussian
vectors εi using the same way as the proof of Lemma IV.1 in (Chen and Yang, 2021). Thus,

Dk,l(j) ≤ nk∥θ∥2 ≤ n̄Θ2
max,

and Bi,j = Dk,l(j)Dl,k(i)/
∑

j∈Gl
Dk,l(j) ≤ 2/C1nk∥µl − µk∥ ≤ 2/C1Θ

2
max. ■

Corollary 1. Let w ∈ Rn, S to be the set of non-zero positions for w. If S ⊆ Gk, for some k ∈ [K],
then

−2λ∥w∥2 ≤ ⟨2A+ y∗1T
n + 1n(y

∗)T , wwT ⟩ ≤ 2C2(n+
√
mp log n))∥w∥2.

Furthermore, for general w ∈ Rn,

−2λ∥w∥2 ≤ ⟨2A+ y∗1T
n + 1n(y

∗)T , wwT ⟩ ≤ 2(C2(n+
√
mp log n) + 1/C1Θ

2
max)∥w∥2,

for some constants C1, C2.

Proof. From Proposition 4 we have

Wn := λId +
1

2
(y∗1T

n + 1n(y
∗)T )−B +A ≻ 0.

Hence
⟨1
2
(y∗1T

n + 1n(y
∗)T ) +A,wwT ⟩ ≥ ⟨B − λId, wwT ⟩.

Recall B ≥ 0, BGk,Gk
= 0, ∀k ∈ [K], then we have S ⊆ Gk =⇒ ⟨B,wwT ⟩ = 0. Thus,

⟨2A+ (y∗1T
n + 1n(y

∗)T ), wwT ⟩ ≥ −2λ∥w∥2.
On the other hand,

⟨1
2
(y∗1T

n + 1n(y
∗)T ) +A,wwT ⟩ = ⟨Wn +B − λId, wwT ⟩

≤ ∥Wn∥op∥w∥2 − λ∥w∥2

≤ C2(n+
√
mp log n)∥w∥2F .

Since ∥Wn∥op ≤ 2C2(n +
√
mp log n) from Proposition 4. Furthermore, if S ̸⊆ Gk, ∀k ∈ [K],

then

⟨1
2
(y∗1T

n + 1n(y
∗)T ) +A,wwT ⟩ = ⟨Wn +B − λId, wwT ⟩

≤ C2(n+
√
mp log n)∥w∥2 + 1/2max

ij
Bij∥w∥2.

By Proposition 5,
Bij ≤ 2/C1Θ

2
max, ∀i, j ∈ [n],

where universal constant C1 ∈ (0, 1), Θmax is the maximum of separation. Thus,

⟨1
2
(y∗1T

n + 1n(y
∗)T ) +A,wwT ⟩ ≤ (C2(n+

√
mp log n) + 1/C1Θ

2
max)∥w∥2.

■
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C.3.2 THE NLR FORMULATION AND SOME PROPERTIES

Before diving into the proofs of Phases 1 and 2, let us recall the Augmented Lagrangian Function
(ALF) to which we would apply Projected Gradient Descent (PGD), and present two lemmas for
characterizing the smoothness of ALF and the properties of the projection operator.

Consider the y = y∗ defined Assumption 2. Recall the ALF is given by

f(U) := L(U, y) = ⟨L · Idn +A,UUT ⟩+ ⟨y, UUT1n − 1n⟩+
β

2
∥UUT1n − 1n∥2F , (19)

where L ∈ (0, λ), β > 0. Then we can get the gradient of f as

∇f(U) = (2A+ 2L · Id + y1T
n + 1ny

T )U + β[1n(UUT1n − 1n)
T + (UUT1n − 1n)1

T
n ]U.

A direct implication from Proposition 4 is [∇f(U∗Q))]S = −2(λ− L)[U∗Q]S , ∀Q ∈ Fm, where
[U ]S stands for the matrix that keeps positive entries of U∗Q and set the non-positive ones to zero.
This is due to the fact that Wn1Gk

= 0, ∀k ∈ [K] and Wn = λId + 1
2 (y

∗1T
n + 1n(y

∗)T )−B +A.
Recall that Q,Qt ∈ Fm are defined to be

Q = argminQ̃∈Fm
∥U − U∗Q̃∥F , Qt = argminQ̃∈Fm

∥U t − U∗Q̃∥F , ∀t ≥ 0.

Now we will consider the smoothness of the ALF. Here we consider two cases of U : the first case
is for general U in the feasible set Ω; the second case is for the U that has the same block form as
some optimum point U∗Q̃. As we will see, bound of the Lipschitz constant for the latter one will be
smaller. Recall that Ω := {U ∈ Rn×r : ∥U∥2F = K,U ≥ 0}.
Lemma 1 (Smoothness condition). If ∥U − U∗Q̃∥F ≤ 1, for some Q̃ ∈ Fm, then

∥∇f(U)−∇f(U∗Q̃)∥F ≤ R1∥U − U∗Q̃∥F ,
where R1 = 2C2(n +

√
mp log n) + 2L + 12nβ if U ∈ Gm; R1 = 2C2(n +

√
mp log n) +

2/C1Θ
2
max + 2L + 12nβ, for some constants C1, C2 and general U ∈ Ω, where Θ2

max is the
maximum squared separation.

The next lemma shows that locally, the projection of PGD is equivalent to the projection to a convex
set, and therefore is a local contraction map.

Lemma 2 (Local projection to the ball). Denote ϵc := (λ−L)
√
K

2[
√
KR1+2(λ−L)

√
K+nΘ2

max]
. Here R1 =

2C2(n+
√
mp log n) + 2L+ 2/C1Θ

2
max + 12nβ. Then

∥U − U∗Q∥F ≤ ϵc =⇒ ⟨∇f(U), U⟩ < −(λ− L)K/2 < 0.

Furthermore, if α > 0,

∥Π+(U − α∇f(U))∥2F > K, ΠΩ(U − α∇f(U)) = ΠC(Ω)(U − α∇f(U))

for some constants C1, C2.

C.3.3 LINEAR CONVERGENCE NEAR OPTIMAL POINT (PHASE 1)

Here we will prove the convergence of U t to the block form in Phase 2 (Theorem 4), which will
be implied by Lemma 3 and Lemma 4. The first lemma shows that after at most I iterations, the
iterate will become the block form and fall into set Gm, which then enters Phase 2. The second
lemma controls the distance to the optimum within Phase 1, which will help us set the appropriate
neighborhood of initialization to ensure the convergence of Phase 1.
Lemma 3 (One-step shrinkage towards block form). Denote ∆ = U−Ua,∗, where Ua,∗ is defined
as (17). Choose (L, β) such that:

2(λ− L)

n
≤ β ≤ C1anΘ

2
min

12rn2ā3
.

Suppose ∥∆∥F ≤ ϵc, where ϵc is defined in Lemma 2. Assume

∥∆S(a)c∥∞ ≤
C1anΘ

2
min

32λ
, ∥∆∥F ≤ min

{
ϵ1,

3

4
a
√
n

}
, (20)
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where ϵ1 :=

min

 C1anΘ
2
min

64K(Θmax

√
2K log n+ C5(p+ log2 n))

,

√
C1anΘ2

min

96βrān̄
,
C1anΘ

2
min

96βrā2n̄
√
n

 ,

Then we have

[U ]i,τ − α[∇f(U)]i,τ ≤ [U ]i,τ − α
C1anΘ

2
min

8
, ∀i ∈ Gl, s(k − 1) < τ ≤ sk, l ̸= k.

Furthermore,

[V ]i,τ ≤ max{[U ]i,τ − α
C1anΘ

2
min

8
, 0}, ∀i ∈ Gl, s(k − 1) < τ ≤ sk, l ̸= k.

where V = ΠΩ(W ), W = U − α∇f(U), for some constants C1, C5. Consequently, after at most
I = 1

4αλ iterations, U t will enter Phase 2, i.e.,U I ∈ Gm if for every step t, U t meets the above
conditions (20).

The next lemma calculates the upper bound of the Inflation of ∥U − U∗Q∥F after Projected-GD.
This will be used when we have the neighborhood assumptions for the initialization of Phase 2. Then
we can trace the assumptions back to the initialization of Phase 1 as we know the inflation rate at
each step of Phase 1.
Lemma 4 (Inflation of distance to Ua,∗ for Phase 1). If ∥U − U∗Q∥F ≤ ϵc, then

∥V − Ua,∗∥F ≤ η∥U − Ua,∗∥F ,

where η = 1 + αR1, R1 = 2C2(n+
√
mp log n) + 2/C1Θ

2
max + 2L+ 12nβ, for some constants

C1, C2.

Now, we will establish our condition on the initialization, given our knowledge of the inflation of
∥∆t∥F for each step t in Phase 1. This is summarized in the following theorem.

Theorem 4 (Convergence of Phase 1). Recall that λ = p+ C1

4 mΘ2
min, m = mink ̸=l

2nknl

nk+nl
. Define

U0 to be the initialization of our NLR method and define ∆t := U t − Ua,∗. Let I = 1/(4αλ), η =
1 + αR1, where R1 = 2C2(n+

√
mp log n) + 2L+ 2/C1Θ

2
max + 12nβ. Suppose I is an integer

and ā ≤ ca, for some constant c > 0. If we choose (L, β) in (19) such that:

2(λ− L)

n
≤ β ≤ C1anΘ

2
min

12rn2ā3
.

Then with probability at least 1 − C4n
−C3 , we have U I ∈ Gm, ∥U t − Ua,∗∥F ≤ ϵc, ∀t ≤ I,

provided that

∥∆0
S(a)c∥∞ ≤

C1anΘ
2
min

32λ
, ∥∆0∥F ≤

1

ηI
min

{
ϵc, ϵ1,

3

4
a
√
n

}
.

Here ϵ1 :=

min

 C1anΘ
2
min

64K(Θmax

√
2K log n+ C5(p+ log2 n))

,

√
C1anΘ2

min

96βrān̄
,
C1anΘ

2
min

96βrā2n̄
√
n

 ,

ϵc :=
(λ− L)

√
K

2[(1 +
√
K)R1 + 2(λ− L)

√
K +

√
nr · ān̄Θ2

max]
.

Here, C1, C2, C3, C4, C5 are some constants.

Proof. This can be implied from Lemma 3 and Lemma 4 by assuming the neighborhood requirement
in Lemma 3 multiplied by the factor 1/ηI for the neighborhood of the initialization ∥∆0∥F . Note
that if we know the total step of Phase 1, which is I , then we only need to assume ∥∆0∥F ≤
1
ηI min

{
ϵc, ϵ1,

3
4a
√
n
}
, if we want ∥∆t∥F ≤ min

{
ϵc, ϵ1,

3
4a
√
n
}
, ∀t ≤ I. ■
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C.3.4 LINEAR CONVERGENCE NEAR OPTIMAL POINT (PHASE 2)

Here our goal is to prove the linear convergence of Phase 2 when U ∈ Gm (Theorem 5). The main idea
is to show the local strong convexity at optimal points (Lemma 5) followed by a standard argument
of linear convergence (Lemma 6). Moreover, we also need to ensure that the iterations continue in
block form during Phase 2 (Lemma 7).

Lemma 5 (Local strong convexity). When U ∈ Gm, if we define ∆ := UQT − U∗, then

⟨∇2f(U∗)[∆],∆⟩ ≥ β̃∥∆∥2F ,

where β̃ = min{2[L − (
√
n +
√
p +
√
2 log n)2],−2(λ − L) + βn} > 0, provided that L ∈

((
√
n+
√
p+
√
2 log n)2, λ), β > 2(λ−L)/n. Furthermore, for every U satisfying ∥U−U∗∥F < ϵs,

we have
⟨∇2f(U)[∆],∆⟩ ≥ β̃/2∥∆∥2F ,

where ϵs =
β̃

36βn .

After establishing the local strong convexity, we can prove the linear (exponential) convergence of
the algorithm through a standard analysis for the projected gradient descent (PGD) as below.

Lemma 6 (Local exponential convergence). When U ∈ Gm, if we define ∆ := UQT − U∗, then
there exists γ ∈ (0, 1), ϵ > 0, s.t.,

∥V − U∗Q∥F ≤ γ∥U − U∗Q∥F ,

where
Q = argminQ̃∈Fm

∥U − U∗Q̃∥F ,

provided that ∥U − U∗Q∥F < ϵ, where ϵ = min{ϵc, ϵs}. Recall that ϵc is defined in Lemma 2,
ϵs is defined in Lemma 5. In particular, if we we choose the step size α ≤ β̃/(2R2

2), where
R2 = 2C2(n+

√
mp log n) + 2L+ 12nβ, for some constant C2. Then the contraction factor would

be γ2 = (1− αβ̃/2).

The convergence for Phase 2 has not yet been proved since the above lemma only demonstrates the
convergence of PGD once U t has reached Phase 2. However, the subsequent update U t+1 might not
remain in Phase 2. The following lemma ensures that U t stays in Phase 2, provided that the initial
point U0 in Phase 2 is located within some neighborhood of an optimum point.

Lemma 7 (Iterations remain staying in Phase 2). Suppose Lemma 6 holds and U0 ∈ Gm. Let
ϵ̄ := min

{
ϵ1,

3
4a
√
n
}
. Then we have

U t ∈ Gm, ∀t ≥ 1,

where
U t+1 = ΠΩ(U

t − α∇f(U t)), ∀t ≥ 1,

as long as ∥U0 − Ua,∗∥F ≤ min{(1− γ)/2ϵ̄, ϵ}, where recall that ϵ = min{ϵc, ϵs}.

Now, we can ensure the overall exponential convergence in Phase 2 by combining the above lemmas.

Theorem 5 (Linear convergence in Phase 2). Suppose U0 ∈ Gm. Let the step size: α <
β̃

2(2C2(n+
√
mp logn)+2L+12nβ)2

, β̃ = min{2[L − (
√
n +

√
p +
√
2 log n)2],−2(λ − L) + βn}.

Then with probability at least 1− C4n
−C3 , we have

∥U t+1 − U∗Qt+1∥F ≤ γ∥U t − U∗Qt∥F , ∀k,

given ∥U0 − U0Q0∥F ≤ ϵ, ∥U0 − Ua,∗∥F ≤ ϵ0, where γ2 = (1− αβ̃/2),

ϵ = min

{
β̃

36βn
,

(λ− L)
√
K

2[
√
KR1 + 2(λ− L)

√
K + nΘ2

max]

}
, ϵ0 :=

1− γ

2
min

{
ϵ1,

3

4
a
√
n

}
,

for some constants C2, C3, C4.
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Proof. This can be implied from Lemma 6 and Lemma 7. Lemma 6 indicates linear convergence if
the former step is in Phase 2. Lemma 7 guarantees that every step of Projected-GD will stay in Phase
2. Therefore we only need to combine the conditions for both lemmas. ■

Combining Phase 1 and Phase 2 (Theorem 4 and Theorem 5) and lifting the assumptions of initial-
ization for Phase 2 to the initialization of Phase 1 (by multiplying the factor 1/ηI ), we obtain the
following theorem. This theorem represents a stronger version of Theorem 3, presented at the begin-
ning of Appendix C.3. This theorem is stronger in the sense that we can get the exact relationships
between parameters. However, the presentation of the theorem would sacrifice the conciseness of the
statement. Hence we present the simpler version as Theorem 3 at the beginning of Appendix C.3.

Theorem 6 (Local linear rate of convergence). Recall ∆t := U t − Ua,∗. Suppose ā ≤ ca, c > 0.
Let I = (4αλ)−1, η = 1+ αR1, R1 = 2C2(n+

√
mp log n) + 2L+ 2/C1Θ

2
max + 12nβ. Choose

(L, β) such that:

L > (
√
n+
√
p+

√
2 log n)2,

2(λ− L)

n
≤ β ≤ C1anΘ

2
min

12rn2ā3
,

and the step size α < β̃
2(2C2(n+

√
mp logn)+2L+12nβ)2

, β̃ = min{2[L − (
√
n +

√
p +

√
2 log n)2],−2(λ − L) + βn}. Then with probability at least 1 − C4n

−C3 , we have that for any
t ⩾ I ,

U t ∈ Gm, and ∥U t+1 − U∗Qt+1∥F ≤ γ∥U t − U∗Qt∥F ,
provided that

∥∆0
S(a)c∥∞ ≤

C1anΘ
2
min

32λ
, ∥∆0∥F ≤

1

ηI
min

{
ϵ,
1− γ

2
ϵ1,

1− γ

2

3

4
a
√
n

}
,

where γ2 = (1− αβ̃/2), ϵ = min
{

β̃
36βn ,

(λ−L)
√
K

2[
√
KR1+2(λ−L)

√
K+nΘ2

max]

}
, ϵ1 :=

min

 C1anΘ
2
min

64K(Θmax

√
2K log n+ C5(p+ log2 n))

,

√
C1anΘ2

min

96βrān̄
,
C1anΘ

2
min

96βrā2n̄
√
n

 .

Here, C1, C2, C3, C4, C5 are some constants.

C.4 PROOF OF LINEAR CONVERGENCE WITH y ≈ y∗

The following theorem extends the results of Theorem 3 from dual variable y = y∗ to any value in a
neighborhood of the optimum dual y∗, which completes the primal-dual local convergence analysis
by demonstrating that the primal subproblem minU∈Ω Lβ(U, y) can be efficiently solved around the
optimum.

Theorem 1 (Convergence of projected gradient descent). Suppose y∗ is the optimum dual for the
SDP problem (Assumption 2 in Appendix C.3) and Assumption A holds. Assume p = O(n log n),
Θmax ≤ CΘmin for some C > 0, and there exists some block partition sizes m and an associated
optimal solution Ua,∗ with some within block weights ak = (ak,1, ak,2, . . . , ak,mk

) satisfying
ā ≤ ca, c > 0 and a = mink∈[K] minℓ∈[mk]{ak,ℓ} and ā = maxk∈[K] maxℓ∈[mk]{ak,ℓ}. We denote
the initialization of the algorithm as U0; let Ũ denote the unique (whose existence is also guaranteed)
stationary point of the projected gradient descent updating formula under dual value ỹ close to y∗,
i.e. Ũ satisfies

Ũ = ΠΩ

(
Ũ − α∇ULβ(Ũ , ỹ)

)
.

If ∥ỹ − y∗∥ ≤ δ for some δ > 0, and the initialization discrepancy ∆0 = U0 − Ua,∗ satisfies

∥∆0
S(a)c∥∞ ≤ O(K/

√
nr) and ∥∆0∥F ≤ O

(
r−0.5K−5.5 min{1, K−2.5Θ2

min/ log n)}
)
,

then it holds with probability at least 1− c1n
−c2 that, for any t ≥ I = O(K3),

U t ∈ Gm and inf
Q∈Or;ŨQ∈Gm

∥U t+1 − ŨQ∥F ≤ γ inf
Q∈Or;ŨQ∈Gm

∥U t − ŨQ∥F ,
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where γ = 1−O(K−6), provided that β = O(Θ2
min/K

3), L = O(nΘ2
min/K) in (12) and step size

α is chosen such that α−1 = O(K2nΘ2
min). Here, c1 and c2 are some constants.

Proof sketches. The proof slightly modifies that of Theorem 3, where we divide the convergence of
the projected gradient descent for solving the primal subproblem into two phases. In phase one, we
demonstrate that, for the same reason as in the previous proof, the iterate will become block diagonal
Gm after at most I iterations. In phase two, due to the strong convexity of L( · , ỹ) around any Ũ
within Gm, the projected gradient descent will achieve a linear convergence rate. Here, the strong
convexity is implied by the strong convexity of L( · , y∗) at U∗ within Gm and the continuity of the
Hessian (with respect to U ) of the Augmented Lagrangian function L(U, y) with respect to U and y.
Precise statements regarding the two phases are provided below. ■

By employing the same argument used for Phase 1 and Phase 2 regarding convergence at the optimum
dual y∗ (as per Theorem 4 and 5), we derive the following analogs for ỹ.

Theorem 7 (Convergence of Phase 1). Recall that λ = p+ C1

4 mΘ2
min, m = mink ̸=l

2nknl

nk+nl
. Define

U0 to be the initialization of our NLR method and define ∆t := U t − Ua,∗. Let I = 1/(4αλ), η =
1 + αR1, where R1 = 2C2(n+

√
mp log n) + 2L+ 2/C1Θ

2
max + 12nβ. Suppose I is an integer

and ā ≤ ca, c > 0. If we choose (L, β) in (19) such that:

2(λ− L)

n
≤ β ≤ C1anΘ

2
min

12rn2ā3
,

then with probability at least 1− C4n
−C3 (the high probability argument comes from Assumption 1),

we have U I ∈ Gm; ∥U t − Ua,∗∥F ≤ ϵc, ∀t ≤ I, provided that

∥∆0
S(a)c∥∞ ≤

C1anΘ
2
min

32λ
, ∥∆0∥F ≤

1

ηI
min

{
ϵc, ϵ1,

3

4
a
√
n

}
, ∥y∗ − ỹ∥ ≤ δ,

for some small δ > 0, where ϵ1 :=

min

 C1anΘ
2
min

64K(Θmax

√
2K log n+ C5(p+ log2 n))

,

√
C1anΘ2

min

96βrān̄
,
C1anΘ

2
min

96βrā2n̄
√
n

 ,

ϵc :=
(λ− L)

√
K

2[(1 +
√
K)R1 + 2(λ− L)

√
K +

√
nr · ān̄Θ2

max]
.

Here, C1, C2, C3, C4, C5 are some constants.

Theorem 8 (Linear convergence of Phase 2). Suppose U0 ∈ Gm, then there exists a unique Ũ ,
such that it is the stationary point of the projected gradient descent updating the formula for any dual
ỹ close to y∗, that is,

Ũ = ΠΩ

(
Ũ − α∇ULβ(Ũ , ỹ)

)
.

Furthermore, we define

Qt = argminQ∈Or;ŨQ∈Gm
∥U t − ŨQ∥F , ∀t ≥ 0.

If ∥y∗ − ỹ∥ ≤ δ, for some δ > 0; the step size α < β̃
2(2C2(n+

√
p logn)+2L+12nβ)2

, β̃ = min{2[L−
(
√
n+
√
p+
√
2 log n)2],−2(λ− L) + βn}, then with probability at least 1− C4n

−C3 , we have

∥U t+1 − ŨQt+1∥F ≤ γ∥U t − ŨQt∥F , ∀k,

given ∥U0 − U0Q0∥F ≤ ϵ, ∥U0 − Ua,∗∥F ≤ ϵ0, where γ2 = (1− αβ̃/2),

ϵ = min

{
β̃

36βn
,

(λ− L)
√
K

2[
√
KR1 + 2(λ− L)

√
K + nΘ2

max]

}
, ϵ0 :=

1− γ

2
min

{
ϵ1,

3

4
a
√
n

}
,

for some constants C2, C3, C4.
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Proof sketches. Lemma 5 indicates that ⟨∇2f(U∗)[∆],∆⟩ ≥ β̃∥∆∥2F , for some β̃ > 0, where
∆ = U −V, ∀U, V ∈ Gm. This is due to the fact that ∆ = U −V = (U −V −U∗Q)+U∗Q, (U −
V − U∗Q) ∈ Gm. Hence under the condition of the local projection lemma (Lemma 2) we have

∥ΠΩ(U − α∇f(U))−ΠΩ(U − α∇f(U))∥2

≤ ∥(U − α∇f(U))− (U − α∇f(U))∥2

≤ ∥U − V ∥2 − 2α⟨∇f(U)−∇f(V ), U − V ⟩+ α2∥∇f(U)−∇f(V )∥2

≤ ∥U − V ∥2 − αβ̃/2∥U − V ∥2

= (1− αβ̃/2)∥U − V ∥2.

Therefore the map U 7→ ΠΩ(U −α∇f(U)) is a (strict) contraction map. Hence there exists a unique
stationary point Ũ within Gm by the contraction mapping theorem. Rest of the proof is the same as
the proof of linear convergence in Phase 2 at optimum dual y∗ (Theorem 5). ■

If we combine Phase 1 and Phase 2 together (Theorem 7 and Theorem 8) and lift the assumptions of
initialization for Phase 2 to the initialization of Phase 1 (by multiplying the factor 1/ηI ), we will get
the following theorem, which is a stronger version of Theorem 1 in the sense that we do not require
moderate p = O(

√
n log n) and the constraint on the maximal separation Θmax ≤ CΘmin. What

is more, we can get the exact relationships between parameters from this theorem. However, the
presentation of the theorem would sacrifice the conciseness of the statement. Hence we present the
simpler version as Theorem 1 in the main paper.

Theorem 9 (Local convergence of projected gradient descent). Recall ∆t := U t −Ua,∗. Suppose
Assumption 1 and 2 hold, and assume ∥ỹ − y∗∥ ≤ δ for some δ > 0. Let I = (4αλ)−1, η =
1 + αR1, R1 = 2C2(n+

√
mp log n) + 2L+ 2/C1Θ

2
max + 12nβ. Choose (L, β) such that:

L > (
√
n+
√
p+

√
2 log n)2,

2(λ− L)

n
≤ β ≤ C1anΘ

2
min

12rn2ā3
,

and the step size α < β̃
2(2C2(n+

√
mp logn)+2L+12nβ)2

, β̃ = min{2[L − (
√
n +

√
p +

√
2 log n)2],−2(λ − L) + βn}. If ā ≤ ca, c > 0, then with probability at least 1 − C4n

−C3 ,
we have that for any t ≥ I ,

U t ∈ Gm and ∥U t+1 − ŨQt+1∥F ≤ γ∥U t − ŨQt∥F ,

provided that

∥∆0
S(a)c∥∞ ≤

C1anΘ
2
min

32λ
, ∥∆0∥F ≤

1

ηI
min

{
ϵ,
1− γ

2
ϵ1,

1− γ

2

3

4
a
√
n

}
,

where γ2 = (1− αβ̃/2), ϵ = min
{

β̃
36βn ,

(λ−L)
√
K

2[
√
KR1+2(λ−L)

√
K+nΘ2

max]

}
, ϵ1 :=

min

 C1anΘ
2
min

64K(Θmax

√
2K log n+ C5(p+ log2 n))

,

√
C1anΘ2

min

96βrān̄
,
C1anΘ

2
min

96βrā2n̄
√
n

 .

Here, C1, C2, C3, C4, C5 are some constants.

C.5 PROOF OF LEMMAS

Lemma 1 (Smoothness condition).

If ∥U − U∗Q̃∥F ≤ 1, for some Q̃ ∈ Fm, then

∥∇f(U)−∇f(U∗Q̃)∥F ≤ R1∥U − U∗Q̃∥F ,

where R1 = 2C2(n +
√
mp log n) + 2L + 12nβ if U ∈ Gm; R1 = 2C2(n +

√
mp log n) +

2/C1Θ
2
max + 2L + 12nβ, for some constants C1, C2 and general U ∈ Ω, where Θ2

max is the
maximum squared separation.

25



Published as a conference paper at ICLR 2024

Proof. By definition we have∇f(U)−∇f(U∗Q̃) =

(2A+2L·Id+y1T
n+1ny

T )(U−U∗Q̃)+β[1n1
T
n (UUT−U∗Q̃(U∗Q̃)T )+(UUT−U∗Q̃(U∗Q̃)T )1n1

T
n ]U.

Note that

∥U∥op ≤ ∥U − U∗Q̃∥op + ∥U∗Q̃∥op
≤ ∥U − U∗Q̃∥F + ∥U∗Q̃∥op
≤ 1 + 1

= 2.

Hence

∥(UUT − U∗Q̃(U∗Q̃)T )1n1
T
nU∥F ≤ ∥(UUT − U∗Q̃(U∗Q̃)T )∥op∥U∥op∥1n1

T
n∥F

≤ 2n∥U(U − U∗Q̃)T + (U − U∗Q̃)(U∗Q̃)T ∥F
≤ 6n∥U − U∗Q̃∥F .

From Corollary 1 we have for U ∈ Ω,

∥∇f(U)−∇f(U∗Q̃)∥F
≤ (∥(2A+ y1T

n + 1ny
T )∥F + 2L)∥(U − U∗Q̃)∥F + 2β∥(UUT − U∗Q̃(U∗Q̃)T )∥op∥U∥op∥1n1

T
n∥F

≤ (2C2(n+
√
mp log n) + 2/C1Θ

2
max + 2L)∥U − U∗Q̃∥F + 12nβ∥U − U∗Q̃∥F

≤ (2C2(n+
√
mp log n) + 2/C1Θ

2
max + 2L+ 12nβ)∥U − U∗Q̃∥F .

For U ∈ Gm,

∥∇f(U)−∇f(U∗Q̃)∥F
≤ (∥(2A+ y1T

n + 1ny
T )∥F + 2L)∥(U − U∗Q̃)∥F + 2β∥(UUT − U∗Q̃(U∗Q̃)T )∥op∥U∥op∥1n1

T
n∥F

≤ (2C2(n+
√
mp log n) + 2L)∥U − U∗Q̃∥F + 12nβ∥U − U∗Q̃∥F

≤ (2C2(n+
√
mp log n) + 2L+ 12nβ)∥U − U∗Q̃∥F .

■

Lemma 2 (Local contraction to the ball). Denote ϵc :=
(λ−L)

√
K

2[
√
KR1+2(λ−L)

√
K+nΘ2

max]
. Here R1 =

2C2(n+
√
p log n) + 2L+ 2/C1Θ

2
max + 12nβ. Then

∥U − U∗Q∥F ≤ ϵc =⇒ ⟨∇f(U), U⟩ < −(λ− L)K/2 < 0.

Furthermore, if α > 0,

∥Π+(U − α∇f(U))∥2F > K, ΠΩ(U − α∇f(U)) = ΠC(Ω)(U − α∇f(U)),

for some constants C1, C2.

Proof. Let [U ]S to be the matrix that keeps positive entries of U and set the nonpositive ones to zero,
i.e.,

∇f(U) = [∇f(U)]S + [∇f(U)]Sc .

Note that

∥[∇f(U∗))]S∥F = ∥ − 2(λ− L)[U∗]S∥F = 2(λ− L)
√
K, ⟨∇f(U∗Q), U∗Q⟩ = −2(λ− L)K.

From Proposition 5, we have
∥[∇f(U∗))]Sc∥F ≤ nΘ2

max.

Then by Lemma 1 we have

|⟨∇f(U), U⟩ − ⟨∇f(U∗Q), U∗Q⟩| = |⟨∇f(U)−∇f(U∗Q), U⟩+ ⟨∇f(U∗Q), U − U∗Q⟩|
≤ ∥∇f(U)−∇f(U∗Q)∥F ∥U∥F + ∥∇f(U∗Q)∥F ∥U − U∗Q∥F
= ∥∇f(U)−∇f(U∗Q)∥F ∥U∥F + ∥∇f(U∗)Q∥F ∥U − U∗Q∥F
≤ [
√
KR1 + 2(λ− L)

√
K + nΘ2

max]∥U − U∗Q∥F .
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Finally we have
⟨∇f(U), U⟩ < −(λ− L)K < 0,

given ϵc ≤ (λ−L)
√
K

2[
√
KR1+2(λ−L)

√
K+nΘ2

max]
. Here R1 = 2C2(n+

√
p log n)+2L+2/C1Θ

2
max+12nβ.

Note the fact

ΠΩ(U) = ΠSnr−1(
√
K)(Π+(U)), ΠC(Ω)(U) = ΠBnr(

√
K)(Π+(U)),

where Π+(U) stands for the projection of U on to the space of matrices with positive entries,
Snr−1(

√
K) stands for the sphere with radius

√
K, Bnr(

√
K) stands for the ball with radius

√
K.

Thus we only need to show that

∥Π+(U − α∇f(U))∥2F ≥ K.

Define Ũi,j = α[∇f(U)]i,j , if [U − α∇f(U)]i,j > 0. And Ũi,j = Ui,j otherwise. Then we have

U − Ũ = Π+(U − Ũ) = Π+(U − α∇f(U)).

Moreover, if [U − α∇f(U)]i,j ≤ 0, then

[α∇f(U)]i,j ≥ Ui,j ≥ 0.

Hence
⟨U, Ũ⟩ ≤ α⟨∇f(U), U⟩ < 0,

which implies that

∥Π+(U − α∇f(U))∥2F = ∥U − Ũ∥2F > ∥U∥2F = K.

■

Lemma 3 (One-step shrinkage towards block form). Denote ∆ = U−Ua,∗, where Ua,∗ is defined
as (17). Choose (L, β) such that:

2(λ− L)

n
≤ β ≤ C1anΘ

2
min

12rn2ā3
.

Suppose ∥∆∥F ≤ ϵc, where ϵc is defined in Lemma 2. Assume

∥∆S(a)c∥∞ ≤
C1anΘ

2
min

32λ
, ∥∆∥F ≤ min

{
ϵ1,

3

4
a
√
n

}
, (21)

where ϵ1 :=

min

 C1anΘ
2
min

64K(Θmax

√
2K log n+ C5(p+ log2 n))

,

√
C1anΘ2

min

96βrān̄
,
C1anΘ

2
min

96βrā2n̄
√
n

 ,

Then we have

[U ]i,τ − α[∇f(U)]i,τ ≤ [U ]i,τ − α
C1anΘ

2
min

8
, ∀i ∈ Gl, s(k − 1) < τ ≤ sk, l ̸= k.

Furthermore,

[V ]i,τ ≤ max{[U ]i,τ − α
C1anΘ

2
min

8
, 0}, ∀i ∈ Gl, s(k − 1) < τ ≤ sk, l ̸= k.

where V = ΠΩ(W ), W = U − α∇f(U), for some constants C1, C5. Consequently, after at most
I = 1

4αλ iterations, U t will enter Phase 2, i.e.,U I ∈ Gm if for every step t, U t meets the above
conditions (21).

Proof. Without loss of generality and for notation simplicity, we assume m1 = · · · = mK = s =
r/K, ak,1 = · · · = ak,mk

= ak, ∀k. By definition we have

∇f(U) = (2A+ 2L · Id + y1T
n + 1ny

T )U + β[1n(UUT1n − 1n)
T + (UUT1n − 1n)1

T
n ]U.
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Now suppose ∆ = U − Ua,∗, ∆ = [d1, . . . dr]. Then ∀i ∈ Gl, l ̸= 1.

[∇f(U)]i,1 = 2L · (d1)i + eTi (2A+ y1T
n + 1ny

T )a1,11G1 + eTi (2A+ y1T
n + 1ny

T )d1.

From Proposition 5 we know

eTi (2A+ y1T
n + 1ny

T )a1,11G1
= a1,1D1,l(i) ≥ C1a1,1nΘ

2
min.

The goal of the rest of the proof is to show that eTi (2A+ y1T
n + 1ny

T )a1,11G1
is the dominant term

in [∇f(U)]i,1; the rest of the terms can be absorbed given that U is located within some neighborhood
of the optimum point Ua,∗. From calculation we have

[∇f(U)]i,1 = 2L · (d1)i + eTi (2A+ y1T
n + 1ny

T )a1,11G1
+ eTi (2A+ y1T

n + 1ny
T )d1

+ βeTi [1n(UUT1n − 1n)
T + (UUT1n − 1n)1

T
n ]a1,11G1

+ r1

= 2L · (d1)i + a1,1D1,l(i) + eTi (2A+ y1T
n + 1ny

T )d1

+ βeTi [1n(UUT1n − 1n)
T + (UUT1n − 1n)1

T
n ]a1,11G1

+ r1,

where
r1 = βeTi [1n(UUT1n − 1n)

T + (UUT1n − 1n)1
T
n ]d1.

Further orthogonally decompose dτ =
∑

k xk,τ1Gk
+ wτ , for xk,τ ∈ R, τ = 1, . . . , r, wτ ∈ Γ⊥

K .
Then we have

eTi (2A+ y1T
n + 1ny

T )d1 =
∑
k

xk,1Dk,l(i) + eTi (2A+ y1T
n + 1ny

T )w1

≥ x1,1D1,l(i)− 2λ · xl,1 + eTi (2A+ y1T
n + 1ny

T )w1,

since xk,1 ≥ 0, ∀k ̸= 1, Dl,l = −2λnl. Recall X = [X1, . . . , Xn], Xi = εi + µl, ∀i ∈ Gl. Then
from high dimensional bound of Gaussian distributions we have

|eTi (2A+ y1T
n + 1ny

T )w1| = |2[Aw1]i −
∑
k

2

nk
1T
nk
AGk,Gk

wGk
|

=

∣∣∣∣∣∣2
∑
k

[(µl − µk) + (εi − ε̄k)]
T

∑
j∈Gk

εj(w1)j

∣∣∣∣∣∣
≤ 2K(Θmax

√
2K log n+ C5(p+ log2 n))∥w1∥,

with probability ≥ 1− C4/n, for some constants C4, C5 > 0. On the other hand,

βeTi [1n(UUT1n − 1n)
T + (UUT1n − 1n)1

T
n ]a11G1

= βa1e
T
i [1n1

T
n ((U

a,∗)∆T +∆(Ua,∗)T ) + ((Ua,∗)∆T +∆(Ua,∗)T )1n1
T
n ]1G1

= βa1[1
T
n (U

a,∗∆T +∆(Ua,∗)T )1G1 + n1e
T
i (U

a,∗∆T +∆(Ua,∗)T )1n]

= βa1

r∑
τ=1

[1T
n (u

0
τd

T
τ + dτ (u

0
τ )

T )1G1 + n1e
T
i (u

0
τd

T
τ + dτ (u

0
τ )

T )1n]

= βa1[(
K∑

g=1

ng

sg∑
τ=s(g−1)+1

agd
T
τ 1G1

) + a1n1

s∑
τ=1

1T
ndτ

+ n1

sl∑
τ=s(l−1)+1

al1
T
ndτ + n1(

K∑
g=1

ng

sg∑
τ=s(g−1)+1

ag(dτ )i)]

≥ βa1[2ra1n1

√
n(−∥∆∥F ) + rn1ā

√
nl(−∥∆∥F )

+ n1(a1n1(d1)i + ānl

sl∑
τ=s(l−1)+1

(dτ )i))]

≥ βa1,1[3rān1

√
n(−∥∆∥F ) + a1n

2
1(d1)i − ān1nlrā].
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Similarly we can show that |r1| ≤ βrā(3n2ā2 + n̄∥∆∥2F ). Hence

[∇f(U)]i,1 ≥ 2L · (d1)i + (a1,1 + x1,1)D1,l(i)− 2λ∥∆Sc∥∞
− 2K(Θmax

√
2K log n+ C5(p+ log2 n))∥w1∥

+ βa1,1[3rān1

√
n(−∥∆∥F ) + a1,1n

2
1(d1)i − ān1nlrā] + r1

≥ (2L+ βa21,1n
2
1)(d1)i +

C1anΘ
2
min

8
,

provided that ∆ :
x1,1 ≥ −3/4a1,

∥∆S(a)c∥∞ ≤
C1anΘ

2
min

32λ
:= ϵf1 , ∥∆∥F ≤ ϵ1.

Here ϵ1 :=

min

 C1anΘ
2
min

64K(Θmax

√
2K log n+ C5(p+ log2 n))

,

√
C1anΘ2

min

96βrān̄
,
C1anΘ

2
min

96βrā2n̄
√
n

 .

It is also sufficient to assume

∥∆S(a)c∥∞ ≤ ϵf1 , ∥∆∥F ≤ min

{
ϵ1,

3

4
a
√
n

}
.

The (L, β) pair need to satisfy:

2(λ− L)

n
≤ β ≤ C1anΘ

2
min

12rn2ā3
.

Thus,

[U ]i,1 − α[∇f(U)]i,1 ≤ [U ]i,1 − α
C1anΘ

2
min

8
, ∀i ∈ Gl, l ̸= 1.

From Lemma 2 we know that ∥W∥ = ∥U − α∇f(U)∥ ≥
√
K. Hence ∀i ∈ Gl, s(k − 1) < τ ≤

sk, l ̸= k,

[V ]i,1 =

√
K

∥W∥
Π+([U ]i,1 − α[∇f(U)]i,1) ≤ max{[U ]i,τ − α

C1anΘ
2
min

8
, 0}.

Note that the initialization U0 needs to satisfy ∥∆0
S(a)c∥∞ ≤

C1anΘ
2
min

32λ from the above argument,
where ∆0 = U0 − Ua,∗. Then it takes at most I total steps for U t to converge to the block form Gm,
where

I = (
C1anΘ

2
min

32λ
)/(α

C1anΘ
2
min

8
) = 1/(4αλ).

■

Lemma 4 (Inflation of distance to Ua,∗ for Phase 1). If ∥U − U∗Q∥F ≤ ϵc, then

∥V − Ua,∗∥F ≤ η∥U − Ua,∗∥F ,
where η = 1 + αR1, R1 = 2C2(n+

√
mp log n) + 2/C1Θ

2
max + 2L+ 12nβ, for some constants

C1, C2.

Proof. Suppose ∥U − U∗Q∥F ≤ ϵc, then from Lemma 2 we have

∥V − Ua,∗∥F = ∥ΠΩ(U − α∇f(U))−ΠΩ(U
a,∗ − α∇f(Ua,∗))∥F

= ∥ΠC(Ω)(U − α∇f(U))−ΠC(Ω)(U
a,∗ − α∇f(Ua,∗))∥F

≤ ∥(U − α∇f(U))− (Ua,∗ − α∇f(Ua,∗))∥F
≤ (1 + αR1)∥U − Ua,∗∥F ,
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where R1 = 2C2(n+
√
mp log n) + 2/C1Θ

2
max + 2L+ 12nβ. ■

Lemma 5 (Local strong convexity).

If U ∈ Gm, define ∆ := UQT − U∗, then

⟨∇2f(U∗)[∆],∆⟩ ≥ β̃∥∆∥2F ,

where β̃ = min{2[L − (
√
n +
√
p +
√
2 log n)2],−2(λ − L) + βn} > 0, provided that L ∈

((
√
n+
√
p+
√
2 log n)2, λ), β > 2(λ− L)/n. Furthermore, ∀U s.t. ∥U − U∗∥F < ϵs, we have

⟨∇2f(U)[∆],∆⟩ ≥ β̃/2∥∆∥2F ,

where ϵs =
β̃

36βn .

Proof. U ∈ Gm, Q ∈ Fm =⇒ U = W1 +W2, with

W1 :=


d1,11n1 , . . . , d1,s1n1 0 · · · 0

0 d2,11n2 , . . . , d2,s1n2 · · · 0
...

...
. . .

...
0 0 · · · dK,11nK

, . . . , dK,s1nK

 ,

W2 :=


w1,1, . . . ,w1,s 0 · · · 0

0 w2,1, . . . ,w2,s · · · 0
...

...
. . .

...
0 0 · · · wK,1, . . . ,wK,s

 ,

for some dk,i ∈ R,wk,i ∈ Rnk , ⟨wk,i,1nk
⟩ = 0, ∀k ∈ [K], i ∈ [s]. Note that

U∗Q :=


ã1,11n1

, . . . , ã1,s1n1
0 · · · 0

0 ã2,11n2
, . . . , ã2,s1n2

· · · 0
...

...
. . .

...
0 0 · · · ãK,11nK

, . . . , ãK,s1nK

 ,

for some ãk,i ∈ R, k ∈ [K], i ∈ [s]. Recall

Q = argminQ̃∈Fm
∥U − U∗Q̃∥F ,

then there exist ck > 0, k ∈ [K], s.t.

dk,i = ckãk,i, ∀k ∈ [K], i ∈ [s].

Hence W1Q
T = [W 1

1 |On×(r−K)], where

W 1
1 :=


c1√
n1

1n1 0 · · · 0

0 c2√
n2

1n2
· · · 0

...
...

. . .
...

0 0 · · · cK√
nK

1nK

 .

And W2Q
T = [W 1

2 |W 2
2 ], where

W 1
2 :=


w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · wK

 ,

for some wk ∈ Rnk , k ∈ [K]. And every column of W 2
2 belongs to the space ΓK := span{1Gk

:
k ∈ [K]}⊥, which is the orthogonal complement of the linear subspace of Rn spanned by the vectors
1G1

, . . . ,1GK
. i.e.,

UQT − U∗ = [W 1
1 +W 1

2 − U∗|W 2
2 ].
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Denote ∆1 = W 1
1 +W 1

2 − U∗, ∆2 = W 2
2 , ∆ = [∆1|∆2]. First we will show that

∥∆1(U
∗)T1n + U∗∆T

1 1n∥2F ≥ n∥∆1∥2F .

Denote

U∗
1 =


1√
n1

1n1
0 · · · 0

0 1√
n2

1n2
· · · 0

...
...

. . .
...

0 0 · · · 1√
nK

1nK

 , ∆1 =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dK

 ,

where dk ∈ Rnk . Then we have

∆1(U
∗
1 )

T1n + U∗
1∆

T
1 1n =


d̃1

d̃2

...
d̃K

 ,

where
d̃k =

√
nkdk +

1
√
nk

1nk
1T
nk
dk.

Note that

∥d̃k∥2 ≥ λ2
min

(
√
nkIdnk

+
1
√
nk

1nk
1T
nk

)
∥dk∥2 ≥ nk∥dk∥2.

Hence
∥∆1(U

∗
1 )

T1n + U∗
1∆

T
1 1n∥2F =

∑
k

∥d̃k∥2

≥ min
k
{nk}

∑
k

∥dk∥2.

By calculating the Hessian at U∗ we get

⟨∇2f(U∗)[∆],∆⟩ = ⟨2(L · Idn +A) + y1T
n + 1ny

T ,∆∆T ⟩+ β∥∆(U∗)T1n + U∗∆T1n∥2F
= ⟨2(L · Idn +A) + y1T

n + 1ny
T ,∆2∆

T
2 ⟩

+ ⟨2(L · Idn +A) + y1T
n + 1ny

T ,∆1∆
T
1 ⟩+ β∥∆1(U

∗
1 )

T1n + U∗
1∆

T
1 1n∥2F

= 2⟨(L · Idn +A),∆2∆
T
2 ⟩+ ⟨2(L · Idn +A) + y1T

n + 1ny
T ,∆1∆

T
1 ⟩

+ β∥∆1(U
∗)T1n + U∗∆T

1 1n∥2F
≥ 2[L− (

√
n+
√
p+

√
2 log n)2]∥∆2∥2F +R2∥∆1∥2F + βn∥∆1∥2F

≥ min{2[L− (
√
n+
√
p+

√
2 log n)2], R2 + βn}∥∆∥2F

= β̃∥∆∥2F ,
with probability≥ 1−1/n, where ⟨A,∆2∆

T
2 ⟩ ≥ −(

√
n+
√
p+
√
2 log n)2∥∆2∥2F by Proposition 3;

R2 = −2(λ−L) by Proposition 1. In particular, by choosing L ∈ ((
√
n+
√
p+
√
2 log n)2, λ), β >

−R2/n, we have β̃ > 0. Recall the Hessian of f at U∗ and U

⟨∇2f(U∗)[∆],∆⟩ = ⟨2(L · Idn +A) + y1T
n + 1ny

T ,∆∆T ⟩+ β∥∆(U∗)T1n + U∗∆T1n∥2F ,

⟨∇2f(U)[∆],∆⟩ = ⟨2(L · Idn +A) + y1T
n + 1ny

T ,∆∆T ⟩+ β∥∆(U)T1n + U∆T1n∥2F
+ β⟨1n1

T
n (UUT − (U∗)(U∗)T ) + (UUT − (U∗)(U∗)T )1n1

T
n ,∆∆T ⟩.

Then we have
|⟨∇2f(U∗)[∆],∆⟩ − ⟨∇2f(U)[∆],∆⟩|
≤ β(∥∆(U)T1n + U∆T1n∥2F − ∥∆(U∗)T1n + U∗∆T1n∥2F )
+ β|⟨1n1

T
n (UUT − (U∗)(U∗)T ) + (UUT − (U∗)(U∗)T )1n1

T
n ,∆∆T ⟩|

≤ β(12n∥U − U∗∥F + 6n∥U − U∗∥F )
= 18βn∥U − U∗∥F .

31



Published as a conference paper at ICLR 2024

Hence
⟨∇2f(U)[∆],∆⟩ ≥ β̃/2∥∆∥2F ,

provided that ∥U − U∗∥F ≤ β̃
36βn . ■

Lemma 6 (Local exponential convergence).

If U ∈ Gm, define ∆ := UQT − U∗, Then ∃γ ∈ (0, 1), ϵ > 0, s.t.,

∥V − U∗Q∥F ≤ γ∥U − U∗Q∥F ,
where

Q = argminQ̃∈Fm
∥U − U∗Q̃∥F ,

provided that ∥U − U∗Q∥F < ϵ, where ϵ = min{ϵc, ϵs}. Recall that ϵc is defined in Lemma 2,
ϵs is defined in Lemma 5. In particular, if we we choose the step size α ≤ β̃/(2R2

2),, where
R2 = 2C2(n+

√
mp log n) + 2L+ 12nβ for some constant C2. Then the contraction factor would

be γ2 = (1− αβ̃/2).

Proof. By Lemma 2 we have

ΠΩ(U − α∇f(U)) = ΠC(Ω)(U − α∇f(U)),

where C(Ω) stands for the convex hall of Ω. It is known that

∥ΠC(v)−ΠC(u)∥ ≤ ∥v − u∥,

for any convex set C. Note ∀Q̃ ∈ Fm, U∗Q̃ is a stationary point for ΠΩ. Then we have

∥V − U∗Q∥2F = ∥ΠΩ(U − α∇f(U))−ΠΩ(U
∗Q− α∇f(U∗Q))∥2F

= ∥ΠC(Ω)(U − α∇f(U))−ΠC(Ω)(U
∗Q− α∇f(U∗Q))∥2F

≤ ∥(U − α∇f(U))− (U∗Q− α∇f(U∗Q))∥2F
= ∥(UQT − α∇f(UQT ))− (U∗ − α∇f(U∗))∥2F
= ∥UQT − U∗∥2F + α2∥∇f(UQT ))−∇f(U∗))∥2F
− 2α⟨∇f(UQT )−∇f(U∗), UQT − U∗⟩,

since ∇f(ŨQ̃) = ∇f(Ũ)Q̃, ∀Q̃ ∈ Or×r, Ũ ∈ Rn×r. Note that ∥UQT − U∗∥2F = ∥U −
U∗Q∥2F , ∥∇f(UQT ) − ∇f(U∗))∥F ≤ R2∥UQT − U∗∥F , for some constant R2, so we only
need to analyze the last term. And by MVT we have

⟨∇f(UQT )−∇f(U∗), UQT −U∗⟩ =
∫ 1

0

⟨∇2f(U∗+τ(UQT −U∗))[UQT −U∗], UQT −U∗⟩dτ.

Notice ∥UQT − U∗∥F < ϵs, from Lemma 5 we have ∀τ ∈ (0, 1),

⟨∇2f(U∗ + τ(UQT − U∗))[∆],∆⟩ ≥ β̃/2∥∆∥2F .
Hence

⟨∇f(UQT )−∇f(U∗), UQT − U∗⟩

=

∫ 1

0

⟨∇2f(U∗ + τ(UQT − U∗))[UQT − U∗], UQT − U∗⟩dτ

≥ β̃/2∥UQT − U∗∥2F .
Then we have

∥V − U∗Q∥2F = ∥UQT − U∗∥2F + α2∥∇f(UQT ))−∇f(U∗))∥2F
− 2α⟨∇f(UQT )−∇f(U∗), UQT − U∗⟩
≤ ∥UQT − U∗∥2F +R2

2α
2∥UQT − U∗∥2F − 2αβ̃/2∥UQT − U∗∥2F

≤ (1− αβ̃/2)∥UQT − U∗∥2F
= γ2∥U − U∗Q∥2F ,
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by choosing α ≤ β̃/(2R2
2), γ

2 = (1− αβ̃/2). ■

Lemma 7 (Iterations remain staying in Phase 2). Suppose Lemma 6 holds and U0 ∈ Gm. Denote
ϵ̄ := min

{
ϵ1,

3
4a
√
n
}
, we have

U t ∈ Gm, ∀t ≥ 1,

where
U t+1 = ΠΩ(U

t − α∇f(U t)), ∀t ≥ 1,

given ∥U0 − Ua,∗∥F ≤ min{(1− γ)/2ϵ̄, ϵ}, recall ϵ = min{ϵc, ϵs}.
Proof. From the convergence of Phase 1 (Theorem 4) we know U t+1 ∈ Gm if U t ∈ Gm and
∥U t − Ua,∗∥F ≤ ϵ̄. Thus from definition we know U1 ∈ Gm. Recall that we define Qt ∈ Fm as

Qt = argminQ∈Fm
∥U t − U∗Q∥F .

Define ϵ0 := (1− γ)/2 · ϵ̄. Note that U0 ∈ Gm, ∥U0 −Ua,∗∥F ≤ min{(1− γ)/2 · ϵ̄, ϵ}, then from
the previous lemma (Lemma 6) we have

∥U1 − U∗Q0∥F ≤ γ∥U0 − U∗Q0∥F .
Note U∗Q0 is the projection of U0 on to Fm that located on a sphere, which implies that

∥U∗Q0 − Ua,∗∥F < 2∥U0 − Ua,∗∥F ,
given ∥U0 − Ua,∗∥F < 1/2∥Ua,∗∥F . Thus,

∥U1 − Ua,∗∥F ≤ ∥U1 − U∗Q0∥F + ∥U∗Q0 − Ua,∗∥F
≤ γ∥U0 − U∗Q0∥F + 2∥U0 − Ua,∗∥F
≤ γ∥U0 − Ua,∗∥F + 2∥U0 − Ua,∗∥F
≤ γϵ0 + 2ϵ0

≤ ϵ̄.

Then we will finish the proof by induction. Suppose U l ∈ Gm, ∥U l−1 − Ua,∗∥F ≤ ϵ̄, ∀l ≤ t, we
are going to show that U t+1 ∈ Gm. By assumption we only need to show ∥U t − Ua,∗∥F ≤ ϵ̄. From
Lemma 6 we have

∥U l − U∗Ql∥F ≤ ∥U l − U∗Ql−1∥F ≤ γ∥U l−1 − U∗Ql−1∥F ≤ ϵ, ∀l ≤ t.

Hence
∥U t − Ua,∗∥F ≤ ∥U t − U∗Qt∥F + ∥U∗Qt − U∗Qt−1∥F + · · ·+ ∥U∗Q0 − Ua,∗∥F

≤ 2

t∑
l=0

∥U l − U∗Ql−1∥F + 2∥U0 − Ua,∗∥F

≤ 2
t∑

l=0

γl−1∥U0 − Ua,∗∥F

≤ ϵ̄.

■

D DISCUSSION

One limitation of our derivation in Theorem 1 is the separation assumption. Theorem 1 is based
on the fact that the optimum solutions of SDP and NLR coincide, where the separation assumption
serves as the sufficient condition. In practice, we can observe linear convergence of NLR for small
separation as well. Therefore, we anticipate a similar derivation of convergence analysis for weak
separation assumption, which will be our future research. On the other hand, in practice, if we
apply our algorithm to the datasets where the separations (signal-to-noise ratio) are very small, our
algorithm would fail to provide informative clustering results, and similar issues occur for both SDP
and NMF. We expect that this problem can be solved if different rounding procedures are applied. In
other words, for the small separation cases where the solutions to NLR, SDP and NMF no longer
represent exact membership assignments, it would be important to consider and compare different
rounding processes to extract informative membership assignments.
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