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Abstract

Code Large Language Models (Code LLMs) have excelled at tasks like code com-
pletion but often miss deeper semantics such as execution effects and dynamic states.
This paper aims to bridge the gap between Code LLMs’ reliance on static text data
and the need for semantic understanding for complex tasks like debugging and
program repair. We introduce a novel strategy, monologue reasoning, to train Code
LLMs to reason comprehensive semantics, encompassing high-level functional de-
scriptions, local execution effects of individual statements, and overall input/output
behavior, thereby linking static code text with dynamic execution states. We begin
by collecting PYX, a clean Python corpus of fully executable code samples with
functional descriptions and test cases. We propose training Code LLMs not only to
write code but also to understand code semantics by reasoning about key properties,
constraints, and execution behaviors using natural language, mimicking human ver-
bal debugging, i.e., rubber-duck debugging. This approach led to the development
of SEMCODER, a Code LLM with only 6.7B parameters, which shows competitive
performance with GPT-3.5-turbo on code generation and execution reasoning tasks.
SEMCODER achieves 79.3% on HumanEval (GPT-3.5-turbo: 76.8%), 63.6% on
CRUXEval-I (GPT-3.5-turbo: 50.3%), and 63.9% on CRUXEval-O (GPT-3.5-
turbo: 59.0%). We also study the effectiveness of SEMCODER’s monologue-style
execution reasoning compared to concrete scratchpad reasoning, showing that our
approach integrates semantics from multiple dimensions more smoothly. Finally,
we demonstrate the potential of applying learned semantics to improve Code LLMs’
debugging and self-refining capabilities. Our data, code, and models are available
at: https://github.com/ARiSE-Lab/SemCoder.

1 Introduction

Recent advancements in code language models (Code LMs) [1-5] have revolutionized the field of
programming [6-8]. These models, trained primarily on vast corpora of programming-related text
such as source code and docstrings [9], excel at automating tasks like code generation.

Unfortunately, the reliance on static text data limits the ability of existing Code LMs to understand
what the programs are actually doing, especially to reason about the deeper semantics intrinsic to
code execution. The lack of semantic understanding unsurprisingly often leads to poor performance
in debugging and repairing errors in generated code [10]. Code LMs struggle with reasoning about
program semantics in both static and dynamic settings. In a static setting, the challenge lies in
understanding the intended behavior of the code without running it, requiring deep comprehension of
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code syntax and static semantic properties (e.g., program dependency graph, etc.) [11, 12]. A dynamic
setting involves observing and interpreting the code’s behavior during execution, including tracking
variable changes, identifying runtime errors, and detecting performance issues [13]. Even when the
execution traces are exposed to the model, [13] observed that Code LMs could not effectively interact
with the real executions, struggling to leverage the dynamic execution traces for debugging.

Fifty years ago, Terry Winograd envisioned the future Al programmer: “The key to future pro-
gramming lies in systems which understand what they are doing [14]". In this paper, we explore
constructing such a programming system, backed up by language models, not only to write programs
but also to understand what they are doing (a.k.a., semantics). Our key insight is that Code LMs
should mimic how pragmatic human developers work: starting with general specifications, breaking
them down into sub-tasks with expected properties and constraints, implementing code line by
line while reasoning about the effects of each line, and checking overall correctness by examining
execution effects [15]. To achieve this, we introduce a novel strategy to train Code LMs to reason
comprehensive program semantics.

We train SEMCODER, a novel semantic-aware Code LM. We incorporate different modalities of
program semantics: (i) High-Level Functional Descriptions: We train SEMCODER to understand
high-level functional descriptions bi-directionally by both generating code from natural language
and summarizing code as natural language. This involves teaching models to grasp a program’s
purpose, akin to how a human developer outlines software high-level approximate semantics; (ii) Key
Properties and Constraints: we train SEMCODER to extract the functional properties and constraints
of a program, which should hold for all scenarios and corner cases. (iii) Overall Execution Behavior:
we train SEMCODER to understand the local impact of individual code statements, recognizing how
each line affects variables, control flow, and memory usage. By grasping these effects, models can
better predict code execution semantics. We train the model to learn both abstract and concrete
semantics, teaching it the general purpose of a statement and illustrating it with concrete examples.

Curating Executable Code Dataset We collect PYX, a synthetic dataset capturing comprehensive
program semantics with executable code samples and unit tests. Inspired by existing datasets [16, 17],
we use a powerful LLM to synthesize NL-to-code pairs. To ensure quality, PYX includes only
executable samples. It also generates unit tests and detailed execution traces, recording program
states after each statement. From PYX, we further construct a debugging dataset, PYX-R. PYX-R
includes buggy code snippets generated by Code LMs, corresponding debugging rationales, and refine
plans [13] leading to patches. By fine-tuning Code LMs on PYX-R, we aim to develop programming
assistants that debug and patch faulty code in a human-like manner, advancing the capabilities of
current Code LMs in iterative programming.

Learning Program Semantics To learn program semantics, we propose monologue reasoning:
Code LMs try to understand and explain the code semantics to themselves. Code LMs will summarize
the program functionalities, highlight the key properties and constraints, and reason code execution
step-by-step, inspired by rubber duck debugging [15]. The code execution reasoning will be performed
in two directions: (i) forward monologue: SEMCODER uses source code and inputs to verbally
simulate execution, explaining each line’s impact, executed lines, variable changes, and final output,
and (ii) backward monologue: given the final output, SEMCODER reasons about possible previous
states abstractly, capturing essential characteristics without precise enumeration. This abstract
reasoning is crucial for understanding complex operations like sorting or aggregation, where the
previous state cannot be uniquely determined. Overall, monologue reasoning equips Code LMs with
a human-like understanding of control flow, state transitions, and complex operations, bridging the
gap between static code analysis and dynamic execution reasoning.

We show that, by training on this approach, SEMCODER can generate, reason about execution, debug
and refine code in a more intuitive and effective manner, pushing the boundaries of what current
Code LMs can achieve in different software engineering tasks.

Performance of SEMCODER SEMCODER, while having only 6.7B parameters, exhibits excep-
tional performance in code generation and execution reasoning tasks, surpassing larger models
like GPT-3.5-turbo and various open-source models. For code generation, SEMCODER variants
achieve a pass@1 of 79.3% on HumanEval [1], outperforming GPT-3.5-turbo’s 76.8%, and with
27.5% on LiveCodeBench-Lite [18], outperforming GPT-3.5-turbo’s 23.9%. For execution rea-
soning, SEMCODER variants score 63.6%, 65.1%, 61.2% on CRUXEval-I, CRUXEval-O, and
LiveCodeBench-CodeExecution, respectively, significantly outperforming baseline models including



2 Approximate Semantics

Implement a function that takes a list of potential
energies, sorts them in ascending order, removes
duplicates, and returns the indices of the unique sorted
energies.

Werite a function * unique_sorted_indices(energies:
List[float]) -> List[int]' that takes a list of potential
energies as input and returns a list of indices
corresponding to the unique sorted energies.

@ Abstract Semantics

Key Properties and Constraints

- The input list can contain duplicate values and is of
variable length.

- The output list will have unique energy values sorted in
ascending order and will contain their original indices
from the input list.

- If an energy value is repeated, only its first
occurrence's index is stored in the dictionary.

- The function ensures that the indices in the output list

2 Symbolic Semantics

from typing import List
def unique_sorted indices(energies: List[float]):

energy_dict = {}

for idx, energy in enumerate (energies):

energy dict.setdefault (energy, idx)

sorted_unique_energies = sorted(set (energies))

unique_sorted_indices = [energy_dict[energy] for energy in
sorted_unique_energies]

return unique_sorted_indices

Text

£ Operational Semantics

Given the input is *[10.5, 8.2,10.5, 7.1, 8.2]", let's simulate the execution

1. *energy_dict" is initialized as an empty dictionary.

2. Filling the Dictionary: The " for" loop begins, iterating through the list with * enumerate’ :
- Iter 1: For ‘idx = 0*, “energy = 10.5'. We update the dictionary to be {10.5: 0}

- Iter 5: For “idx = 4", “energy = 8.2". Since 8.2 is in the dictionary, it is not updated.
Final state of *energy_dict*: *{10.5: 0,8.2:1,7.1: 3},
3. Sorting Unique Energies: Resulting in * sorted_unique_energies = [7.1,8.2,10.5]".
4. Retrieving Original Indices:
- For *energy = 7.1, the index is * 3".
- For *energy = 8.2", the index is ' 1°.
- For *energy = 10.5", the index is * 0".

reflect the order of the unique values after sorting. - Thus, * unique_sorted_indices' becomes *[3,1,0]".

5. Return Statement: The function returns the list *[3,1,0]".

Figure 1: SEMCODER’s training strategy with different modalities of program semantics. We specify
the overall objective of a task, i.e., the approximate semantics (blue box), such as “retrieves potential
energies of atoms and performs sorting" followed by the corresponding code solution (pink box).
Then we annotate the abstract code semantics as those key properties and constraints (red box) that
hold regardless of inputs. Beyond static semantics, we also pair code with test cases, such as “Given
[10.5, 8.2, 10.5, 7.1, 8.2], return [3, 1, 0]". We further annotate the dynamic, operational semantics
with forward and backward monologues (yellow box, and more in Section 4.2). SEMCODER learns
from all the information to not only generate code but comprehensively reason its semantics.

GPT-3.5-turbo and showcasing its superior understanding of program executions. The innovative
monologue reasoning technique, where the model verbalizes code semantics from high-level function-
alities to low-level execution details, greatly enhances execution reasoning, outperforming existing
trace reasoning formats like scratchpad [2] and NExT [13]. The monologue reasoning approach also
allows SEMCODER to flexibly handle abstract semantics and non-deterministic program states, which
existing methods struggle with. Additionally, SEMCODER excels in debugging and self-refinement,
improving code generation accuracy iteratively by verbally rubber-duck debugging by itself without
the need for dynamic tracing. We empirically reveal that SEMCODER’s static monologue reasoning is
comparably effective as attaching real traces [13] for bug fixing. Besides the effectiveness, monologue
reasoning has unique advantages by design: (1) it is purely static reasoning and does not require
dynamic tracing, (2) it compacts the execution reasoning by focusing on key properties related to
the bug rather than checking all redundant program states and concrete variable values, and (3) it
provides a human-readable explanation for better understanding.

Our main contribution is the development of SEMCODER, a semantic-aware Code LM designed to
enhance understanding and reasoning about program semantics. We introduce Monologue Reasoning,
a novel code reasoning approach that connects static source code with its runtime behavior through
detailed verbal descriptions of code properties and runtime behaviors. To expose comprehensive
program semantics at different levels, we curate PYX, a collection of executable code samples with
functional descriptions and execution traces. SEMCODER demonstrates superior performance in code
generation and execution reasoning tasks, surpassing larger open-source models. SEMCODER also
excels in debugging and self-refinement by leveraging knowledge from its semantic-aware training.
Our work highlights the potential of integrating deep semantic understanding into Code LMs to
improve their effectiveness in complex programming tasks.

2 Program Semantics

Program semantics refers to the meaning or behavior of a computer program, describing what it does
when it runs, including input processing, computations, and output [19, 20]. Understanding program
semantics is crucial for ensuring programs behave correctly and meet their intended purpose.

Program semantics can be represented in various modalities. A high-level description outlines a
program’s intended functionality, while fine-grained semantics detail the actions and side effects



of each line of code, including data manipulation and state changes. This detailed understanding
helps developers write better code and aids in code reviewing, debugging, and team communication.
Fine-grained semantics can be concrete or abstract. Concrete semantics (e.g., program traces) capture
actual execution effects, while abstract semantics focus on key input-output relationships and overall
program effects, abstracting away lower-level details [21, 22]. Following the existing literature on
program semantics [19, 20], we curate the following semantics.

Approximate Semantics describes the overall objectives of a program, often articulated through
docstrings or documentation [23, 24]. These Natural Language descriptions provide an overview of
the program’s goals and anticipated results, ensuring that the implementation aligns with the intended
high-level functionalities (blue box in Figure 1).

Symbolic Semantics represents complex functionality and logic in a way that both humans and
machines can interpret consistently. It refers to the layer of meaning derived from the symbols,
syntax, and structure of source code (pink box in Figure 1). It describes how code represents high-
level functionality and logic by focusing on those constructs within the source code that symbolize
particular behaviors, concepts, or operations in the program design.

Operational Semantics describe how the individual steps in a source code execute [25, 19, 20]. It
focuses on describing the concrete execution of a program in a step-by-step manner, detailing how
each action transforms the program’s state. This approach is particularly useful for reasoning about
the dynamic behavior of programming languages (yellow box in Figure 1).

Abstract Semantics is a way to describe program behavior at a higher level of abstraction [26, 27,
21, 22]. Unlike concrete semantics, which provides detailed descriptions of the program’s execution
on specific inputs, abstract semantics focuses on the essential aspects of program behavior while
ignoring low-level details. This approach is to reason about program properties and constraints (red
box in Figure 1 that always hold.

3 PyYX: Semantic-aware Training Dataset

Capturing program semantics requires executing source code with unit tests. Real-world datasets are
challenging due to diverse configurations, lack of unit tests, and limited documentation [28]. Thus,
we use a synthetic dataset to capture program semantics. Here, we detail the process of gathering
high-quality data for learning multi-modal code semantics. Similar to [16, 17], we first synthesize
NL to Code pairs. Then, we use the Python interpreter to filter out defective samples, ensuring
comprehensive semantic coverage. See Appendix F for more details and analysis, including Figure 4
which depicts the data collection procedure.

3.1 Synthesizing Executable Code

Synthesizing instructional data (NL to code) with existing LLMs is common for obtaining large
datasets for instruction tuning CodeLLMs [16, 17]. However, current methods do not guarantee the
quality of generated code. For instance, out of 43.1k Python solutions from [16], about 11.6k (26.9%)
are inexecutable despite instructions to produce "correct" and "self-contained" code (Table 7 in
Appendix F shows the top 10 error types). To build SEMCODER, we train it only with executable data,
as good data leads to better generation [29, 30]. We improve the OSS-INSTRUCT data generation
process [16], which prompts an LLM to create a programming task and solution inspired by a seed
snippet. Instead of randomly sampling lines from existing programs, we parse them into ASTs and
sample subtrees to obtain parsable seeds. We execute the generated code, retaining only successfully
executed samples, and use the generator model’s debugging capability to retry until the code runs
correctly. With the low-cost supervision from the Python interpreter, we build a higher-quality
instruction tuning dataset for semantic-aware model training. Step I of Figure 4 in Appendix F
summarizes this process. Table 2 in Appendix F compares our PYX with OSS-INSTRUCT in details.

3.2 Dataset with Operational Semantics

We select a subset of PYX to construct data to learn the execution reasoning (See Step-II of Figure 4
in Appendix F).



Forward Monologue Backward Monologue
Given the input energies ‘[10.5, 8.2, 10.5, 7.1, 8.2]", what will the function return? Given the output is *[3, 1, O], what is the function input?

/1 *energy_dict" is initialized as an empty dictionary. \ /> Key(constraintlaccordina)iojtheloutmuty \
2. Fillina the Dictionary: The “for® loop begins, iterating through the list the I;'If‘;'::f oF e energy correzpondshiolindex i3 Pithelsecondiiclii:fand

with "enumerate’ : 5
on s 3 - - Eneray Values:

- Iff" 1: For “idx = 0°, “energy = 10.5". We update the dictionary to - “enerqies[3]' -> first unique eneray (let's call it “el1)
be {10.5: 0} - “enerqies[11’ -> second unique eneray (let's call it “e2')

on 5 o —— - - - “eneraies[01' -> third uniaue eneray (let's call it “e3")
- Iter 5: For “idx = 4°, “energy = 8.2". Since 8.2 is in the dictionary, - In the sorted list of unique energies, “el* must be the smallest, followed by
it is not updated. “e2". and then 'e3".

Final state of “eneray dict": *{10.5: 0. 8.2: 1. 7.1: 3F". -A simple set of values array can be created. We must ensure that:

3. Sorting Unique Energies: Resulting in *sorted_unique_energies = [7.1, 8.2, - The eneray at index * 3" is less than the energy at index *1° and both
o § should be less than the energy at index 0" .
4. Retrievina Oriainal Indices: Let's select:

- For “eneray = 7.1°. the index is *3".

- For “eneray = 8.2". the index is '1°.

- “eneraies[3] = 1.0 (first unique. smallest value)
N N B A - “energies[1] = 3.0" (second unique, middle value)
=2 fooeneraviS10:o pathelindexlisBOR . - “energies[0] = 5.0° (third unique, largest value)
= Thus, umqueﬁsortedimdlceAs becomes [3', ",O] . 5 To ensure proper indexina and repetition. we can fill the rest of the list with
A\GRetumiStatement:AThelfunctionreturns)thellist e i3 XEAOTE /| \_duplicates of such values, for instance: *energies = [5.0, 3.0, 5.0, 1.0

Figure 2: Forward monologue simulates the execution step-by-step, and backward monologue
deduces the previous program states by making assumptions and checking with observed constraints.

Data Selection We apply the following filtering criteria to select programs with clean execution
flow from our executable dataset: (i) Only programs without external resource interactions (e.g.,
keyboard input, file system changes) are included, as our trace representation only captures variable
state changes. (ii) Programs must have no randomness, ensuring predictable behavior.

Input Generation Our executable dataset typically has one or two example inputs per program.
To model operational semantics accurately and avoid bias, we need a diverse input set to expose
different execution traces. We expand the input set using type-aware mutation and LLM-based input
generation, similar to [31] as detailed in Appendix F.

3.3 PYX-R: Training Code LLMs to Rubber-duck Debug and Self-refine

We construct a debugging dataset, PYX-R, to train Code LLMs for debugging and self-refinement,
aiming to improve their iterative programming capabilities. We collect buggy solutions by sampling
LLM for problems in PYX and keep those responses that fail at least one of the tests. We perform
rejection sampling with LLM to collect rubber-duck debugging rationales for buggy programs and
their input sets. PYX-R only includes those rationales that lead to correct patches, verified by
differential testing against the ground truth. We provide an example of PyX-R data in Appendix F.

4 SEMCODER: Learning Comprehensive Semantics

4.1 Natural Language to Code

We train SEMCODER to translate high-level functional descriptions into executable code, known as
the natural language to code task [16, 17]. Using PYX samples, we provide well-defined problem
descriptions that specify (1) the task’s overall objective, (2) implementation constraints, and (3)
expected outcomes with test cases. These descriptions give a holistic view of the task, forming the
basis for the model’s understanding.

4.2 Monologue Reasoning to Comprehensively Understand Code Semantics

We train SEMCODER to understand code semantics through monologue reasoning: Given the source
code and executable inputs/outputs, the model needs to reason code from high-level abstraction
to low-level details, from static perspective to dynamic perspective. Note that the original natural
language description of the problem will not be provided to generate monologues.

First, SEMCODER summarizes the high-level functionalities to understand the approximate semantics.
Then, SEMCODER will explain the abstract semantics as key properties and constraints that always
hold for all executions. Finally, SEMCODER describes the operational semantics by articulating
state changes during execution for the provided execution input/output. Inspired by rubber-duck
debugging, this approach explains program states transition more smoothly than structured formats
like Scratchpad [32], avoiding redundant program states (e.g., numpy array with hundreds of elements)
and concrete values (e.g., float numbers) while focusing on key properties that contribute to the
code understanding. We detail such effectiveness in Section 6.2. We provide partial monologues for
illustration in Figure 2 and full monologues in Appedix G.



4.2.1 Forward Monologue

We provide SEMCODER with the source code and input, and it learns to reason the operational
semantics by verbally simulating the execution step by step and predicting the execution output
(Figure 2 yellow box).

Execution Coverage To ensure comprehensive understanding, forward monologue covers those
lines with side effects, contributing to a thorough control flow understanding and enforcing a detailed
code walkthrough, similar to a developer’s debugging process.

Natural Execution Orders To mimic natural code execution, forward monologue follows the
natural order of reasoning. For loops, it explains each iteration with specific values, addressing lines
executed multiple times differently. This ensures an accurate, context-aware execution path, similar
to how developers mentally simulate execution behavior, helping to detect issues like infinite loops or
incorrect condition handling.

Program State Transition Understanding code side effects is crucial for grasping program state
evolution. Forward monologue indicates changes in variable values when a line is executed, enhancing
its ability to simulate real execution effects. This focus on side effects helps capture dynamic
semantics, providing granular, step-by-step explanations of state changes, thus improving debugging
and refinement based on observed behavior.

Final Output Finally, the model predicts the program’s final output after explaining the execution
process to validate the correctness of intermediate logic.

4.2.2 Backward Monologue

While forward execution is mostly deterministic, the previous program state cannot always be
determined from the current state, such as an unsorted list from its sorted version. Therefore, we
design the backward monologue to be flexibly abstract (See Figure 2, blue box).

Abstract Intermediate Constraints In our backward monologue reasoning, we use abstract
intermediate constraints when previous program states can’t be uniquely determined from the current
state, such as after sorting or aggregation. We train the model to describe these constraints abstractly.
This abstraction captures essential characteristics and patterns, allowing the model to reason about
multiple possible previous states. This approach enhances the model’s flexibility and generalization,
improving its ability to handle diverse and complex program reasoning tasks.

Concrete Input  For a given output, the model learns to predict concrete input values that satisfy
the input abstract constraints. This step bridges the gap between abstract reasoning and concrete
execution. This ensures it understands patterns and can generate practical examples, enhancing
its robustness for real-world tasks like debugging and testing. This capability mirrors how human
developers perform backward reasoning for debugging [33].

4.2.3 Monologue Annotation Using LLM

To annotate the monologue required for training SEMCODER, we employ a method of rejection
sampling [34, 35] through a large language model. We leverage the power of LLM to automatically
annotate numerous samples for training SEMCODER, while we have an execution-based golden
standard to verify the quality of annotated monologues, ensuring they are informative and valuable,
thereby enhancing SEMCODER’s ability to reason about program executions both forward and
backward.

For forward monologue annotation, we feed code samples from our PyX dataset into an LLM,
prompting it to generate a detailed explanation of state changes and transition logic, ending with a
final output prediction. We then execute the code; if the actual output matches the LLM’s prediction,
we accept the monologue, ensuring it accurately reflects the program’s execution. If the output does
not match, the monologue is rejected. This method ensures the monologue is comprehensive and
suitable for training SEMCODER. We follow a similar strategy for backward monologue annotation.

To enhance our monologue annotation process, we provide the LLM with few-shot examples when
generating forward and backward monologues. These examples follow our defined rules, explicitly
detailing execution lines, variable changes, and reasoning steps for forward monologues, and abstract
constraints with specific examples for backward monologues. This guidance ensures the LLM adheres



to our structured reasoning steps. We also use system instructions to ensure the LLM follows the
procedures illustrated in the few-shot examples.

4.3 Joint Training with Comprehensive Semantics

SEMCODER is trained with the combined data of natural-language-to-code samples, forward mono-
logues, and backward monologues, using the standard next-token prediction objective [36]. Our
training has an emphasis on learning the program semantics, where the training loss is accumulated
only by cross-entropy loss on code and monologue tokens together. We also include a task-specific
prefix as part of the model input so that the model is better aware of which types of program semantics
it should learn to capture and predict for the current sample. See Appendix H for concrete prefixes.

S Experiments

Code Generation and Execution Reasoning For code generation evaluation, we consider EvalPlus
[31] and the code generation task in LiveCodeBench-Lite (LCB-Lite for short)[18]. For execution
reasoning, we employ CRUXEval [37] and the code execution task in LiveCodeBench (LCB-Exec for
short) [18]. We prompt the baseline models to perform chain-of-thought reasoning [38] motivated by
two-shot examples, and zero-shot prompt SEMCODER to perform monologue reasoning. Inferences
all follow the benchmark’s original settings.

Rubber-duck Debugging and Self-refine We evaluate iterative programming capabilities in a
setting similar to self-refinement/self-debugging [39, 40] —models generate code, test it, rubber-duck
debug the erroneous solution, and refine their code based on the root cause analysis. Using EvalPlus
[31], we perform five iterative refinements using greedy decoding. We evaluate models with both
zero-shot prompting and fine-tuned using PyX-R settings.

Models SEMCODER loads the 6.7B base version of DeepSeekCoder as the initial checkpoint and
continues to optimize it with the proposed program semantic training. Similar to Magicoder [16],
we train two versions of SEMCODER, the base version and the more advanced SEMCODER-S.
The base version of SEMCODER is completely trained with PYX. The advanced SEMCODER-S is
trained with an extended dataset that includes PYX, Evol-instruct [16], and partial CodeContest [41].
Evol-instruct is a decontaminated version of evol-codealpaca-v1 [42], which contains numerous
instruction-following data. To increase the diversity of coding problems, we sample solutions from
CodeContest [41], resulting in 4.3k problems with at least one correct, LLM-generated solution.

Configuration and Empirically Settings All SEMCODER variants are trained for 2 epochs on
a server with eight NVIDIA RTX A6000 GPUs, using a learning rate of 5e-5 with a cosine decay
to 5e-6 during the program semantics training. For self-refinement fine-tuning, SEMCODER and
baseline Code LLMs are trained for 2 epochs with a learning rate of le-5. We use a batch size of 512,
a maximum context length of 2,048. Similar to [16], we use GPT-3.5-turbo to synthesize coding
problems. To minimize the cost, we use GPT-40-mini to generate code solution and monologue
reasoning texts, which are typically longer sequences than the problem descriptions.

6 Evaluation

6.1 Overall Performance

In this section, we report the overall performance of SEMCODER for code generation and execution
reasoning tasks and compare it with baseline Code LLMs.

Baselines and Evaluation Metric We consider four families of open-source Code LLMs as
baselines: Code Llama [4], StarCoder2 [5], DeepSeekCoder [3], and Magicoder [16]. Despite
SEMCODER having only 6.7B parameters, we include 6.7B, 7B, and 13B variants, both base and
instruct versions, if publicly available, totaling 13 open-source models. We also compare SEMCODER
to GPT-3.5-turbo for code generation and execution reasoning to measure the performance gap with
closed-source models. Results are reported with pass@ 1.

SEMCODER Achieves Dominant Performance in Code Generation and Execution Reasoning
We show the main evaluation results in Table 1. SEMCODER reports dominant performance in
execution reasoning, significantly better than other open-source baselines, including those with



Table 1: Overall performance of SEMCODER. For code generation, the numbers outside and inside
parenthesis " ()" indicate the base and plus versions of EvalPlus, respectively. All results are
reported with pass@ 1. CXEval indicates CRUXEval, and LCB indicates LiveCodeBench.

. Code Generation Execution Reasoning
Model Size
HEval (+) MBPP (+) LCB-Lite CXEval-I CXEval-O LCB-Exec
GPT-3.5-Turbo - 76.8 (70.7) 82.5(69.7) 239 50.3 59.0 43.6
CodeLlama-Python 13B 427 (38.4) 63.5(52.6) 10.6 40.5 36.0 232
ama-Inst 13B 494 (41.5) 63.5(53.4) 12.5 45.6 41.2 2

StarCoder2 I5B 463 (37.8) 55.1(46.1) 160 46.9 46.2 3
StarCoder2-Inst I5B 67.7(60.4) 78.0(65.1) 155 47.1 50.9 29.6
CodeLlama-Python 7B 37.8(354) 59.5 (46.8) 7.1 40.4 34.0 23.0

7B 360(31.1) 56.1(46.6)  10.6 36.0 36.8 30.7
7B 354(29.9) 544(456)  1L6 38.2 34.5 26.3
7B 604(555) 64.2(526) 114 34.0 35.5 28.6
7B 70.7(67.7) 684(56.6)  12.1 42,0 35.8 30.0
6.7B 47.6(39.6) 72.0(58.7) 203 39.5 41.2 36.1
6.7B 73.8(70.7) 749(656)  21.1 41.9 432 34.0
6.7B  66.5(60.4) 754(619) 255 45.5 41.9 38.8
Magicoder-S-DS 6.7B  76.8(71.3) 75.7(644) 233 44.6 43.5 384

SEMCODER (Ours)  6.7B 732 (68.9) 79.9(653)  22.4 62.5 65.1 597

SEMCODER-S (Ours)  6.7B  79.3(74.4) 79.6(68.5)  27.5 63.6 63.9 61.2

2x more parameters. We also collect results for larger models (e.g., CodeLlama-34B) from the
benchmark to compare with SEMCODER in Appendix Table 6.

Comparing SEMCODER with its initial checkpoint, DeepSeekCoder-6.7B, our semantic-heavy train-
ing strategy brings much stronger execution reasoning capabilities, resulting in a 23.0% absolute
improvement for input prediction and 23.9% and 23.6% absolute improvement for CRUXEval-O
and LCB-Exec, respectively. Notably, both variants of SEMCODER outperform GPT-3.5-turbo for
execution reasoning with a significant margin.

SEMCODER also demonstrates remarkable performance in code generation: SEMCODER achieves
79.9 pass@1 in MBPP, outperforming all open-source baselines, and the advanced version SEM-
CODER-S achieves pass@1 of 79.3 and 74.4 for HumanEval base and plus, respectively, significantly
beating other models, including GPT-3.5-turbo. These impressive results support Terry Winograd’s
vision in 1973 [14] that training models to thoroughly understand programs produces more reliable
and accurate programming assistants.

Execution Reasoning Requires Comprehensive Understanding of Code Semantics We show re-
sults of input/output prediction without reasoning in Appendix Table 5. Interestingly, when comparing
the results with reasoning vs. w/o reasoning, we found that the free-form chain-of-thought can hardly
help model reason about execution, even if it takes more inference-time computation to generate more
tokens. In contrast, monologue reasoning significantly improves the execution reasoning capability
by up to 21.7% absolute improvement in output prediction. This empirically reveals that thorough
understanding of code execution requires systematic reasoning over comprehensive semantics.

6.2 Effectivenss of Monologue Reasoning

In this section, we perform ablation studies to demonstrate the effectiveness of monologue reasoning.

Baselines We consider two baseline execution reasoning approaches: scratchpad [2] and NeXT’s
trace format [13]. NeXT adds numeric order to state changes and omits intermediate loop states.
We also create a template to concise execution traces, replacing monologue reasoning with concrete
program states. Examples are in Appendix I. Additionally, we report few-shot prompting results on
the base Code LM using chain-of-thought reasoning [38] without our execution reasoning data.

Experiments We first construct different formats of execution reasoning using the same PYX
samples that construct monologues. Then we fine-tune deepseek-coder-6.7b-base on these



Table 2: Ablation study for input and output prediction with different types of execution reasoning.

Method CRUXEval-I CRUXEval-O LCB-Exec
Few-shot Prompting 39.5 41.2 36.1
Finetune
. W/Seratchpad [2] B8 i 306 399 ..
L WINeXT[13] A94 509 322 .
w/ Concise Trace 52.1 55.6 35.9
w/ Monologue Reasoning (Ours) 61.8 63.5 58.5

different execution reasoning data for 3 epochs and compare their results on input and output
prediction using CRUXEval.

Monologue Reasoning is More Effective Than Learning Concrete Program States Results
in Table 2 show that, while all baselines improve execution reasoning, our monologue reasoning
outperforms them in input and output prediction with clear margins. The main reason is that
monologues describe state transitions smoothly in natural language while keeping track of only key
properties and values, which is easier for code LLMs to learn and understand and consequently
enhance execution reasoning. In contrast, baselines provide only concrete states with redundant
information and values while not explaining the causal relations of these transitions, so code LLMs
struggle to capture the correlation among them.

When we manually check the monologues, which are structured to ensure correct outcomes (Section
4.2.3, we observe that the intermediate logic could be occasionally flawed — the model sometimes
makes wrong assumptions about code properties but still reaches the correct result. In contrast, all
baselines are guaranteed to have correct intermediate steps, as they are realistic execution traces (See
Appendix A for limitation and future work). Empirically, however, the model learns more effectively
from the monologues. This highlights the potential benefits of emphasizing key property correctness
and model-friendly data format when jointly training code LLMs with distinct semantics.

6.3 Debugging and Self-Refinement

We format the debugging process as verbally and statically explaining why the bug happens [15]
to evaluate the code LMs’ reasoning capability rather than the tool-using capability that performs
dynamic execution with tracers or debuggers. Then the model should fix the bug according to its own
reasoning, i.e., self-refine. We provide an example in Appendix F (Example-2) to illustrate how this
task is performed.

Experiments We consider four state-of-the-art instruction-tuned code LMs as baselines: Llama-3.1-
Instruct-8B [43], DeepSeekCoder-Instruct-6.7B, Magicoder-DS-6.7B, and Magicoder-S-DS-6.7B.
We evaluate their static debug and self-refine capabilities on EvalPlus with five iterations. We first
evaluate with zero-shot prompting and then also fine-tune with PYX-R to illustrate its value.

Table 3: Performance of iterative debug and self-refine

(a) Zero-shot Prompting (b) Fine-tuned w/ PYX-R
Model Self-Refine Model Self-Refine
HEval (+) MBPP (+) HEval (+) MBPP (+)
Magicoder-DS ~ 65.2(60.4) 78.3(65.9) Magicoder-DS 78.8 (64.3) 83.1(66.7)
”Magi”coder—S-DS ~77.4(70.1) 79.9 (68.8) Magicoder—S—DS 83.5(76.2) 84.4(714)
DeepSeekCoder-Inst  77.4 (73.2)  80.4 (69.6) DeepSeckCoder-Inst  83.5 (75.6)  84.9 (69.6)
Llama-3.1-Inst 76.8 (68.9) 77.8 (65.6) Llama-3.1-Inst 76.8 (68.9) 76.7 (61.4)
- SEMCODER ~756(71.3) 83.1(67.2) SEMCODER 76.8 (69.5) 81.7(65.9)
SEMCODER-S 84.8 (79.3) 86.8 (74.3) SEMCODER-S 85.4 (79.3) 87.0 (73.5)

SEMCODER Reports Promising Performance in Debugging and Self-Refinement In Table 3,
SEMCODER-S outperforms all baselines, more notably in the zero-shot setting. This result illustrates
that the SEMCODER’s monologue reasoning augments general-purpose instruction tuning with
code semantics reasoning capabilities. Appendix D demonstrates SEMCODER’s continuous code



refinement throughout iterations, showcasing the potential of learned program semantics for complex
programming tasks.

PYX-R Improves Iterative Programming Capability Fine-tuning Code LMs on PYX-R signifi-
cantly improves iterative programming performance due to the monologue-style debugging rationale
and well-aligned patches. PYX-R helps Code LMs understand and analyze bugs from source code
and execution traces, aiming to inspire better iterative programming capabilities. We notice that
PYX-R provides limited improvement to SEMCODER variants and Llama-3.1-Inst, and we speculate
that these models are already trained with high-quality reasoning, and the occasional errors in PyX-R
debugging rationale restrict these models from becoming significantly better (See Appendix A).

Monologue Reasoning vs. Execution Traces for Debugging We perform additional experiments
by replacing the monologue reasoning part (See “### Execution Simulation" in Appendix F Example
2) in the debugging rationale with real traces, following the format of NEXT [13] and fine-tuning
code LMs again. Results are in Appendix C.1. We notice that monologue reasoning is comparably
effective as attaching execution traces. Besides the effectiveness, monologue reasoning has unique
advantages by design: (1) it is purely static reasoning and does not require dynamic tracing, (2) it
compacts the execution reasoning by focusing on key properties related to the bug rather than checking
all redundant program states and concrete variable values, and (3) it provides a human-readable
explanation for better understanding.

7 Related Work

Code LLMs and Training Data Many open source Code LLMs, such as CodeGen [44], StarCoder
[45, 5], Code Llama [4], and DeepSeek Coder [3], are proposed. Specialized models [32, 1, 41] have
also been developed for tasks like code generation, summarization, output prediction, and competitive
programming following the success of GPT-3 [46]. These models are trained only on source code and
related text, lacking execution context. This limits their understanding of program semantics, leading
to security issues and debugging failures. We aim to bridge this gap by training Code LMs on both
static source code and dynamic execution traces. An orthogonal line of research curates synthetic
instruction-following data to enhance Code LLM performance. Code Alpaca [47] has 20k instruction-
response pairs, Evol-Instruct-Code [17] expands this to 80k pairs, and OSS-Instruct [16] includes 75k
diverse pairs from the Stack dataset [9]. However, these datasets focus on natural-language-to-code
tasks with little coverage of code execution and unverified solutions. To improve correctness, Zheng
et al. [48] created a multi-turn conversation dataset with compiler error messages, and Wei et al. [49]
incorporated execution by generating test cases and filtering invalid pairs. Yet, no dataset includes
simulating and understanding execution traces. We aim to fill this gap (see Section 3).

Learning and Reasoning about Program Executions Before LLMs, [50, 51] predict simple
program outputs using RNNs, GNNs, small transformers, and neural Turing machines. Austin et al.
[32] fine-tuned LLMs for execution output prediction with minimal performance gains. Early models
predicted final outputs without revealing execution traces. Nye et al. [2] introduced the Scratchpad
method for intermediate results, and others [52, 53] fine-tuned UniXcoder [54] for execution traces
but didn’t evaluate for code generation tasks. We fine-tune a Code LLM to understand program
semantics, excelling in code generation, output prediction, and input prediction (see Section 4).
Another approach uses execution feedback for debugging Code LLMs. Self-Debugging [39] shows
that natural language explanations or unit test results help self-refinement, but execution traces reduce
performance. LeTI [55] and CYCLE [40] fine-tune with execution feedback to improve performance,
especially for smaller models. NEXT [13] generates debugging rationales to mitigate the negative
impact of execution traces. Our work shows that a model trained on code generation, output prediction,
and input prediction excels in understanding execution feedback and self-refinement (see Table 3).

8 Conclusion

We train SEMCODER to simultaneously learn different modalities of program semantics: Approx-
imate, Symbolic, Operational, and Abstract. We show that such semantics-oriented joint training
cultivates a comprehensive understanding of program semantics — SEMCODER or SEMCODER-S
achieves SOTA performance, among all less-than-15B open-source models, in not only the code
generation and input/output prediction but also tasks that require deep knowledge of both source code
and execution execution reasoning like debugging and self-refinement.
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A Limitations and Future Work

Process Supervision for Intermediate Reasoning Steps We manually review the monologues in
PYX and the rubber-duck debugging rationales in PYX-R, which are structured to ensure correct
outcomes (see Section 4.2.3). While the final answers are accurate, we observed that the intermediate
reasoning steps are occasionally flawed. Sometimes, the model makes incorrect assumptions about
code properties but still reaches the right result, i.e., correct execution input/output and correct patch.
Conceptually, such subtle mistakes in the intermediate reasoning steps might have negative impacts
on further improving models’ code reasoning capability.

We encourage future work to propose automatic and efficient process supervision approaches [56]
specifically for code reasoning, which will be useful to further improve the quality of monologues in
PYX.

Curation of Monologue Annotation The monologue annotation data (Section 4.2.3) is crucial for
SEMCODER to excel at the output prediction and input prediction tasks. However, we rely on a more
powerful LLM, GPT-3.5-Turbo or GPT-40-mini to generate these annotations and employ rejection
sampling from its responses, since our base model is relatively small with 6.7B parameters.

We encourage future work to try our semantic-oriented joint training on a larger base model, so that it
will be possible to generate the monologue annotations using the base model itself like Ni et al. [13]
did to bootstrap high-quality reasoning for self-refinement.

Incorporating Execution Reasoning into Code Generation We demonstrate that training on input
and output prediction tasks are indirectly beneficial for both natural-language-to-code generation and
downstream tasks like self-refinement. However, there is a more direct way to further improve the
performance in code generation and self-refinement — we can ask the model to first self-verify its
own solution by generating forward monologue (Section 4.2.1) for the test cases given in the natural
language specification before finalizing the solution.

We encourage future work to explore the possibility of using a model’s own execution reasoning
ability to directly assist its code generation and self-refinement process.

B Broader Impacts

Social Impact In this work, we train a semantic-aware Code LMs. We make all the data, code, and
model checkpoints available publicly. The artifact could be used to deploy automated programming
assistants that improve the developers’ productivity. It is possible but unlikely that the Code LMs will
generate buggy or wrong code, but we suggest to use our models as “copilot” to assist with human
developers rather than completely relying on the model for full automation.

Safeguards Our data is synthesized using a commercial LLM, i.e., GPT-3.5-turbo, which has been
aligned by the releasing company, OpenAl, to avoid leaking personal or malicious information. We
regard our data has minimal risk of being misused due to its synthetic instinct.

C More Evaluation Results
C.1 Debug and Self-refine w/ Real Execution Traces

Table 4: Debug and self-refine with real traces in the format of NExT [13].

Model Self-Refine
HEval (+) MBPP (+)
Magicoder-DS 72.0 (66.5) 83.3(67.5)

Llama-3.1-Inst 76.2(69.5) 82.8 (66.7)
SEMCODER e 78.0(70.7) 836 (66.4)
SEMCODER-S 86.0 (80.5) 87.0 (73.3)
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C.2 Input/Output Prediction Without Reasoning

In Table 5, we present the results of direct prediction for execution input and output without reasoning.

Table 5: Performance of direct prediction for execution input/output w/o reasoning.

Execution Reasoning

Model Size
CRUXEval-I CRUXEval-O LCB-Exec

GPT-3.5-Turbo - 49.0 49.4 39.2
~CodeLlama-Python 13B 38.5 39.7 36.1
~CodeLlama-Inst 13B 47.5 40.8 33.8

StarCoder2 15B 472 46.9 34.7
 StarCoder2-Inst 15B 474 47.1 8.1
~CodeLlama-Python 7B 37.3 34.6 31.1
~CodeLlama-Inst 7B 34.8 35.6 30.1

StarCoder2 7B 34.2 35.6 34.0
*Magicoder-CL 7B 32.0 35.6 324
* Magicoder-S-CL 7B 36.2 34.8 30.5
: DeepSeekCoder 6.7B 422 43.6 44.5
DeepSeekCoder-Inst  6.7B 34.9 40.8 41.1

Magicoder-DS 6.7B 412 434 38.4
“Magicoder-S-DS 6.7B 421 44.4 39.2

SEMCODER (Ours)  6.7B 46.9 479 38.0
' SEMCODER-S (Ours)  6.7B 47.6 46.6 40.7

C.3 Comparison with Larger Open-Sourced Models and Closed-Source Models

. Code Generation Execution Reasoning

Model Size
HEval (+) MBPP (+) CRUXEval-I CRUXEval-O

GPT-3.5-Turbo-1106 - 76.8 (70.7)  82.5(69.7) 49.0/50.3 49.4/59.0
Claude-3-Opus - 82.9(77.4) 89.4 (73.3) 64.2/73.4 65.8/82.0
GPT-4-0613 - 88.4(79.3) - 69.8/75.5 68.7/77.1
GPT-4-Turbo-2024-04-09 - 90.2 (86.6) - 68.5/75.7 67.7/82.0
CodeLlama 34B  51.8(43.9) 69.3(56.3) 47.2/50.1 42.4/43.6
DeepSeekCoder 33B  51.2(44.5) - 46.5/ - 48.6/ -
DeepSeekCoder-Inst 33B  81.1(75.0) 80.4(70.1) 46.5/ - 499/ -
SEMCODER (Ours) 6.7B  68.3 (62.2) 79.9 (65.9) 51.2/52.6 48.1/56.6
SEMCODER-S (Ours) 6.7B  81.1(76.2) 78.8(66.9) 48.1/54.5 44.9/54.1

Table 6: Overall performance of SEMCODER vs. other Code LLMs. For code generation, the numbers
outside and inside parenthesis " ()" indicate the base and plus versions of EvalPlus, respectively.
For execution reasoning, the left side and the right side of the slash "/" indicate the direct prediction
and prediction with reasoning, respectively. All results are reported with pass@]1.

D SEMCODER Continuously Refines Code Qualities

We studied SEMCODER’s code generation accuracy at each step of refinement with varied tempera-
tures. The results are plotted in Figure 3. We observed that SEMCODER is capable of continuously
refining its own errors, and the increase does not stop when the temperature is high, which indi-
cates the SEMCODER has strong debugging and self-refine capabilities and a high temperate better
leverages such capabilities for iterative programming.
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Figure 3: SEMCODER-S’s zero-shot performance of self-refinement at each time step with different
sampling strategies.

E Executability Analysis of OSS-INSTRUCT

Table 7: Top-10 error types of inexecutable Python code in OSS-Instruct[16]

Error #Cases out of 43.1k
Type Python samples
ModuleNotFoundError 3417
NameError 1954
FileNotFoundError 1052
ImportError 979
EOFError 743
SyntaxError 672
IndentationError 506
AttributeError 213
TypeError 196
ValueError 132

We execute all Python samples in OSS-INSTRUCT [16] to analyze their executability. To get a
more accurate result, we try to mitigate the ModuleNotFoundError by installing the top 75 missing
dependencies according to a pre-run result. Table 7 shows the breakdown of the top 10 error types.

F Details on PYX

The whole data collection pipeline is shown in Figure 4. Here we also document more details about
PYX.

Prompt for Data Synthesis We follow the prompt in OSS-INSTRUCT for data synthesis, but
with two modifications: 1) For problem design, instruct the model to avoid interaction with external
resources or requirement of uncommon third-party libraries to increase the probability of getting
executable code. 2) For giving solutions, instruct the model to show its thought process before writing
code to produce more aligned natural language along with the code in the dataset. Table 10 details
our prompts with an example in PYX.

Input Set Expansion To enlarge the input set, we first initialize the input corpus with all known
valid inputs. Then, for type-aware mutation, we alter known inputs based on type-specific heuristics.
For LLM-based generation, we prompt the model with the function and several known inputs to
generate more. We verify new inputs by executing them, retaining only those that execute successfully
without exceptions. We alternate between type-aware mutation and LLM-based generation until
reaching a predefined threshold, combining mutation’s efficiency with LLM generation’s robustness.
The generated inputs and their outputs serve as unit tests for the NL-described task in future steps.
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Table 8: The comparison between OSS-INSTRUCT and our PYX.

Seed Solution Performance
Dataset Problems

Parse Parse Execute HumanEval (+) MBPP (+)
OSS-INSTRUCT 75k - - Partially 67.1 (61.0) 77.5(64.3)
OSS-INSTRUCT-Python 43k 48% 97% 73% 66.5(59.8) 78.6 (65.9)
PYX (Ours) 32k 100% 100% 100% 70.1 (64.0) 78.6 (65.1)

Coverage of Inputs Our input generation method only considers diversity in terms of variable
values but does not try to fully exercise different execution paths in an executable code, like what
the coverage-guided testing usually does. However, our dataset only consists of relatively short
single-function programs that do not have complicated branches. We find that our generated inputs
can achieve average branch coverage and average line coverage of 93%, 96% respectively, which
shows that our approach is light-weight yet effective for the current setting.

Parsable and Executable code seeds One notable difference between OSS-INSTRUCT and PYX
is we only select parsable code seeds to sample programming challenges and code solutions, which
results in a slightly higher yield rate for executable code. We also try to quantify the effects of this
difference, and the results are in Table 8. We can see that training on PYX performs just marginally
better than OSS-INSTRUCT and its Python subset. We, therefore, conclude that training only with
executable code does not necessarily improve the natural language to code performance, but our work
requires this feature to expose the full semantics of code.

Data De-duplication We follow the data decontamination process of [16] and [57] to clean
our dataset. To examine the similarity between our instruction tuning dataset and the testing
benchmarks, we evaluate the "edit similarity" between them, specifically by scaling the metric
fuzz.partial_token_sort_ratio provided by thefuzz library. For each sample in our dataset,
its similarity to a benchmark is computed as the maximum cosine similarity to any sample in the
benchmark. We apply the same analysis to OSS-INSTRUCT for comparison. Figure 5 shows that the
similarity between our dataset and the two benchmarks is on par with OSS-INSTRUCT, where the
majority has less than 0.4 similarity, which indicates that the performance improvement brought by
our dataset is not from data leakage or benchmark data imitation.

Categories To study the effect of executability filtering, we categorize all samples in our dataset
following [16] shown by Figure 6. Compared to OSS-INSTRUCT, the categorical distribution shifts by
an increase in algorithmic and data structure problems, data science and machine learning problems,
and mathematical and computational problems, and a decrease in the remaining categories, which is
expected since interactions with external resources commonly required in scenarios like database,
web and UI design are not allowed in our execution environment.
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Figure 5: Edit similarities between PYX and two popular benchmarks

14.32% (Domain Specific Problems)

10.63% (Mathematical and Computational Problems)

50.57% (Algorithmic and Data Structure Problems)
10.58% (Data Science and Machine Learning Problems)

4.69% (Performance Optimization Problems)
2.71% (Database and SQL Problems)
1.87% (Security and Cryptography Problems
1.68% (User Interface and Application Design Problems
1.51% (Web Problems)
1.43% (System Design and Architecture Problems

Figure 6: The category distribution of PYX

Data Statistics We perform decontamination on the PYX, and monologue samples (we remove the
samples that share the same input and output pair with CRUXEval). PYX includes 32,489 natural
language to code pairs. We generated 29,945 forward monologues and 31,022 backward monologues
using rejection sampling. SEMCODER is trained with 93.4k samples, and SEMCODER-S with 214.1k
samples. PYX-R contains 18,473 debugging samples, each with the original description, buggy code,
debugging rationale, and final patch.

Example 1: An example of PYX sample generation

User Prompt:

Please gain inspiration from the following random code snippet to create a high-quality
programming problem. Present your output in two distinct sections: [Problem Description]
and [Solution].

Code snippet for inspiration:

testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner (
os.environ["MOLECULE_INVENTORY_FILE"]
) .get_hosts("instance")

def test_non_root_user (host):
with host.sudo(user="vagrant"):
cmd = host.run_test (command="docker container run hello-world")
assert "Hello from Docker!" in cmd.stdout

def test_docker_group_members (host):
content = host.file(path="/etc/group").content_string
match = re.search(
pattern=r"~docker:x: \d+: vagrant$ ",
string=content,
flags=re.MULTILINE,
)

assert match
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Guidelines for each section:

1. [Problem Description]: This should be concise and **completely self-containedx**,
providing all the contextual information one needs to understand and solve the problem.
Assume common programming knowledge, but ensure that any specific context, variables, or
code snippets pertinent to this problem are explicitly included. Avoid interaction with
external resources (e.g. keyboard, file system, databases, network) or requirement of
uncommon third-party libraries. The problem should be non-trivial and require some
thought to solve.

2. [Solution]: First, show your thought process and outline your planned steps clearly.
Then offer a comprehensive, **correct** and runnable solution that accurately addresses
the [Problem Description] you provided.

Model Response:

[Problem Description]

Write a solution to the following coding problem:

You are tasked with creating a Python function that processes a given string to extract
specific information based on predefined patterns. The function should take a string as
input and return a dictionary containing counts of various elements found in the input

string.

The function should perform the following tasks:

1. Count the occurrences of each unique word in the input string.

2. Identify and count the occurrences of any email addresses present in the input string.
3. Determine the total count of numeric digits (0-9) in the input string.

For example, given the input string "Hello world, my email is example@email.com and my

phone number is 12345", the function should return a dictionary like this:
{
'word_counts ': {'Hello': 1, 'world': 1, 'my': 2, 'email': 1, 'is': 2, 'example@email.
com': 1, 'and': 1, 'phone': 1, 'number': 1},
'email_count ': 1,
'digit_count': 5
}

Ensure that the function is case-insensitive when counting words and email addresses.
Words are defined as sequences of characters separated by spaces, and email addresses
follow the standard format of "example@email.com".

[Solution]

To solve this problem, we will create a Python function that processes the input string
according to the specified requirements. Here is an outline of the planned steps:

1. Initialize variables to store word counts, email count, and digit count.

Tokenize the input string into words.

Iterate through the words to count occurrences and identify email addresses.

Count the total number of digits in the input string.

Return a dictionary containing the word counts, email count, and digit count.

g WwN

Here is the Python function implementing the solution:
T python

import re

def process_string(input_string):
word_counts = {}
email_count = 0
digit_count = 0

words = input_string.lower () .split ()

for word in words:
if re.match(r"[a-zA-Z]+", word):
word_counts [word] = word_counts.get(word, 0) + 1
if re.match(r"[a-zA-Z0-9._Y%+-]1+@[a-zA-Z20-9.-1+\.[a-zA-Z]{2,}", word):
email_count += 1
digit_count += sum(1l for char in word if char.isdigit())

return {
'word_counts word_counts,
'email_count': email_count,
'digit_count': digit_count

}

# Test the function with an example input

input_string = "Hello world, my email is example@email.com and my phone number is 12345"
result = process_string(input_string)

print (result)
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This function processes the input string as described in the problem and returns a
dictionary with the counts of words, email addresses, and digits. The regular expressions
used help identify words, email addresses, and digits accurately.

Example 2: An example of PYX-R rubber-duck debugging and bug fixing

Prompt:

### Problem
Write a solution to the following coding problem:
You are tasked with implementing a Python class that processes and represents data from

HTML soup objects. The class has three methods: ~__init__~, “__str__", and °~__repr__"~
The “__init__~ method takes a “soup” object, removes empty elements, and parses the input
The “__str__~ and "~ __repr__ ~ methods return the object's data in JSON format.

Your task is to complete the implementation of the class by defining the
_remove_empty_elements ~ and °~ _parse_input”  methods. The "~ _remove_empty_elements  method
should remove any empty elements from the “soup”™ object, and the "~ _parse_input ~ method
should process the “soup ™ object to extract relevant data.

Implement the missing methods to ensure that the class functions correctly and outputs
data in JSON format when the ~__str__~ or ~__repr__~ methods are called.

### Buggy Solution

“python
from bs4 import BeautifulSoup
import json

class HtmlDataProcessor:
def __init__(self, soup):
self.soup = soup
self.data = {}
self. _remove_empty_elements ()

self._parse_input ()

def _remove_empty_elements(self):
# Remove empty tags from the soup
for element in self.soup.find_all(True): # True finds all tags
if not element.get_text(strip=True): # If the element is empty
element .decompose () # Remove it from the soup

def _parse_input (self):
# Extract relevant data from the soup
self.data = {}
for element in self.soup.find_all(True): # Iterate over all tags
if element.name in self.data:
self.datalelement.name].append(element.get_text(strip=True))
else:
self .datal[element .name] = [element.get_text(strip=True)]

def __str__(self):
return json.dumps(self.data, ensure_ascii=False)

def __repr__(self):
return json.dumps(self.data, ensure_ascii=False)

### Failed Test
T “python

# Test cases to verify the implementation

# Test with a simple HTML soup

html_content = "<div><p>Hello</p><p></p><span>World</span></div>"

soup = BeautifulSoup (html_content, 'html.parser')

processor = HtmlDataProcessor (soup)

assert str(processor) == '{"div": [], "p": ["Hello"], "span": ["World"l}'
Target:
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[MONOLOGUE]

### Execution Simulation

Let's walk through the execution of the provided test case with the buggy
HtmlDataProcessor = implementation.

1. **%xInput HTML**: The test input is:
T html
<div><p>Hello</p><p></p><span>World</span></div>

- This gets parsed into a BeautifulSoup object “soup’.

2. **Initialize “HtmlDataProcessor “**: When ~HtmlDataProcessor (soup)” is called:
- "self.soup” is set to the parsed HTML.
- "self.data” is initialized as an empty dictionary.
- ‘_remove_empty_elements()‘ and " _parse_input () are invoked sequentially.
3. #**Execution of "~ _remove_empty_elements "
- The method iterates over all elements in “soup :
- “<div>": Not empty (it has children), so it remains.
- “<p>Hello</p>": Not empty, so it remains.
- “<p></p>": Empty, so it gets decomposed (removed).
- “<span>World</span>": Not empty, so it remains.
- After this process, the “soup  now looks 1like:
T html
<div><p>Hello</p><span>World</span></div>

*ok

4. x*Execution of °~ _parse_input ~**:
- The method iterates over all tags again:
- For “<div>": It adds child elements' texts, resulting in:
T “python

self.datal['div'] = ['HelloWorld']
- For "<p>": It adds its text "Hello":
T “python
self.datal['p'] = ['Hello'l]
- For “<span>": It adds its text "World":
T “python
self.datal['span'] = ['World']
- At the end of this method, “self.data” is:
T Tpython
{'div': ['HelloWorld'], 'p': ['Hello'l, 'span': ['World'l}

5. **String Representation**:
- The " __str__" method is called, producing:
" json
'{"div": ["HelloWorld"], "p": ["Hello"], "span": ["World"]}'

6. **xTest Assertion#**: The assertion “assert str(processor) == '{"div": [], "p": ["Hello
"], "span": ["World"]}'" fails because the expected output for “div’ is an empty list,
while the generated output has “"HelloWorld"".

### Root Cause Analysis

The primary issue lies within the °~_parse_input” method. Specifically, it collects text
from child elements under tags like “<div>", which makes “self.datal['div']" incorrectly
aggregated with text from its children, rather than displaying children separately.

### Bug Fixing

To fix this, we should prevent the parent tag from aggregating text that includes child
elements. Instead, we should only include text for elements that do not have child
elements in ~ _parse_input . Here's the corrected implementation:

[/MONOLOGUE]

[Refined]

" “python
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from bs4 import BeautifulSoup
import json

class HtmlDataProcessor:
def __init__(self, soup):
self.soup = soup
self.data = {}
self. _remove_empty_elements ()
self._parse_input ()

def _remove_empty_elements(self):
# Remove empty tags from the soup
for element in self.soup.find_all(True): # True finds all tags
if not element.get_text(strip=True): # If the element is empty
element .decompose () # Remove it from the soup

def _parse_input (self):
# Extract relevant data from the soup
self.data = {}
for element in self.soup.find_all(True): # Iterate over all tags
if not element.find_all(True): # Only process elements without child
elements
element_text = element.get_text(strip=True)
if element.name in self.data:
self.datal[element .name].append(element_text)
else:
self.datalelement.name] = [element_text]
else:
# If this element has children, you can initialize it with an empty list
if element.name not in self.data:
self .datal[element .name] = []

def __str__(self):
return json.dumps(self.data, ensure_ascii=False)

return json.dumps (self.data, ensure_ascii=False)

def repr__(self):

[/Refined]

G Detailed Example of Monologues

We provide examples for the detailed forward and backward monologues.

Example Monologue Reasoning

Code and Input:
from typing import List
def unique_sorted_indices (energies: List[float]) -> List[int]:
energy_dict = {}
for idx, energy in enumerate (energies):
energy_dict.setdefault (energy, idx)

sorted_unique_energies = sorted(set(energies))
unique_sorted_indices = [energy_dict[energy] for energy in sorted_unique_energies]
return unique_sorted_indices

assert unique_sorted_indices([10.5, 8.2, 10.5, 7.1, 8.2]) == 77

Forward Monologue:
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[MONOLOGUE]

### Understanding the Function

The function “unique_sorted_indices ™ takes a list of floating-point numbers named
energies” as input. Its purpose is to find the indices of the unique elements in the
input list when sorted in ascending order.

- A dictionary “energy_dict® is created to map each unique energy value to its first
occurrence index.

- The “enumerate” function is used to iterate through the list and populate the
dictionary with energy values as keys and their respective indices as values.

- Then, the function creates a sorted list of unique energy values from the input 1list
using “sorted(set(energies)) .

- Finally, it creates a list of indices that correspond to these sorted unique energies
using a list comprehension that retrieves the original indices from the dictionary.

### Key Properties and Constraints

- The input list can contain duplicate values and is of variable length.

- The output list will have unique energy values sorted in ascending order and will
contain their original indices from the input 1list.

- If an energy value is repeated, only its first occurrence's index is stored in the
dictionary.

- The function ensures that the indices in the output list reflect the order of the
unique values after sorting.

### Execution Simulation:
Let's simulate the execution of “unique_sorted_indices([10.5, 8.2, 10.5, 7.1, 8.2])  step
by step.

1. **Initialization*x*:
- “energy_dict® is initialized as an empty dictionary.

2. **%Filling the Dictionaryx*x:
- The “for~ loop begins, iterating through the list with ~enumerate ":

- **xIteration 1**: For “idx = 0", “energy = 10.5°. The dictionary is updated to
“{10.5: 0}".

- *xIteration 2%%: For “idx = 1°, “energy = 8.2 . The dictionary is updated to
“{10.5: 0, 8.2: 1}°.

- *xIteration 3%*: For “idx = 2, “energy = 10.5°. Since 10.5 already exists in the
dictionary, it is not updated.

- *xIteration 4%*: For “idx = 3°, “energy = 7.1 . The dictionary is updated to
“{10.5: 0, 8.2: 1, 7.1: 3}".

- **Iteration 5%*: For “idx = 47, “energy = 8.2°. Since 8.2 already exists in the

dictionary, it is not updated.
Final state of “energy_dict ~ after the loop: ~{10.5: 0, 8.2: 1, 7.1: 3}".

3. **Sorting Unique Energiesx*x*:
- The unique energies are derived and sorted, resulting in “sorted_unique_energies =
[7.1, 8.2, 10.5]".

4. **Retrieving Original Indicesx*x*:
- A list comprehension retrieves the original indices corresponding to these sorted
unique energies:
- For “energy = 7.1, the index is "3°.
- For “energy = 8.2°, the index is "1°.
- For “energy = 10.5°, the index is ~0°.
- Thus, “unique_sorted_indices”~ becomes ~[3, 1, 0]".

5. **Return Statement*x*:
- The function returns the list ~[3, 1, 0] .

[/MONOLOGUE]

[ANSWER]

assert unique_sorted_indices([10.5, 8.2, 10.5, 7.1, 8.2]) == [3, 1, 0]
[/ ANSWER]

Code and Output:

from typing import List
def unique_sorted_indices (energies: List[float]) -> List[int]:
energy_dict = {}
for idx, energy in enumerate (energies):
energy_dict.setdefault (energy, idx)

sorted_unique_energies = sorted(set(energies))
unique_sorted_indices = [energy_dict[energy] for energy in sorted_unique_energies]
return unique_sorted_indices

assert unique_sorted_indices(?7?) == [3, 1, 0]

Backward Monologue:
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### Understanding the Function

The function “unique_sorted_indices  processes a list of floating-point numbers (°
energies ) to produce the indices of the unique values sorted in ascending order. Here's
how it works:

1. **xInitialization**: An empty dictionary “energy_dict” is created.

2. x*Dictionary Population*#*: The function iterates through “energies” using ~enumerate”,
which provides both the index (" idx~) and the value (" energy):

- It uses “setdefault”™ to record the index for each unique energy value found in the
list. If the energy value already exists in the dictionary, it does not update the index
(thus only the first index is stored).

3. **Sorting Unique Energies**: A set of unique energy values is created from the 1list,
which is then sorted to create “sorted_unique_energies .

4. x*Index Retrieval**: A new list of indices is constructed by retrieving the original
indices from “energy_dict  corresponding to the sorted unique energies.

5. *xReturn Valuex*: The function returns a list of indices corresponding to unique
energy values in sorted order.

### Key Properties and Constraints

- The input list may contain duplicate energy values, but only the first occurrence's
index will be recorded in “energy_dict .

- The output will be ordered according to the sorted unique energy values.

- The length of the output list will equal the number of unique energy values in the
input 1list.

### Reverse Deduction
Given the output “[3, 1, 0] , we need to determine what “energies’™ might have been to
produce this result:
- **Behind the Resultx*x:

- “energy_dict® must map some unique energies to these indices.

- The first unique energy corresponds to index “3°, the second unique to "1, and the
third unique to “0°.
- **xEnergy Values*x*:

- Suppose the values in the “energies”™ 1list that correspond to these indices are:

- “energies[3]" -> first unique energy (let's call it “el’)
- “energies[1]  -> second unique energy (let's call it “e27)
- “energies[0] " -> third unique energy (let's call it “e37)
- *xExpected Orderingx*x*:
- In the sorted list of unique energies, “el” must be the smallest, followed by “e27,

and then “e3°.
- **%Choice of Values*x*:
- A simple set of values array can be created. We must ensure that:
- The energy at index 3" is less than the energy at index "1 ° and both should be
less than the energy at index “0°.

Let's select:

- “energies[3] =
- “energies[1]
- “energies[0] =

1.0° (first unique, smallest value)
3.0 (second unique, middle value)
5.0 (third unique, largest value)

To ensure proper indexing and repetition, we can fill the rest of the list with
duplicates of such values, for instance:

T python

energies = [6.0, 3.0, 5.0, 1.0]

With this arrangement, we maintain the index mapping:

- 5.0 at index 0" (first occurrence),

- 73.0° at index "1 (first occurrence),

- 71.0° at index “3° (first occurrence).

[/MONOLOGUE]

[ANSWER]

assert unique_sorted_indices([5.0, 3.0, 5.0, 1.0]) == [3, 1, 0]
[/ANSWER]

H Task-specific Prefix

We append task-specific prefixes to the training samples to guide the model to perform different types
of semantic reasoning.

Task: Natural Language to Code

Prefix:
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You are an exceptionally intelligent coding assistant that consistently delivers
accurate and reliable <Code> according to <NL_Description>

<NL_Description>
{prompt}

<Code>
{completion}

Task: Forward Monologue

Prefix:

Simulate the Execution: You are given a Python function and an assertion containing a
function input. Complete the assertion containing the execution output corresponding to
the given input in [ANSWER] and [/ANSWER] tags.

{prompt}

{completion}

Task: Forward Monologue

Prefix:

Deduce the Semantic Constraints: You are given a Python program and its expected output.
Find one input such that executing the program with the input leads to the given output.
Complete the assertion with one such input in between [ANSWER] and [/ANSWER].

{prompt}

{completion}

Task: Debug and Self-refine

Prefix:

"""Debug and Refine the Code: You are given a a problem to be implemented in Python, and
a buggy code that tries to solve the problem but fails the test case.

You should firstly simulate the execution with the buggy code and the failed test to
identify the root cause of the failure.

Then, you should fix the bug and wrap the refined code in between [Refined] and [/Refined
1.

{instruction}

{response}

I Baseline Trace Formats

We present the baseline traces formats as we discussed and compared in Section 6.2.

Source Code and Test Case

from typing import List # [L2]

def unique_sorted_indices (energies: List[float]) -> List[int]: # [L5]
energy_dict = {} # [L6]
for idx, energy in enumerate(energies): # [L7]
energy_dict.setdefault (energy, idx) # [L8]

sorted_unique_energies = sorted(set(energies)) # [L9]
unique_sorted_indices = [energy_dict[energy] for energy in sorted_unique_energies] #
[L10]

return unique_sorted_indices # [L11]

assert unique_sorted_indices([10.5, 8.2, 10.5, 7.1, 8.2]) == [3, 1, 0] # [L13]

Scratchpad
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from typing import List

def unique_sorted_indices (energies: List[float]) -> List[int]: # [INPUT] {"energies":
(10.5, 8.2, 10.5, 7.1, 8.21} [/INPUT]

energy_dict = {} # [STATE] {"energy_dict": {}} [/STATE]

for idx, energy in enumerate(energies): # [STATE] {"idx": O, "energy": 10.5} [/STATE
J[STATE] {"idx": 1, "energy": 8.2} [/STATE]J[STATE] {"idx": 2, "energy": 10.5} [/STATE][
STATE] {"idx": 3, "energy": 7.1} [/STATE][STATE] {"idx": 4, "energy": 8.2} [/STATE]

energy_dict.setdefault (energy, idx) # [STATE] {"energy_dict": "{10.5: 0}"} [/
STATE] [STATE] {"energy_dict": "{10.5: 0, 8.2: 1}"} [/STATE][STATE] {"energy_dict":
"{10.5: 0, 8.2: 1, 7.1: 3}"} [/STATE]
sorted_unique_energies = sorted(set(energies)) # [STATE] {"sorted_unique_energies":
[7.1, 8.2, 10.5]} [/STATE]
unique_sorted_indices = [energy_dict[energy] for energy in sorted_unique_energies] #

[STATE] {"unique_sorted_indices": [3, 1, 0]} [/STATE]
return unique_sorted_indices # [OUTPUT] [3, 1, 0] [/OUTPUT]

NeXT Scratchpad

from typing import List

def unique_sorted_indices(energies: List[float]) -> List[int]: # [INPUT] {"energies":
[10.5, 8.2, 10.5, 7.1, 8.2]} [/INPUT]

energy_dict = {} # [STATE-0] {"energy_dict": {}} [/STATE-0]

for idx, energy in enumerate (energies): # [STATE-1] {"idx": O, "energy": 10.5} [/

STATE-1] [STATE-3] {"idx": 1, "energy": 8.2} [/STATE-3] ... [STATE-8] {"idx": 4, "energy":
8.2} [/STATE-8]
energy_dict.setdefault (energy, idx) # [STATE-2] {"energy_dict": "{10.5: 0}"} [/

STATE -2] [STATE-4] {"energy_dict": "{10.5: 0, 8.2: 1}"} [/STATE-4][STATE-7] {"energy_dict
": "{10.5: 0, 8.2: 1, 7.1: 3}"} [/STATE-7]

sorted_unique_energies = sorted(set(energies)) # [STATE-9] {"sorted_unique_energies
": [7.1, 8.2, 10.5]} [/STATE-9]

unique_sorted_indices = [energy_dict[energy] for energy in sorted_unique_energies] #

[STATE-10] {"unique_sorted_indices": [3, 1, 0]} [/STATE-10]
return unique_sorted_indices # [OUTPUT] [3, 1, 0] [/OUTPUT]

Concise Trace

[L5] [INPUT] {"energies": [10.5, 8.2, 10.5, 7.1, 8.2]} [/INPUT] [/L5]
[L6] {"energy_dict": {}} [/L6]
[L7] {"idx": 0, "energy": 10.5} [/L7]

[L8] {"energy_dict": "{10.5: 0}"} [/L8]

[L7] {"idx": 1, "energy": 8.2} [/L7]

[L8] {"energy_dict": "{10.5: 0, 8.2: 1}"} [/L8]

[L7] {"idx": 2, "energy": 10.5} [/L7]

[L8] [/L8]

[L7] {"idx": 3, "energy": 7.1} [/L7]

[L8] {"energy_dict": "{10.5: 0, 8.2: 1, 7.1: 3}"} [/L8]
[L7] {"idx": 4, "energy": 8.2} [/L7]

[L8] [/L8]

[L7] [/L7]

[L9] {"sorted_unique_energies": [7.1, 8.2, 10.5]} [/L9]
[L10] {"unique_sorted_indices": [3, 1, 0]} [/L10]
[L11] ([ouTPUT] [3, 1, 0] [/OUTPUT] [/L11]
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , [No|, or [NA].

e [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No| " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading “NeurIPS paper checklist',
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [ Yes]

Justification: The summarization of the paper’s contribution and novelty is in Abstract and
Introduction (Section 1)

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [ Yes]
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Justification: Appendix A
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

e The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

 If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: There are no theoretical results in this work since our results focus on empiri-
cally improving and evaluating Code LLMs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

e All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [ Yes]

Justification: We have explained the configuration of our implementation and configuration.
We will also release the reproducible artifact publicly.

Guidelines:
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* The answer NA means that the paper does not include experiments.

o If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [ Yes]

Justification: Our data, code, and models are available at: https://github.com/
Anonymous-Code-Proj/SemCoder.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We include data collection and experimental configuration in Section 5.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No|

Justification: We fine-tune a 6.7B transformer decoder model and use greedy decoding for
our main results in Table 1. There’s no need to report statistical significance.

Guidelines:

e The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

e For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In Section 5
Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [ Yes]
Justification: We checked the code of ethics and ensure our research algins with the code.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

e If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Appendix B
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

o If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [ Yes]

Justification: Appendix B
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Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our data is synthesized by GPT-3.5, and we have explicitly mentioned that in
the paper, and all related works we borrow ideas from are cited

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

e If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our documents will be available at https://github.com/ARiSE-Lab/
SemCoder

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA] .
Justification: There’s no crowdsourcing nor human subjects in our paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: There’s no crowdsourcing nor human subjects in our paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

e Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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