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Abstract—Long Range Wide Area Network (LoRaWAN) is a
promising communication technology for environmental monitor-
ing due to its low power consumption and long-range capabilities.
Despite its advantages, several challenges are associated with
LoRaWAN due to technical limitations, environmental factors,
and operational complexities. Continued advancements in adap-
tive algorithms and AI-based optimization are essential for
overcoming these challenges and fully realizing the potential of
LoRaWAN in diverse IoT applications. Transmission parameter
allocation is one of the most studied aspects of LoRaWAN,
typically required to reduce energy consumption and improve the
signal quality in dense LoRaWAN. Evaluations of the optimiza-
tion algorithms for parameter allocation are usually done using
simulators. However, they do not imitate the dynamic nature
of the network environment and other signal characteristics.
Thus, it becomes difficult to understand the performance of
these algorithms when deployed on real devices. This paper
introduces transmission parameter allocation strategies using
a State–Action–Reward–State–Action (SARSA) and Deep Q-
Learning Network (DQN) based Reinforcement Learning (RL)-
based scheduling algorithm for allocating transmission parame-
ters in LoRaWAN communication. We experimentally evaluate
this algorithm in a water quality monitoring system using actual
LoRaWAN devices to assess Signal to Noise ratio (SNR), Received
Signal Strength Indicator (RSSI), Time on Air (ToA), and power
consumption of our RL-based algorithms with the default and
Adaptive Data Rate (ADR) in LoRaWAN communication.

Index Terms—LoRaWAN, Energy Consumption,
State–Action–Reward–State–Action (SARSA), Deep Q-Learning
Network (DQN), Optimal Scheduling, Experimental Analysis.

I. INTRODUCTION

The Internet of Things (IoT) has revolutionized various
industries by enabling ubiquitous connectivity and intelligent
automation. One of the prominent communication protocols
in the IoT ecosystem is Long Range Wide Area Network
(LoRaWAN), known for its low power consumption and wide
coverage area. The efficiency and reliability of LoRaWAN
heavily depend on the optimal allocation of transmission
parameters such as spreading factor, transmission power, and
channel frequency. Traditionally, static algorithms have been
employed to manage these parameters. However, these static
approaches often fall short in dynamic environments where
network conditions and requirements vary significantly. The

Fig. 1: LoRaWAN Architure

challenges associated with static algorithms in LoRaWAN
transmission parameter allocation are multifaceted. Static algo-
rithms are inherently inflexible and unable to adapt to changing
conditions such as varying node densities, interference levels,
and traffic patterns. This inflexibility can lead to suboptimal
network performance, increased packet loss, reduced through-
put, and higher energy consumption. Consequently, there is
a growing need for more adaptive and intelligent methods to
enhance the efficiency and reliability of LoRaWAN networks.

Artificial Intelligence (AI) is a promising solution to address
these challenges. Studies are done to learn the dynamic
network due to changes in traffic and interference leading
to packet losses [1], [2]. AI-driven algorithms can dynam-
ically adjust transmission parameters in real-time based on
the current network state, thus optimizing performance [3]
[4]. Machine learning techniques, in particular, can learn
from historical data and predict optimal settings, providing
a significant advantage over static methods. Reinforcement
learning (RL) algorithms can perform online learning and
adapt to dynamic. Despite the theoretical benefits of AI in
this context, there are considerable hurdles in validating these
approaches through simulation alone.

Addressing these issues is crucial to fully harness Lo-
RaWAN’s potential for sustainable and efficient environmental
monitoring in real-world dynamic landscapes. While use-
ful for preliminary testing, simulation environments often
fail to capture the full complexity and variability of real-
world deployments. Factors such as physical obstructions,
varying environmental conditions, and real-time interference
can significantly impact the performance of LoRaWAN net-
works and are challenging to replicate accurately in a sim-
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ulated setting. Real-world data provides insights into these
network phenomena. Therefore, to comprehensively evaluate
the efficacy of AI-driven transmission parameter allocation,
there is a pressing need for experimental analysis in real-
world scenarios. This paper aims to address these gaps
by performing an experimental study to evaluate and com-
pare State–action–reward–state–action (SARSA) and Deep Q-
learning network (DQN), RL—based scheduling algorithms
with default ALOHA-based scheduling and adaptive data rate
(ADR) feature of LoRWAN. Fig. 1 shows our network under
consideration, where water quality monitoring sensors send
data packets to LoRaWAN Gateway. The gateway forwards
the packets to the on-premise TTN server for scheduling the
transmission parameters using our algorithms. These predicted
transmission parameters are sent back to the gateway which
notifies them to the end devices through MAC commands.

In the remainder of this paper, we provide a detailed lit-
erature survey about existing papers performing experimental
analysis of LoRaWAN in section II. Further, we present a
system model, discuss our problem, and formulate it in section
III. We provide solutions to solve this problem using our
proposed scheduling algorithms in section IV followed by
performance evaluation using comparative analysis in section
VI. We conclude our paper with a short discussion of our
observations and our results in section VII.

II. RELATED WORK

We performed a detailed literature survey of various studies
that attempted to allocate transmission parameters to end
devices. Based on our study, we can categorize them as,

A. Simulation-Based Transmission Parameter Allocation

Q-learning-based transmission parameter scheduling was
evaluated using MULANE simulator in [5]. The paper, [6],
proposes using RL for adaptive LoRaWAN transmission in
industrial settings, enhancing reliability by about 10% without
deviating from standard specifications. The reference [7] uses
LoRaSim to evaluate their RL-based algorithm for allocation
SF to the devices using contextual bandit problems, while
transmission power is assigned centrally by treating it as a
supervised ML problem. To ensure fewer collisions and a
better PDR, [8] designs a deep RL algorithm for transmission
parameter allocation in the physical layer. They designed a
simulator for RL-based algorithm evaluation in LoRaWAN
called LoRa-DRL. LP-MAB is another simulator designed in
[9] with Mulitarm bandit problem (MAB) to reduce energy
consumption and improve packet delivery ratio and coverage.

1) Limitations of the existing simulators: It is essential
to compare various LoRaWAN simulation tools and compare
them to see what features are missing in them and how close
they go to a real network. Various LoRawAN simulation tools
are studied in [10]. It enlists the features of each of the
tools. The FREE simulator has duty cycle features but does
not support AI-based algorithms. In the dynamic and ever-
changing environment, this support is essential. NS3-based
simulator lacks support for imperfect spread factors, energy

consumption evaluation, and downlink traffic. LoRaWAN is
known for its low power and energy consumption, which is
why IoT networks use LoRaWAN. Missing support for this
critical feature is a significant downside for this simulator.C++
based simulator also does not feature energy consumption
evaluation. The capture effect is a considerable feature in
reviewing the accuracy of PDR. LoRaEnergySim does not
handle the capture effect. In [10], recommendations for sim-
ulators are also provided. The optimum configuration settings
and network-based changes should be included. It is also
essential to study the impact of multiple gateways on the
simulation. In mobile networks, the challenges multiply due
to multipath fading and increased interference. The effect of
multiple gateways on a network is another essential simulator.
Also, new features should be included, such as channel activity
detection (CAD) as designed in our previous works [11].

B. Experiment-Based Transmission Parameter Allocation

Some studies perform experiment-based evaluations of Lo-
RaWAN scheduling. Reference [12] shows that for dense
networks, the ADR scheduling is inefficient and proposes
using the multiagent DRL method to allocate spread factor
and transmission power to meet QoS requirements. It uses a
chip stack network server. Another paper [13] predicts SNR
using an ML algorithm to obtain accurate SNR for optimal
transmission parameters selection. It is performed in The
Things Network server. It attempts to perform the ML on a
network server. Their previous work [14] is an experimental
evaluation by analyzing real-life data to show that path loss
and shadow fading are related to environmental variables. They
evaluate using ML algorithms and find the empirical path loss
and shadow fading, which is used to set the transmission power
to save the end node’s energy. Another experiment-based
evaluation in [15] provides a sliding window-based dynamic
by the heuristic algorithm to allocate transmission parameters
in LoRaWAN. Another paper [16] performs emulation using a
real network server, but end devices are emulated. It proposes a
multi-agent approach to efficient resource allocation in multi-
SF LoRaWAN networks. It provides a heuristic-based ap-
proach for the resource as a transmission parameter allocation.
It is an extension of [17], which performs scheduling and clock
synchronization on real devices. It uses chirpstack network
server to schedule the transmission and uses the heuristic
algorithm for the scheduling under high-traffic and large-scale
deployments,

In this survey, we found there are some major drawbacks
with existing studies that should be handled,

• Simulation-based evaluations provide detailed studies of
AI-based algorithms, but the tools are insufficient to
study aspects, such as the dynamicity of the real envi-
ronment.The results presented by algorithms using such
tools should not be considered valid for the real world.

• Most experiment-based evaluations study the existing
ADR algorithm in various scenarios. Very little research
has been done to optimize the transmission parameters
using new, but heuristic algorithms.

2024 IEEE International Performance, Computing, and Communications Conference (IPCCC)



• Due to the complexity of network server implementation,
the AI-based algorithms are implemented on end nodes,
which increases the power consumption of the battery-
powered end devices.

• There is a need to develop online algorithms for transmis-
sion parameter allocation to learn the changing network
conditions and present more optimized scheduling results.

In this paper, we propose to use
State–action–reward–state–action (SARSA) and Deep
Q-learning network (DQN) for scheduling transmission
parameters and perform an analysis such that

• We perform an experimental study such that algorithms
are compared in a real network.

• We design an RL-based solution that enables continuous
learning while scheduling and compares with ALOHA
and adaptive data rate (ADR) algorithms.

• Our algorithms are deployed on the Things Network
(TTN) server, run to schedule transmission parameters
and sent to end devices using MAC commands.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 2: On-Premise modified TTN Server Architecture

We used water quality monitoring systems as shown in Fig.
1 with LoRaWAN technology. The gateway acts as a forwarder
to the network server. We adjusted the existing TTN server
[18] and deployed it locally. We set up a PostgreSQL database
to store uplink messages from the sensors. The network server
consists of various modules, including the Gateway server,
which handles communication with the LoRa gateway and
traffic scheduling (Fig. 2). The application server manages the
LoRaWAN application layer by decrypting and decoding up-
link data, queuing downlink data, and encoding and encrypting
downlink data. The Join Server deals with the LoRaWAN join
flow, handling tasks such as authenticating the Network and
Application Server and generating session keys. The Identity
server stores registries of entities like applications with their
end devices, gateways, users, organizations, OAuth clients, and
authentication providers. We observe that evolving networks
introduce more challenges. Existing simulators used to evalu-
ate algorithms for improving the efficiency of LoRaWAN fail
to include the aspects of the evolving network. LoRaWAN
offers several advantages for environmental monitoring in
urban areas but also faces specific challenges such as signal
degradation and suboptimal transmission parameter allocation.

Achieving coverage in urban environments is challenging due
to buildings and obstacles, leading to signal loss and faster
battery drainage for LoRaWAN devices deployed in hard-to-
access locations [19]. In LoRaWAN deployments, optimizing
transmission parameters is crucial for reliable communication,
especially in urban areas. Existing algorithms may not be
effective in urban environments. Simulation studies show that
AI-based algorithms outperform traditional ones for parameter
allocation. [7]. Our previous studies on transmission parameter
allocation using RL algorithms are discussed in [20].

A. Problem Formulation
Due to dynamic and ever-changing environments, predict-

ing obstacles and other environmental challenges is difficult.
Transmission parameters used by end devices during uplink
also decide the signal strength. The network server sends
this parameter setting using MAC commands. To deal with
the complex and changing environment, designing an AI-
based solution for scheduling is necessary. One major issue
in optimizing LoRWAN networks is the limited research
performed on experimental analysis of AI algorithms for
scheduling transmission parameters. Existing simulators do
not simulate all the aspects of network traffic. Evaluating
the scheduling solutions on simulators does not test them
from end to end. Many faces of how the algorithms would
perform go unverified. Moreover, existing experimental studies
are inclined towards more static scheduling algorithms or the
end device-hosted AI-powered scheduling algorithms. This
increases the energy consumption of battery-powered devices.
After preliminary analysis of algorithms on simulators, evalu-
ating the scheduling algorithms using real devices is crucial.
This helps us understand how the algorithm performs in a real
network and reacts to unanticipated network changes.

IV. PROPOSED SOLUTION

We propose using SARSA and DQN-based scheduling
algorithms to predict each end device’s spread factor and
bandwidth. We formulate our problem as a Markov decision
problem (MDP) and can be defined using components,

1) State (S): Metadata in the uplink message contains an
Extended Unique Identifier (EUI) for each device. The
state comprises Signal To Noise Ratio (SNR), data rate
(SF+BW), demodulation floor, device margin, device
locations, and channel steering information.

2) Action (A): we consider the data rate index [21] as an
action to be predicted for each device.

3) Reward (R): The difference in battery levels between
the previous and current messages acts as a reward. The
lower this difference, the higher the reward obtained.
Thus, the reward can be calculated as,

R = Emi
− Emi−1

(1)

where E denotes the battery level and m denotes the
uplink message identifier from device i

4) State transition probability matrix (P): Represents the
probability of changing the signal quality and enhancing
by selecting a particular data rate.
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A. SARSA (State-Action-Reward-State-Action)

SARSA is an on-policy-based RL algorithm that updates
its Q-values based on its action, following its current policy
[22]. SARSA maintains a Q-table Q(s, a) where each entry
represents the expected cumulative reward for taking action a
in state s. We assume that the s′ is the received state from
the uplink message, and based on previously stored s and
previously predicted a, we obtained its rewards r in the current
message. This is because, based on the last state and predicted
action, the environment reacted and generated a reward in the
current uplink message. We train the network using all this
information and predicted action a′ for the current uplink.
Training is done using Bellman’s equation denoted as,

Q(s′, a′) = Q(s′, a′) + α ∗ [r + γ ∗Q(s, a)−Q(s′, a′) (2)

where γ is a discounting factor and α is learning rate for
temporal difference learning. The learning rate α determines
the behavior of the algorithm Sarsa. Too large values α will
keep our algorithm from converging to optimal policy.

B. DQN (Deep Q-Learning Network)

DQN addresses the limitations of traditional Q-learning,
which struggles with high-dimensional state spaces. DQN
can handle large and complex state spaces by using deep
neural networks as function approximators, enabling it to
solve previously intractable problems for standard Q-learning
methods [23]. DQN uses a neural network to approximate
the Q-value function, Q(s, a; θ), where θ are the parameters
(weights) of the neural network. Training in DQN is done
using Bellman’s equation to maximize Q-value as,

Q(s′, a′) = Q(s′, a′) + α ∗ [(r i+ γ ∗maxQ′(s′ i, a; θ))

−Q(s′, a′)] (3)

where γ is a discounting factor and α is learning rate for
temporal difference learning. At any time step i, for state s′ i,
at least one action a exists, whose estimated value Q(s′ i, a)
is maximal. This action a is called greedy action. When we
choose one of the greedy actions, we are using our current
knowledge to our advantage. However, when we opt for one
of the non-greedy actions, we are exploring, which helps us
improve our estimate of the non-greedy action’s value.

C. Overview of the RL Algorithms in The Things Network
(TTN) Server

In the TTN server, the received uplink messages from
the gateway are added to the worker pool. Each incoming
request from each device is treated as a separate task, and
worker routines process them simultaneously for quick and
responsive server performance. It is submitted to the handle
uplink message routine, which adapts the data rate by calling
the scheduling algorithms we deployed on our network server.
Fig. 3 shows details of the internal working of the network
server. The predicted transmission parameters are sent to the
uplink handler, who is responsible for generating the MAC
command structure to send to the LoRaWAN gateway. The

Fig. 3: Process in Network Server - Internals of TTN

gateway forwards the MAC commands to the end devices for
their future uplink message.

V. EXPERIMENT SETUP

We evaluate our algorithms using an experimental setup for
LoRaWAN. Our network setup is spread over approximately
120 sq.m of experimental labs. We planted our gateway on one
of the room’s corners, and devices spread across the room. We
use Lora shield with SX1272 (Fig. 4a) on Arduino UNO R3
and Dragino gateway LPS8v2 (Fig. 4b). For energy evaluation
purposes, we used a 9V battery (Fig. 4c). We sent messages
at a frequency of uplink per minute from each device. The
signal characteristics such as SNR, RSSI, and Time on air for
evaluation purposes are stored in PostgreSQL using MQTT
broker as an enterprise management system as shown in Fig.
2. We evaluate the scheduling of each algorithm by using 3
sensors transmitting messages every 1 minute to the gateway.
We capture the results by reading the uplink messages from
the sensors. The metrics we store from the metadata of each
uplink message are SNR, RSSI, and Consumed airtime for
each message transmission. We also measure the voltage drop
of each device during transmission. We transmit 385 messages
per device; every packet is transmitted per minute. The uplink
messages are stored in PostgreSQL and then evaluated.

VI. PERFORMANCE EVALUATION

The Network server is implemented in GoLang. We im-
plemented DQN and SARSA algorithms for scheduling in
the network server. Implementation details can be found in
[24]. We can use any one algorithm at a time. Changing
the algorithm for the network server requires a few changes,
as shown in its documentation. We compare our proposed
SARSA and DQN-based scheduling techniques with the ADR
mechanism used in LoRaWAN and the default ALOHA-
based mechanism. For selecting a scheduling algorithm among
SARSA, DQN, and ADR, updates must be done to scrip in
[24]. To enable ALOHA, select ADR-based scheduling in
scrip and use the console to disable the ADR mechanism.
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(a) LoRa shield (SX1272) for Arduino R3 (b) Dragino LPS8v2 gateway (c) Battery powered sensors

Fig. 4: Experimental Test Components of Water Quality Monitoring System

We use SNR, RSSI, and Latency as performance metrics.
Fig. 5 compares our proposed scheduling techniques SARSA
and DQN performances with existing ADR and ALOHA
techniques. We performed transmission with each scheduling
for 385 packets, one packet sent per minute, and recorded the
metadata of each uplink message. The box plot for SNR values
observed for all uplinks is shown in Fig. 5a. For DQN, about
75% of the uplink messages had SNR values above 12.35
dB. The median is more skewed towards the 75th percentile,
indicating that most values have higher SNR tending towards
13.5 dB. For SARSA-based scheduling, have about 75% of
their uplinks with SNR more than 13 dB. On the contrary, the
uplinks scheduled using ADR have a 25th percentile at 8 dB,
much lower than our proposed algorithms. However, ALOHA-
based scheduling has better SNR, with 3/4th uplinks having
more than 12.5dB SNR. Here, we observe that DQN, SARSA,
and ALOHA signals were stronger than DQN.

However, SNR is not sufficient for evaluation. RSSI gives
an actual measure of how the signal reacted to the network
and, after attenuation, the strength of the signal at the receiver.
Fig. 5b compares RSSI of uplinks for scheduling strategies.
We observe that both DQN and SARSA have higher RSSI
values for their uplinks. The median values are higher than
-80 dBm for both algorithms, and the minimum RSSI for any
uplink is more than -90 dBm. Unlike our proposed algorithms,
the ADR and ALOHA-based scheduling have much lower
RSSI; their maximum achieved RSSI is almost equivalent to
the minimum RSSI or DQN and SARSA. This shows that
even with a higher SNR for ALOHA, it still has a lower RSSI.
One of the reasons for this signal attenuation is the suboptimal
transmission parameter selection of end devices in ALOHA.

Fig. 5c shows the distribution of latencies observed in uplink
messages by each scheduling algorithm. In all the scheduling
algorithms, the median latency is about 0.087s and is the same
for all the algorithms. DQN observes variation in latencies
where 25% of messages have lower latency than 0.038s

Energy consumption can be evaluated as the voltage level
change rate in the battery. We connected the battery to the
end device and transmitted it to the gateway. Fig. 6 shows
the changing voltage levels. Readings are taken every 10
minutes as the voltage level of the battery is connected.
We observe a steep drop in voltage for ALOHA, indicating
higher energy consumption due to increased collisions and

retransmissions. Our proposed algorithms perform better when
compared to ADR and ALOHA. The DQN algorithm has the
lowest energy consumption, about 13% lower than ADR and
77% lower than ALOHA. SARSA also has higher performance
in terms of energy consumption than ADR and ALOHA.
Based on the performance evaluation, we observe that signal
quality, latency, and energy consumption can be improved
using intelligent scheduling of transmission parameters. Our
algorithm allocated unique spread factors and bandwidth to
end devices based on signal characteristics and device lo-
cations. Improved performance is achieved due to lowering
collisions and retransmissions, thus retaining the batteries.

VII. CONCLUSION

This paper focuses on the experimental analysis of re-
inforcement learning-based algorithms for scheduling and
allocating transmission parameters for end devices in Lo-
RaWAN. Dynamic changes in the network introduce signal
attenuation, multipath fading, and mobility-induced issues.
Existing simulators do not support these network scenar-
ios and, thus, are unsuitable for evaluating scheduling al-
gorithms. We operate on an on-premise TTN server using
State–Action–Reward–State–Action (SARSA) and Deep Q-
Learning Network (DQN) for scheduling. Experimental evalu-
ation is done using real devices and real Gateway. Comparative
analysis with improved adaptive data rate (ADR) shows im-
provements in signal strength and energy consumption. The
energy consumption of DQN was reduced by 13% and 77%
compared to ADR and ALOHA, respectively. For SARSA, the
reduction was 7% and 66% compared to ADR and ALOHA,
respectively. Additionally, improvements in RSSI, a measure
of signal strength, were observed: DQN improved by 24% and
17%, and SARSA improved by 21% and 13% compared to
ADR and ALOHA, respectively. As part of future work, we
plan to implement mobility, transmission power and frequency
allocation. We also plan to extend using solar-powered batter-
ies and evaluate the performance of the outdoor gateway.
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