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Abstract

In many reinforcement learning (RL) applications,

we want policies that reach desired states and then

keep the controlled system within an acceptable

region around the desired states over an indefinite

period of time. This latter objective is called sta-

bility and is especially important when the state

space is unbounded, such that the states can be

arbitrarily far from each other and the agent can

drift far away from the desired states. For exam-

ple, in stochastic queuing networks, where queues

of waiting jobs can grow without bound, the de-

sired state is all-zero queue lengths. Here, a stable

policy ensures queue lengths are finite while an

optimal policy minimizes queue lengths. Since

an optimal policy is also stable, one would ex-

pect that RL algorithms would implicitly give us

stable policies. However, in this work, we find

that deep RL algorithms that directly minimize the

distance to the desired state during online train-

ing often result in unstable policies, i.e., policies

that drift far away from the desired state. We at-

tribute this instability to poor credit-assignment

for destabilizing actions. We then introduce an

approach based on two ideas: 1) a Lyapunov-

based cost-shaping technique and 2) state trans-

formations to the unbounded state space. We con-

duct an empirical study on various queuing net-

works and traffic signal control problems and find

that our approach performs competitively against

strong baselines with knowledge of the transition

dynamics. Our code is available here: https:

//github.com/Badger-RL/STOP.

1. Introduction

Much of the recent progress in reinforcement learning (RL)

has focused on obtaining optimal performance on tasks that
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can be completed in some amount of time. However, there

are many real-world sequential decision-making problems

in which we want the learning agent to operate optimally

over an indefinite period of time. For example, in traffic

intersection management, we want a policy that reaches

and stays at the desired state of minimum waiting time

of cars over an indefinite period of time. Such problems

are also common in control of stochastic queue networks

and industrial process control (Srikant & Ying, 2014; Neely,

2010). While it is important that the agent is optimal in these

problems, it is simultaneously important that the learning

agent is stable, meaning that its decisions keep the system

in an acceptable region of the state space near the desired

state (Meyn, 2022).

Throughout this paper, we use queuing as a motivating

example for stochastic environments with unbounded state

spaces. In stochastic queuing networks, a server policy must

select from several queues to serve based on the current

number of jobs waiting in each queue and the desired state is

all-zero queue lengths. Ideally, the server keeps the average

length of queues short so that no job must wait a long time

to be served. Jobs arrive continuously and Ð if the server

makes poor decisions (e.g., serving an empty queue) Ð then

the average length of the queues can grow infinitely-long.

In this case, an optimal policy minimizes the average queue

length over time, while a stable policy ensures the queue

lengths remain finite. By implication, an optimal policy is

also a stable policy.

Since optimal behavior implies stable behavior, we would

expect that directly trying to be optimal would implicitly

give us stable behavior. However, in this work, we find

that agents that do so actually learn unstable policies on

multiple real-world-inspired domains. In particular, we

empirically show that online deep RL agents that minimize

the optimality cost objective of the domain drift far away

from the desired state. We then propose an approach that

specifically encourages the agent to be stable and optimal.

More concretely, our contributions are as follows:

1. We demonstrate that solely minimizing the optimality

cost objective inadequately discourages destabilizing

actions, which leads to the agent taking those actions

early in learning. This challenge is especially problem-

atic in the: 1) online learning setting, where destabiliz-
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ing actions must be discouraged as quickly as possible

to prevent the system’s state from destabilizing, and

2) unbounded state space setting where the neural net-

work’s inability to effectively generalize across arbi-

trarily far unbounded samples prevents accurate credit

assignment (Chollet, 2017).

2. We introduce STability and OPtimality (STOP), an ap-

proach that encourages stability and optimality. STOP

is based on the combination of two techniques: 1) a

Lyapunov-inspired cost shaping approach that explic-

itly encourages the agent to be stable and optimal and

2) state transformations that compress the unbounded

state space to mitigate the burden of extreme general-

ization on neural networks. The first technique discour-

ages destabilizing actions more than the true optimality

cost function, even without knowing which actions are

destabilizing. We provide intuition on how to choose

an appropriate Lyapunov function by drawing upon

results from queueing theory. The second technique

improves the agent’s ability to generalize across the

unbounded state-space.

3. We then prove that our cost-shaping approach has the

desired consistency property that it does not change the

optimal policy. This result is analogous to the potential-

based shaping result of Ng et al. (1999), but our result

applies to the average-reward, unbounded state space

setting, and relates consistency to stability.

4. We conduct a thorough empirical study and analyze

the role of different components of STOP on the chal-

lenging real-world-inspired domains of queuing and

traffic intersection management. We show that STOP

enables learning of highly performant online RL poli-

cies and, in some cases, outperforms algorithms that

have knowledge of the transition dynamics.

2. Related Work

Online RL. Our work focuses on online (or continuing) RL

tasks in which interaction never terminates and performance

is measured online (Sutton & Barto, 2018). This setting

has been described with the autonomous RL (Sharma et al.,

2021) or single-life RL (Chen et al., 2022) formalisms. In

many practical set-ups, it is infeasible to reset the agent

to a new initial state. For example, manually placing a

robot in an initial state or removing all vehicles at a traffic

intersection is costly or even inappropriate. Recent work

has thus considered reset-free RL where the agent learns to

reset itself (Eysenbach et al., 2018; Zhu et al., 2020; Gupta

et al., 2021; Han et al., 2015; Sharma et al., 2022). However,

these works still require a manual reset (Eysenbach et al.,

2018), use policies learned on one task as a reset policy

in another task (Gupta et al., 2021), or require access to

demonstrations from a target policy (Sharma et al., 2022).

Our work performs no resets and evaluates performance on

a single infinitely-long, stationary task.

In online RL, the natural performance measure of an agent

is average-reward (Sutton & Barto, 2018; Naik et al., 2019).

Our work is different from prior average-reward RL work

(Mahadevan, 1996; Schwartz, 1993; Wan et al., 2021; Wei

et al., 2020; Zhang & Ross, 2021; Zhang et al., 2021) in that

we focus on the challenge of learning stable behavior in an

unbounded state space.

Stability and Unbounded State Spaces in RL. Stability is

related to the notion of safety in RL (Garcıa & FernÂandez,

2015), but with crucial differences. Safety is typically de-

fined as hard constraints on individual states and/or actions

(Hans et al., 2008; Dalal et al., 2018; Dean et al., 2019;

Koller et al., 2018), or soft constraints on the expected costs

over the trajectory (Achiam et al., 2017; Chow et al., 2018;

Yu et al., 2019). In contrast, stability concerns the long-run

asymptotic behavior of the system, which cannot be imme-

diately written as constraints over the states and actions or a

budget for some cost.

Some work considers control-theoretic notions of stabil-

ity (Vinogradska et al., 2016; Berkenkamp et al., 2017).

While related, these results mostly consider systems with

deterministic and partially unknown dynamics. For example,

Westenbroek et al. (2022) propose a cost-shaping approach

with similarities to ours, but focusing on deterministic dy-

namics; they consider discounted costs, and do not study

the continuing setting with unbounded states.

The work of Shah et al. (2020) considered stochastic stabil-

ity for RL in the unbounded state space setting. However,

their work assumed a tabular setting, relied on access to the

model of the environment, and ignored optimality to focus

exclusively on stability. Our work makes stability practi-

cal for deep RL without having access to the environment

transition dynamics and optimizes for both stability and

optimality. The few other works that consider stability (Dai

& Gluzman, 2022; Liu et al., 2022) assume that a stable

policy is given and use it as a starting point for learning an

optimal policy. We make no such assumption and try to

learn a stable policy directly from a random policy.

The combination of unbounded state space and the contin-

uing setting is scarce in the RL literature. Existing works

acknowledge the challenges from unboundedness, but they

either artificially bound the state space (Liu et al., 2022; Wei

et al., 2023) or assume a finite-horizon training setting (Dai

& Gluzman, 2022).

3. Preliminaries

Average-Reward. Consider an infinite-horizon Markov

decision process (MDP) (Puterman, 2014), M :=
⟨S,A,P, c, d1⟩, where S ⊆ R

d is the state space, A the
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action space, P : S ×A → ∆(S) the transition dynamics,

c : S × A × S → R≥0 the cost function, and d1 ∈ ∆(S)
the initial state distribution. Here we follow the control-

theoretic convention and consider costs (the negation of

rewards). Without loss of generality, we assume the cost

is non-negative, and often restrict to cost-functions that are

only dependent on the next state, st+1. Typically, and in the

context of our work, the optimality cost function c denotes a

notion of distance from a target state such as the L1 distance

and the target state is the all-zero vector state (for more

details, refer to Appendix C.3) (Leon-Garcia, 2008; Ault &

Sharon, 2021).

In the online task formulation, an agent, acting accord-

ing to policy π : S → ∆(A), generates a single in-

finitely long trajectory: s1, c1, a1, s2, ..., where s1 ∼ d1,

at ∼ π(·|st), ct = c(st, at, st+1), and st+1 ∼ P(·|st, at).
Unlike episodic RL, there are no resets in this formulation.

Accordingly, we consider the long-run average-cost objec-

tive (Naik et al., 2019; 2021):

JO(π) := lim
T→∞

1

T

T∑

t=1

Eπ [ct] . (1)

An optimal policy is one that minimizes JO(π). In the

average-cost setting, the analog of the standard RL value

functions are the differential value functions which are

defined as follows: the differential action-value function,

Qπ(s, a) := limT→∞ Eπ[
∑T

t=1(ct − JO(π)) | s1 =
s, a1 = a], the differential state-value function, V π(s) :=

limT→∞ Eπ[
∑T

t=1(ct−JO(π)) | s1 = s], and the differen-

tial advantage function, Aπ(s, a) = Qπ(s, a)−V π(s). The

advantage function quantifies how good or bad an action

is in a given state in yielding the long-term outcome. Note

that since we are minimizing costs rather than maximizing

rewards, good and bad actions should have negative and

positive advantage respectively. We make the standard as-

sumption that the MDP is communicating (Bertsekas, 2015),

meaning that for any pair of states s and s′, there exists a pol-

icy that can transition from s to s′ in a finite number of steps

with non-zero probability. This assumption guarantees that

the optimal average cost value infπ J
O(π) is independent

of the starting state.

Unbounded State Spaces and Stability. In an unbounded

state space, there is no limit to values that the features of

a state can take on. This type of state space is different

from the bounded state space formulation used in popular

RL testbeds such as in MuJoCo (Todorov et al., 2012) where

all states are in a continuous bounded region (e.g., robotic

arm joint angles).

In unbounded state space stochastic control problems,

stochastic stability is a fundamental concept (Shah et al.,

2020).

Definition 3.1 (Stochastic Stability). A policy π is stable

if and only if the the average long-term incurred cost is

bounded, i.e. JO(π) < ∞.

Assuming nontrivial average cost infπ J
O(π) < ∞ is pos-

sible, an optimal policy is stable. Since the cost c can be a

distance measure from some target state, a stable policy is

one that achieves bounded distance from the target state.

Lyapunov Functions. Lyapunov functions are standard

tools in control theory to analyze the stability of a sys-

tem (Meyn & Tweedie, 2012). Intuitively, they measure

the ªenergyº of a state where the energy of a state is typi-

cally directly proportional to the cost of being in that state,

and the energy of the target state is zero. A control Lya-

punov function (CLF), ℓ : S → R≥0, is one that satisfies: 1)

lim inf∥s∥→∞ ℓ(s) = ∞ and 2) for all but a finite number

of states s: mina∈A Es′∼P(·|s,a)[ℓ(s
′)− ℓ(s)] < 0 i.e. there

exists an action that in expectation decreases the energy ℓ
in one step. It is known that finding a policy that outputs

such actions will stabilize the system (Kellett & Teel, 2003).

However, it is difficult to determine such a function with-

out knowledge of transition dynamics especially in highly

stochastic settings. In these cases, it is common to resort

to an approximate CLF, where ℓ is decreased over multiple

steps i.e. from a given state s, multiple actions are taken

such that in the resulting state, s′′, ℓ(s′′) < ℓ(s) (Taylor

et al., 2019; Chang et al., 2019; Dai et al., 2021).

4. Why is Achieving Stochastic Stability

Difficult for Deep RL?

In this section, we describe the core difficulties of achiev-

ing stochastic stability in highly stochastic MDPs with un-

bounded state spaces when minimizing the optimality cost

objective. We do so using the queuing example in Figure 1.

Figure 1. 2-queue network setting where a central server must

select which of the two queues to serve. Qi, λi, and pi are the

queue length, arrival rate, and service probability of queue i at

each time-step. The image is taken from Liu et al. (2019).

The queue lengths at time t are given by Qi(t). The state

is the vector of queue lengths i.e. [Q1(t), Q2(t)], which is

from an unbounded set since the queue lengths can grow

arbitrarily large. The actions are discrete, denoting which

queue the agent chose. In queuing theory, the optimality cost

function is the total queue length of the system at the given

time-step i.e. c(s, a, s′) = ∥s′∥1 (see Appendix C.3 and
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Leon-Garcia (2008)). An optimal policy is one that selects

queues at each time-step such that the long-term average

queue length is minimized. A stable policy ensures queue

lengths are finite. In this specific example, the destabilizing

action is one that serves an empty queue while the other

queue is non-empty. If the agent too often chooses an empty

queue, it runs the risk of the other queue blowing up in

length. Thus, it is important that the agent quickly realizes

that it should not serve the empty queue. Please refer to

Appendix C for an in-depth description of the environment.

Challenge 1: Poor Credit Assignment. Credit assignment

is one of the central challenges of RL. It is particularly,

challenging in information-sparse MDPs (Arumugam et al.,

2021; Pignatelli et al., 2023), where due to high stochas-

ticity in the transition dynamics, P , a single action lacks

influence on the MDP. Intuitively, this lack of influence

arises when an action has unintended consequences due to

the stochasticity of the system. For example, if the server

successfully decreases the length of say Q1, but then a new

job simultaneously arrives then from the agent’s perspective,

it appears that the action failed. Note that this challenge is

separate from the typical sparse 0/1 cost signal widely cited

in the RL literature (Pignatelli et al., 2023; Harutyunyan

et al., 2019); in our case, the cost function is dense, but the

high stochasticity makes the MDP information-sparse.

In the queuing environment, a good action could have bad

consequences (e.g., the server selects a non-empty queue,

but due to stochasticity fails to serve it and a new job arrives)

or a bad action could have neutral consequences (e.g., the

server selects an empty queue and state remains the same).

During learning, this noisiness can make distinguishing

good actions from bad challenging since bad actions may

appear good, and vice-versa. Ideally, serving an empty

queue is adequately discouraged to avoid this confusion.

Challenge 2: Poor Extreme Generalization. The success

of neural networks has primarily been due to their ability

to locally generalize when given a large number of train-

ing samples per input (Chollet, 2017). However, when the

destabilizing actions are inadequately discouraged in the

unbounded state space setting, the queue lengths may be

blowing up, which results in the agent to drift away into

new states s. This drift means that: 1) the neural network

must perform extreme generalization (e.g. generalize from

queue lengths of 10 to 104) and 2) number of training sam-

ples for each previously-visited states s is small. In this

situation, however, neural networks are known to output

inaccurate predictions (Chollet, 2017; Xu et al., 2021; Haley

& Soloway, 1992; Barnard & Wessels, 1992). Thus, the

inaccuracy of the agent’s neural network inhibits the agent

from performing effectively in its environment.

In Section 6, we show that online deep RL agents that do not

handle these challenges perform poorly. In the next section,

we present a cost shaping approach that explicitly encour-

ages stability, which leads to discouragement of unstable

actions, and a state transformation approach that makes deep

RL algorithms more amenable to better generalization.

5. STOP: STability and OPtimality

We now introduce our method, STability and OPtimality

(STOP), an approach based on two ideas: 1) Lyapunov-

based cost shaping that explicitly optimizes for stability

in addition to optimality and 2) state transformations for

better generalization across unbounded state samples. In

Appendix B, we include the pseudo-code.

5.1. Lyapunov-based Cost Shaping

Recall from Section 3, that an action that solves

mina∈A Es′∼P(·|s,a)[ℓ(s
′) − ℓ(s)] < 0 leads to stabilizing

the system. Our approach is to learn a policy that directly

tries to do so. Thus, the agent minimizes the following

stability and optimality objective:

JS(π) := lim
T→∞

1

T

T∑

t=1

Eπ[ℓ(st+1)− ℓ(st)
︸ ︷︷ ︸

stability

+ c(st, at, st+1)
︸ ︷︷ ︸

optimality

]

(2)

The Lyapunov function ℓ can take on many forms. In this

section, we explain the intuition behind selecting ℓ using

the 1) linear function: ℓ1 := ∥s∥1 and 2) quadratic form:

ℓ2 := ∥s∥22 where ∥ · ∥{1,2} is the {1, 2}-norm, and the

true optimality cost is c. These choices are inspired by

the literature on stochastic networks and control (Srikant &

Ying, 2014; Neely, 2010). As noted in Section 3, ℓ can be

an approximate Lyapunov functionÐthe above choices of ℓ
are not exact in general. As shown in our experiments, an

approximate Lyapunov function, could still offer significant

benefits. In Section 5.1.3, we draw a connection between

JS and potential-based shaping (Ng et al., 1999).

5.1.1. INTUITION FOR ENCOURAGING STABILITY

To understand why the Lyapunov-based shaping leads to

stability, we analyze the advantage functions of destabilizing

actions of a PPO agent in the queuing problem given in

Figure 1. While in general it is unknown which actions

destabilize the system, in the particular case of Figure 1,

the destabilizing actions are those that serve empty queues

when a non-empty queue is available. These actions should

have positive and high advantage function estimates (recall

we are minimizing costs).

We analyze the normalized advantages of an average-reward

PPO agent (Zhang & Ross, 2021; Schulman et al., 2017)

at the start of learning before any policy updates. Initially,

the agent acts uniformly at random until it fills up the roll-
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out buffer. The advantages are then computed using this

data when the agent optimizes: 1) c(s, a, s′), 2) ℓ1(s
′) −

ℓ1(s)+c(s, a, s′) (linear), and 3) ℓ2(s
′)−ℓ2(s)+c(s, a, s′)

(quadratic). We can then compare the estimated normalized

advantages for destabilizing actions. In Table 1, we can see

that with cost-shaping destabilizing actions are discouraged

much more than without cost-shaping, which accordingly

makes subsequent performance of the agent better. With-

out cost-shaping, destabilizing actions are assigned a rela-

tively lower advantage contributing to less discouragement

of destabilizing actions.

Cost Function Normalized Advantages

c(s, a, s′) 0.09± 0.07
c(s, a, s′)+ℓ1(s

′)−ℓ1(s) 0.25± 0.08
c(s, a, s′)+ℓ2(s

′)−ℓ2(s) 0.25± 0.05

Table 1. Interquartile mean (IQM) statistics (Agarwal et al., 2021)

of the normalized advantage estimates for unstable actions across

20 trials in the 2-queue example from Figure 1. Higher is better. To

account for the variations in magnitudes, we divide the computed

advantages by their standard deviation across the rollout buffer

of size 128. Note that since we are minimizing costs rather than

maximizing rewards, bad actions should have positive advantage.

5.1.2. CHOOSING A LYAPUNOV FUNCTION

In this section, we provide intuition on the choice of the

fixed Lyapunov function by drawing from results on queuing

theory and stochastic control. We first note that from Equa-

tion 2, we have it that the Lyapunov function is essentially

used for potential-based reward shaping. Ng et al. (1999)

note that the ideal potential function for reward shaping is

the optimal value function i.e. ℓ(s) = V ∗(s). However, the

need for V ∗(s) creates a chicken-and-egg problem where

to learn V ∗(s), we need an optimal policy, but we want

to find the optimal policy. Thus, ideally we can resort to

a Lyapunov function such that ℓ(s) ≈ V ∗(s). Moreover,

intuitively, we would expect that since the stability cost

ℓ(s′)− ℓ(s) models a hill-climbing strategy, we would ex-

pect any CLF ℓ to yield practical benefits. However, we

empirically find that this expectation often fails.

Our selection for a Lyapunov function is inspired by the anal-

ysis of the popular MaxWeight (MW) algorithm in queuing

(Stolyar, 2004). There are variants of MW under a Lyapunov

function of the form
∑n

i Q
(β+1)
i for β > 0 (Stolyar, 2004),

where β = 0 corresponds to the linear Lyapunov function,

and β = 1 corresponds to the quadratic function and clas-

sical MW algorithm. This algorithm has been proven to

achieve a queue length that is at most within a factor of two

from the optimal in certain heavy traffic regime of some

queuing systems (Maguluri & Srikant, 2016). For the MW

variant with general β, the algorithm is stable but their delay

performance is unclear compared to the classical choice of

β = 1. Our selection is also based on the fact that using

the linear Lyapunov function (β = 0) is difficult to ensure

stability (Krishnasamy et al., 2019) and is typically used in

very simple systems (Fayolle et al., 1993). Motivated by

these prior analyses, we explore various values of β.

In Section 6, we explore a range of β values, and find that

as β gets larger, the performance of the RL agent improves.

However, once β gets too large, performance deteriorates.

Intuitively, this observation is expected: as we increase

β, ℓ(s) starts to approximate V ∗(s) better based on the

MW analysis; however, once β becomes too large, the high

variance of the large unbounded costs causes performance

to degrade (Gupta et al., 2023). Therefore, when we use

domain-knowledge to select ℓ in unbounded state space

problems, we want ℓ such that it approximates V ∗(s) and

its variance is not significantly high.

5.1.3. THEORETICAL PROPERTIES

We investigate the theoretical properties of Lyapunov-based

cost shaping. All proofs are provided in Appendix A. The

following proposition characterizes the relation between the

reshaped objective JS and original optimality objective JO.

Proposition 5.1. For any policy π,

JS(π) = JO(π) + lim
T→∞

Eπ[ℓ(sT+1)]

T
.

Therefore JS(π) ≥ JO(π), and JS(π) = JO(π) if and only

if Eπ[ℓ(sT+1)] = o(T ).

The next proposition proves that under mild conditions, our

approach is valid and will recover the optimal policy with

respect to the original objective JO.

Proposition 5.2. Suppose that for any optimal policy π⋆,

lim supT→∞ Eπ⋆ [ℓ(sT )] < ∞. Then argminπ J
S(π) =

argminπ J
O(π).

The conditions for Proposition 5.2 are easily satisfied as long

as the user-specified Lyapunov function ℓ is not growing too

rapidly. For instance, if ℓ = ∥ ·∥1, then the above conditions

hold when any optimal policy induces a stationary distribu-

tion and is stable (in the sense of Definition 3.1). If ℓ grows

polynomially (e.g. ℓ = ∥ · ∥22), then it suffices for optimal

policies to induce subexponential stationary distributions,

which is true of a wide class of queuing problems and is

ensured by standard technical assumptions (Hajek, 1982;

Shah et al., 2020). Proposition 5.2 is analogous to the main

result of Ng et al. (1999), which considers the discounted

return criterion. They also make more stringent assumptions

than ours, as in the unbounded state setting they require a

uniformly bounded shaping term, which prohibits the use

of Lyapunov functions.
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5.2. State Transformations

Figure 2. State transformations applied to 1D original untrans-

formed points. Extreme points (red) appear closer to samples

that agent was trained on (blue), thereby mitigating extreme gener-

alization burdens. The green circle’s radius is 5 units and provides

a sense of proximity of the points.

In order to improve generalization in unbounded state spaces

during training for more accurate credit assignment, we pro-

pose to use state transformations to compress the unbounded

state space. These transformations are applied coordinate-

wise to the state features, which are unbounded, before

inputting them into the policy and value networks; the cost

function is computed based on the original state.

Neural networks are known to perform extreme general-

ization poorly (Chollet, 2017; Xu et al., 2021; Haley &

Soloway, 1992; Barnard & Wessels, 1992), which is prob-

lematic in the unbounded state space setting where states

can be arbitrarily far from each other. Through Figure 2,

we provide some intuition on how state transformations can

mitigate the burden of extreme generalization. Figure 2

shows how a set of points are transformed by three different

transformation functions. The blue dots are points that the

neural network has already trained on and the red extreme

points are the points the neural network must generalize to.

We can see that in the original number line, the red points

are ªfarº from the blue points, which can make generaliza-

tion challenging. However, when we apply different state

transformations, we can shrink the distance between points

while preserving ordering, thus mitigating the burden of

extreme generalization.

We consider the following transformation functions: 1) sym-

metric square root: symsqrt(x) := sign(x)(
√

|x|+ 1 −
1) (Kapturowski et al., 2019), 2) symmetric natural log:

symloge(x) := sign(x) ln(|x| + 1) (Hafner et al., 2023),

and 3) symsigmoid(x) := sign(x)(1/(1 + e−|x|)). All

these functions 1) are bi-jections and 2) preserve the or-

dering of points. Of course, there are trade-offs between

transformations. For example, while symsigmoid reduces

the generalization burden, it may effectively collapse the

large states, making it challenging to differentiate between

states and features. On the other hand, with symloge, the

agent is still burdened by extrapolation but representation

collapse is far less severe.

6. Empirical Study

We present an empirical study of STOP on various challeng-

ing stochastic control tasks with unbounded state spaces.

We seek to answer the questions:

1. Does STOP enable learning of stable policies in settings

where deep RL algorithms fail to?
2. Are both the stability cost and state transformation

components essential for learning stable policies?

6.1. Setup

We first describe the environments, the algorithms we evalu-

ate, and how we evaluate performance. We refer the reader

to Appendix C for more details.

Environments. We conduct our experiments on the fol-

lowing environments. In each domain, the optimality cost

function is the one typically used in the literature (Leon-

Garcia, 2008; Ault & Sharon, 2021).

Single-server allocation queuing: We consider three vari-

ants of the 2-queue setup: 1) medium load with no faulty

connections (Figure 1), 2) high load with faulty connections,

and 3) very high load with faulty connections. The optimal-

ity cost function is the average queue length and the target

state is all-zero queue lengths.

N -model network: We consider three setups of the N -

network model (Harrison, 1998) : 1) high load, 2) very high

load #1, and 3) very high load #2. The optimality cost

function is the average holding cost and the target state has

0 holding cost.

Traffic control: We also evaluate our approach on the

SUMO (Behrisch et al., 2011) traffic simulator, but due

to space constraints defer to Appendix C. In this domain,

SUMO models a real-life traffic situation by bounding the

number of cars per lane. However, the success of STOP and

failure of existing deep RL algorithms suggests our ideas

are even applicable to the bounded state space setting. The

optimality cost function is the total waiting time and the

target state has 0 waiting time.

Algorithms. Our baseline is average-reward PPO (Zhang &

Ross, 2021) (denoted by O since it optimizes the optimal-

ity criterion only) since it is designed: 1) for the infinite

horizon setting without discounting (Naik et al., 2021) and

2) to be robust to hyperparameter tuning. For the server

allocation and N -model networks environments, we also

6



Learning to Stabilize Online Reinforcement Learning in Unbounded State Spaces

evaluate MAXWEIGHT (Tassiulas & Ephremides, 1990), a

strong baseline algorithm with knowledge of the transition

dynamics. In particular, MAXWEIGHT is known to be asymp-

totic optimal in heavy-traffic regimes (Maguluri & Srikant,

2016). When PPO is equipped with our cost-shaping ap-

proach and/or state transformations, we refer to it as STOP.

MW starts the online interaction process with perfect esti-

mation of some part of the transition dynamics, while STOP

must learn a stable and optimal policy without this knowl-

edge. Note that: 1) the optimal policy is unknown in our

environments (Ganti et al., 2007; Dai & Gluzman, 2022),

2) it is generally unknown how far MAXWEIGHT is from

optimal (Tassiulas & Ephremides, 1990), and 3) computing

the optimal policy with full knowledge of the transition dy-

namics is not straightforward since there are infinite states

in the unbounded state setting (Shah et al., 2020).

Online Evaluation. The agent starts from a random start

state with a randomly-initialized policy and is never reset.

We plot the true cost incurred by the agent vs. interac-

tion time-steps. An increasing curve indicates instability as

c(s, a, s′) → ∞, so the agent is drifting away from the tar-

get state; a flat curve indicates stability as c(s, a, s′) < ∞;

and a decreasing curve indicates improvement towards opti-

mality as c(s, a, s′) → 0.

6.2. Stability Encouragement

Our first set of experiments aims to determine whether STOP

stabilizes the agent. We answer two questions: 1) does the

number of destabilizing actions taken reduce over training?

and 2) is the STOP agent within a low bounded L1 distance

from the all-zero queue lengths with high probability?

In answering both these questions, we use the quadratic

Lyapunov function, ℓ2(s) = ∥s∥22 for our shaping cost with

no state transformations on the queuing network shown in

Figure 1. We answer the first question with Figure 3(a)

where we plot the fraction of destabilizing actions taken by

the PPO agent when it is optimizing with (STOP) and without

the shaped cost. We calculate destabilizing actions as the

fraction of (s, a) samples in the rollout buffer which serve

an empty queue. We can see that the STOP quickly stops

taking destabilizing actions, while ≈ 40% of the actions

taken by PPO without cost-shaping are destabilizing.

We answer the second question with Figure 3(b) and (c).

In Figure 3(b) and Figure 3(c), we plot the state-visitation

distribution of the agent after 100K interaction steps. We

see that the STOP agent visits states that have an L1 distance

of at most 20 with probability 0.95, while the vanilla PPO

agent does not even appear in this bounded region.

6.3. Main Results

We now compare vanilla PPO algorithm to PPO equipped

with STOP in Figure 4 on a variety of highly stochastic MDPs.

We set the rollout buffer length to 200 and keep all other

hyperparameters for STOP and the baseline the same (Huang

et al., 2022), and show results for agents that achieved the

lowest true optimality cost at the end of interaction time.

We evaluate the following stability variations: ℓ(s) = ∥s∥pp,

where p = {1, 1.5, 2, 2.5, 3, 4, 5}. All STOP agents use the

symloge transform.

In all experiments, the naÈıve PPO agents, which optimized

the optimality criterion directly and used no state transfor-

mations, were unstable. On the other hand, STOP agents

are able to achieve stability. In 4/6 cases, we found STOP

out-performed or was extremely competitive with MW. To

the best of our knowledge, no online RL algorithm in un-

bounded state spaces has outperformed MW. In very high

load environments, such as Figure 4(f) we find that the high

load causes all algorithms to be unstable.

In the highly stochastic queuing environments only, we

found that using the linear stability cost and optimality cost

is insufficient to achieve stability: the linear stability cost

(bounded between [−1, 1]) and optimality cost have differ-

ent magnitude scales, which can cause the latter to dilute

the former, effectively eliminating any benefit of the sta-

bility cost. In these cases, we replaced the optimality cost

c with −1/(c + 1). On the other hand, we were able to

keep the original optimality cost for all the other variations.

While the linear agent (p = 1) can stabilize the system, the

use of the reciprocal may contribute to the relatively poor

performance compared to the agents (p ̸= 1).

In general, we found that moderate values of p achieved the

lowest average queue length or holding cost in high load

settings. For example, in p = 3 (cubic; gray line) performed

reasonably well in all the environments. While p = 1 (lin-

ear; green line) and p = 5 (light blue line) performed well

in only two or three environments (see: (a), (b), (d), (e)).

The ability of p = 1 to achieve low average queue length in

settings (a) and (b) corresponds to the fact that the policy

that serves the queue with the largest service rate (cµ-rule)

performs well in these settings (Buyukkoc et al., 1985).

These results align with our expectation: smaller values of

p may inadequately discourage de-stabilizing actions and

are potentially poorer approximations of the optimal value

function, while larger p values result in high variance of the

unbounded cost, which can degrade performance.

6.4. Ablation Studies

We have shown that STOP enables learning in highly stochas-

tic environments with unbounded state spaces. We now

analyze the importance of different components of STOP.

7
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(a) Fraction of unstable actions taken (b) STOP state visitation distribution (c) PPO state visitation distribution

Figure 3. Stability verification. (a) fraction of unstable actions taken by the agent over the course of training of STOP (c(s′)+ℓ2(s
′)−ℓ2(s))

and PPO (c(s′)) agents; lower is better. (b) and (c) state-visitation distribution of STOP and PPO agents respectively; higher Pr(in sub-grid)
is better. Note that the empty region of (c) shows the failure of the PPO agent to visit the specified bounded region near the target state. All

quantities were computed over 10 trials on the 2-queue setting from Figure 1.

(a) No faulty connections with medium
load (Figure 1)

(b) Faulty connections with high load (c) Faulty connections with very high
load

(d) High Load (e) Very High Load - #1 (f) Very High Load - #2

Figure 4. True optimality criterion vs. interaction time-steps on three server-allocation queue networks (top row) and three N -network

model environments (bottom row). Lower is better. Algorithms are PPO vs. STOP-p, where p denotes the power of the Lyapunov function.

All STOP variants use the symloge state transformation. We also report the performance of MAXWEIGHT (MW). Recall that unlike MW,

STOP does not know the transition dynamics. The IQM (Agarwal et al., 2021) is computed of the performance metrics over 20 trials with

95% confidence intervals. The vertical axis of (f) is log-scaled. To enhance visibility we zoom into the plot, which hides performance of

O in some cases since it was unstable. We refer the reader to Appendix C for the zoomed-out plots.

8
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(a) STOP with varying state
transformations

(b) Only state transformations,
no stability cost

Figure 5. Ablations. True optimality criterion vs. interaction time-

steps on 2 queue setup with faulty connections. Lower is better.

The IQM (Agarwal et al., 2021) is computed of the performance

metrics over 20 trials with 95% confidence intervals. The vertical

axis of (b) is log-scaled. ID: identity; SIG: symsigmoid, SS:

symsqrt; SL: symloge. Refer to Appendix C for the zoomed-

out plots.

6.4.1. STOP WITH VARYING STATE

TRANSFORMATIONS

In this experiment, we seek to understand the importance of

the state transformation component of STOP. We evaluate

the performance of a STOP PPO agent with ℓ(s) = ∥s∥33
(cubic) and different state transformations from Section 5.2.

From Figure 5(a), applying state transformations result in

significantly better performance compared to no applica-

tion of such a transformation. The significant improvement

over no state transformations (ID) suggests that state trans-

formations are indeed critical and that in very difficult en-

vironments the stability cost is insufficient. For different

transformations, the agent faces different levels of extreme

generalization burden. When the agent uses sigmoid, all its

extreme generalization burden is mitigated, while when it

uses the squareroot it suffers more of the burden compared

to log and sigmoid.

6.4.2. STATE TRANSFORMATIONS WITH NO STABILITY

COST

In Figure 5(b), we remove the stability cost. We observe that

applying only state transformations is insufficient for the

agent to stablize and the stability cost component of STOP

is critical. This result also confirms that simply bounding

the state space (such as applying sigmoid) is insufficient to

stabilize the system.

7. Conclusion

Our work showed that online deep RL agents that directly

try to be optimal in highly stochastic environments with

unbounded state spaces actually end up unstable. To ad-

dress this instability, we introduced STOP that explicitly

encourages stability and optimality. We provided insight on

how to leverage domain knowledge from queuing theory to

appropriately select Lyapunov functions that: 1) approxi-

mate the optimal value function, 2) adequately discourage

de-stabilizing actions, and 3) have low variance. We showed

that STOP trained highly performant deep RL policies in

these difficult environments, and even out-performed strong

baselines from the queuing literature. STOP improves the

reliability of online deep RL policies on challenging stochas-

tic control problems by ensuring that the policies are within

bounded distance from the desired state.

A key takeaway is that deep RL algorithms that are suc-

cessful on MuJoCo and Atari may fail to generalize well to

environments with high stochasticity and unbounded state

spaces. We shed light on the fact that there are real-world-

inspired problems that appear simple, but are surprisingly

challenging, and that as a community we must innovate new

techniques to solve these challenging problems.

In this work, we showed that dense optimality cost functions

used in real-world-inspired domains could be poor learning

signals. An interesting future direction would be to for-

mally investigate why they are so beyond their inability to

do proper credit assignment. Another interesting future di-

rection would be to explore how we can learn an appropriate

Lyapunov function from data.

Impact Statement

Our work is largely focused on studying fundamental RL

research questions, and thus we do not see any immediate

negative societal impacts. The aim of our work is to improve

the reliability of deep RL algorithms on real-world-inspired

domains. By leveraging STOP, a user takes a step towards

improving the reliability of their decision-making agents.

Acknowledgements

The authors thank Abhinav Narayan Harish, Adam Labiosa,

Andrew Wang, Lucas Poon, and the anonymous review-

ers at NeurIPS, ICLR, and ICML for their feedback on

earlier drafts of this work. Y. Chen and M. Zurek were

supported in part by National Science Foundation Awards

CCF-2233152 and DMS-2023239. Q. Xie was supported in

part by National Science Foundation Awards CNS-1955997

and EPCN-2339794. J. Hanna and B. Pavse were supported

in part by American Family Insurance through a research

partnership with the University of WisconsinÐMadison’s

Data Science Institute.

References

Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained

policy optimization. In Proceedings of the 34th Interna-

tional Conference on Machine Learning-Volume 70, pp.

22±31. JMLR. org, 2017.

9



Learning to Stabilize Online Reinforcement Learning in Unbounded State Spaces

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C.,

and Bellemare, M. Deep reinforcement learning at the

edge of the statistical precipice. Advances in Neural

Information Processing Systems, 34, 2021.

Alegre, L. N. SUMO-RL. https://github.com/

LucasAlegre/sumo-rl, 2019.

Arumugam, D., Henderson, P., and Bacon, P. An

information-theoretic perspective on credit assignment

in reinforcement learning. CoRR, abs/2103.06224, 2021.

URL https://arxiv.org/abs/2103.06224.

Ault, J. and Sharon, G. Reinforcement learning benchmarks

for traffic signal control. In Proceedings of the Thirty-fifth

Conference on Neural Information Processing Systems

(NeurIPS 2021) Datasets and Benchmarks Track, Decem-

ber 2021.

Barnard, E. and Wessels, L. Extrapolation and interpola-

tion in neural network classifiers. IEEE Control Systems

Magazine, 12(5):50±53, 1992. doi: 10.1109/37.158898.

Behrisch, M., Bieker-Walz, L., Erdmann, J., and Krajzewicz,

D. Sumo ± simulation of urban mobility: An overview.

volume 2011, 10 2011. ISBN 978-1-61208-169-4.

Berkenkamp, F., Turchetta, M., Schoellig, A., and Krause,

A. Safe model-based reinforcement learning with stability

guarantees. In Advances in neural information processing

systems, pp. 908±918, 2017.

Bertsekas, D. P. Dynamic programming and optimal control,

4th edition, volume II. Athena Scientific, 2015.

Buyukkoc, C., Varaiya, P. P., and Walrand, J. C. The cµ rule

revisited. Advances in Applied Probability, 17:237 ± 238,

1985. URL https://api.semanticscholar.

org/CorpusID:125747190.

Chang, Y.-C., Roohi, N., and Gao, S. Neural lyapunov

control. In Wallach, H., Larochelle, H., Beygelz-

imer, A., d'AlchÂe-Buc, F., Fox, E., and Garnett, R.

(eds.), Advances in Neural Information Process-

ing Systems, volume 32. Curran Associates, Inc.,

2019. URL https://proceedings.neurips.

cc/paper_files/paper/2019/file/

2647c1dba23bc0e0f9cdf75339e120d2-Paper.

pdf.

Chen, A. S., Sharma, A., Levine, S., and Finn, C. You Only

Live Once: Single-Life Reinforcement Learning, Oc-

tober 2022. URL http://arxiv.org/abs/2210.

08863. arXiv:2210.08863 [cs].

Chollet, F. Deep Learning with Python. Manning Publica-

tions Co., USA, 1st edition, 2017. ISBN 1617294438.

Chow, Y., Nachum, O., Duenez-Guzman, E., and

Ghavamzadeh, M. A lyapunov-based approach to safe re-

inforcement learning. In Advances in Neural Information

Processing Systems, pp. 8092±8101, 2018.

Dai, H., Landry, B., Yang, L., Pavone, M., and Tedrake, R.

Lyapunov-stable neural-network control, 2021.

Dai, J. G. and Gluzman, M. Queueing network controls via

deep reinforcement learning. Stochastic Systems, 12(1):

30±67, 2022. doi: 10.1287/stsy.2021.0081. URL https:

//doi.org/10.1287/stsy.2021.0081.

Dalal, G., Dvijotham, K., Vecerik, M., Hester, T., Paduraru,

C., and Tassa, Y. Safe exploration in continuous action

spaces. arXiv preprint arXiv:1801.08757, 2018.

Dean, S., Tu, S., Matni, N., and Recht, B. Safely learning to

control the constrained linear quadratic regulator. In 2019

American Control Conference (ACC), pp. 5582±5588.

IEEE, 2019.

Dohare, S., Lan, Q., and Mahmood, A. R. Overcoming

policy collapse in deep reinforcement learning. In Six-

teenth European Workshop on Reinforcement Learning,

2023. URL https://openreview.net/forum?

id=m9Jfdz4ymO.

Eysenbach, B., Gu, S., Ibarz, J., and Levine, S. Leave

no Trace: Learning to Reset for Safe and Autonomous

Reinforcement Learning. February 2018. URL https:

//openreview.net/forum?id=S1vuO-bCW.

Fayolle, G., Malyshev, V. A., Menshikov, M. V., and

Sidorenko, A. F. Lyapunov functions for jackson net-

works. Math. Oper. Res., 18(4):916±927, nov 1993. ISSN

0364-765X.

Ganti, A., Modiano, E., and Tsitsiklis, J. N. Optimal trans-

mission scheduling in symmetric communication models

with intermittent connectivity. IEEE Transactions on In-

formation Theory, 53(3):998±1008, March 2007. ISSN

1557-9654. doi: 10.1109/TIT.2006.890695.

Garcıa, J. and FernÂandez, F. A comprehensive survey on safe

reinforcement learning. Journal of Machine Learning

Research, 16(1):1437±1480, 2015.

Gupta, A., Yu, J., Zhao, T. Z., Kumar, V., Rovinsky, A.,

Xu, K., Devlin, T., and Levine, S. Reset-Free Reinforce-

ment Learning via Multi-Task Learning: Learning Dexter-

ous Manipulation Behaviors without Human Intervention,

April 2021. URL http://arxiv.org/abs/2104.

11203. arXiv:2104.11203 [cs].

Gupta, D., Chandak, Y., Jordan, S. M., Thomas, P. S., and

da Silva, B. C. Behavior alignment via reward function

optimization, 2023.

10



Learning to Stabilize Online Reinforcement Learning in Unbounded State Spaces

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. Mastering

diverse domains through world models, 2023.

Hajek, B. Hitting-time and occupation-time bounds implied

by drift analysis with applications. Advances in Applied

probability, 14(3):502±525, 1982.

Haley, P. and Soloway, D. Extrapolation limitations of

multilayer feedforward neural networks. In [Proceedings

1992] IJCNN International Joint Conference on Neural

Networks, volume 4, pp. 25±30 vol.4, 1992. doi: 10.1109/

IJCNN.1992.227294.

Han, W., Levine, S., and Abbeel, P. Learning compound

multi-step controllers under unknown dynamics. In 2015

IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp. 6435±6442, September 2015.

doi: 10.1109/IROS.2015.7354297.

Hans, A., Schneegaû, D., SchÈafer, A. M., and Udluft, S.

Safe exploration for reinforcement learning. In ESANN,

pp. 143±148, 2008.

Harrison, J. M. Heavy traffic analysis of a system with paral-

lel servers: asymptotic optimality of discrete-review poli-

cies. The Annals of Applied Probability, 8(3):822 ± 848,

1998. doi: 10.1214/aoap/1028903452. URL https:

//doi.org/10.1214/aoap/1028903452.

Harutyunyan, A., Dabney, W., Mesnard, T., Azar, M., Piot,

B., Heess, N., van Hasselt, H., Wayne, G., Singh, S.,

Precup, D., and Munos, R. Hindsight credit assignment,

2019.

Huang, S., Dossa, R. F. J., Ye, C., Braga, J., Chakraborty, D.,

Mehta, K., and AraÂujo, J. G. Cleanrl: High-quality single-

file implementations of deep reinforcement learning algo-

rithms. Journal of Machine Learning Research, 23(274):

1±18, 2022. URL http://jmlr.org/papers/

v23/21-1342.html.

Kapturowski, S., Ostrovski, G., Dabney, W., Quan, J.,

and Munos, R. Recurrent experience replay in dis-

tributed reinforcement learning. In International Confer-

ence on Learning Representations, 2019. URL https:

//openreview.net/forum?id=r1lyTjAqYX.

Kellett, C. and Teel, A. Results on discrete-time

control-lyapunov functions. In 42nd IEEE Interna-

tional Conference on Decision and Control (IEEE Cat.

No.03CH37475), volume 6, pp. 5961±5966 Vol.6, 2003.

doi: 10.1109/CDC.2003.1271964.

Koller, T., Berkenkamp, F., Turchetta, M., and Krause, A.

Learning-based model predictive control for safe explo-

ration. In 2018 IEEE Conference on Decision and Control

(CDC), pp. 6059±6066. IEEE, 2018.

Krishnasamy, S., Sen, R., Johari, R., and Shakkottai, S.

Learning unknown service rates in queues: A multi-

armed bandit approach, 2019.

Leon-Garcia, A. Probability, Statistics, and Random Pro-

cesses for Electrical Engineering. Pearson/Prentice Hall,

Upper Saddle River, NJ, third edition, 2008. ISBN

9780131471221 0131471228.

Liu, B., Xie, Q., and Modiano, E. Reinforcement learning

for optimal control of queueing systems. In 2019 57th

Annual Allerton Conference on Communication, Control,

and Computing (Allerton), pp. 663±670, 2019. doi: 10.

1109/ALLERTON.2019.8919665.

Liu, B., Xie, Q., and Modiano, E. Rl-qn: A reinforcement

learning framework for optimal control of queueing sys-

tems. ACM Trans. Model. Perform. Eval. Comput. Syst.,

7(1), aug 2022. ISSN 2376-3639. doi: 10.1145/3529375.

URL https://doi.org/10.1145/3529375.

Maguluri, S. T. and Srikant, R. Heavy traffic queue length

behavior in a switch under the maxweight algorithm.

Stochastic Systems, 6(1):211±250, 2016.

Mahadevan, S. Average reward reinforcement learning:

Foundations, algorithms, and empirical results. Machine

Learning, 22(1):159±195, March 1996. ISSN 1573-0565.

doi: 10.1007/BF00114727. URL https://doi.org/

10.1007/BF00114727.

Mao, H., Schwarzkopf, M., He, H., and Alizadeh,

M. Towards safe online reinforcement learn-

ing in computer systems. 2019. URL https:

//api.semanticscholar.org/CorpusID:

204978262.

Meyn, S. Control Systems and Reinforcement Learning.

Cambridge University Press, 2022.

Meyn, S. P. and Tweedie, R. L. Markov chains and stochas-

tic stability. Springer Science & Business Media, 2012.

Naik, A., Shariff, R., Yasui, N., and Sutton, R. S. Discounted

reinforcement learning is not an optimization problem.

CoRR, abs/1910.02140, 2019. URL http://arxiv.

org/abs/1910.02140.

Naik, A., Abbas, Z., White, A., and Sutton, R. S. Towards

reinforcement learning in the continuing setting. 2021.

URL https://drive.google.com/file/

d/1xh7WjGP2VI_QdpjVWygRC1BuH6WB_gqi/

view.

Neely, M. J. Stochastic Network Optimization with Applica-

tion to Communication and Queueing Systems. Morgan

and Claypool Publishers, 2010. ISBN 160845455X.

11



Learning to Stabilize Online Reinforcement Learning in Unbounded State Spaces

Ng, A. Y., Harada, D., and Russell, S. J. Policy invariance

under reward transformations: Theory and application to

reward shaping. In Proceedings of the Sixteenth Inter-

national Conference on Machine Learning, ICML ’99,

pp. 278±287, San Francisco, CA, USA, 1999. Morgan

Kaufmann Publishers Inc. ISBN 1558606122.

Pignatelli, E., Ferret, J., Geist, M., Mesnard, T., van Hasselt,

H., and Toni, L. A survey of temporal credit assignment

in deep reinforcement learning, 2023.

Puterman, M. L. Markov decision processes: discrete

stochastic dynamic programming. John Wiley & Sons,

2014.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and

Klimov, O. Proximal policy optimization algorithms.

CoRR, abs/1707.06347, 2017. URL http://arxiv.

org/abs/1707.06347.

Schwartz, A. A Reinforcement Learning Method for Maxi-

mizing Undiscounted Rewards. pp. 298±305, Decem-

ber 1993. ISBN 978-1-55860-307-3. doi: 10.1016/

B978-1-55860-307-3.50045-9.

Shah, D., Xie, Q., and Xu, Z. Stable reinforcement learn-

ing with unbounded state space. In Bayen, A. M.,

Jadbabaie, A., Pappas, G., Parrilo, P. A., Recht, B.,

Tomlin, C., and Zeilinger, M. (eds.), Proceedings

of the 2nd Conference on Learning for Dynamics

and Control, volume 120 of Proceedings of Machine

Learning Research, pp. 581±581. PMLR, 10±11 Jun

2020. URL https://proceedings.mlr.press/

v120/shah20a.html.

Sharma, A., Xu, K., Sardana, N., Gupta, A., Hausman,

K., Levine, S., and Finn, C. Autonomous reinforce-

ment learning: Formalism and benchmarking. ArXiv,

abs/2112.09605, 2021.

Sharma, A., Ahmad, R., and Finn, C. A state-distribution

matching approach to non-episodic reinforcement learn-

ing, 2022.

Srikant, R. and Ying, L. Communication Networks: An

Optimization, Control and Stochastic Networks Perspec-

tive. Cambridge University Press, USA, 2014. ISBN

1107036054.

Stolyar, A. L. Maxweight scheduling in a generalized

switch: State space collapse and workload minimiza-

tion in heavy traffic. The Annals of Applied Probabil-

ity, 14(1):1±53, 2004. ISSN 10505164. URL http:

//www.jstor.org/stable/4140489.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An

Introduction. A Bradford Book, Cambridge, MA, USA,

2018. ISBN 0262039249.

Tassiulas, L. and Ephremides, A. Stability properties of

constrained queueing systems and scheduling policies

for maximum throughput in multihop radio networks.

In 29th IEEE Conference on Decision and Control, pp.

2130±2132 vol.4, 1990. doi: 10.1109/CDC.1990.204000.

Taylor, A. J., Dorobantu, V. D., Le, H. M., Yue, Y.,

and Ames, A. D. Episodic learning with control lya-

punov functions for uncertain robotic systems. CoRR,

abs/1903.01577, 2019. URL http://arxiv.org/

abs/1903.01577.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics

engine for model-based control. In 2012 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems,

pp. 5026±5033, 2012. doi: 10.1109/IROS.2012.6386109.

Vinogradska, J., Bischoff, B., Nguyen-Tuong, D., Romer,

A., Schmidt, H., and Peters, J. Stability of controllers

for gaussian process forward models. In International

Conference on Machine Learning, pp. 545±554, 2016.

Wan, Y., Naik, A., and Sutton, R. S. Learning and Plan-

ning in Average-Reward Markov Decision Processes.

In Proceedings of the 38th International Conference

on Machine Learning, pp. 10653±10662. PMLR, July

2021. URL https://proceedings.mlr.press/

v139/wan21a.html. ISSN: 2640-3498.

Wei, C.-Y., Jafarnia-Jahromi, M., Luo, H., Sharma, H.,

and Jain, R. Model-free Reinforcement Learning in

Infinite-horizon Average-reward Markov Decision Pro-

cesses, February 2020. URL http://arxiv.org/

abs/1910.07072. arXiv:1910.07072 [cs, stat].

Wei, H., Liu, X., Wang, W., and Ying, L. Sample effi-

cient reinforcement learning in mixed systems through

augmented samples and its applications to queueing net-

works, 2023.

Westenbroek, T., Castaneda, F., Agrawal, A., Sastry, S., and

Sreenath, K. Lyapunov design for robust and efficient

robotic reinforcement learning. In 6th Annual Conference

on Robot Learning, 2022.

Xu, K., Zhang, M., Li, J., Du, S. S., Kawarabayashi,

K.-I., and Jegelka, S. How neural networks extrapo-

late: From feedforward to graph neural networks. In

International Conference on Learning Representations,

2021. URL https://openreview.net/forum?

id=UH-cmocLJC.

Yu, M., Yang, Z., Kolar, M., and Wang, Z. Convergent

policy optimization for safe reinforcement learning. In

Advances in Neural Information Processing Systems, pp.

3121±3133, 2019.

12



Learning to Stabilize Online Reinforcement Learning in Unbounded State Spaces

Zhang, S., Wan, Y., Sutton, R. S., and Whiteson, S. Average-

Reward Off-Policy Policy Evaluation with Function Ap-

proximation. In Proceedings of the 38th International

Conference on Machine Learning, pp. 12578±12588.

PMLR, July 2021. URL https://proceedings.

mlr.press/v139/zhang21u.html. ISSN: 2640-

3498.

Zhang, Y. and Ross, K. W. On-policy deep rein-

forcement learning for the average-reward criterion.

In Meila, M. and Zhang, T. (eds.), Proceedings of

the 38th International Conference on Machine Learn-

ing, volume 139 of Proceedings of Machine Learn-

ing Research, pp. 12535±12545. PMLR, 18±24 Jul

2021. URL https://proceedings.mlr.press/

v139/zhang21q.html.

Zhu, H., Yu, J., Gupta, A., Shah, D., Hartikainen, K.,

Singh, A., Kumar, V., and Levine, S. The Ingredi-

ents of Real-World Robotic Reinforcement Learning,

April 2020. URL http://arxiv.org/abs/2004.

12570. arXiv:2004.12570 [cs, stat].

13



Learning to Stabilize Online Reinforcement Learning in Unbounded State Spaces

A. Theoretical Results

In this section we provide the proofs for our theoretical results, which are restated below for readers’ convenience.

Proposition 5.1. For any policy π,

JS(π) = JO(π) + lim
T→∞

Eπ[ℓ(sT+1)]

T
.

Therefore JS(π) ≥ JO(π), and JS(π) = JO(π) if and only if Eπ[ℓ(sT+1)] = o(T ).

Proof. Fix a policy π. Then we can calculate that

JS(π) = lim
T→∞

1

T
Eπ

[
T∑

t=1

(c(st, at, st+1) + ℓ(st+1)− ℓ(st))

]

= lim
T→∞

1

T
Eπ

[

ℓ(sT+1)− ℓ(s1) +

T∑

t=1

c(st, at, st+1)

]

= lim
T→∞

1

T
Eπ [ℓ(sT+1)] +

1

T
Eπ

[
T∑

t=1

c(st, at, st+1)

]

= JO(π) + lim
T→∞

1

T
Eπ [ℓ(sT+1)]

where we used the fact that limT→∞
ℓ(s1)
T

= 0.

The fact that JS(π) ≥ JO(π) then follows from the fact that ℓ is non-negative.

Proposition 5.2. Suppose that for any optimal policy π⋆, lim supT→∞ Eπ⋆ [ℓ(sT )] < ∞. Then argminπ J
S(π) =

argminπ J
O(π).

Proof. Fix a policy π⋆ which is optimal for JO. From Proposition 5.1 we have that JS(π⋆) ≥ JO(π⋆). To show the reverse

inequality, we can use Proposition 5.1 to calculate that

JS(π⋆) = JO(π⋆) + lim
T→∞

1

T
Eπ⋆ [ℓ(sT+1)]

≤ JO(π⋆) + lim sup
T→∞

1

T
Eπ⋆ [ℓ(sT )]

= JO(π⋆)

using the assumption that lim supT→∞ Eπ⋆ [ℓ(sT )] < ∞. Therefore JS(π⋆) = JO(π⋆). Now for any other policy π, since

π⋆ is optimal for JO, we have that JO(π⋆) ≤ JO(π). Therefore

JS(π⋆) = JO(π⋆) ≤ JO(π) ≤ JS(π)

where we used the fact from Proposition 5.1 that JS(π) ≥ JO(π). Therefore π⋆ ∈ argminπ J
S(π), so argminπ J

S(π) ⊇
argminπ J

O(π). Furthermore, if π ̸∈ argminπ J
O(π), then we must have JO(π) > JO(π⋆), in which case by again using

Proposition 5.1 we have that

JS(π) ≥ JO(π) > JO(π⋆) = JS(π⋆)

so π ̸∈ argminπ J
S(π). Thus argminπ J

S(π) ⊆ argminπ J
O(π) and we can conclude that argminπ J

S(π) =
argminπ J

O(π) as desired.
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B. STOP Pseudo-code

Algorithm 1 STOP+PPO

1: Input: policy parameters θ0, critic net parameters ϕ0, state transformation function σ, rollout buffer D of length N .

2: for t = 1, 2, ... do

3: Collect sub-trajectory in rollout buffer {σ(sk), ak, σ(sk+1), lk}
N
k=1 from environment using πθ⌊t/N⌋

{Note that

rollout buffer contains the transformed states and the cost lk := ℓ(sk+1)− ℓ(sk)
︸ ︷︷ ︸

stability cost

+ c(sk, ak, sk+1)
︸ ︷︷ ︸

optimality cost

is a function of

the non-transformed states.}
4: if t%N == 0 then

5: {Periodically update policy and critic parameters}
6: Using rollout buffer D update θ and ϕ with average-reward PPO (Zhang & Ross, 2021).

7: Empty D
8: end if

9: Record performance of agent according to true optimality cost at time-step t, c(st, at, st+1), as a function of

non-transformed states {st, st+1}.

10: end for

C. Supporting Content and Empirical Results

In this section, we include additional details and experiments that complement the main results. We also include the code in

the supplementary zip file.

C.1. Visualizations of State Transformations

To provide better intuition of the different state transformations we considered in Section 5.2, we visualize them in Figure 6.

Figure 6. Visualizations of transformation functions.

C.2. Additional Main Results

In this section, we include the remaining main results on a 10-queue server allocation problem and on the traffic control

simulator. We also include the zoomed-out results from Figure 4 and Figure 5 in Figure 8.

C.3. Environments

In this section, we provide additional details about the environments.

Single-server allocation queuing In this environment, there is a single central server that must select among a set of

queues to serve. In general, there can be up to N queues (Figure 9 show a sample 2 queue setup). At each time-step, new
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(a) 10-queues w/o faulty connec-
tions (very high load)

(b) Medium congestion (c) Heavy congestion (d) Very heavy congestion

Figure 7. True optimality criterion vs. interaction time-steps on 10-queue server allocation (first image) and traffic control environment

(remaining three). Lower is better. Algorithms are PPO (O) vs. STOP + PPO which use all STOP components, where we evaluate the

linear (STOP-L-O) and quadratic (STOP-Q-O) stability cost function. For the queuing environment, we also report the performance of

MAXWEIGHT (MW). Recall that unlike MW, STOP does not know the transition dynamics. The IQM (Agarwal et al., 2021) is computed of

the performance metrics over 15 trials with 95% confidence intervals.

jobs arrive in each queue following a Bernoulli process with probability λi for queue i. Note that at each time-step, at most

one job enters each queue, which means more than one job may enter the whole system in total. At each time-step, the

server must select among the N queues to serve. A successfully served queue will mean a job will exit that queue, so at

most one job can exit the system at a given time-step. When a server selects a queue i, the server succeeds in making a job

exit only if: it can connect to queue i (which is dependent on the connectivity probability, ci) and the job is successfully

served (which is dependent on the service probability, pi). The state of the server is queue length of each queue and 0/1 flag

indicating whether the server can connect to a specific queue, resulting in 2N -dimensional state. The action space is index

of the queue, resulting in N dimensions. The goal is to minimize the average queue length. In the non-faulty connection

setting, all the connectivity flags are 1. The optimal policy in the faulty connection setting is an open problem (Ganti et al.,

2007). We consider settings where the system is stabilizable i.e.
∑N

i
λi

pi
< 1−

∏N
i (1− ci) and λi

pi
< ci.

The Bernoulli probability parameters of the tested environments are:

1. 2-queue without faulty connections (see Figure 1) (medium load)

• Arrival rates: λ1 = 0.2, λ2 = 0.1

• Service rates: p1 = 0.3, p2 = 0.8

• Connection probabilities: c1 = 1, c2 = 1

2. 2-queue with faulty connections (high load)

• Arrival rates: λ1 = 0.2, λ2 = 0.1

• Service rates: p1 = 0.3, p2 = 0.8

• Connection probabilities: c1 = 0.95, c2 = 0.5

3. 2-queue with faulty connections (very high load)

• Arrival rates: λ1 = 0.2, λ2 = 0.1

• Service rates: p1 = 0.3, p2 = 0.8

• Connection probabilities: c1 = 0.7, c2 = 0.5

4. 10-queue with non-faulty connections (very high load)

• Arrival rates: λ1 = 0.05, λ2 = 0.01, λ3 = 0.2, λ4 = 0.4, λ5 = 0.05, λ6 = 0.01, λ7 = 0.02, λ8 = 0.01, λ9 =
0.015, λ10 = 0.01

• Service rates: p1 = 0.9, p2 = 0.85, p3 = 0.95, p4 = 0.75, p5 = 0.9, p6 = 0.9, p7 = 0.85, p8 = 0.9, p9 =
0.9, p10 = 0.85
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(a) Faulty connections with medium
load (Figure 1)

(b) Faulty connections with high load (c) Varying state transformation

(d) High Load (e) Very High Load - #1 (f) Very High Load - #2

Figure 8. Zoomed out version of Figure 4 and Figure 5. True optimality criterion vs. interaction time-steps on three server-allocation

queue networks (top row) and three N -network model environments (bottom row). Lower is better. Algorithms are PPO vs. STOP-p, where

p denotes the power of the Lyapunov function. All STOP variants use the symloge state transformation. We also report the performance of

MAXWEIGHT (MW). Recall that unlike MW, STOP does not know the transition dynamics. The IQM (Agarwal et al., 2021) is computed of

the performance metrics over 20 trials with 95% confidence intervals. All vertical axes are log-scaled.

• Connection probabilities: ci = 1 for all 1 ≤ i ≤ 10

When evaluating the RL algorithms, we compare their performance to MAXWEIGHT (Tassiulas & Ephremides, 1990;

Stolyar, 2004), a well-known algorithm that achieves stability for a certain class of queuing scenarios, but which relies

on the knowledge of the system model (i.e., some parts of the transition dynamics) and it is generally unknown how far

MAXWEIGHT is from optimality. It is a very strong non-RL baseline from decades of research from the stochastic networking

community.

2-model Network In this domain, there are two queues of jobs for class 1 and class 2 jobs, B1 and B2. These jobs come into

the queues following a Poisson process with arrival rates λ1 and λ2, which is a function of ρ which determines the load. Class

1 jobs can be processed by server S1 as well as server S2, while class 2 jobs can only be processed by server S2. The success

rate of S2 serving class 1 jobs is given by the service rate µ2 = 1/m2 and of serving class 2 jobs is µ3 = 1/m3. Similarly,

success of S1 serving class 1 jobs is given by µ1 = 1/m1. All these success rates are exponentially distributed with mean mi.

The holding cost of keeping a job waiting in B1 is 3 and in B2 is 1. The agent in this case is S2, which must decide whether to

serve class 1 jobs or class 2 jobs. Its state is the queue lengths of B1 and B2. Its action is the discrete action denoting the index

of the selected queue. The optimality criterion is the average holding cost per time-step i.e. 3x1+x2, where xi is the number

of waiting jobs in queue i. For more details, refer to Dai & Gluzman (2022). We refer to their code for the environment:

https://github.com/mark-gluzman/NmodelPPO/blob/master/NmodelDynamics.py. We consider

settings where i.e. λ1−µ1

µ2

≤ 1− λ2

µ3

.

The parameters of the environments we evaluated on are:

1. High load

• ρ = 0.99 and using parameters exactly as in Figure 9.

2. Very high load #1

• ρ = 0.99 and using parameters exactly as in Figure 9.
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(a) Single-server allocation (b) 2-Model Network (c) Traffic control

Figure 9. Left: Server-allocation. Image taken from Liu et al. (2019). Center: 2 model network. Image taken from Dai & Gluzman (2022).

Right: An example intersection of the traffic control environment. Image taken from Alegre (2019).

3. Very high load #2

• ρ = 0.95

• Arrival rates: λ1 = 0.9, λ2 = 0.8

• Service rates: µ1 = 1, µ2 = 0.9, µ3 = 0.8

Total Queue Length as Optimality Objective . While the lessons in our paper are generally applicable to RL, our work is

grounded in queuing theory. As such, we are specifically interested in learning control policies that minimize and bound the

system latency. Therefore, according to Little’s Law (Leon-Garcia, 2008), we seek to minimize the true optimality cost

function, the total queue length, c(s, a, s′) = ∥s′∥1, where states s and s′ are vectors consisting of the current and next

queue lengths of each queue in the system and a is the action taken.

Traffic control In this environment, a traffic controller must select from a set of phases (shown in green in Figure 9), a set

of non-conflicting lanes, to allow cars to move. At each time-step, new cars arrive in each lane at different rates, which

determines the traffic congestion level. In our experiments, we considered medium to very high levels of traffic congestion.

The state is the number of cars waiting in each lane along with indicator flags for which lanes have a green and yellow

light. The action space is the number of phases. The state space is 21 dimensions and the action space is 4. The goal is to

minimize the total waiting time of all the cars. To model a real-life traffic situation, the SUMO simulator places a cap of

≈ 100 on each lane. We use the SUMO simulator implementation (Behrisch et al., 2011; Alegre, 2019).

For exact traffic demands used in the experiments, see the sumo/nets/big-intersection/generator.py file in

the attached code.

C.4. Additional Empirical Setup Details

PPO Training We train average-reward PPO (Zhang & Ross, 2021; Dai & Gluzman, 2022) using the default hyperparame-

ters (network architecture, learning rate, mini batches, epochs over the dataset etc.) in the cleanRL code base (Huang et al.,

2022). For all algorithms and variations, we set the interval between policy updates during the interaction (rollout buffer

length) to be 200 . The agent starts in a randomly initialized state, takes a number of actions until it fills up its rollout buffer

and then makes policy updates using this buffer, and the process repeats. We normalize the advantages in the rollout buffer

by dividing each by the standard deviation computed over the buffer. As suggested by Dohare et al. (2023), we set Adam’s

beta values to be β1 = β2 = 0.9.

C.5. Hardware For Experiments

For all experiments, we used the following compute infrastructure:

• Distributed cluster on HTCondor framework
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• Intel(R) Xeon(R) CPU E5-2470 0 @ 2.30GHz

• RAM: 5GB

• Disk space: 5GB

(a) Other bounded formulations of true cost (b) Training wheels comparison

Figure 10. Average queue length on the 2-queue problem w/ faulty connections over time by (a) different RL agents optimizing different

cost formulations vs. our STOP agent and (b) PPO-TW. Performance metrics are computed over 5 trials with 95% confidence intervals.

Lower is better.

D. Transforming Optimality Cost Function Leads to Instability

In Figure 10(a) we also include the performance of RL agents optimizing other transformations of the true optimality cost

function c(st+1). We consider the transformed cost: 1) c′(st, at, st+1) := −exp(−||st + at||
2
2) and 2) c′(st, at, st+1) :=

−exp(−||st+1||
2
2). The former is R1 and latter is R2 in the plot. We show performance when these agents do not use any

state transformation and when they use the symloge transformation (−SL). We find that the agents still unstable, thus

providing further evidence that simply transforming the true cost function in this class of problems is insufficient to yield

good performance.

E. PPO With Training Wheels

In this section, we provide preliminary evidence that equipping PPO with training wheels i.e. a stable policy may perform

worse than STOP.

In this experiment, we evaluate PPO with training wheels (PPO-TW). The PPO-TW setup closely models that of (Mao et al.,

2019) where we equip an on-policy policy gradient algorithm (PPO) with a stable policy. In our case, the stable policy is

MAXWEIGHT (Stolyar, 2004; Tassiulas & Ephremides, 1990). MAXWEIGHT is deployed if the maximum queue length of

the system exceeds 100, at which point MAXWEIGHT is used until it drives the system’s maximum queue lengths to less

than 50. Once it has done that, the PPO policy is deployed. Note that 1) MAXWEIGHT relies on knowing information of the

transition dynamics, which can be limiting. STOP, on the other hand, does not assume access to such knowledge and 2)

PPO-TW optimizes the true optimality cost (average queue length).

From Figure 10(b), we find that while STOP performs poorly during initial phases of learning, it is able to significantly

outperform PPO-TW later on. STOP is able to learn the stabilizing and optimal actions from a destabilizing, random policy.

In the case of PPO-TW, however, since the initial RL policy is poor (random) it causes the agent to diverge, which violates

the safety condition often, which results in frequent deployment of the stable policy. However, this off-policy data cannot be

used to update the PPO policy. Thus, the PPO policy continues to remain poor since it has inadequate data to train on, which

causes the agent to diverge until it violates the safety condition, at which point the stable policy is deployed again. As noted

by (Mao et al., 2019), the off-policy data generated by the stable policy cannot be used to train the PPO policy. As we have

noted in our future work as well, an interesting further direction will be to apply our ideas to off-policy algorithms.
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