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Abstract

We study the sample complexity of the plug-in approach for learning e-optimal policies in average-
reward Markov decision processes (MDPs) with a generative model. The plug-in approach constructs
a model estimate then computes an average-reward optimal policy in the estimated model. Despite
representing arguably the simplest algorithm for this problem, the plug-in approach has never been
theoretically analyzed. Unlike the more well-studied discounted MDP reduction method, the plug-in
approach requires no prior problem information or parameter tuning. Owur results fill this gap and
address the limitations of prior approaches, as we show that the plug-in approach is optimal in several
well-studied settings without using prior knowledge. Specifically it achieves the optimal diameter- and
mixing-based sample complexities of O (SAE%) and O (SA T‘;g”), respectively, without knowledge of the
diameter D or uniform mixing time 7unir. We also obtain span-based bounds for the plug-in approach,
and complement them with algorithm-specific lower bounds suggesting that they are unimprovable. Our
results require novel techniques for analyzing long-horizon problems which may be broadly useful and
which also improve results for the discounted plug-in approach, removing effective-horizon-related sample
size restrictions and obtaining the first optimal complexity bounds for the full range of sample sizes
without reward perturbation.

1 Introduction

Reinforcement learning (RL) has emerged as a powerful framework for sequential decision-making problems,
where an agent learns to make decisions by interacting with an environment to maximize cumulative rewards.
Average reward RL, in particular, focuses on optimizing the long-term average reward per time step, making
it especially relevant in ongoing, infinite-horizon tasks where the goal is to maintain consistent performance
over time. In this paper, we study the foundational theoretical problem of determining the sample complexity
required to learn a near-optimal policy in a Markov decision process (MDP) with access to a generative model.
Although recent research has made significant strides in resolving the optimal sample complexity for this
problem, a large amount of prior work (including all sample-optimal methods) relies on methods designed
for discounted MDPs, where future rewards are multiplied by a discount factor to prioritize immediate
rewards. This approach has several drawbacks: selecting the appropriate discount factor (or sequence of
factors) is crucial and often requires prior knowledge about the problem, which may not be available in
practice, potentially degrading performance. Even when the discount factor can be suitably tuned, it is still
extrinsic to the average-reward problem, making it arguably unnatural to require its introduction. Technical
challenges have hindered the analysis of more direct average-reward algorithms.

Our study focuses on analyzing the average-reward plug-in approach. This approach estimates the
parameters of the MDP model and then uses any method to compute the optimal average-reward policy for
the estimated model. In the context of discounted MDPs, this approach has been called model-based planning
[Agarwal et al., 2020, Li et al., 2020], although we note that the plug-in approach is a particular “model-
based” algorithm. We also note that the plug-in approach is a generic template for constructing estimators
for a functional of an unknown distribution/model (by plugging the empirical distribution/model into the
functional) which is broadly used beyond RL. This is arguably the most natural model-based approach for
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Algorithm Sample Complexity Reference Knowledge
DMDP Reduction S ATt Wang et al. [2023b)] Yes
DMDP Reduction S’AMZ%H Zurek and Chen [2024] Yes
Diameter Estimation SAL + S52AD? Tuynman et al. [2024] No
+ DMDP Reduction
Dynamic Horizon Q- SA% Jin et al. [2024] No
Learning
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Stochastic Saddle- SQAQH}IE‘# Neu and Okolo [2024] No
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Plug-in Approach SA Ilh*lls"a“tllzh*lls"a“H log( 1716*) Our Theorem 1 No
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S ATugit Our Corollary 7
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v/n-Horizon . S AV lspant1 HS‘;*‘"H Our Theorem 13 No
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Table 1: Algorithms and sample complexity bounds for average reward MDPs with S states and
A actions, for finding an e-optimal policy under a generative model (up to log factors). All results assume
at least that P is weakly communicating. Furthermore all bounds involving 7ynis assume that P is uniformly
mixing, and all bounds involving D assume that P is communicating. |A™||span is the bias span of the
policy 7 returned by the algorithm. See Section 3 for other definitions. We always have ||h*||span < D and

1%l span, |27 llspans |2 [|span < 3Tunit, and we have ||E*||Spbm < O(D) with high probability when n > Q(D).

solving average-reward MDPs, yet its finite-sample properties have never been theoretically examined. Not
only does our analysis fill a major gap in our understanding of a basic algorithm for this problem, but also
we show that this algorithm is optimal in several settings without requiring strong assumptions about prior
knowledge of the problem, thus addressing many limitations of previous approaches.

In particular, when combined with the stabilizing anchoring technique which has previously appeared in
the average-reward literature, we show that this algorithm can simultaneously achieve the optimal diameter-
and mixing-based sample complexities of O (SAE%) and O (SA%) for learning an e-optimal policy, re-
spectively, where D is the diameter and 7yuir is the uniform mixing time, without needing to have prior
knowledge of D or Tunif and without needing to tailor the algorithm to the particular situations. These re-
sults are corollaries of our bias-span-based complexity bounds for weakly communicating MDPs, for example
5<SA ”h*HSP““ﬂLh*HSW‘Jrl), where ||h*||span is the optimal bias span and ||ﬁ*||spbm is the optimal bias span in
a certain estimated MDP. We further show that the analysis behind this (and related) span-based bound is
unimprovable, in the sense that the term H?L*”Span cannot be removed in general for the performance of the
plug-in method.

While the average-reward plug-in approach can be seen as a large-discount-factor limit of the discounted
plug-in approach, previous discounted analyses are incapable of being adapted to this problem, requiring
the development of novel techniques for analyzing the error of long-horizon problems which may be broadly
useful. In particular these techniques lead to improved results for the discounted plug-in approach, includ-
ing removing effective-horizon-related sample size restrictions of previous results which achieve quadratic
dependence on the effective horizon for the fixed MDP setting. We also obtain the first optimal complexity
bounds for the full range of sample sizes without the need for reward perturbation.




Sample Size Requires

Reference Sample Complexity Requirement  Perturbation?
Azar et al. [2013] SAW e < m No
Agarwal et al. [2020] SAW e< \/g No
Li et al. [2020] SAW None Yes
Wang et al. [2023a] SAGESE £,/ Yes
Zurek and Chen [2024] SA”hl”iy%tl e < ||h*||span Yes
Our Theorem 10 sAI” ll*pz‘fﬂl;/:”*p“nﬂ None Yes
Our Theorem 9 gAY prffily‘)‘g L‘bp“"ﬂ None No
Our Theorem 9+Lemma 12 SA”hl”iyi"a;‘tl e < ||h*]|span No

Table 2: Sample complexity bounds for the plug-in approach in y-discounted MDPs with S states
and A actions, for finding an e-optimal policy under a generative model (up to log factors). The sample size
requirement is the valid range of ¢ for the respective complexity guarantee, and a result is said to require
perturbation if it utilizes a randomly perturbed reward vector. All results containing ||A*||span assume P is
weakly communicating, and all results containing 7ynir assume uniform mixing. If P is weakly communicating
then ||V*||span < 2||h*||span, and if P is uniformly mixing then ||[V*||span; ||V 7 ||span < 3Tunit- We also always

have the naive bounds ||[V*||span; ||V [|span < ﬁ

1.1 Related Work

We summarize related work on learning optimal policies in average-reward MDPs (AMDPs) in Table 1. There
is a long history of work on this problem which we do not fully recount here (e.g. Jin and Sidford [2020, 2021],
Li et al. [2022], Wang et al. [2022], Zhang and Xie [2023]), instead starting with the works Wang et al. [2023b]
and Zurek and Chen [2024] which were the first to obtain optimal sample complexities in their respective
settings (we refer to their references for more history of this problem). Each of these works use the DMDP

reduction approach with a carefully chosen effective horizon, m=it and %, respectively, which requires
prior knowledge of the values of these complexity parameters. The O (S A%) complexity result of Zurek
and Chen [2024] implies a O (SALZ) complexity for the finite diameter setting since ||h*||span < D [Bartlett

and Tewari, 2012, Lattimore and Szepesvéri, 2020], and it also implies the 9) (SAT“““) complexity obtained
by Wang et al. [2023b] since ||h*[|lspan < 37unit (Lemma 39, also see Wang et al. [2022]). These results match

minimax lower bounds of €2 (SAZwit) [Jin and Sidford, 2021] and Q (SAL) (by the relationships between
Tunif, Dy and ||A*||span, these both imply a Q (SA%) lower bound).

Recently there has been significant interest in removing the need for prior knowledge of complexity
parameters. Tuynman et al. [2024] show that an upper bound for the diameter can be estimated and
then used within the approach of Zurek and Chen [2024] to circumvent its need for parameter knowledge.
However, results from Tuynman et al. [2024] and Zurek and Chen [2024] imply that a similar approach
cannot be used to obtain the optimal span-based complexity, both showing that it is not generally possible
to obtain a multiplicative approximation of ||h*||span With poly(SA||h*||span) samples. In the uniformly
mixing setting, Jin et al. [2024] use a Q-learning-style algorithm with increasing discount factors to remove
the need for knowledge of Tynit. Neu and Okolo [2024] develop an algorithm based on stochastic saddle-point
optimization that does not require parameter knowledge in the general weakly communicating setting, but
their bounds depend on ||h7 ||span, the bias of the algorithm output policy, which is not generally related to
17 || span-

We present related work on learning optimal policies in discounted MDPs (DMDPs) in Table 2. This
problem also has been extensively studied, and we include only results on the plug-in approach which obtain
minimax-optimal sample complexities. The optimal complexity O(SA )g ) for learning a e-discounted-




optimal policy was first obtained by Azar et al. [2013] for a restrictive range of e. This range was enlarged by
Agarwal et al. [2020], who introduce the absorbing MDP construction for decoupling statistical dependence
which also finds use in our analysis. The matching lower bound is established by Azar et al. [2012], Sidford

et al. [2018]. Li et al. [2020] are the first to achieve the optimal 6(5’AW) complexity for the full

range ¢ € (0, ﬁ], and their results actually yield a stronger instance-dependent bound. This stronger
guarantee is used in both Wang et al. [2023b] and Zurek and Chen [2024] to obtain the complexity bounds of

6(SA (13;)‘552) and 5(SA éllh:ibj‘;*;‘;), respectively, in the restricted situations that P is uniformly mixing or

is weakly communicating. However, the arguments within Li et al. [2020] implicitly require that n > Q(ﬁ)

This is without loss of generality if the goal is to show 5(5’ AW) complexity, since this is equivalent to

an error bound of 5(, /W), which is only nontrivial error if it is below —— which requires n > ().

1=y 1=y

However, once the target is strengthened to an improved complexity like 6(5’/1(11‘;‘)1&52), the condition

n > Q(ﬁ) is equivalent to a sample size barrier of & < O(, /7).

2 Problem Setup

A Markov decision process (MDP) is a tuple (S,.A, P,r), where S is the finite set of states, A is the finite set
of actions, P : S x A — A(S) is the transition kernel with A(S) denoting the probability simplex over S, and
r:S8xA—[0,1] is the reward function. We denote the cardinality of the state and action spaces as S = |S|
and A = | A|, respectively. Unless otherwise noted, all policies considered are Markovian (stationary) policies
of the form 7 : § — A(A). For any initial state so € S and policy 7, we let E denote the expectation with
respect to the probability distribution over trajectories (Sp, Ao, S1, A1, ...) where S = sg, Ay ~ m(St), and
Stt1 ~ P(- | St, At). We let P, denote the transition probability matrix of the Markov chain induced by ,
that is, (Pr), o = > ,ca7(als)P(s" | s,a). Likewise define (rx)s := > . 4 m(als)r(s,a). We also consider
P as an (S x A)-by-S matrix where Pyq o = P(s' | s,a).

We assume access to a generative model [Kearns and Singh, 1998], also known as a simulator, which
provides independent samples from P(- | s,a) for any given s € S,a € A. P itself is unknown. We assume
the r is deterministic and known, which is standard in generative settings (e.g., Agarwal et al. 2020, Li et al.
2020) since otherwise estimating the mean rewards is relatively easy.

Discounted reward criterion A discounted MDP is a tuple (S, A, P,r,v), where v € (0,1) is the
discount factor. For a stationary policy 7, the (discounted) value function V' : & — [0, 00) is defined, for
cach s € S, as V' (s) := ET [32;2( 7" Ri], where Ry = 7(S;, A;) is the reward received at time ¢. There always

exists an optimal policy 7% that is deterministic and satisfies Vi (s) = V¥ (s) :=sup, V(s) for all s € S
[Puterman, 1994].

Average-reward criterion Inan MDP (S, A, P,r), the average reward per stage or the gain of a policy
T starting from state s is defined as p™(s) 1= lim7 o FET | tT;Ol Ry]. The bias function of any stationary
policy m is h™(s) := C-limp_,o0 BT | ;;T:_Ol (R — p™(S¢)) |, where C-lim denotes the Cesaro limit. When the
Markov chain induced by P; is aperiodic, C-lim can be replaced with the usual limit. For any policy =, p™
and h”™ satisfy p™ = Prp™ and p™ +h™ = rp+ Prh™. We let P° = C-limp_, o PT denote the limiting matrix,
and note that P° P, = Py P° = P° and p™ = P2°r,. A policy 7* is Blackwell-optimal if there exists some
discount factor ¥ € [0, 1) such that for all ¥ > § we have VV’T* > V7 for all policies 7. When S and A are finite,
there always exists some Blackwell-optimal policy which is Markovian and deterministic, which we denote 7*
[Puterman, 1994]. We define the optimal gain p* € RS by p*(s) = sup, p™(s) and note that we have p* = p™ .
We also define h* = h™ (and we note that this definition does not depend on which Blackwell-optimal 7* is
used if there are multiple). A policy 7 is gain-optimal if p™ = p* and it is bias-optimal if it is gain-optimal
and h™ = h*. For 2 € RS, we define the span semi-norm ||z||span := Mmaxses #(s) — minges #(s). An MDP is
communicating if for any initial and target states, some Markovian policy can reach the target state from the
initial state (with probability 1). The diameter is defined as D := max, £, infren EI, [1s,], where ), denotes
the hitting time of a state s € S. D < oo if and only if the MDP is communicating. A weakly communicating
MDP is such that the states can be partitioned into two disjoint subsets S = &1 US; such that all states in Sy
are transient under all stationary policies and Sy is communicating. In weakly communicating MDPs p* is



a constant vector (all entries are equal). For each policy =, if the Markov chain induced by P, has a unique
er (Pr)'—vi|, <3},
If all policies in the set of Markovian deterministic policies, denoted II, satisfy this assumption, we define
the uniform mizing time Tunif := SUP,erp Tn. An MDP is unichain if all Markovian deterministic policies
induce a Markov chain P, with a single recurrent class (and possibly some transient states). We note that
this definition of mixing time requires the Markov chain Py to be unichain but not irreducible.

When using transition kernels besides P, for example denoted P, we will accordingly write VT, h™, p™
for the associated value, bias, and gain functions respectively. We also occasionally drop the subscript from
discounted value functions and write V™ when + is clear from context. o

We use standard Big-Oh notation O, 2, ©, and we also use the notation O, (2 to hide logarithmic factors
inn,S, A, %, as well % where £ is a perturbation size parameter appearing in some results. We use Cy, Co, . ..
to denote absolute constants.

stationary distribution v, we define the mixing time of 7 as 7; := inf {t > 1:maxses

3 Main Results

Algorithm 1 Plug-in approach for AMDP

input: Sample size per state-action pair n; optional anchoring state sg, optional anchor probability 7,
optional perturbation level &

1: for each state-action pair (s,a) € S x A do

2 Collect n samples St ,,..., 57, from P(- | s,a)

3. Form the empirical transition kernel P(s' | s,a) = 1 3" {S:, =5} forals €S
4: end for R R

5. Form anchored empirical transition matrix P = (1 —n)P + nle;';

> Set 7 = 0 for no anchoring

6: Form perturbed reward 7 = r + A where A(s, a) N Uniform][0, ]

> Set & = 0 for no perturbation

~

7 = SolveAMDP(P,7)
8 return T

=

We present a meta-algorithm, Algorithm 1, which encapsulates several variants of the plug-in approach
for solving AMDPs. There are three key choices in Algorithm 1, within lines 5, 6, and 7. The first is that
instead of solving for an optimal policy in the empirical MDP P, we may instead choose to use the anchored
MDP P=(1-n)P+ nle;';, which adds a small probability n of transitioning to an arbitrary anchor state
so from all states and actions [Fruit et al., 2018]. We discuss the anchoring technique in more detail shortly.
This step is optional, and can be skipped by setting n = 0. Secondly, we may use a slightly perturbed reward
vector 7 = r + A where A € R%4 has each entry sampled independently from the Uniform[0, £] distribution.
This step can also be skipped by setting & = 0. Finally, any AMDP solver SolveAMDP can be used in line
7, but our theorems each require certain conditions on the degree of suboptimality of the output policy 7

guaranteed by the solver.

3.1 Standard Plug-in Approach

We first analyze arguably the most natural algorithm for learning optimal policies in AMDPs, the plug-in
approach: we form an empirical transition matrix P using transition counts from the generative model and
then compute a bias-optimal policy 7 for the AMDP (P,r). This corresponds to Algorithm 1 with no
perturbation (£ = 0) and no anchoring (n = 0). To the best of our knowledge, the following results are the
first for this simple algorithm.

Theorem 1. Suppose P is weakly communicating. Consider Algorithm 1 with n =0 and £ = 0. Suppose
that the policy T returned by SolveAMDP is guaranteed to be a bias-optimal policy of the AMDP (P,r). Let



h* be the optimal bias of (ﬁ, r), and let 3* be the (random) smallest discount factor such that for all v > 7*,
there exists ¢ € R (which may depend on ) such that

~ ~ 1
V¥—h*—cl < —. 1
| al <- 1)

‘ o0

Then with probability 1 — 6, if Pis weakly communicating, then

Cr log® (65#)
% % (1-75%) N =~
=t < - (12 lspan + 17* llspan + 1) 1.

Compared to the minimax optimal rate of 5(\/ %) (equivalent to 6(5’/1%) sample complex-

ity), Theorem 1 has the additional term ||E*Hspan. We show in Theorem 14 that this additional term is
unavoidable for the plug-in approach, in the sense that there exist instances where the plug-in approach

satisfies a high-probability bound of 5(\/ M) but not O ( 1/ %) One key feature of the

optimal algorithm [Zurek and Chen, 2024], based on DMDP reduction, is that it requires prior knowledge of
[IA*||span to set the discount factor, whereas the plug-in method has no need for such information. Lemma
25 establishes basic properties of the quantity ~4* appearing in Theorem 1. In particular it is well-defined
when P is weakly communicating. R

Within the proof of Theorem 1 we analyze the accuracy of using (P,r) to estimate the gain of a fixed
policy, leading to the following policy evaluation result of independent interest.

Theorem 2. Fix a policy m such that p™ is constant. Let p™ be the gain of w in the empirical AMDP (]3, T).
Then with probability at least 1 — 6,

. Cylog® (24n
10" =Pl < \/%“hﬂ“pan*’l)'

3.2 Anchoring-Based Plug-in Approach

Although the standard plug-in approach is arguably the most natural algorithm for learning in AMDPs with
a generative model, it and our Theorem 1 have a few limitations. First, the performance bound in Theorem
1 only holds on the event that P is weakly communicating, which can be understood as a consequence of
the fact that the standard plug-in approach does not provide a way for us to incorporate prior information
’,?*
worst case, preventing us from applying Theorem 1 to obtain optimal D or 7ynit-based rates. Finally, since
arbitrary weakly communicating MDPs do not possess sufficient stability properties for a definition of policy
near-optimality which suffices for our purposes, our Theorem 1 requires finding an exactly bias-optimal policy
in (P,r).

Fortunately, we can overcome all of these limitations with a simple technique which has been used many
times (for various purposes) in the literature on average-reward reinforcement learning, which we term
anchoring. For a small probability n € [0,1] and any arbitrarily chosen state s, we can form the anchored
transition matrix P = (1- n)ﬁ + nle;'; (where 1 € R4 is all-1 and ey, € R is all-0 except for a 1 in

entry o). In words, P follows P a (1 —n) fraction of the time, but all state-action pairs have a small chance
7 to return to sgp. This technique has been used in average-reward and related settings (e.g., Fruit et al.
2018, Yin et al. 2022) for essentially computational reasons, since it ensures that the associated Bellman
operator is a 1 —n (span-)contraction [Puterman, 1994, Theorem 6.6.6], whereas without anchoring there is
no guarantee of contractivity and thus standard average-reward value iteration has no finite-time convergence
guarantee. Such works often set n = %, in which case these computational benefits are essentially without
loss of statistical efficiency since an order O(1/n) perturbation contributes a lower-order term relative to the
statistical error. An arguably more standard perspective would be to consider anchoring + value iteration
as a particular solver for the empirical AMDP (P,r), but we can incorporate anchoring within the plug-in

that P is weakly communicating. Additionally, the log (1%) term is not bounded as log poly(SAnd) in the



framework and thus allow arbitrary AMDP solvers by having them solve the anchored AMDP (E, T). E is
always weakly communicating (in fact unichain), thus providing a simple way to enforce our model estimate
to be weakly communicating.

Lemma 24 summarizes all these (and other) properties of the anchoring technique, in particular showing
that anchoring with n = = is essentially equivalent to DMDP reduction with an effective horizon of ;= = n.
This is a much larger effectlve horizon than those used in prior work on DMDP reduction for solvmg AMDP
[Jin and Sidford, 2021, Wang et al., 2023b, 2022, Zurek and Chen, 2024] and unlike prior work, does not
require knowledge of complexity parameters such as Tynis or ||h*||span. Prior analysis of DMDP (e.g. Agarwal
et al. [2020], Li et al. [2020]) does not allow or gives vacuous guarantees for ﬁ = n, but our novel analysis
for the AMDP plug-in method (which heuristically is a DMDP reduction with arbitrarily large effective
horizon) can be repurposed to handle this situation. We thus believe anchoring is better understood as a
stabilized method for directly solving the AMDP (]3, r) rather than as a discounted reduction. Still, the
DMDP reduction method (with horizon n) obtains nearly identical guarantees to those in this section, which
we provide in Appendix F.

Now we present our first result on the anchored AMDP plug-in approach. We define p" and EW as the

gain and bias of a policy 7 in the anchored AMDP (E, r), and likewise define E* and E* as the optimal gain
and bias in the anchored AMDP.

Theorem 3. Suppose P is weakly communicating. Let sg be an arbitrary state, let n = 5, and set £ =0 in
Algorithm 1. Also suppose that SolveAMDP is guaranteed to return a policy T satisfying
- 1 F o~ 1
~3 ~
F2p -5, i |-0] <g5 @)

Then with probability at least 1 — 0,

= C5 10g3 San ~%
p—ws¢——§i1@wmwﬂmmwﬂﬁ

Regarding the difference between the terms HE*HSPM, and ||E*Hsp.(m appearing in Theorems 3 and 1 respec-

tively, by Lemma 24, whenever Pis weakly communicating (which is required for the bound within Theorem
1 to hold), we have that |2 |lspan < O(|2* [lspan)-

We now apply Theorem 3 to the diameter-based complexity setting, where we assume P is communi-
cating with diameter D and derive a complexity bound depending on D. Theorem 3 will yield an optimal
sample complexity O (SAE%) (matching the lower bound in Wang et al. 2022), and this optimal complexity
follows directly from upper-bounding the guarantee of Theorem 3 in terms of D without any algorithmic
modifications. In particular, no prior knowledge of D is required. The optimal bias span is always bounded
by the diameter [Bartlett and Tewarl 2012, Lattimore and Szepesvari, 2020], so we have ||h* ||bpdn < D, and

similarly it is possible to show ||h lspan < O(D D) where D is the diameter of the empirical MDP P. The key

fact is that whenever n > Q(D), we additionally have D < O(D), that is, P will be communicating and have
diameter order D.

Lemma 4. Suppose that the MDP P is communicating and has diameter D. Then there exists a constant
C7 such that zfn > CgDlog? (SAD") then with probability at least 1 — 9, D < 14D. In particular, in this

same event, P is communicating.

Lemma 4 follows from our later results on DMDPs, using the fact that the maximum travel time between
states in P can be bounded by analyzing certain discounted value functions associated with auxiliary problems
each measuring travel time to a certain state.

Corollary 5. Suppose P is communicating and has diameter D. Let sg be an arbitrary state, let n = %,

and set £ = 0 in Algorithm 1. Also suppose that SolveAMDP is guaranteed to return a policy T which satisfies
condition (2). Then with probability at least 1 — 6,

SADn
o o[ S O




The only other method which does not require prior knowledge of D and which yields a diameter-based
complexity guarantee is that of Tuynman et al. [2024]. In contrast to the explicit diameter estimation
employed by Tuynman et al. [2024] which leads to a worse error bound (since for large values of ¢, the
diameter estimation subroutine dominates the complexity), Theorem 5 yields the optimal diameter-based
complexity for the full range of € and does so with a simpler algorithm.

Another important and heavily studied sub-setting is the uniformly mixing setting, wherein all determin-
istic Markovian policies are assumed to have bounded mixing time 7uni¢ in P, and the goal is to obtain a
complexity bound in terms of Tu,ir. We conjecture that Theorem 3 should also imply an optimal complexity
of O(SA™3L) for this setting by an analogous argument. We always have |[h*||span < O(Tunif) (Lemma 39;
Wang et al. 2022), however we are unaware of how to bound the uniform mixing time of P by Tunit for small
values of n (which would imply that Hﬁ*”span < O(Tunit)). For this reason we present a slightly different

algorithm and guarantee which replaces the HE*HSpan term with HQ%HSpan, the bias span of the returned
policy 7 in the true anchored MDP P = (1 — )P + (1 —n)1e/ , which can be straightforwardly bounded as
O(Tunif)'

Theorem 6. Suppose P is weakly communicating. Let so be an arbitrary state, let n = %, and set £ € (0, %]
in Algorithm 1. Also suppose that the policy T returned by SolveAMDP is guaranteed to be the exact Blackwell-
optimal policy of the AMDP (P,7). Then with probability at least 1 — 0,

~ Cs log (SAn)
pr—=p" < . (Hh llspan + ”hﬂ”bpan'i'l)l

S0

While finding a Blackwell-optimal policy may generally be computationally expensive, similarly to the
discounted setting Li et al. [2020], with high probability the perturbation ensures a small separation between
the bias of the Blackwell optimal policy of (P,7) and all other (Markovian, deterministic) gain- optimal
policies, thus ensuring that Blackwell optimality for (P,7) reduces to bias optimality and also that O (n)
steps of value iteration suffice to find an exactly Blackwell-optimal policy. See Lemma 28 for the formal
statement.

Now, as promised, we can show that the plug-in approach with anchoring and perturbation obtains the
optimal 7ynif-based sample complexity.

Corollary 7. Suppose P has a finite uniform mizing time Tunit. Let so be an arbitrary state, let n = %, and
set £ € (0, %] in Algorithm 1. Also suppose that the policy T returned by SolveAMDP is the exact Blackwell-

optimal policy of the AMDP (E, 7). Then with probability at least 1 — ¢,

N 7C5 log® (S A")
P* - PTr < —Tunif]--
n

Compared to extensive prior work on this setting, this is the first algorithm which achieves the optimal
complexity without requiring prior knowledge of Tynif, and additionally we believe the algorithm is much
simpler than previous approaches.

Rather than having two different (albeit highly similar, differing only in whether or not the reward vector
r is perturbed) algorithms which are optimal for different settings, one might prefer to have one algorithm
which achieves the best of all the aforementioned guarantees. In fact, we can view the exact solution of the
perturbed empirical AMDP (P,7) as an approximate solution of the unperturbed empirical AMDP (P,r),
with the degree of suboptimality depending on the perturbation magnitude £, and thus for sufficiently small €,
we can also apply the performance guarantees for the unperturbed anchored plug-in approach from Theorem
3 to the perturbed anchored plug-in approach.

Theorem 8. Suppose P is weakly communicating. Let sq be an arbitrary state, let n = %, and set & = 2n2
in Algorithm 1. Also suppose that the policy T returned by SolveAMDP is guaranteed to be the exact Blackwell-
optimal policy of the AMDP (P,T). Then with probability at least 1 — 0,

= Cg log S4n PPN =
pr—p" < \/% (Hh’*HSPaH + min{||h HSPana 12 HSPan} + 1)-



Algorithm 2 Plug-in approach for DMDP

input: Sample size per state-action pair n, discount factor «; optional perturbation level £
1: for each state-action pair (s,a) € S x A do

2 Collect n samples St ,,..., 57, from P(- | s,a)

3 Form the empirical transition kernel P(s' | s,a) = IS HSi,=¢} foralls €S
4: end for N

5. Form perturbed reward ¥ = r + A where A(s,a) NN Uniform|0, ¢]

> Set £ = 0 for no perturbation

7 = SolveDMDP(P, 7, )
7. return 7™

I

Following identical steps as in the Corollaries 5 and 7, we can thus show that the anchored plug-in
approach with £ = # automatically satisfies the optimal error bounds for both the diameter and uniform-
mixing-based settings, without any required prior knowledge. Since some prior DMDP-reduction-based
methods for these settings require the discount factor to be set in terms of D or 7yyuif, prior algorithms which
are optimal for the diameter-based setting may not be optimal for the uniformly-mixing setting and vice
versa, unlike our result.

3.3 Plug-in Approach for Discounted MDPs

The new analysis techniques developed for the AMDP plug-in approach also lead to improvements for the
DMDP plug-in method. Similarly to the previous section, we present a meta-algorithm, Algorithm 2, and
allow different choices of perturbation ¢ and solver SolveDMDP within the theorems.

Theorem 9. Let £ =0 in Algorithm 2. Suppose that SolveDMDP returns a policy T satisfying

A~

VE>Vr— 21 (3)

n

Then with probability at least 1 — 9,

3 SAn
1 C1 log (—(177)5
oo 1-— Yy

<

™ -v )(nv*umm-+|v%mmm-%1)

Using the bounds ||V*||spans ||‘7%Hspan < ﬁ, Theorem 9 is the first to imply that the discounted plug-in

approach attains the minimax optimal sample complexity of 0] ((1_5’7%) without perturbation.

Analogously to the situation for the anchored AMDP plug-in approach, by adding perturbation we can
replace the ||V™||span term with ||[V7™||span.

Theorem 10. Set £ € (0, %] in Algorithm 2. Suppose that the policy T returned by SolveDMDP is guaranteed
to be exactly optimal for the DMDP (ﬁ,?, v). Then with probability at least 1 — 9,

<

Oy lo 3( SAn
1 2108 | m—7)s¢ _
" 1V lspan + V¥ lspan + 1)-

| AL, v

As shown in Li et al. [2020], the perturbation ensures that the exact optimal policy of the DMDP (ﬁ, T,)
can be computed in finite time, for example with 9] (ﬁ) value iteration steps.

Also analogously to the situation for the AMDP plug-in approach, for sufficiently small perturbation &
we can combine both guarantees for one algorithm.



Theorem 11. Set £ = =2 in Algorithm 2. Suppose that the policy T returned by SolveDMDP is the exact

2n

optimal policy of the DMDP (P, 7,7). Then with probability at least 1 — ¢,

<

3 An
1 Ciolog ((1 e
n

o =11 ) (V" lspn + 177 e, [V lpan + 1)

Hvﬁ _ V*

Now we discuss the relationship between the terms ||[V*||span, |H7%Hspan, and ||V7™||span appearing in our
theorems and the usual complexity parameters ynit, D, and ||h*||span. If P is weakly communicating, we have
[IV*|lspan < 2||A*|lspan [Wei et al., 2020, Lemma 2], and as previously mentioned we have ||h*||span < 3Tunit

(Lemma 39, Wang et al. [2022]) and ||h*||span < D [Bartlett and Tewari, 2012, Lattimore and Szepesvari,

2020]. Therefore, under the event described in Lemma 4, since Pis communicating with diameter D <
O(D), we can apply these same statements to ||V*||span to obtain that |[V*||span < 2||A*||span (since P is

weakly communicating) and that H?L*”Span <D, and thus that |HA/*||Span < O(D), and finally the optimality

condition (3) implies that ||V7r|\§p(m < ||V*pr(m + 1 < O(D). Therefore, Theorem 9 (combined with Lemma

» T—
we have the bound HVﬁHSpan < 37unir (see Lemma 39), which when combined with Theorem 10 implies a

4) implies a 9] (SAW) sample complexity bound, for the full nontrivial range of ¢ € (0, ==]. Also,

0] (SA 17‘1;% 2) sample complexity bound, also for the entire nontrivial range of € € (0, %] This improves

on Wang et al. [2023b] which only obtains this complexity for e < , /3. (See Wang et al. [2023a] for the

matching lower bound.)
When n is sufficiently large relative to other problem parameters we can show that ||[V*||span is bounded
in terms of ||h*||span akin to [|[V*||span-

C1 log® (255)
(1=7)2([[h*Nlspan+1)’

Lemma 12. If P is weakly communicating and n > then with probability at least 1 — 9,

[V*{lspan < 4([lh*[lspan + 1)-

When P is weakly communicating, the algorithm of Zurek and Chen [2024] achieves the span-based bound

O(SA”thip“;;Ll) under the restriction that ¢ < ||h*||span, Or equivalently that n > Q((1—7)2(||hl*|\ +1)>.
span

Under this condition the requirement of Lemma 12 will be met, and by combining it with our Theorem 9,

we recover the result of Zurek and Chen [2024]. An analogous version of Lemma 12 could also be shown to
bound ||[V™||span. However, similarly to the situation for the average-reward plug-in method, generally the

terms ||V 7™||span and |H7%Hspan cannot be removed from the analysis of the DMDP plug-in approach, as is
shown in Theorem 14.

AMDP-to-DMDP Reduction Approach While our focus is not on analyzing the well-studied AMDZP-
to-DMDP reduction approach for solving AMDPs, we briefly mention some corollaries of our DMDP results
for the complexity of this method. First, for target AMDP error ¢, if |h*||span is known, then we can use an

effective horizon of = = 12 lpan pr““ (as do Wang et al. [2022], Zurek and Chen [2024]) and the condition

in Lemma 12 will be satlsﬁed as long as we have n > Q(”h”;%ﬂ) Combining the resulting error bound

with Theorem 9 and with standard DMDP reduction results [Wang et al., 2022], this recovers the result of
Zurek and Chen [2024] which obtains the optimal 6<SA”h*”8%H) sample complexity, but we remove the
need for reward perturbation.

More interestingly, we can satisfy the conditions of Lemma 12 with a smaller effective horizon of approx-
imately y/n. This is too small to yield the optimal complexity, since a DMDP reduction with discount -y

incurs error of order (1 — )||2*||span = ”hw% (even with infinite samples) [Wang et al., 2022]. However,

since Lemma 12 holds, we can obtain the first complexity bound depending only on S, A, ¢, and ||h*||span
without requiring prior knowledge of ||A*||span-

2
c, log3 ( SA&”
n

Theorem 13. Suppose P is weakly communicating. Let £ =0 and v =1 — in Algorithm 9

10



and suppose that SolveDMDP guarantees (3). Then with probability 1 — 6,

» Ci1log (SAn)
p* —p < \/# (”h*Hspan )1

3.4 Hard Instance for Plug-in Approach

Now we provide a concrete MDP where both the average-reward and discounted plug-in methods fail to
achieve an ||h*||span-based complexity, implying that the terms Hh*Hspan, V7 l|span, and ||V ||span cannot be
generally removed from the Theorems 1, 9, and 10, respectively.

Theorem 14. For any fized n > 10, there exists an MDP P (depending on n) with S = A = 2 such that P
has ||h*||span = 1, diameter D = n, and a uniform mizing time Tunir = ©(n). Also, with probability at least
1
%

1. P is communicating.

2. Letting 7™ be the Blackwell-optimal policy of the AMDP (ﬁ,r), Hp* —pr > 1

co — 5°

3. Letting 75 be the optimal policy for the DMDP (ﬁ, v, 1) with effective horizon ﬁ =n?, HV,Y* —
n? _ 11

5 T— 5" )

Consequently, for any constant C > 0, there exists n, P,r such that the statement

* *
P(’ . Owh [span 1og (][ ||spann>) 1oL

n
is false. Additionally, for any constant C > 0, there exists n, P,r,y such that the statement

~%x * *
P HV’;T’Y _yr <C 1 \/”h l[span log (|[2*[|spanm) -1 1
v 00 1 -

n 25

We show the construction for P in Appendix G, along with the proof of Theorem 14. At a high level,
P causes constant probability of sampling P which has optimal bias span ||h*||Span > ||h*]|span. If we had
knowledge of the true ||h*|span We could use it to find a near-optimal policy with controlled complexity,
which is accomplished by DMDP reduction using a ||h*||span-based effective horizon [Zurek and Chen, 2024].
In contrast the AMDP plug-in method (and the DMDP plug-in method with sufficiently large horizon) has
no way of controlling the span of the empirical optimal policy, leading to a potentially greater span than
[|A*||span and correspondingly larger error.

T *

Pt = p

is false.

4 Proof Techniques

At the heart of all our main results is a novel decomposition of the difference between limiting distributions
associated with P and P. This technique bears some resemblance to the “higher-order” sunulamon lemma
expansion introduced by Li et al. [2020] to show the DMDP plug-in method achieves O(SA ) sample

complexity for the full range € € (0, 177]. Both techniques decompose the error with the snnulatlon lemma,
use law-of-total-variance-style arguments to bound some leading terms, and obtain lower-order error terms
which can be inductively bounded again with the simulation lemma. However, there are many subtle

differences. Most importantly for the average-reward setting, the arguments of Li et al. [2020] require
1

NG

for nontrivial accuracy), but breaks for the arbitrarily large effective horizons needed in average-reward
problems. Also, the arguments of Li et al. [2020] are designed to use concentration inequalities involving
variance parameters of certain auxiliary MDPs, which requires a more delicate leave-one-out analysis (hence
their use of reward perturbation), whereas our argument requires concentration bounds on terms which

n > Q(ﬁ), which is without loss of generality for the minimax rate of 5( ) (it is necessary

11



are simpler functions of the original/empirical MDPs, enabling the flexibility to utilize the absorbing MDP
arguments of Agarwal et al. [2020] or those of Li et al. [2020].

We briefly illustrate our techniques as applied to the proof of the policy evaluation bound Theorem 2.
Hence we fix a policy 7 with constant gain p™ and attempt to bound ||p™ — p”|| . In this sketch we use the
< notation to ignore constants and log factors. By an average-reward version of the simulation lemma (see
Lemma 23), since p™ is a constant vector,

ﬁﬂ_pﬂ:ﬁﬁorw_PﬁoTﬂ:ﬁffo(ﬁw_Pfr)hﬂ (4)
Using Bernstein’s inequality (S times), we can obtain an elementwise inequality

~

n n

(5)

where Vp_[h™] = P,(h™)°? — (P,h™)°? is a (vector) variance of the next-state bias function. (z°% denotes
the elementwise kth-power operation.) Since all entries of P2° are nonnegative, we can combine this with (4)
and obtain

Ve, (7] |IB7]
n n

7™ — p"| < P& |(Pr — Po)h™| S PE° o pey. (6)

Ih™ H lh" || 1A

The second term of (6) is 1l peeq — I N g which is smaller than the desired bound = (in the
nontrivial accuracy regime where both of these terms are < 1) so we focus on bounding the first term in the

RHS of (6). Using Jensen’s inequality to move 16,;’0 inside the square root and the Poisson/Bellman equation
p™ +h™ =r; 4+ Prh™, we have (elementwise)

ﬁf:o\/ Ve, | \/P"OVP h™] = \/POO h7)o2 — (Pyh7)°2)
= \/13%” (Pw(h”)°2 —((p™ —rx) + hﬂ)"?)

= B (P72 — (072 4 207 — ) 0 7 — (7 —r2)?)

< /PP — D)(h7) + 2P [l — rall . 070 1

+ 4/ 17 [l 1. (7)

ﬁoo(p7T — I)(h™)°2

T

Combining all these steps, we have shown

A7l

hﬂ'
n

1
oy, L
n

RS P(Py — I)(h™)°2|. (8)

Using that ﬁ"oﬁ = P,SO, we can recognize that ﬁOO(P — I)(h™)°% = ﬁOO(P e )(h™)°2, a term of a
very similar form to the RHS of the average-reward simulation lemma step (4). This suggests that we can
apply analogous steps to bound this term and thus replace the final term in the RHS of (8) with lower-order

quantities. Using Bernstein’s inequality again,

S

Ve, (02 [0l \/Pw<hw>°4 — (Pehm)t b7
- n

n n n

‘(ﬁw - P?T)(hw)ﬂ

where we used Vp_ [(h™)°%] = Pr(h™)** — (Pﬁ(hﬂ)c’?)o2 < Pr(h™)°* — (P;h™)°* by Jensen’s inequality. Thus

12



similarly to steps (6) and (7) we can bound

| PP — Pr)(h7)

< 13?\@1 — Pr)(h™)>?

N2
\/ —((pm —rx )+hﬂ)04)+%1
\/ hw)°4+(24—1)(|Ih”|m+1)31+%1 o)

24(||nm 1)3 h|?
oo + 175 127N
n n

oo(Pﬂ_ _ I)(hrr)o4

! +
N \/_
where we obtain inequality (9) by noticing ((p™ — r,) + h™)°* expands to 2% terms, one of which is (h™)°* and

the rest of which have |||, bounded by ||h”|\io_k lp™ — T,THI;O for some k € {1,2,3,4}, and also ||p™ — 7|, <
1. We have shown

\/_\/’POO — I)(hm)e?

= =[P (P = P i)

1 1 =
S %\/%J\Pﬂpﬂ—mww +

24 (|| ™ 1)3 hr ||
(IIh™ o +1) 1JFII Hool

n n
4\1/4 1Al + 1)3/4 1A || o x(p, — myod|1/4
< (2Y (771 14— 1+—3/4]P )
and plugging back into (8) and simplifying, we have
127 ] [P + 1Y1/2 [[P7 [l o +1Y3/4 a1
o T < 0 o] e o ™ & oo _ T\o /4
EVARS RS 1+ = )1 ( = )1+ 3/4]13 (k™)
—~ —k
As this argument suggests, we can continue bounding terms of the form ‘Pﬁo (Pr—1 )(h”)OQk ‘2 , picking

”hﬂ”T"oHy/ 2 and increasing the powers of 2. After

up additional terms which are lower-order relative to (
roughly log, log, [|A™ ||, steps all terms will be small enough to end the argument, yielding the desired bound

1p™ — Pl S ||h7f|\++1 See Lemmas 30 and 31.

Now we briefly outline the additional steps required for our additional results. First, we note that a
basically analogous argument, but with (I—~P,)~! replacing P>, V7 replacing h™, and other straightforward
adaptations, can be used in the DMDP setting, leading to our DMDP results. One important difference is
that, while ||h™||span and [|A7||, are equivalent up to a factor of 2, we generally have HV;’HOO > ||V |span-
However, all steps of the argument still go through if we replace V' by V= V' — (ming V7(s))1, and thus
the resulting bound will be in terms of ||VHOO = IV |lspan- See Lemmas 15 and 16 for details.

One final point is that unlike the sketched Theorem 2, our other results show the optimality of an
empirical (near-)optimal policy 7. In the average-reward case (e.g. for Theorem 1) this requires bounding
the two terms Hﬁ“* —p Hoo and Hﬁ% — p?Hoo. The same technique as sketched above is still used, but the
Bernstein inequality steps (e.g. (5)) require more care in order to decouple statistical dependency between
P and h¥. Agarwal ct al. [2020] and Li et al. [2020] have developed different leave-one-out techniques for
this purpose in DMDPs, either of which can be used to establish the “Bernstein-like” inequalities required in
our argument. Anchoring plays a key role in facilitating the use of their DMDP-based bounds for AMDPs,
since by Lemma 24, the bias functions in anchored AMDPs are equivalent (up to a constant shift) to certain
DMDP value functions. See Lemmas 20, 22, 34, and 35 where we establish the Bernstein-like inequalities
needed for our different results.
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5 Conclusion

In this paper we performed the first analysis of the plug-in approach for average-reward MDPs, showing
that this simple method obtains optimal rates for the diameter- and mixing-based settings without requiring
prior knowledge. Our techniques also lead to improved results for DMDPs. While Theorem 14 suggests our
span-based results cannot be improved for the plug-in method, it remains an interesting open question as to
whether an improved algorithm can achieve the optimal 5(%) sample complexity without knowledge
of ||h*||span- In conclusion, we believe this work fills a gap in our understanding of average-reward RL
algorithms, and we hope that our techniques can be more broadly useful for the analysis of natural average-
reward algorithms.
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A Additional Notation and Guide to Appendices
A.1 Additional Notation

Here we provide definitions for some miscellaneous additional notation used within the appendices. Letting
z € R®, we define a next-state transition variance vector with respect to P, Vp [z] € R4, as (Vp [2]),, =
Yves (Peas [2(s") = (Psa,sn (")) ® Fora policy 7, we also define a policy-specific version Vp_ [7] € RS
as (Vp, [2]), == D cs (Pr)y. [z(s') — >, (Pr) g on :C(s”)]2. For any policy 7, we define the policy matrix
M™ € R9*54 by M7, = w(a | s), and M7, = 0if s # s’. We also define the maximization operator
M : RS4 — R by M(x)s = max, Tsq. We also note that for any = € RS4 and any policy 7, M (z) > M™(z).
We say a policy 7 is greedy with respect to a vector x € RS4 if M (x) = M™(x). For any transition matrix
P and policy 7, we define the deviation matrix Hp_ as the Drazin inverse of I — P, (see [Puterman, 1994,
Appendix A] for its basic properties). Given a DMDP (P,r,v), we define the Q-function of policy 7 as
QY =1+ PV, and we define the optimal Q-function as Q% = r + yPV7. Note that for any policy 7, we
have that VI = (I — yPr)"'rr. We let ||B||_,., denote the |||, to [|-|| ., operator norm of a matrix B,
and we note that this is equal to the maximum of the £!-norms of the rows of B. In particular, if B is a

stochastic matrix (all rows are probability distributions) then ||B| . = 1.

A.2 Guide to Appendices

Now we provide an outline of the appendices. In Appendix B we prove our main results for the DMDP plug-in
method, Theorems 9 and 10. This section is further split into Subsection B.1, where we show a deterministic
error decomposition (which can be understood as a DMDP version of the arguments sketched in Section 4),
Subsection B.2, where we check the concentration inequalities that are required for this error decomposition,
and Subsections B.3 and B.4, where we complete the proofs of Theorems 9 and 10, respectively.

In Appendix C we prove our main results for the AMDP plug-in method, Theorems 1, 2, 3, 6, and 8.
This section is likewise split into further subsections. Subsection C.1 contains useful lemmas, including many
properties of the anchoring technique. Subsection C.2 contains a proof of Theorem 6, which can be shown as
a consequence of the DMDP result Theorem 10. Analogous to the proofs of the DMDP results, Subsection
C.3 contains a deterministic error decomposition (the formal version of the sketched proof techniques) and
Subsection C.4 checks the required concentration inequalities. We then complete the proofs of Theorems 2,
3, 8, and 1 in Subsections C.5, C.6, C.7, and C.8, respectively.

In Appendix D we provide proofs which lead to our corollaries for the diameter- and mixing-based settings,
proving Lemma 4 in Subsection D.1, proving the diameter-based Corollary 5 in Subsection D.2, and proving
the mixing-based Corollary 7 in Subsection D.3.

In Appendix E we prove additional DMDP-related results, Theorem 11, Lemma 12, and Theorem 13.

In Appendix F we provide guarantees for the DMDP reduction approach with effective horizon n, using
the close connection to the anchored AMDP plugin approach.

Finally, in Appendix G we provide the proof of Theorem 14 on the impossibility of obtaining a purely
[|A*||span-based complexity with the plug-in approach.

B Proofs of DMDP Theorems
In this section we prove Theorems 9 and 10.

B.1 Higher-order variance bounds

Lemma 15. Fiz k >0 and let V = V™ — (min, V™(s)) 1. If the inequality

ko ok
(V. +1)" 1 (10)
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holds for some o € R, then

2a -2 ok kS 1,5 —, 02" 2"
<m) V(I =~ Pr) ' (Pr — Pr) (V)
40 2 (20— 12ty
< o W+ + 7= (2 (7). +)
_o—(k+1) —(k+1)
() e ey @

We note that this lemma is purely algebraic, and the same statement holds if we swap all appearances
of P and V™ with P and V™ (respectively), both within the assumption and conclusion of the lemma.

Proof. Since (I —~2"P,)~! is elementwise non-negative and using the assumption of the lemma,

- - ok
)02

Py NPy — Pr) (V (B, — Py) (V)°2k

o ko~ o2k a- 2k _ ok
VB P e [ 4 2 (P40 1 )

(I —~*

using the fact that (I — 42" P;)~11 = 1,22’@ 1< ﬁl. Therefore using Jensen’s inequality (since each

row of (1 — 42" )(I — 42" P,)~1 is a probability distribution), and then using the elementary inequality
|| (I —pBP)~ xH <2 H (I —B?P)~ xH for 8 € (0,1) [Agarwal et al., 2020], we have

(I -+ B4/ Vp, [(V)"Qk}

o [0

i s%mw
e la= e [0

AL [(V)"?kwm. (12)

\/T\/H

ok+1 55 o2k

° k
Note that (I —~2 Pr)"'Vp_ [(V) } > 0 so it suffices to upper bound (I — v P, )" 1Vp, [(V) 2 ]

elementwise.
Abbreviating v = (ming V™ (s)) (s), by the Bellman equation for V™ we have

P,V =P (V™ —v1)

=PV —

(VT ) - 01

== —Trp)—V

Y

1 1—7v)—-1
=—V"—rz)+ (1-) vl
Y Y

1 _
=—V"—vl—r)+ 1
Y

:l(V—r7T (1—7) )

Y
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Using this, we can calculate that

Vp, [(V)‘Qk] _p (V)ozkﬂ - (P,, (V)°2k>02

<) - ((RTV)"Z”Y2
_p o2t 3 o2k t1
=P () e (Tt (=)™
i (PP D) O - e (e @) - @)
< 721“ (PP -1) () 4 ii— max{||V]| _, 132" -1
< 721“ (PP -1) () 4 iz— (7). +1)* "1
where we used the fact that P, (V)"Qk > (Pﬁ)"zk by Jensen’s inequality (applied to each row), and then

the fact that

— 021

— o2k H1
(V—(rz=(1=7p1))" = (V)
contains < 22" terms, all of which have magnitude bounded by maX{HVHOO 132 Lsince ||ry — (1 — M| <

1 (because r, € [0,1] elementwise and also (1 —v)r € [0,1] since 0 < v < ﬁ) Plugging this into the RHS
of (12), we obtain

(1 =42 Py 1V, [(V)"ﬂ

k
ookt 22°

< sl =By (P ) 0 T (P )

2k+1 fay

(I_'Y Pﬂ')ill

1 ookt
= =) (P 1) ()
1 okl s g ok+1 1 gk+1 — o2kt
+W ((I—W P ==y Pr) ) (7 Pfr—f) (V)
92" — 2k
b e (P e
1 —, o2kt 22k+1 — ok+1_1
Z—W( +w(HVHM+1) 1
e R () 1 () )
aé
1 —\ 02k+1 92" — ok+1_q
:—W( ) +w("‘/”m+l) 1
- 72—1“72“1(1 — T P (]3” N P”) @)
1 22k+1 — k+1_ ~ ~ ookl
< (m (7l +0)* 0= (B ) ()7 )
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Thus inequality (12), combined with the fact that va + b < \/a + v/b, yields that

(1=~ Py Ve [(7)7] (13)
V2 1 22’c+1 — ok+1_1
S \/T 2k+1 _ ("V"oo+1)
\/1T |1 . \/H 2L =2 ) (B - ) () . (14)
V2 1[92t ok+1_1
iy J—_v (7). +1)
721@ \/H 2k+1 2k+1P ) (P —p. ) (V)02k+1 } (15)
Combining this with inequality (11) gives
ko~ ~ —, 02F
H(I — ¥ P) N (P = Pr) (V)
o ks —., o2k a2k — ok
<[5 = 2o fon [0 |+ G2 0T+
a- 2 2* a \/§ 1 22’“+1 ok+1_1
o 2k+1 ok+1 w02k 1
n~/—72k\/H — 7P (P P)W) .
so using the fact that (a +b)2 " < a2 " +b2 " and that v2° < 1,
20 1-27" ok I ok S\ 1 ﬁ P (V7 o2k
m v I =" Pr)” (Pr— Tr)( ) .
1-27F . " 27k
< (22 ( (727
« 22'c+1 — ok+1_1 .
) (Ve e+
1-27k e 27k
(25 (ids %va h ()@ )
gl—2"F4k27F 9 2% 1_o—(k+1)
~ L () + = (2 (7 +)
2% 1—o—(k+1) et et okt o—(k+1)
2 2 ) °
+((1_7)n> P P (P - ) (V) N
da 2 (2 12ty
< T W+ + 7= (2 (7). +)
2% 19— (k+1) - 1~ R it o—(k+1)
2 2 1 74
(i) e () o
as desired. O
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Lemma 16. Let V = V™ — (min, V7 (s)) 1 and ¢ = [log, log, (HVHOO +4)]. Suppose that for some a € R,
the inequalities

aVp. [(V)"”“]

n

. k -
+ 22 (7], + 1) 1

(B r) (1) <

hold for allk =0,...,¢. Then

Proof. First we give a weaker but non-recursive bound which can be used on the final term. Note that

4L+ Da 20+1) (2 (V] +1)

vr=vel ﬁ(HVH T o

| /\

aVp, [(V)"ﬂ

(P —P) (1) < SR TR
<P+ R )
SO
2t 265 \-1/p 02 2¢ 2B \-1|/D = 02°
v (I =% Pr)~ (Pr — Pr) (V) <7 (I —~* Px) (Pﬂ—Pﬂ)(V)
— — 2f
SR R )
(&% 1 a2 — 2
ST ~ (7). +v)° +ﬁ = (IVll.. +1)

since (I =72 Py)11=—_1< ﬁl and v < 1. Therefore

() () (25 ()

2 a 1_2*(f+1) . 1 40( o
<7 (3) IVl + 1)+ == (7l + D). (16)

—2
£~ ~ —) 02¢

Note that
VT VT =y (I =Py (P Pr) V"
=~(I —yP,)7" (ﬁ,r — P,r> (V’T — (msin V’T(s)) 1)

~

since (P,T - P,,) 1 = 0. Using Lemma 15 ¢ times and using the above bound (16) for the final term, we
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S

A . 2 (20 12ty
<3 (g (Pl 5 (2 amioen) )

= ||~(I - ”yﬁ,)fl (ﬁw - PTr) (Vﬂ - (minVﬂ(S)) 1) Hoo

33 ( O (7). + 1)+ —— (27& (U7l + 1))1_2%1))

k=0 (1 - ’Y)n 1 - 'Y
2 qon1m2 Y o 1 4a -
() (Pl ) 7 T (P )
A+ 1o = 2/ 2c (HVHOO + 1) 92 ay1-2- (D
=T W) +7=5 e () (7l +1) a7

where we assume that %"‘ (||VHOO + 1) < 1 in the final inequality step, so that the k = 0 term is the largest
term in Ei;é (22 (||VHOO + 1))1_27(“1). Now we check that ¢ = [log, log, (||VHOO + 4)] is sufficiently large

n

so that the rightmost term in the RHS of (17) is smaller than ﬁ % We have
a\1-27¢D o 12D 9= (e+1)

(%) (7l +1) = (V] +1) (V] +1)

o—(£+1)

O = 1/2
<(E(Vl.+1) (7l +1)
since £ > 0. Furthermore we have the equivalences

([Tl +1)* " < Ve = 2 D10g, (7] +1) <172
<= log, (||VHOO + 1) <2t
<= { > log,log, (||VHOO +1)

and this RHS of the final inequality is smaller than our choice of £. Thus our choice of ¢ indeed guarantees
that

s oyt > eV 1)
T (%) IVl +1) < 7= o (7l +1)
22Vl +Y)
T 1l-y n '

Plugging this into (17), we conclude that
40+ 1o 1=

| L=y

as desired. O

-~

vr-vrT

IN

B.2 Bernstein-like inequalities

Now we show that each of the different versions of the Bernstein-like inequality (10) which are needed for
our different results hold with high probability. R

For an optimal y-discounted policy 77, which is fixed and independent of P, showing the the Bernstein-like
inequality (10) follows almost immediately from Bernstein’s inequality.
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Lemma 17. Let V = V* — (min, V*(s))1. With probability at least 1 — §, we have that for all k =
-, [logy logy ([V*[|span +4)1

}(ﬁﬂ;_pﬁ;) 7| < w

(es 108 1085 (||V* [lspant4) )
| .

O =2k
Y

where o = 21og

Proof. First we fix k € {0, ..., [logy logy (||V*|[span +4)]}. Fix a state s € S and note that we defined 77 to
be a deterministic policy, so we may treat 7 (s) as an element of A. By applying Bernstein’s inequality (e.g.
Maurer and Pontil 2009, Theorem 3), we have that with probability at least 1 — 2§’,

oo
R 2108 (2) Ve, .o |M7] 10g (2 k
—, 02F 5 s,73(s) g & 77 °2
‘(Ps,ms) - Psnr;(s)) V)" | =< TR - H(V
1 [~ 02F]
B 2log (W)Vps,wms) (V) 10g (al) v
_ - [
1 [ = 02Fk]
- 210g (W)VPS,,‘.;(S) _(V) | 2].Og (%) H_H
= n

Now taking a union bound over s € S, we have that the above inequality holds for all s simultaneously with
probability at least 1 — 25¢’, in which case we have (elementwise)

2log (%) VPW [(V)OQIC} 2log ((%)

02k
)| = -

Finally, taking another union bound over all possible values of k, of which there are

(Py-rs)

1 4 [logy logy ([V™[lspan +4)] < 2 4 1ogz logs (|[V* [[span +4) < 3logy log, (|[V[|span +4) ,

(since logy logy (||V*||span + 4) > log, log, 4 > 1) and setting ¢’ = 55To; logg(iV*llspan+4)’ we obtain the desired
conclusion. (]

For the empirical (near)-optimal policy 7, which is statistically dependent on 16, this requires more effort,
in particular the use of the absorbing MDP construction pioneered by Agarwal et al. [2020] to decouple the
statistical dependency. We first present their construction.

Theorem 18 (Agarwal et al. [2020]). There exists a collection of random variables ‘/}s*u for s € S and
u € [0,1] such that

1. For all s € S,u € [0,1], ‘A/Sfu is independent from all of the random variables S;a foralli=1,....n
and all a € A (recall these are the n observed transitions from state-action pair (s,a) which are used
to form P).

* 7%
[ Vvs,u’

2. For all s € S,u,u’ €10,1],

=
<1

00 il

3. Letting u*(s) = (1 — y)V*(s), V* =V~

s,u*(s)
As a consequence, there exists a finite set U of [

Vi, -V

S,u

m—‘ equally-spaced points in [0, 1] such that for all s € S,

there exists u € U such that

<e.

o0
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We also note a useful elementary inequality.

Lemma 19. For any natural number n,
ja™ = b"| < nfa — b| (max{]al, [p})" .
Proof. This follows immediately from the algebraic identity
a" = b= (a—b)(a"  +a" 2+ a" 0+ ).
O

Now we can use the leave-one-out construction of Agarwal et al. [2020] to check a version of the Bernstein-
like inequalities.

Lemma 20. If n > 4, then with probability at least 1 — ¢, for all T which satisfy HI/}% e %, letting

oo

V=V7_ (mins ‘7%(8)> 1, forallk=0,..., {logQ log, (H‘//\'%Hspan + 4)} , we have

02k
aVp, (V) ’ a-2F 2k
| | + (Vlle+1)" 1

n n

’(13% -r) M| <

where o = 16 log (12%).

Proof. We use the leave-one-out construction from Agarwal et al. [2020]: by Theorem 18, there exists a finite

set U with |U| = [ﬁ] such that for all s € S, there exists u € U such that ’ ‘/}s*u 7 < % Also

o0
note that since n > 2 by assumption, 1 < ﬁ, so we can bound |U] < ﬁ +1 < 77=. We define, for

-
alseSandue U, Vo=V, — (mins/ f/;u(s')) 1.

S,u

We note that the quantity {log2 log, (||‘A/%Hsp'(m + 4)—‘ appearing in the lemma statement is random, but

since ||V [|span < ﬁ, we can simply bound

~n 1
[10g2 log, (HVﬂ-HSPan + 4>—‘ < ’VIng log, (m + 4)-‘
<1+ log, log (L—iﬁl)
= 2082\ 7

<12
L—vy
<3t (18)
=91,
(using that log, logy(x+4) < 2z for > 1), so we can check the inequality for all values of k up to the upper
bound 3&, which is at most 1+ 3ﬁ < 41% values of k. Therefore for the rest of the proof we will focus
on showing the desired conclusion only for some fixed k, from which we can immediately obtain the desired
conclusion by taking a union bound and adjusting the failure probability.
For each state s, action a, and u € U, we will use [Maurer and Pontil, 2009, Theorem 10] to show that,
with probability at least 1 — ¢,

\/Vpsa (Vo)™ < \/ 25 [(70u)™] +2 H(Vs,u)”k

log(1/4")

n

. (19)

o0

S 02k .
To match the notation of [Maurer and Pontil, 2009, Theorem 10], let z; := (Vs,u) g (S%.4), that is the value
— 02k .
of (Vs,u) ? at the state S?

s,a?

which is the ith sample from the state-action distribution P(- | s,a). [Maurer
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and Pontil, 2009 Theorem 10] assumes that z; € [0,1], but we can apply their theorem to the quantities
= H to obtain that if n > 2, with probability at least 1 — ¢,

V Vo (7o) ] £\ 00, [(Fa)™] + 1 (Ta) ™ o 2L,

n—1

This is true because we have

i=1 i=1 j=1

n(n—1) ;;?_F;;? +n(n—1) ;Il ij
1 " O 2? - 2z + 22

- n(n—l);; 2 ;
1 L (x; — xj)?

N n(n—l);; 2

which is the quantity V,.(X) appearing in [Maurer and Pontil, 2009, Theorem 10]. Also since n > 2 we have
7 <2and =5 <2 L -, yielding (19). Using Bernstein’s inequality (e.g. [Maurer and Pontil, 2009, Theorem
3]) with an addltlonal failure probability of at most 24’, we have

— 02F
~ | [2loe(B) Ve, (7)) s (3) H(Vs,u)
(Psa - Psa) (Vs,u) S n + n . (20)
Combining this with (19), we have
02"
~ - tlog (F) Vg, [(Vew)™] 41w () H Vi)
‘ (Psa - Psa) (Vs,u) S = + = (21)
n n
(using that + + 2v/2 < 4 for the second term.)
Also (Vs,u)OQk ‘ = HVSUHZE Combining this with (21) yields
_ 09k
~ _ ° 410g L/ Vs |: Vs,u 2 :| 1
‘(Psa _Psa) (V) 2k < () P: (Vau) N 4log(6 HVMH (22)

From this point, we will take §' = ﬁ\UI and operate under the event that the above inequality holds for
all s € S,a € A,u € U, which by the union bound and our choice of ¢’ has probability at least 1 — 4.
‘/}s*u 7 < % Additionally, by assumption

oo

S > 1 . . . S5 > 2
HV’r -V < =, so by triangle inequality HV’r -V < =. Therefore
VA VA O+ s Tk (o N U7 1 4
"V_VS=“"<>O:"V -V, +min V>, (s") —min V" (s) §2HV Vi <=
’ S/ bl S/ 00 ’ n
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We now use this to obtain a version of (22) but with V in place of V.
First we note that by Lemma 19 (applied elementwise) we have

A 2k -1 A A 2k -1
<H -Vl (Wl +3) <22 (Pl+s) o

n

|7 - @

since Inax{HVHOO , HVSv“Hoo} < ||VHOO + % because HV - VS=“||OO < %. For any s, a, we thus have

oo

v
=~ — o2k = —, 02F — o2k
S (Psa - Psa) (Vs,u) + (Psa - Psa) <(V) - (Vs,u) ) ‘
~ — 02k ~ —\ 02F — 02k
S (Psa - Psa) (Vs,u) + ‘ Psa - Psa 1 H (V) - (Vs,u)
2k -1
< |(Paa = Pa) (Vo)™ | 4242 <HVHOO * é)
n n
\%

k
410g i{ R Vs)u 02 1 - 2k o ok _q
| (i o

n

IN

using the triangle inequality, Holder’s inequality, ‘ ﬁsa — P
fact that HV&UHOQ < HVHOO + %.

We also have that

< 2 and (23), and (22) combined with the
1

V2. [T ] = 72, [0 + 7.0 - 0]
< Ve [0 ] 4 \¥e [(7)™ - )]

[ —\ 02K —, 02F — o2k
<\ [0 ]+ |0 - 7
k
C o2 4 (1 4\* !
<\Va. (V)7 +25- (HVHOO + g)

using the triangle inequality for the norm VEX?, V5 [X] < HXHiO, and using (23). Plugging this into (24)

and simplifying, we have
k
4log (£) V5 [V 02] 2,/log (& B 9k _1
<$ (7) Vs, |(V) \V (5)21@% <||VHOO+4>

+

4log (& — % 8 (11— 4\
+ 250 (4 2) 2 (9,4 )
o9k
dlog (5) V5, |(V) ’ 16-2%log (5) /|1~ ok
< o [O7] 26 2e @)y
o2k
aVp, |(V) ’ a-2F 2k
O] oy

for a = 161log (%) in the final inequality. (For the simplification steps, we have log (%) >1so 4/log (%) <
log (%), and, since n > 4 we have ||VHOO + % < ||VHOO + 1, and also HVHOO +1 > 1. Also since n > 4,
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% 1.) Since this holds for all s,a, by definition of the vector V5 {(V) 021 we thus have (elementwise)
Vs [)7]
N ook ay s .ok k
(P-P) )| s\ — o+ - (W + 17 @)
n n
and so

<m|(P-P) ()

B i L TR

< C“M”Vﬁn[( e s

 Javs, [£V>°2k]+aﬁ2k (771 o

where the first inequality is because all entries of M7 are > 0, and the third inequality is using Jensen’s
inequality (since the rows of M T are probability distributions) and using the fact that M 1=1 (note 1 has
different dimensions on each side of this equation). (We note that this step, which replaces all appearances
of P, Pin (25) with Pz, ﬁﬁ, could be done for any arbitrary policy 7.)

Finally, taking a union bound over all < 4ﬁ values of k and adjusting the failure probabilities so that
the overall failure probability is < d, we can upper bound the resulting value of o by

3SA|U| . 1 125 An
)< ).
1610g< 3 41_7) _161og((1_7)25> (27)

O

The following result summarizes the leave-one-out construction from Li et al. [2020] (specifically it is a
direct combination of [Li et al., 2020, Lemma 6] and [Li et al., 2020, Lemma 4]).

Theorem 21 (Li et al. [2020]). Let ¥ = r + A where A(s,a) ~ Uniform|0, ¢] independently for each s €
S,a € A. Let V7T denote the value of policy m the discounted MDP with transition matriz P and reward

7, and likewise let pV* denote the optimal value function in this MDP. We also let pQ’T and pQ* be the
Q-functions of policy m and of an optimal policy in this MDP. Then

1. There exists a family of MDPs pPls.aw) forse€ S,a € Aju U (for some finite set U) such that

2
(@) U] < 555

(b) For each s € S,a € A,u € U, the MDP P(saw) g independent of all of the random wvariables
(S;a)?zl (the n observed transitions from state-action pair s, a).

2. With probability at least 1 — 6,

(a) The optimal policy 7, in the DMDP (ﬁ, 7,7) is unique and is a deterministic policy.
(b) For all s € S,a € A such that a # 7(s),

55(1—7)'

W@ (s 73(3) — Q% (5,0) 2 S
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(c) For each s € S,a € A, there exists u* € U such that the unique optimal policy in the DMDP

(ﬁ(s’“’“*), 7,7), which we label 7} , ,,, is equal to 7.

This construction allows us to check the Bernstein-like inequality (10) but with V7™, the true value
function (in the true DMDP (P,7,7)) of a policy 7, which is optimal in the perturbed empirical DMDP
(B.77).

Lemma 22. Let 7 = r + A where A(s,a) ~ Uniform[0,§] independently for each s € S,a € A. Let T,
be a policy which is optimal for the DMDP (P,7,v). With probability at least 1 — 6, letting V = VT —
(minS V7 (s)) 1, forallk=0,..., [log2 log, (HV%; |lspan + 4)—‘ , we have

092k
an%* (V) ’ a-2F 2k
3 (U PP T

=~ —\ 02F
‘(P%;—P%;)(V) <

n

where a = 2log (%).

Proof. From Theorem 21, the policy 7, is independent of the observed transitions (Ssi,a)?:l from state-

s,a,u

action pair (s,a), so in particular the random variable V7iaw is independent from (Ssi)a)?:1 (and so is

=%

o o2k
VTsiamu — (minsl Vsau(s )) 1) for any k). Furthermore, Theorem 21 guarantees that with probability
at least 1 —§/2, for all s € S and a € A there exists some u* € U such that 7} , . = 7, which implies that

Visaur = V. Also we have |U| < %. Therefore, letting Vg o = Visam — (minsl V%Q,a,u(s/)) 1, if
we check that

— 02k
OCVPSQ |:(Vs,a,u) ? } . 2]9 . k
+ = ([Veaallo + 1) (28)

(Paa = Paa) (Vo)™

n

for all combinations of s € S,a € A, u e U, and k=0,..., {logQ log, (||V%; l|lspan + 4)} with probability at
least 1 — §/2, then we can combine with Theorem 21 to obtain that

aV VO2k &
[() L“;f'“ (V] +1)° (29)

(P Pa) (07| <

(for all a, s, k), and consequently that

i {(V)oﬂ

= — 02" a-2F 2k
(e - 7)) < T

(for all k) as desired (since the scalar inequality (29) applies in particular to all (s, a) of the form (s, 7, (a))).
Identically to the proof of Lemma 20, we can bound the number of values of k to be checked as <

4&. Fixing s € S,a € A,u € U, and a value of k, by Bernstein’s inequality (e.g. [Maurer and Pontil,

. ~ — 02k
2009, Theorem 3]), since (S%,)"; (which determine Py,) are independent of (V q..) ? , we have that with
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probability at least 1 — 24,

210g (gl) Vpsa :(Vs,a,u)OQk-

n

k
)02

(P o) (7o) ™| < + 28 |7

‘ s,a,u

oo

_ 02k

) 21og (%) Vp,, _(Vs,a,u) | +1og(%) ||Vsaquk

n 3n
2108 () Ve, [(Veaa) ™| .
<\ 2t (o) | 2t ),
n n o
— e
210g L VPm Vs,a,u ? 21 LY. 2 —
. () (Vi) L 2log (5) (P sall . +1)*
n n
Taking a union bound over all < S - A - (14337)@256 . % = % combinations of s,a,u,k and choosing

— g%;g{};;, we thus obtain (28) with o = 2log ((1685’)4‘252) as desired. O

B.3 Completing the proof of Theorem 9

Proof of Theorem 9. Let o = 161og (%), which is larger than 2 log (6510g2 logQ((!V*lls"a“+4)) since log, 1og, (||[V*||span+

4) < 21% by the same arguments as those within the proof of Lemma 20. Combining Lemma 17 with Lemma
16, we obtain that with probability at least 1 — 6,

. 1
e (02 1)
(1=)n '

1 *
2-3logy 108, (75 +4) [2a (V7 |upan + 1)
1—y
121log, log, (ﬁ + 4) o .
S ( ‘/Tr’Y S an+1)
T V™ [lsp

12log, log, (ﬁ + 4) \/04 (HVW'*’HSP'&H + 1)
1— n

v,

| A

+

n

+

(30)

24 1og, log ( +4) T
S 2 : 2 a (”V ||bpdn + 1) (31)
— n

where we used that 1 + [log,logs (||[V*|lspan +4)] < 2 + log, log, ( + 4) < 3log, log, ( + 4) We

also use that the second term on the RHS of (30) is always the larger of the two when on”%“H <1,

and if this quantity is not < 1 then by the trivial bound that H\A/ﬂ -V < ﬁ, inequality (31) still
o]

holds. Similarly, combining Lemma 20 with Lemma 16 and assuming n > 4 (so that the bound in Lemma

20 satisfies the assumptlons of Lemma 16, noting also that the assumptions are satisfied since we assume

7 satisfies VT > V* — 11 which implies HV’T V*H < % since V* > 17?), we can perform analogous

calculations to obtain that with probability at least 1 — 9,

24 10g2 10g2 ( + 4) (6% (”‘7%Hspan + 1)

co 1— n

fpr-ve
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Since V7 > Vv — %1, we have that elementwise

V*zvfz?*—HV”—V“ 1
o

ZV*——l—HV” va| 1
n [e'e)

zvﬂ_h—HV“ vl 1
n )
o 1 A~

>y HV’W—V’W 1——1—HV” vl 1 (33)

o) n )

(since V* > V™ and V* = V™). Combining this inequality with the bounds (31) and (32) (and taking the
union bound, giving an overall failure probability bounded by 26) yields

1 2410g210g2 ( +4) « (HvﬁHspan—i_l) n \/Oé (HVW;Hspan""l)

rr-v, <L
o n 1—7 n n
1 24logylog, ( + 4) 2c (||17%||span + IV™ ||span + 2)
<=+
n 1—7v n
25 log, log, ( + 4) 2c¢ (H‘/}%Hspan + V™ ||span + 2)
- 1—7 n
25 log, log,, (ﬁ + 4) 4o (H‘/}%Hspan + V™ ||span + 1)
- 1—7 n
1 LV 125an (177 + 1V e+ 1)
=——1\|4|25log, ] — +14 161
o\ (st (5 ) ) oo (225 :
1 1\ 125 A (H‘A/*Hs an + |V [lspan + 1)
< ——1\|4(25log 16log Sdn . .
1—7 1—7 (1 —=7)326 n
1 3 SAn (”V%Hsmn"" HVF:*”span-i‘l)
S P Cl log
1—v (=)o n

where we used the fact that \/a +vb < \/2(a + b), the definition of «, that log, log,(x + 4) < log4x for
2 > 1, and finally chose C; sufficiently large (in particular large enough to ensure the above bound is vacuous
when the n > 4 assumption is not satisfied; C; > 4 suffices). O

B.4 Completing the proof of Theorem 10

*

First we briefly outline the proof. The proof of Theorem 9 already bounds the quantity HYA/’T; - V™

which can be reused here. The more difficult step is bounding the “evaluation error” of the empirical optimogl
policy of the perturbed MDP, 75. (While in the statement of Theorem 10 we referred to this policy as 7,

here we rename it to %; to emphasize that it is optimal for the perturbed MDP.) There are several possible
VT and Hp‘A/?; — V7 are two
o0 o0

reasonable choices). Since Lemma 15 assumes that the reward is bounded by 1 while we only have 7 < 1+¢,

choices for which pair of value functions to bound (for example,

it is most convenient to bound the term HV”P — V™ since it does not involve the perturbed reward

function 7. (Lemma 15 could be trivially modified to handle differently scaled rewards, but by bounding
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V™ — Trp
Bernstein- like-condition to check within Lemma 22. Thus, combining Lemma 22 with Lemma 15, we obtain

AN Ak ~% S o S
a bound on HV”P -V PV =V

we avoid this extra bookkeeping.) This consideration motivated our choice of the particular

HAA*

. We can use the fact that the perturbation is small to bound

o0 o0

Ak ~%x
pV™ = V™| and

oo

pf}”; -V , which by triangle inequality gives us bounds on the quantities

oo

. We conclude by using the fact that pf}%; > p?”fr, since 7, is optimal for the perturbed

V=V
empirical MDP.

Proof of Theorem 10. We follow the above sketch. First we bound v —vT| . Combining Lemma 17

with Lemma 16, similarly to the proof of Theorem 9 we obtain that with probaogility at least 1 — ¢, with

6S log, log, (I|Vﬂ7 [lspan +4)
a; = 2log 5 ,

4 - 3log, log, (ﬁ + 4) a1

‘7 S ( Vﬂ-; S an+1)
H e V7l
1 *
2 - 3log, log, (ﬂ + 4) \/2a1 (HVW7 [[span + 1)
+
1— n
12log, log, ( +4) .
< = (177 o +1)
= )
. 12log, log, ( + 4) \/Oﬂ (V™ [lspan +1)
1— n

. 241og, 101g2 ( + 4) \/oq (V™ llspan + 1) (34)

n

where again we used that 1 + [log, logy (J|V*||lspan +4)] < 2 + log, log, ( + 4) < 3log, log, ( + 4)

iS non-vacuous.
oo

and the fact that the second term is always larger whenever the bound on HV”W -V™

To bound HV”P —V™ H , we can combine Lemma 22 with Lemma 16 and perform analogous calculations

to obtain that with add1t1onal failure probability at most 9,

. . 24 log, logQ( +4) Vil + 1
|77 -v7|| < 02 (V% lupan +1) (35)
e’} 1— n
where as = 2log (%)
Next we bound the terms Hp‘A/%; — vV and Hp\A/’q — V™| . We have
H VE VR _HI YPas) T — (I =y Psy) " 'ras
< [l =B P =]
1 -
< 77l
S
< — 36
<= (36)

and likewise

IN
‘m
—
w
-
~—

- * = *
SV =V
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Finally, we can combine all of these bounds with the fact that pf}%; > pf}”; (since 7, is optimal for the
perturbed empirical MDP) to obtain that with probability at least 1 — 24,

Vi >V — Hvﬁp —VEa| 1
1 —
S ‘7%; B 24 10g2 1Og2 (E + 4) [6%) (”V p Hspan + 1) 1 (35)
B I=v n
o~ PO 241og, log (++4) P
> 7% 0% 9| 1o e AT Y for (Ve £1),
> N = .
P 24 log, log, (% + 4) Vsl 1
Z pVﬂ—P _ 5 1— 1—v (65 (H Hspdn + )1 (36)
1—7 L=~ n
1 —
Com € 24 log, log, (m +4) as (V7 [|span + 1)1
- L—n I=v n
PR o 24 log, log (% +4) ml
>me_HPV’Tv—V’TW 1- ¢ 1- il G o (IV ||bpdn—’—1)1
- oo 1=~ L—v n
P 241og, log, (% + 4) Vielle a1
>,V — 2 1— = Q2 (” llspan + )1 (37)
24log, lo 4 +4 7
* P . 2 82 g2( - ) V7 ||span + 1
ZVM_HV’H—V% 1- % - i a2 (V7 lsp )
& l—n I—vy n
1 —
- 26 L 24 log, log, (ﬁ + 4) Qo (”V ?||span + 1)
a L=y L=~ n
o1 ([[V™ [lspan + 1
N \/ (Vs +1) o

Now using that & < %, the fact that v/a + Vb < 2va+ b, and that

65 log, log, (I\V”il\span + 4) 125
ap = 2log < 2log <(7) < s

) 1—79)8
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(since logy logs (|V™ [|span + 4) < 2ﬁ as shown within the proof of Lemma 20), we can simplify

+

1 =k T*
2% 24 1og, log, (E + 4) \/a2 (||V7Tp”sp,(m + 1) N \/al (HV 7 |span + 1)

1—7 1—7 n n
1 * TH

2 A8lom1oms (75 +4) fas (177 epan + IV hpan +2)

“n(l—17) 11—+ n
1 * T*
_ 961081085 (5 4 ) oy (V7 fapan + 1V lpan +2)
- 1—7 n
1 N P

_ 96v21081085 (25 +4) [y (V7 g + V7 fpun + 1)
- 1—7 n

0y | 108" (2455 ) (IV7 fapan + [V apan + 1)
T 1l-x n

where in the final inequality we use that log, log, (ﬁ + 4) < a9 and chosen sufficiently large constant C

(including absorbing an additional constant due to adjusting the failure probability to be at most § rather
than 20). O

C Proofs of AMDP Theorems
C.1 Useful Lemmas

The following is an average-reward version of the simulation lemma. Such techniques are well-known [Cao,
1999, Meyer, 1980].

Lemma 23. Fiz a policy w, and let P, P be any two MDP transition matrices. Let A = ]3,T — P.. Then
P> — P® = P®*AHp_ — (P> — PX)P>.
Consequently,
1. If the Markov chain P, satisfies P> = 1p" for some probability distribution p', then
P> — P> = P®AHp .
2. If the quantity p™ = P°r, is constant (has the form al for some a € R), then
P — p" = PXr, — PXr, = PPAHp 1y = PAR™.
Proof. By the properties of limiting matrices,
P> — p® = P®P_— P®P,
= P (Pr + A) — PP,
= (P = P°)Pr + PA.

Therefore (ﬁ;’o — P> - P;) = ﬁ,foA. Now post-multiplying both sides by the deviation matrix Hp,_,
which satisfies (I — P;)Hp, = I — P2°, we obtain

PXAHp, = (P — PX)(I — Pr)Hp, = (P° — PX)(I — P°) = P — P2 + (P° — PX)P.
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For the first consequence, note that if P> = 1x", then since ﬁ;’o and P2° are stochastic matrices and
have 1 as a right eigenvector with eigenvalue 1, we have

(P = P2)P = (P* = PE)p’ =1p" =17 =0,
Similarly, for the second consequence, we have
(P — PX)PXr, = (P> — P®)al = al — al = 0.
O

Lemma 24. Let P be any transition matriz, let n € (0,1), and let so € S be an arbitrary state. Form the
anchored transition matriz P = (1 —n)P + 7716;0 € RSAXS . Also we use h™, P> to denote the bias function

of policy 7 in P and the limiting matriz of P,.. Then
1. For all policies 7, the state sy is recurrent in the Markov chain ﬁﬁ. Consequently P is unichain.
2. Fix a policy w. Then
(a) P =mnlel (I—(1—n)P)~",

(b) p* = anfin(so), where Vi, is the discounted value function for policy m with discount factor
1 —n (or equivalently effective horizon %)

(c) hr = VI, +cl for some scalar c.
(@) 177 = 5"l < 20

(e) If p™ is a state-independent constant, then ||E”||Spbm < 2||A™||span-

B

o0

3. Letting p* and h* be the optimal gain and optimal bias of ]5, respectively, we have
(a) p* = nlVi_, (s0), where Vi, is the optimal discounted value function with discount factor 1 — .
(b) h* = Vi, +cl for some scalar c.
(c) If p* is a state-independent constant, then ||7L*||Span < 2||A*]|span-
(d) The average-reward Bellman optimality operator for P, T(h) := M(r + Ph), is a (1 — n)-span
contraction: ||T(h) — T (R)|lspan < (1 —n)||h — 1||span-

Proof of Lemma 24. We start with 1. Fix a policy 7 and consider the Markov chain ]5,,. Since this is a finite
Markov chain, there must exist some recurrent state s, and since in P, there is probability at least n > 0
of transitioning to so from s, the state so is also recurrent [Durrett, 2019, Chapter 5.3]. Furthermore this
shows that for any state s which is recurrent, it is in the same recurrent class as sg, and therefore there is
only one recurrent class in P,. Since this holds for arbitrary 7 (and in particular for all determininstic ),
the MDP P is unichain. B o

Now we show all the properties in statement 2. Again fix a policy 7. Since P2° must satisfy P>°P, = P>°,
expanding the definition of ]S,So we have

oo D oo oo pooq T oo T
PX =P P>* = (1—-n)P7 P +nP71le, = (1 —n)PX Py +nleg,
using that 167;’0 1 =1 in the last equality. By rearranging we have
P (I— (1= n)Pr) = nleg,

and since [|(1 — n) P, ||
and so

= (1—mn) < 1, it is a standard fact that the matrix (I — (1 — n)P;) is invertible,

oc0— 00

PX =nlel (I-(1-nP:)~"
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as desired. We can then calculate that
P = PXrr =nlel (I— (1—n)Pr) ' re = nlel Vi, =1V, (so).

Next, to compute E”, we check that n1Vi, (so) and ViT, satisfy the evaluation equations [Puterman, 1994,
Section 8.2.3]. We have that

771‘/17177(80) + (I - ﬁﬂ')vlﬂ;n = 771V171n(50) + (I - (1 - n)Pﬂ' - 7716;:))‘/?;77
= -1 -nP)V",
= =@ =PI — (1 =n)Pr) " rs

:'f‘ﬂ,

so by [Puterman, 1994, Corollary 8.2.7], since P, is unichain, we have that W= VL, + cl for some scalar
c. Next, since we have already checked that p™ is constant, we can apply Lemma 23 to obtain

p" — p" = PX(Py — Py)h"
and thus

17 =Pl < 12771l Pr — Pr h™ hT h”

<1-|[|nteg, —nPx||
o0

§277’

oc0— 00 ’

00— 00

oo

Finally, assuming that p™ is a constant vector, we want to show that ||E”||Spbm < 2||A™||span- Since we have

shown ||7L’T||span = [V, llspan, it suffices to bound [|[VZ, ||span- We calculate
187 [|span = VA" [lspan
1
= ||Vfr,77 - Epﬂ-Hspan because p” is constant

. 1,
= ”(I - (1 - W)Pw) 17‘71' - ;P ”span

- us s 1 us T s s
=||(I—(1—77)Pw) 1(/’ +(I_P7r)h )_Ep ||5pan pT+Nh" =rr+ Prh

_ . 1. 1
= (I = (1 = n)Px)" (I = Px)h"||span (I-(1—-nP)""p =

The fact that (I — (1 —n)P,) " p™ = % p™ for general policies 7 follows from the fact that Prp™ = P, P>°r, =
Py, = p™, which implies that P.p™ = p™ which we can then combine with the Neumann series to obtain

that (I — (1 —n)Pr)"'p" = 32, (L =)' Pp™ = 32, (1 = n)'p™ = Lp™
For convenience writing v = 1 — 7, using the Neumann series formula we have

(I=yPr) "I =Pr) =) A'PL=> 4P
t=0 t=0
:I+Z¢Pﬁ _thpﬁﬂ
t=1 t=0
— I + Z '7t+1p7f.+1 _ Z ,ytp::‘rl
t=0 t=0

=I—(1—-7)> P
t=0

and we note that (1—~) > ;27" PL™! is a stochastic matrix (since all terms are nonnegative, and, since each
row of P! sums to 1 for any ¢, the rows all sum to (1 —~v) > ;71 = 1). Therefore continuing the previous
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calculation,
A" lspan = [I({ = (1 — n)PW)_l(I — Pr)h™[|span

=" = (1=7) > " PR |span
t=0

< 1A [span + | <(1 —7) ZVtPﬁl) h™span

t=0
< 2[[A"[|span

where the last inequality is because for any stochastic matrix P’, || P'h™||span < ||2™||span-

Now we verify statement 3. First we show that 7 is a (1 — n)-span contraction. This follows from
existing results, since the fact that all states have probability > 7 of transitioning to sy means we could
apply [Puterman, 1994, Theorem 8.5.2]. However, we will provide a direct proof due to its simplicity. Letting
h,h' € R® be arbitrary, we can calculate

1T (h) = T(A)llspan = IM (r + Ph) = M(r + PH') [span

= M (r+ (1= m)Ph+n1h(s0)) = M(r+ (1= )P + 71k (50) ) lspan
= M (r + (1L =n)Ph) +n1h(so) = M (7 + (1= )PR’) = 1R (0)llspan
=M (r+ (L= n)PR) = M (7 + (1= )P lspan
<llr+ (@ =nPh—r—(1=n)Ph|swpan

=1 —=n)|Ph— Phl”Span
< (L =n)lh = Hllspan

where we used the fact that M is || - ||span-nonexpansive, which we verify now. Letting z,2’ € R4 be
arbitrary and letting 7 and 7’ satisfy M(z) = M™2 and M (2') = M™ 2, we have

M(z)—M@')=M"a—M" 2 <M "z — M2 = M™(z —2') < (rgleagcx(s) —x’(s)) 1

and analogously

M@) —M@)=Mz—M"2'>M"z-M"a2' =M™ (z—2') > <IS%IEI(S) — x/(s)) 1

the (unichain) average optimality equation. We have

so [[M(z) — M (2")||span < || — 2||span as desired. Now we check that the claimed forms of p* and h* satisfy

M(r+ 15Vfin) =M (r+ (1 —n)PV{, + 01V}, (s0))
=M (r+ (1—n)PV{ ) + 01V}, (s0)
= Vl*—n + 771‘/1*—77(50)

(using the discounted Bellman equation in the final equality), so indeed p* = n1VyZ, (so) and h* = Ve, +cl
for some scalar ¢ [Puterman, 1994, Theorem 8.4.3]. (In general satisfying the average optimality equation
only determines the optimal gain, but in unichain models the optimal bias is also determined up to a constant
by the optimality equation [Puterman, 1994, Section 8.4.2] Schweitzer and Federgruen [1978]. In our setting
it is also possible to show this directly as a consequence of the span-non-expansiveness of %)

Finally we check that ||7L*||Span < 2||h*||span in the case that p* is constant. Note that ||E*||leam =
V2, llspan = ||V17r_1;7”||span, whereas ||h*||span = ||h™ ||span, 50 We are comparing two different policies. Es-
sentially the same bound has appeared in prior work, for instance [Wei et al., 2020, Lemma 2], but for
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completeness we reprove it with a manner of calculation very similar to the previous case concerning the a
fixed policy. First, notice that (letting v = 1 — n for notational convenience)

Vl*—n = Vlﬁ—*n
= (I —yPre) trpe
= (I =P )"t (p* + (I — Pre)R¥) p* I =1 + Poeh?
= (I —yPr) ' p* + (I = yPr) (I — Ppe)R*

1
= 70" = APe) (I = Proh®

where the last equality holds because p* is a state-independent constant. Next, using the fact that
p*+h* = M(r+ Ph*) > M™(r + Ph*) = rr; + Prsh*,
we have

‘/1*—77 = (I - ’YPw;)ilrfrfl

<(I- WPW;)% (p* + (I - Pw;)h*) above inequality, monotonicity of (I — WPW;)%
= (I - ’VPﬂ';)_lp* + (I - VPW;)_I(I - Pﬂ',’;)h*

1
= :p* + (- WPW;)_l(I — Pro)h” p* is a constant vector.

Combining these two calculations we have

1 * — * * 1 — *
mp + (I = yPp) I = Pro)h g{/l_ngmp*+(j—'ypﬂ;) 1(I—P,,;)h.

We can also reuse our previous calculation that for any 7, (I —vP,)~'(I — P;) = I — Q for some stochastic
matrix @, to obtain

1 1
—p R = Qi <V, < ——p" + Y = Q2R
L=y 1—7v

(for stochastic matrices Q1,Q2). We have the elementwise bounds h* — Q2h* < h* — (ming h*(s))1 <

h*||spanl and likewise h* — Q1h* > —||h*||spanl, Which combined with the above display inequalities imply
p p

that [[h*||span = Hvl*—nHSParl < 2/|A*||span- 0

Lemma 25. Let 7* = inf {7 €[0,1) : 3¢ € R such that H‘A/,; —h* - clH < %} Then zfﬁ s weakly com-
municating, then the above set is nonempty and the above infimum is c(le?tained, that s there exists ¢ € R
such that ‘

property).

‘7;;* —hr - clHOO < % (and so 7* may be defined as the smallest discount factor satisfying this

Proof. 1f Pis weakly communicating, then we have that p* is a constant vector. Letting 7* be a Bliickwell-
optimal policy for (P,r) and letting 3gw < 1 be the Blackwell discount factor, we have that p* = p* , that
h* = h*", and that \7; = ‘A/,f* for all v € [ABw,1) Puterman [1994]. By the well-known Laurent series
expansion (e.g. [Puterman, 1994, Corollary 8.2.4]), we also have ‘A/,f* = ﬁﬁ%* + 17 4 g(v) where g(v) — 0
as 71 1. Combining these facts, we have that for all v > Agw,

T T T 1 ~ Tx
Vi=V :—77’# +h +9(7):mp +h*+g(v)

and also that p* is a constant vector. Therefore, there exists sufficiently large v (such that the g() term is
bounded by < in |||, norm) such that H‘Zj —h - ﬁﬁ*l”m < 1 and thus the set in the definition of 3*
is nonempty.
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Now we argue that the infimum is attained. We have already argued that the set
~, -~ 1
{76[0,1):306Rsuehthat HV,:—h*—dH g—}
o n

is nonempty and thus contains some ¥ € [0,1). Therefore we can write

< 1}. (38)

‘ o) n

A* = inf {”y € [0,7] : 3¢ € R such that H?,f W —cl

Additionally, h* must have some entry which is < 0 and some entry which is > 0 (since ﬁ;ffiAL* = 0 and each
row of P2 is a probability distribution; note these may be the same entry). Furthermore, for all v € [0,1),
\A/,f € [o, ﬁ] Thus if for some 7 there exists ¢ € R such thatH‘A/,y* —h—cl|| < L then letting iAL*(s) <0,

’ oo

we must have 1
V¥ (s) = h*(s) — <Hf/*—ﬁ*— 1‘ <=
) W) —e< [y - -al <o
which implies that
~ ~ 1 1 1
>V*s)—h*(s)—==>0—-0— - = ——.
¢2 V() = () - - 2 S= o
Likewise looking at s such that ﬁ*(s) > 0, we must have
= ~ S, o 1
V;(s)—h*(s)—cz—HV,;—h*—cl‘oo Z—E
which implies that
~ ~ 1 1 1 1 1
< VX(s)—h* < - 4+ =4
c<Vy(s) (8)+n_1—’y +n 1—7+n
Therefore, the set
— S Tx 1
{76[0,7],CER:HV,Y —h —clH S—} (39)
o] n
is bounded since it is contained within [0, 7] x {—%, % + ﬂ . Therefore it remains to show that the set (39)

is closed, since this would imply that the set (39) is compact, and then since the continuous image of a
compact set is compact and the projection of the set (39) onto its first coordinate is exactly the set in the
expression (38) for 4*, meaning that the infimum of this set is contained within the set, which is what we
are trying to prove. N

To show that the set (39) is closed, we first show that v — V* (with domain restricted to [0,7]) is a
continuous function. This is a known result but we prove it for completeness. First, if 7 is fixed, then letting
v,7" € [0,7], we have

177” ~V)=(- VPR) g = (I =~ Pr) g
= (I =yP:) (I =y'Po)(I —=~'Pr)""rn — (I =/ Px) "' (I = yPx)(I —+'Pr) " 'rs
= (I =Py [(1 =7/ Pr) = (I = 4Po)] (T =/ ) '
=~ VﬁW)71(7 - 'Y/)ﬁfr‘/}»;
and thus
VeVt <|y—o ‘I— 13,,*1H ‘13,, H?’t
H v v - |’Y FY| ( v ) 00—00 00— 00 T lso
<l|y—+ b 1
<kl =715 T
Iy — 7|
(1-7)2
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so the function v — 17,;’ is Lipschitz and thus continuous. Now 17,f is equal to the maximum over (the finite

number of) all Markovian deterministic policies 7, and thus v — V* is also continuous. This means that the

2t
function f : [0,7] x R — R defined by f(v,c) = H‘A/'v* —h—cl

’ is a continuous function, since we have
o0

shown that v — XA/,Y* is continuous, and ||-|| ., and addition are continuous functions. Therefore the preimage
of [1,2] under f is a closed set since [0, 1] is closed. (Technically it we only immediately know that it is
closed in the topology of the domain of f, [0,7] x R, but its closed sets are exactly the closed sets of R?
intersected with [0,7%] x R Pugh [2015].) Thus we have shown that the set (39) is closed, and thus as argued

we can conclude that the infimum in the definition of 4* is attained. O

We also remark that the asymptotic (partial) Laurent series expansion, used to bound 7* within this
proof, could be replaced with a non-asymptotic version to give a more explicit bound.

Lemma 26. If there exists h € RS such that 7 is greedy with respect to r + Eh, then

1 <=1l = hlspan-

n

V.-
Proof. First we note a classic result for y-discounted MDPs, that if there exists V' such that 7 is greedy with
respect to r + yPV, then

A* A?T
V-V <

27 HV - ‘A/V*

L=n
[Singh and Yee, 1994]. The desired result will follow from (40) and the connection between AMDP and

DMDP provided by Lemma 24. Specifically, we will try to find a vector V such that = is greedy with respect

to r + vPV and such that HV - XA/,Y* is small and bounded in terms of Hﬁ* — hlspan-

o0

Let y =1— % First note that if 7 is greedy with respect to r + Eh, then it is also greedy with respect

tor+ Eh + al for any « (since this shifts all entries by the same amount «). Now we try to choose « to
meet the aforementioned conditions. First, note that

r+Ph+al =r+~yPh+(1—y)h(so)l +al =r+~P (h+ (1 —~)h(s0)1 + al)

(since P1 = 1) so we can define V = h+(1—7)h(so)1+a1 and then try to minimize the quantity HV - \7;

o0
by appropriately choosing « (as V' is a function of «). We also know that h = V7 4 a*1 for some o* from
Lemma 24. Therefore if we choose

o= max;(h (s) — h(s)) —; xnine(h {5) = hls) 1—a*1—(1—79)h(so)1,

then

T * *
HV7 - VHOO - H@ —a*1— h— (1 —~)h(s0)1 —a1HOO

e maxs(h (s) — h(s)) +ming(h (s) — h(s)) 1
- 2
~
= hllpan
5 .
Now we can conclude by applying (40) and noting that % = 1i;zll T =n- 1. O

Lemma 27. For any h € RS, let f(h) = M(r+ Eh) be the average-reward Bellman optimality operator
for the anchored MDP P = (1 —n)P + 7’]16;:). Suppose that one of the following conditions are satisfied for
some policy m.
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1. 7 is greedy with respect to v + Ph for some h such that ||E* — hlspan < 2=

~%

3. EWZE*—B# and‘Eﬂ—ﬁ

1
S 3n2 "
[e'e)

Then we have that

~ 1
R ) < —. 41
711 1_% - n ( )

o0

. . ) r ~ 1 ~T ~% 9
Furthermore, if inequality (41) holds, we have p* > p* — -5 and |- — h |[span < =

n2

Proof. The fact that the first condition implies (41) follows immediately from Lemma 26.
For the second condition, similar to the proof of Lemma 26, we first note an optimality condition for
DMDPs, which we will later verify using the second condition. Letting 7, (V') := M (r+~PV’) be the Bellman

optimality operator for the y-discounted MDP ﬁ, for any policy w, we have

o~ o~ ~

L [extz
HV* || <M Pl (42)
v Vo = 11—~

Inequality (42) is well-known but we give a proof for completeness: using ~y-contractivity of 7\;,

[ -55]. = 1.
< |70 -7 _+|[Ron -
<o -vr|_+|mon-vr
S F (0T , .
which implies HVV* -Vr < [[7+¢ * )—v 7l after rearranging. Now we relate condition 2 from the lemma

to the quantity H’?(\A/J) - 1777’ from (42). Letting v = 1 — 1, by Lemma 24 we have that 1777’ =0 +cl

for some scalar ¢. We also have(x‘éhat

~

(z) = M(r + Px) = M(r 4+ (1 — )Pz + nz(s0)1) = M(r + (1 — n)Pz) + nz(so)1 = 73(:10) + nz(so)l

for any € R¥. Then we can calculate

TN -Vr=T(Vr) -1 -
= i’(/\,y”) - 77177”(50)1 e
=T +c1)— 77171”_,7(50)1 A
=T(0") — 1V (s0)1
=T(h") -7 -4 (43)

where in the last step we used the fact that 77171”_,7(50)1 = p" by Lemma 24. Also we have that ﬁ(ffv”) —177” >
0 (this is a standard fact, but to see this note that VT satisfies the Bellman equation V.7 = M™(r +~yPV)
and thus 7, (V") = V.JF = M(r +yPV]) = M™(r +yPV]) > M™(r +yPV]) — M™(r +yPV) = 0.) Thus
combining this with (43), we have the equivalence

<e «— TM)-p"-h <el

o0

40



< %, and plugging into (42),

oo
we obtain that

PP 1/n? 1
V* _ VTI' < o0 < — _
K T 1—7 ~—1/n n
as desired. Thus we have justified the second condition.
Next we will show that the third condition implies the second condition, and thus it also implies that

T T 1 .
HV7 Vv <o We can write
TR -2 -p"=T@)-T@)+TR) -2 +h -k 5" +5" —p
< |Z@" -Z@H|_1+Z@)-B" -5+ |2 -27|| 1+ -5 1
7|2 140+ [ -2"|| 147 -7l 1

Tay iy i<
- 3 3n 3n? n?
where in the penultimate inequality we use the assumptions of condition 3.
Finally, we assume that condition (41) holds and try to show that p™ > p* — 5 and Hh _ [lspan < 2.
: Va0 Y Vi) L .
First, by Lemma 24 we have p” = —2—1 and p° = —=—1. Combining with condition (41) we can

obtain that

VI a(s0) - Vg (s0) = [V 4 (s0) = VT (s0)
w1 1> oh -2 1 1
= n
?*,L(SO) - HV* 1 ‘77:i 1
> -1 1-1 12 lloo 4 >5 L1
n n
Second, note that by Lemma 24 we have ||ET - ﬁ*Hspan = |H71’T_l - ‘71*_; |lspan, S0 we have that
7 e 7 * U 7 * 2
||ﬁ _ﬁ ||span = H‘G,i - V1,L ||Span S 2 H‘G,i - Vlfi S E
= o = 7 oo

O

Lemma 28. Under the same event that the conclusions of Theorem 6 hold, there is a unique Markovian bias-
optimal policy 7r* for the AMDP (P 7), and thus this policy is also the unique Markovian Blackwell optimal

policy. The policy 7, is deterministic. Furthermore, T, can be computed with K = n[log (MN

iterations of average-reward value iteration: Letting pf(h) = M7+ Bh) be the average-reward Bellman
~ ~(K

operator for the AMDP (P,7), 7, is the greedy policy with respect to pI( )(O).

Proof. First we note that under the event that the conclusions of Theorem 6 hold, we have the separation
property described in Theorem 21 with v = 1 — %, namely that the optimal Markovian policy 7?1*, in the

DMDP (ﬁ, r,1— %) is unique and deterministic, and for all s € S,a € A such that a # %;(s),

A ~k A x J
S5 3 (5)) — Q) > 5o (a4)

(This property is used within the proof of Theorem 6, namely within Lemma 22).
First we check that %; is the unique bias-optimal policy. Note that since Blackwell-optimal implies bias-
optimal, this would imply that %; is also the unique Blackwell-optimal policy. Since any bias-optimal policy

. ~TT ~% ~ o~k ~% ~TT ~ AT
7 satisfies ;)h = b, and [ T(,h ) = p* + ,h , and also p* + )b = M7 (r + P ,h ), we must have that 7
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is greedy with respect to r + BPE*, that is M (7 + EPE*) =M™ + EPE*). By the definition of p@{_l/n,

the definition of P, and Lemma 24 (which ensures p‘A/* = pﬁ* + c1), we have

for some scalars ¢, ¢’. Therefore 7 is also greedy with respect to p@’{_l Jn and by the separation property (44),
this implies that we must have 7 = 7;. Therefore the unique bias- and Blackwell-optimal policy is 7.

To show finite convergence we can combine the separation condition (44) with Lemma 26, which also
holds with the perturbed 7 reward function and thus guarantees that if there exists h € R? such that 7 is
greedy with respect to 7 + Ph, then

~

* A?T
pV1_l - pV1_%

~k
<(n—=1) pﬁ — hllspan- (45)

3

where pﬁ* is the optimal bias function of the perturbed anchored empirical AMDP (E, 7). From Lemma 24

we have that pf isal—-n=1- % span-contraction, and it has fixed point pﬁ*. Thus

~(K) (K) (K)

1,777 (0) = 2 lspan = I, T (0) =, T (2 )lspan

NNE
1= 2) 1R = Ol

12n3542 ) 1

(
(o)
<

- 2n
e
&6
46
6n2S A2 (46)
where we used that
|| pﬁ - OHSpan = || pﬁ ”span = || p‘/l—l/anpan S p‘/lfl/n 0o S m Hr”oo S n(l + g) S 2TL

and also that (1 — )" < 1. Now combining the bound (46) with (45), if 7 is chosen to be deterministic and
- 5 oK 5 e . . C e
greedy with respect to r—l—ﬁpz( )(O), we have that ,V* , —, V", < #. By (44), if 7 is a deterministic
policy, then this implies ™ = %;. However, if 7 is not deterministic, then if must be possible to write 7 as the
convex combination of some distinct policies which are deterministic and such that each of these policies is

.~ ~(K e ..
also greedy with respect to 7 + P p7_'( )(O), but then each of these deterministic policies must also be equal
to 7, giving a contradiction, so 7 must have been deterministic. O

C.2 Proof of Theorem 6

Here we complete the proof of Theorem 6. Since Lemma 24 relates the gains and bias functions of anchored
AMDPs to DMDPs, we can prove this theorem by simply combining Lemma 24 with Theorem 10.

Proof of Theorem 6. Following the conditions listed in Theorem 6, let 7 be an exact Blackwell-optimal policy
of the AMDP (P, 7).
First, by using triangle inequality twice, we have the elementwise inequality

T*

pw*_pﬁSHpﬁ_BﬁH 1+(£w*_£ﬁ)+’2w*_p
(o]

1. (47)
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Note that the first and third terms of (47) are controlled by Lemma 24 as
< 2”&# ”Span < 4th*”5pan _ 4Hh*”5paﬂ

‘ P = lloo ™ n - n n ( )
(because p™ = p* is constant, for the second inequality) and
’ pﬁ 0 < 2||ﬁ7r||SPan. (49)
— oo n

For the middle term on the RHS of (47), using the identity for the gain in the anchored AMDP from Lemma
24, we have

. - Vlﬁ_*i(so) Vf_i(so)
po—p = . - .
n n
Vi i(s0) V" 1(s0)
S " — "
n n
e A (50)

On the high-probability event in the conlusion of Theorem 10, by Lemma 28, the policy 7 (defined as a
Blackwell-optimal policy for (1B 7)) is identical to the optimal policy for the DMDP (ﬁ, 7,1—1/n). Therefore
Theorem 10 (which is stated for the optimal policy of the DMDP (P, 7,1—1/n)) also applies to 7 as defined
in this proof. Thus by Theorem 10, with probability at least 1 — 9,

3 SAn
e el ) e e
1__ oo_l—(l—l) n | 17L span 17i span
Cy 10g3 (S?gﬂ) N =
—n L (18 lpan + 127 lspan + 1)
C» log® (3?512) %
<n 2 (20 apan + 127 span + 1)
using Lemma 24 in the second two steps, specifically the facts that V* 1 [lspan = 2 |lspan, ||VE =1 llspan =
p p p

A7 [|span, and then that [|2*|lspan < 2||2*||span Since p* is constant). Comblnlng this with (50),

* ~

pﬂ'

Czlog? (5425

s

? ) (20A* lspan + I8 lspan + 1) (51)

Combining (48), (49), and (51) with (47), and then simplifying, we obtain

3 [ SAn?
e A g | 2108 &
n

T T 2”@%Hspan

n ) (2||h*|\span + 12" [lspan + 1) +

3 ([ SAn? ~
4]l ns | Calog® (522) " 2|17 [|span
<y L (20 lopan + 87 span + 1) + S0

3 ([ SAn2 Q
- Cglog ( 3E ) ~ 2/ || span
\l A |lsp (2|\h*||span+||ﬁ”|\span+1) +%

Cg 10 ( 5C ) .
< # (QHh*HSPan + ”ﬁﬁ”swn + 1)
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where the second inequality holds since the terms 4Hh*7|1‘5pa” 2”}11‘5‘”“ must be < 1 or else the bound holds

trivially, the third inequality uses v/a + Vb + Ve < 3vVa+ b+ ¢, and the final inequality sets Cs sufficiently
large. O

C.3 Higher-order variance bounds

Lemma 29. 2
(Pethry™ )" = (P

Proof. For arbitrary £ > 0, we have (elementwise)
02
0< VPW |:(h7r)o2£:| _ Pﬂ_(hTr)OQPFI _ (Pﬂ_(hTr)OZE)

S0 (P,r (h”)OQZ) < Pw(h”)ozul. Now we apply this fact k& times to obtain the desired conclusion:

o2

()2 (=) ) = )

027 +1

> (ru)

> (Ph)°2 .

O
Lemma 30. Fiz an integer k > 0 and let h = h™ — (ming, A7 (s)) 1. If
N . A4 E 02k .9k _
P | < | L 2 gy 52)
holds, then
ax1-27% . — ook |2
(5) Pﬂ' (PW_PW)(h)
o 19—+ . _ . 9—(k+1) O‘(HEH +1) 1—9—(k+1) 50 _
< (E) P (P,,—P,,) (h)°? 2| = 1+7(||h||oo+1)1.
Proof.
P2 (Pr = Po) ()| < B |(Pr = Po) () (53)
~. [aVp [(E)OQ}C] a2k 2k
< Py e L] o2 gy oy (54
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using the fact that all entries of 16,;’0 are non-negative, and then the condition (52). Focusing on the first
term in (54),

A e R A o
- \/ JRES ( Pr(R)?* — (Pr (E)o?k)“) (56)
< /P (P — () ) 7

- \/ P (Pe(R)2* = (it Perg =)™ ) (58)

where we used Jensen’s inequality since each row of 167‘:0 is a probability distribution, the definition of
Vp, [(E)OQW, the non-negativity of 167;’0 along with the inequality from Lemma 29, and then finally the
Bellman equation h™ + P°r, = r, + P.h™, which after subtracting (mins A" (s)) 1 from both sides yields

T+ P®r, = h™ — (msin ™ (s )) 1+ P,
=y + Poh™ — (mm ™ (s )
=+ Pr (07 = (minh™(s)) 1)
= e+ P

— o2kl
since Pr1 = 1. Now note that if we expand (h + Pr, — r,r) into the sum of 25t individual terms,

the leading term will be (E)OQHI, while all other terms will be (entrywise) bounded in magnitude by
max{HEHOO , 1}2k+1_1 since || P21y — ||, < 1. Thus resuming from (58), we have

< \/ﬁ,go (Pe(ryzt = ()™ + 22 max{[[7]| . 1}2'11)

PoE) - (B 22 ()T )

2k+1_1

2k+1_1

Pee (Pe— By) B2 22 (] + )™
1/2
+

= /B (B, — 1) (B)e2 + 22+ (] +1)

22 (HEHOO )

where in the final equality step we use that P P, = , and then in the final inequality step we use that
Va+b < \/|a] + vb. Combining these steps we have that

[P (P — Po)(h7)

7 )o2k k
S N
~ ~ —_ 1 .9k
< 2 ([P (- p) @ 2 (L )P )+ R )7
2k+1_q /
S TR ey [ L R 1+ 22 )+ )7 1
n ™ ™ ™ n

45



Therefore

O

n n
27k
a2k
+—([pll +1)" 1
k
_ ok+1_q /2
(@l -y (B

n n n

a\1-2 ~ - okt 9—(k+1) CY(HEH n 1)2k+171
= (%) B (P Pe) (B) +2 — 1
a2~
+2(2) (Al + 1)1
= (9)172 ( _ﬁ,(:o (Pﬂ' PW) (E)O%H 9= (k+1) +2(g 9= (k+1) (Hh”oo+1)l o= (1)
n n -
a2 _
+2(2) () + )1
O e e a2
= [ — P;O PTF_PTI' (h)02 —|—2 1 Tlee 7 1—}——(HhH +1)1
n - : )

as desired, where for the inequality steps we used the previous calculations, then that (a + b + C)Tk <
a?> "+ 2" 4+ ¢2 ", and then that 28 < 22" so (2F)27 " < 22"27" =2, O
Lemma 31. Let h = h™ — (min, h™(s)) 1 and £ = [log, log, (||E||OO +4)]. Suppose that for some o € R, the

inequalities

aVp_ [(h)°%"]

~

(Pr — Po) ()| <

a-2k 2k
T (T
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hold for all k =0,...,L. Also suppose that p™ is constant. Then

a (|[All, +

IS
||ﬁ“—p”|m§2(€+1)< " )> )22 (F + )

We also note that this Lemma is purely algebraic, and thus we can accordingly replace the transition

matrices P, P (and all their derived quantities, that is, h™, p™, p™) with any other pair of transition matrices.

Proof. Similarly to the proof of Lemma 16, first we give a weaker but non-recursive bound which can be
used on the final term. Note that

aVp, [(5)02‘7] a-2°

22
1+ (Il +1)" 2
\[H 02t

= 2R 2 (L + )7 59)

~

(P, — P)(R)°% | <

R (L + 0

and so (elementwise)

Soo

P(P, - Py)(h)°Y

IN

= |(Pr = POR) |

P ([ A 1 22 () 1) )
= 2RI 2 )7

using that all entries of ﬁ,fo are non-negative in the first inequality, then the bound (59), then the fact
P21 = 1. Therefore

IN

2 (Pr — Pr) ()

—L
)P
n

-y . o—¢ o ¢ B y 9=
<3 (( %I +( = <uhuw+1>) )1
=(3) 7]l 1+ 2= (|[A], +1) 1. (60)

Since we have assumed that p™ is constant, using Lemma 23 and then the fact that (ﬁ,, — P,,) 1=0, we
have

Now, using this equation, then Lemma 30 £ times (for k = 0,...,¢—1), then assuming n > a(HEHOO +1),
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then using the bound (60) for the final term, we obtain
(P,

|2 = o]

o (k+1)
ol fal+ D)
> (z (Pt 2w 4

+
S faB D) T 20,
S B e =X ( (1 Y
+

1™ = Pl

| A

1—o—(+1) _ «a _
=) 7]l o + 2 (12 + 1)

_%(MZ e+ 02 R+ 0+ ()T L (61)

Note that the assumption n > O‘(HEHOO + 1) was used to guarantee that the largest term in the initial
summation was the k = 0 term. _
Finally, we need to ensure that ¢ = [log, log, (Hh”oo + 4)] is sufficiently large so that the rightmost term

ol 2
in (61) is bounded by 2 (%) . This rightmost term can be bounded as

O T N (aHﬁHw)l [
n o0 n n

(again using the assumption that n > a(HEH + 1)), and then we have the equivalences

7]

— 1 %
<a||h||oo> || ||2 (e+1) §2 (O& OO)
n n

1o~ (+1)

= Ll+12> 1og2 log, (||h||oo) .
The final inequality is true for our definition of ¢, so we have that the rightmost term in (61) is bounded by

1
ol 2
2 (%) as desired. Thus combining this fact with (61), we have

Al +1))? Al \®
77— e <2 <7a(” oo * )> FE+ )2 (R >+2<O‘” ”°°>
n n

§2(€+1)<M>2 (0412 (Il + 1)

n
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as desired. O

C.4 Bernstein-like inequalities
First we check the Bernstein-like inequality required for the proof of Theorem 2.

Lemma 32. Fiz a policy m, and let h = h™ — (ming h™(s)) 1. With probability at least 1 — &, for all
k=0,...,[log,log, (Hh”oo +4)| we have

~

(B = | <[P o gy

Alog, 1 B ||span+4
wherea:2log(3s 082 ngéll Ll +)).

Proof. First, note that we only need to check this inequality for a fixed k, and then the desired result follows
by taking a union bound and adjusting the failure probability. Fix k. Also fix s € § and a € A. Using

Bernstein’s inequality (e.g. [Maurer and Pontil, 2009, Theorem 3]), we have that with probability at least
128,

~

(Psa — Pua)(B)°*

<¢M%%W%J@WW+M§%WGWk

- n

o0

2log (4) Vp,, [(R)2"* log (&) 1= 2¢
SV ) Ve [B07] | 18 (1)

n

21og (&) Vp,, [(h)o2" 21og (&) =2
SV () Ve [B02] | 2008 ()

n

Now taking a union bound over all possible s € S and a € A, we have the elementwise inequality

\/210g (%) Vp [(E)O%} N 2log (%) HEsz 1

n n

(P Py | <

with probability at least 1 — 25Ad’. We can use this to obtain that
|(Pe = PO ®)* | = |Mm(P = PY(R)*¥|
(P —P)(n)**

1 )02k 1
<M~ \/210g(5/)VP [(h) ] n 210g(5,) HEHZ: 1

n n

<M~

1 T 7, )02k 1
. Wlog(a,)M Ve [E*] | 208 () ey

n

_ J 2log (3) Ve ()] | 2108 (3)

n n

where we used Jensen’s inequality for the first inequality step (since each row of M™ is a probability distribu-
tion), then (62), then Jensen’s inequality again since /- is concave and the fact that M™1 = 1. Now taking
a union bound over all values of k, of which there are at most

1+ [logy logy (|[2]| . +4)] < 2 +logylogs (|||, +4) < 3logylog, (||| +4),

we can set §' = j and o = 2log & to complete the proof. (Note ||E||OO = ||A™|lspan.) O

)
3SAlog, log2(HﬁHoo+4
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Now we set out to check the Bernstein-like inequalities required for the proof of Theorem 3. While this
could be done by essentially copying the arguments of Lemma 20 but replacing P with P, we can instead
reuse Lemma 20 more directly. The following Lemma 33 will help us do so.

Lemma 33. Let 7 be an arbitrary policy, P be an arbitrary MDP transition matriz, let P= (1 —n)P—I—nleSTO
be an anchored version of P, and let x € R¥. Then

Proof. Since the desired inequality is an elementwise inequality, it suffices to show for an arbitrary entry s.
Thus let p = (Pr)s and p = (Pr)s be row vectors denoting the sth row of P, and p, respectively. Note that
p=(1-np+ ne;';. Then we can calculate

= (1= n)p(x°?) + n(x(s0))* = (1 = n)pz + nz(s0))
= (1= n)p(x°®) + n(x(s0))* = (1 = n)*(pr)? = n*(x(s0))* — 2n(1 — n)(px)2(s0)
= (1=n) (p(z°) = (p2)?) + n(x(50))* + n(1 = n)(px)* — n*(x(s0))* — 2n(1 — n)(px)z(s0)
= (1=n) (p(=°?) = (p=)?) + (1 =) ((x(s0))* + (px)* — 2(px)2(s0))
> (1-n) (p(z°?) - (pz)?)
= (1=n)(Ve, [z]),
where the inequality step is by the AM-GM inequality. O

Using the above lemma, as well as the connection between discounted value functions and the bias
functions in anchored MDPs, we are able to repurpose Lemma 34 to verify the Bernstein-like inequality
conditions for the bias function of a near-optimal policy in an AMDP using anchoring.

Lemma 34. If n > 4, then with probability at least 1 — ¢, for all T which satisfy H‘A/ii -V

1
I-=

< 1
— n

7
oo

~T

letting h = h - (minsﬁ (s)) 1, forallk=0,..., [log2 log, (HEﬂHSpan + 4)] , we have

[fh) L, 2 (A + )

’(Eﬁ - P%) (E)OQk =

— SAn®
where o = 18log (12T>'

Proof. First, we can directly use Lemma 20 to obtain that with probability at least 1 — ¢, for all T which
satisfy Hf}f_l -V ’ < 1, we have

n’
n lloo

aVp, [(M7] aror
_l’_

n n

‘(ﬁﬁ - Pr) WHIE (7] +1)* 1 (63)

-~

- (minS V’AL% (s)) 1 and

forall k=0,..., [log2 log, (||‘A/17A’7L l|span + 4)—‘, where V = \A/i f

3=

SAn SAn3
=161 12— | =161 12 .
“ Og( (1-(1- %))26) Og( 5 )

Now using Lemma 24, we have that EW = \717?_ , — cl for some ¢, which immediately implies that V' = h and

n

also that ||1A/f7 1 |lspan = ||E7T||Span. Applying these facts to (63) we obtain that (under the same event)
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forall k =0,..., {log2 log, (||ET||Span + 4)} Therefore it remains to replace P with P within (64). Fix k.
First notice that

~ 1.~ 1 1, /-
P~ Pr=(1= )P+ —le] = Po= (1= =) (P = Po) + - (1e], = Pr)
S0
~ 02k 1 ~ — 02k o2k
(@)@ | < (1= ) (e 2) @ |+ 2 e, - 2l @
< <1—%) ‘(ﬁ%_pﬁ) m)°~> 42 HhHi: 1. (65)
Also, we can use Lemma 33 to obtain that
Ve, [(V)"Qk] <=1V, [(V)C’Qk] - (66)
Now combining inequalities (64), (65), and (66), we obtain
~ 1 02" 22
(B re) @ < (1= 1) [(Pe - Pe) @ |+ 2 22
o2k
1 o'Vp, [(h) } o2k ok p—
<(1-3) S A+ )T e 2 R
1 o/ 2 Vp, [(V)O%} o2k 2k 2 - 2¢
<(1- T SR L+ )T 1 2 R

(Al + 1% 14 2 (7] + 1) 1

IA
—
|
|
|
3
_|_

vy [(7)] Ll +2)- 2k

— ok
(o]l +1)" 1.

Therefore we can set o = 18 log (12 (15_‘4;;2) > o + 2 and obtain the desired conclusion. O

Now we check the Bernstein-like inequalities used within the proof of Theorem 1.

Lemma 35. Suppose T is a bias-optimal policy in the AMDP (16, r). If n >4, then with probability at least
16, letting h = h* — (minS ?L*(S)) 1, forallk=0,..., [log2 log, (H?L*HSpan + 4)] , we have

— . 02k
16log (2348 ) vy [(1)™] 16log (f32sdn) ok -
— + — (2] +1)" 1.

‘(ﬁﬁ* —p) () <

Proof. To handle the fact that 5* is random, we will prove a version of the inequality for each v such that
ﬁ = 2™ for some integer m > 0, and then we will adjust the failure probability for each m so that the
overall failure probability is bounded by 4. First, we fix v, and we seek to show that with probability at

least 1 — &', for all vectors z € R® such that Hx - \7; < 1 letting T = 2 — (min, z(s))1, we have that

16 log (ﬁ%) V., [(T)Oﬂ " 1018 ((Ei%) = (1]

n n

+1)% 1 (67)

|(Pr = P ) @ | <

o1



for all k = 0,..., [log, logs (||z|lspan +4)]. We will argue that (67) follows from an identical argument to
Lemma 20. Specifically, we will argue that we can replace V = VE - (mins 17%(3)) 1 within the proof of
Lemma 20 by =. We observe that the proof of Lemma 20 only uses the following properties of the vector V7
that ||V ||span < 7L, and that va V*‘
coarsely upper- bound the number of values of k for which the desired inequality must be checked. We can
instead use the fact that H:z: — V,Y* < H to obtain that

< .. Furthermore, the bound V7 llspan < % is only used to

oo
=, =, =, =, 1 2 1 2
I#lspan < 1V lspan + 1V = llpan < 175 g +2 |75 =] < g+ 0 < o 1< 7
Thus repeating an argument similar to (18), using that log, log,(z 4+ 4) < 2z for > 1, we can bound

2
[logy logy (|| [|span +4)] < [10g2 log, <1 PN + 4)—‘

2
<1+ log, log, (m + 4)

<1+ 4—
-
<5 L
=0T
and thus (counting k = 0) there are < 1 —|— SL < 1% values of k to check the inequality for if we check it
for all values up to the upper bound 51— Comparmg with the bound (27), this will cause us to obtain a
factor of
3SAIU|, 1 18SAn
161 6—— | =161 —_—
Og( & 1—7) Og<(1—7)25’>

(rather than the 16 log ((ﬁi‘?{g,) which appears in Lemma 20). The rest of the proof of Lemma 20 only

uses the fact that HIA/% 7 < %, and thus goes through unchanged if we replace V7® with (and thus

oo

also V with T), which, following the proof up to the bound (25), yields

16 log (LAQ",)VA {(z)"“”“} 16 log (M) ok
02k T—7)25 P 1—7)25 _ k
(P-P) @ < — $—— (e + 1P 1
n n

for all k =0,..., [logylog, (||x]|span +4)]. From here, we can use identical steps as to the end of the proof
of the 1nequahty (26) within Lemma 20 (but with 7* rather than 7) to conclude (67) as desired.

Now applying (67) with 177 =2™ and §' = 2‘; for each m =1,2,..., and taking a union bound over all
m, we obtain that with probability at least 1 — Y °_, 2m =1 -, we have that for all integers m > 1, for

all x such that H , that

Vo]

+

o2k n
16 log (ﬁ;?)‘g:_m ) Vﬁ%* [(5) 2 ] 16 log (ﬁsz)fgz_m) .9k (
n n

[ 02" > 2k

IN

1610g (18SA6n23m )V {(5)021 1610g (18SA6n23m) ok

k
- i 7 )% 1.
- + - Iz, +1) (68)

On this event, recalling we have defined 3* as the smallest discount factor such that for all v > 7*, there
exists ¢ € R such that

TOx  Tx 1
Hv7 —hr—a| <- (69)

‘ o0
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we now define 7% as the smallest ~ such that v > 5* and also there exists an integer m > 1 such that

T 17,, = 2. Thus we have = < 1f¢yﬁ < 1_2%. Also since A% > A4*, by (69) we have that there exists some

(random) scalar ¢ such that

1
el < —.
¢ < - (70)

u B ‘
v oo

By (70), we may apply (68) to & = h* + c1. Also note that for this choice of z, T = z — (min, z(s))1 =
h* + ¢l — (ming A*(s) + €)1 = h* — (ming h*(s))1 = h. Also lx]|span = ||h*pr(m Thus, plugging these
observations into (68), we obtain (still on the aforementioned event) that

02k
~ . 161og (%ﬁ”{)vi* [(h) 2 } 16log (185#) ok
‘(P?* —Pﬁ*) (h) ok _ 4(1 B3 P, + 5(]:n ~FE)3 (HhHOO + 1)2k 1
16 log ( 18- 8Siln ) Vs . [ } 16log ( 18- 8Sén) B
< " T ([l + 1)

C.5 Proof of Theorem 2
Proof of Theorem 2. Combining Lemma 32 with Lemma 31, we obtain that with probability at least 1 — 4,

2a

M) +(E+ )= ([ pan + 1) (71)

T —p" <2 1
177 = "l < 200+ 1) (20D

where a = 2log (35Al°g2 1°g2§”hﬂ”5"a“+4) and ¢ = [log,log, (||A™[|span +4)]. We can additionally assume
without loss of generality that n > a (||2™||span + 1), since otherwise the desired theorem conclusion still holds

1
trivially since we always have ||p™ — p™||, < 1. Then since M < 1, we have (M) C >

a(|[~7 [[span+1)
n

, and then we can use this to simplify the bound (71) to obtain

=

20
+ 0+ 1) — ([ llspan +1)

s . a (||h™||span + 1)\ 2
177 — 5l < 206+ 1) <M)

n
1 1
hﬂ- sSpan 1 2 hﬂ' span 1 2
2(£+1)(°‘<” s + >) L2+ 1) (au [ >>
2 1Og (3SA log, 10g2(|‘hﬂllspan+4))

= 4([logy logy ([[h™ [|span + 4)1 + 1) (A" llspan + 1)

n

2 log (3SA log, log, (|2 ™ [|span+4) )

< 12 (log, log, (”hWHSPan +4))

0410g SAn
< \/# (HhFHSPaH + 1)

where in the final inequality we use the upper-bound ||A™||span < n (which follows from
and choose a sufficiently large constant Cj. O

hﬂ-san 1
- (117 lpan + 1)

w<1)

C.6 Proof of Theorem 3

First, we show that the result follows from bounding certain “policy evaluation error” terms.
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Lemma 36. Under the conditions of Theorem 3,

* *
1 T 1
prE -

Eﬁ_p%

T * h* span 1
n

+|

o0

Proof. Note that by Lemma 27 and the conditions on the SolveAMDP procedure used in the statement of
Theorem 3, we have that EF > E* — #1. Also we recall that 71 is defined as the optimal policy for the

DMDP (P,r,1 — %), and by Lemma 24 this policy has optimal gain in the anchored AMDP with transition
matrix P = (1 — %)P + %16;';. For notational convenience we let v = 1 — % so that we can abbreviate

7y = m;_.. Then we can calculate that

p% > Eﬁ — ‘ p— pA . 1 triangle inequality
N & = JE 1
22*——21—\ Tt przp -1
R e AR 7
. - N 1 & = . . )
>p" — ‘ pr—pt| 1-—1- ‘ A [ | triangle inequality
- 0o n - 0o
0 z Eoe 1 -~ T 71';7 1 * *
zZp He”—evml—pl—\e -t prm=pizp
* * * * 1 ~T T . . .
>p" = ‘ o= p" ‘ 1- ‘ P —p™|| 11— —1- ‘ ot 1 triangle inequality
00 0o n 00
R P T L s 1
>p " 1 W—/_)vool—ﬁl— —p OO1. Lemma24,77—ﬁ
O
We remark that with very similar arguments we could replace the term Eﬂl*% — Bwl’ * with the term
o0
’ - ’ or the term Hﬁ”* —p" ‘ and it would still be possible to carry out the arguments, however
- - o0 - o0
as will be seen shortly, the term Héﬁli — Eﬂ“% enables us to reuse bounds from our DMDP results.
o0

Now we complete the proof of the theorem.

1 ”I,;
n —p n

Proof of Theorem 3. By Lemma 36, it suffices to bound the terms ﬁﬂl and Hﬁ% — 7|l with
- - [e’e}

high probability.

* *
T T
}ﬁw—pln

o0
of Theorem 6, this term can be directly related to a difference of discounted value functions using Lemma

*

First we handle the easier term . By similar observations as those used in the proof

™

Tl _41
U] l—lln (s0) T V1jln(50) . . .
24. Lemma 24 shows that p '"» = —=—— and that p '~» = —=——_ which implies that
_ n —_ n
AWI,L WI,L
o T Vi_i"(s0)  V,_1"(s0)
plm—pla = n — n
= = o n n
1 Aﬂ'*,i ﬂ*ii
< -Vt -V (73)
n ~w =
o0
. ST LI . .
Now we can reuse part of the proof of Theorem 10 which bounds |V, " =V, ,"| . Specifically, setting
n n o)
y=1- %, then it is shown in inequality (34) from the proof of Theorem 10 that with probability at least
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1 — 6, we have

*

H‘/}ﬂ'; Vﬂ—w 24 10g2 1Og2 |VV ||span + 1)
vy TV

o0

2 h span 1
< n24 (log, log, (n + 4) \/al | ”p +1) (74)

*
65 log, log, (”VWW‘Y ||Span+4> o
where a1 = 2log 5 , and in the second inequality we used that ||V 7|lspan =

I*[|lspan < 2||A*||span, both steps of which follow from Lemma 24 (the inequality step because p* is con-
stant). Combining (74) with (73), we obtain

o T 2 h*||span + 1
plw—ptu| < 24(log,log, (n+4))\/ a ([l l‘lp t ) (75)
Now we bound the term HE%? . First note that by Lemma 27, the requirement (2) implies that

1

HV” V* < . Thus, if we assume for now that n > 4, the conditions of Lemma 34 are satisfied,

and thus by comblmng it with Lemma 31, we have that with (additional) failure probability at most ¢,

()

n

-~ T

p"—p

F 41222 (17 pan +1) (76)

<2(0+1)

where as = 18log (12%"3) and { = {log2 log, (”Eﬂ-”b‘pan +4)-‘. Also note that the use of Lemma 31

requires that Eﬂ is constant, which follows from Lemma 24. By following arguments which are analogous to
the bounds in the proof of Theorem 2, we can simplify (76) and obtain

Pt —p

HA% =

<12 (tomg gy (1A g 1)) 1/ 22 (I gun 1), ()

We can also assume without loss of generality that ||E7T||Span < n, since otherwise the RHS of (77) is greater

‘ p < 1. Thus we can bound

oo

than 1 and so the inequality (77) still holds since trivially always
log, log, (HEWHSP.&H + 4) < log,log, (n+4) <logdn < as

since log, log,(z + 4) < log4x for > 1. Also since ||V.YW; llspan < ﬁ = n and also log, log,(x + 4) < 2z for
r>1,

2a71 = 4log

6.5 log, log, (HV'VTrw llspan + 4) 125n
3 <4log 5 < as.

Using these bounds and combining inequalities (75) and (77) with Lemma 36, we obtain that with probability
at least 1 — 24,

- e W*[lopan + 1
e <24042\/%(|h*||span+1)+12042\/% (1B g +1) +””"°‘—/"> L)

n
[A*llspan +1/n _ [|A*]lspan + 1 /[[A*[|span + 1
n - n - n

55

We can also bound




(where similarly to before we are assuming without loss of generality that ||h*|lspan + 1 < n for the last
inequality) Combining this fact with (78), using (2) to bound || [|lspan < HE*HSpan R - E*Hspan <
1B [lspan + 2 Hh ~h H < ||& lspan + 52= < 2" [lspan + 1, and using the fact that v/a + v < 2v/a T b, we

conclude

a * A% h S an+1
Py - <24a2\/%(||h*||span+1)+12a2\/% (I Hspanﬂ)ﬂ/” lsp )

* o o7
>p" - <25o<2\/ (I1P*||span + 1) + 1202 ;2 Hh Hspan+1 )1

2p’”—<25a2\/ (1A lspan + 1) + 12024/ =2 (|2l span + 2) )1

> 7 = 5003y %2 (Illpa -+ 1B o+ 3)1

. 10g SAn v
Z PF - OS\/% (Hh*”span + ||ﬁ ||span + 1)1;

also adjusting 6 make the total failure probability J rather than 2§. Also note that we assumed n > 4 to
derive this bound, but the inequality is also trivially true if n < 3 (since always p™ > p™ — 1), so this
assumption can be removed without changing the result.

O

C.7 Proof of Theorem 8

First we provide a helper lemma to show that optimal policies are still near-optimal in perturbed DMDPs.

Lemma 37. Let P be any transition matriz and fix a discount factor . Let r1,m5 € R34 be two reward
vectors. Let V.7, = denote the value function of policy m in the DMDP (P,r1,7), and likewise let VJ5,, denote
the value function of policy m in the DMDP (P,ra,v). Also let 7T1 denote the optzmal policy m (P T1,7)

and let 75 denote the optimal policy in (P,ra,7). Let V¥, = Vo and Vi, = V%T2 denote the respective
optimal value functions. Then

r1 — 7|

7T
Voo 2 V5, —2 T > 1.
Proof. Using the definitions for value functions as well as the facts that H(I — /YPW)_lHooﬂoo = ﬁ and
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|M™|| . _ o =1 for any policy m, we can calculate

V’ﬁb (- ”YPTrl*)ilMWITZ
= (I = YPrs) " M™ vy + (I — yPr;) " M™ (12 — 11)

> (I —yPr;) "M™ 1y — ||(I = yPr;) M™1
o0o—

—1
oo | =il

e =l

=V T 1

= (I =7Pry) "My — HT21 _7”;|oo1

> (1 4Pey) Mo (1= Pe) | M= el 1 - A2 ey
=Vin— %1.

O

Proof of Theorem 8. The desired conclusion follows immediately once we verify that the guarantees within
Theorems 3 and 6 both hold. The guarantees of Theorem 6 (regarding the performance of the perturbed
empirical optimal policy) obviously hold, so our main task is to verify that Theorem 3 can be applied under

the desired assumptions, which will be done by showing that the perturbation level £ = % is sufficiently

small so that, with high probablhty, (the exact Blackwell-optimal policy of (P 7)) is also near-optimal for
the unperturbed AMDP (P, r).

Instead of checking condition (2) on the optimality of 7 for the unperturbed AMDP (which could also be
done, with smaller £ and more effort), we instead notice that the proof of Theorem 3 only uses condition (2)
to apply Lemma 27, which in turn verifies that (41) holds. We can thus instead directly check condition (41),
V.

Se
1-1 1-+

n

which we recall is

< % or equivalently ‘A/i 1> \71*7 1= %1. Applying Lemma 37 (with

P=Pro=r,rm=1r,v=1-— %, and thus 77 is equal to 7 since by Lemma 24 7 is also optimal for the
DMDP (P,7,1— 1)), we immediately obtain that

~ ~ 2|7 =7 ~ = 1
‘/fl;% ZVJL% —ﬁlzvlt%—%z{lzvli% _ﬁl
since by construction |7 — || < £and { = . Now the desired result follows from applying both Theorems

3 and 6, and simplifying the constant and log factors (in particular, applying the union bound to bound the
failure probability by 20 and then adjusting the failure probability and absorbing this factor of 2, as well as
using the fact that we have chosen & = 2n2) O

C.8 Proof of Theorem 1

Proof of Theorem 1. For consistency with Lemma 35 we will use 7* rather than 7 to denote the bias-optimal
policy of (P,r) which is returned by SolveAMDP. We have that

pr > +Hﬁ” 1
> 5 +Hﬁ" 1
= 1+Hﬁ? |2 (79)
oo

LY



where we used the fact that since 7* is bias-optimal, it is also gain-optimal, and thus p* = p* > 5" . Thus

it remains to bound the terms Hﬁ”* — p”* HOO and Hﬁ%* —pr with high probability. First, since p”* = p*

is a constant vector, we can apply Theorem 2 to bound

C’4log3 SAn N
S \/ G108 8 (o + 1) (50)

with probability at least 1 — §. Next, to bound ||f)’?* —p HOO, we can combine Lemma 35 and Lemma 31

*H
o0

to obtain that with probability at least 1 — ¢, if P is weakly communicating (which ensures p* is a constant
vector, as required by Lemma 31) then

|

where o = 161og (;ﬁ'ﬁ%‘f)@) and ¢ = [log, log, (H/h\f*HSDan + 4)1 As in previous proofs, we can simplify by

N

oy oy « (H/ﬁ*”smn + 1) 200 / ~
- + €+ 1= (1A llspan +1)
n n

—p

<20+

1
. B llapan . . 1B llspan+1) \ 2 -~ ~ .
assuming a””%“ < 1, in which case (W) >a (Hh*”span + 1) and also ||h*||span < n. This

”hlls%ﬂ > 1, then since always Hﬁﬁ* —pr H < 1, the desired theorem conclusion
o0

[2* [lepan +1
n

is because if actually «

follows trivially. Thus continuing with the case that « <1, we can bound
£ <1+ 1og, 10y ([*]lspan +4) < 10g 4|3 pan < log4n
where we used that log, log,(z+4) < log 4z for > 1 and also that Hﬁ*HSpan < n. Using this in combination

1
Tx 2 —~
with (M) > 2 ( 7% | span + 1) to simplify, we have that

o ([ lspan + 1)

n

s s
T us
p

LO <4(0+1)

o (17 lspan + 1)

n

< 4(log(4n) + 1)

& (7l pan +1)

n

0%

1603 (||ﬁ*||spbm T 1)

n

(81)

Plugging (80) and (81) into (79), and also halving the failure probability parameter of each to get an overall
failure probability of < ¢ by the union bound, we obtain

. [oy10g? (840 1603 (Ilﬁ*l\spanﬂ)
R A IC ST 1

n

1603 (Hﬁ*nspan T 1)
1

n

| Calog” (532)

(™ llspan +1) +

.| Crrog® (s

) (Hh*”span + ”h*”span + 1)1

where we used that /a + Vb < 2¢/a + b and then chose C; sufficiently large. O
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D Corollaries for Bounded Diameter or Uniformly Mixing MDPs
D.1 Proof of Lemma 4

Setup Let s € S, and we refer to it as the target state. Define the MDP P7* and the reward vector r—*
by

0 s #s’

Note e/ is a vector which is all 0 except for a 1 in state s, meaning that the target state s is absorbing in
P—%. All other states have identical transitions as in P. Also the reward is 1 in the target state s and 0 for
all other states. Thus intuitively the optimal policy in P7% should try to reach state s as quickly as possible.

In the rest of this subsection, we will exclusively use the discount factor v =1 — 5. We define Vjs to

be the discounted value function in the MDP (P~ r—*%) with respect to a policy , and we define V™ to
be the value function for the “empirical” MDP (P, r %) where

T I __
S—s €g s =S
Sla/ - P .

Ps/a’ 8/755

We note that there are two equivalent sampling processes for generating P~s. The first process, suggested
by the above definition, is sampling P as usual, and then making state s an absorbing state. The second
process is to treat P ° as if it were the true MDP transition matrix P, and then following the usual sampling
process to generate P from P. These are equivalent because in the second process, with probability one all
transitions from state s will return to state s, and thus it will be absorbing with probability 1. Using this
correspondence, we will later be able to apply our Theorem 9 to V’T

We make a few final definitions. Let D be the diameter of P. We also define the optimal value functions
V* and v s, and let 7, and 7%, be the policies which attain these optimal value functions, respectively.

Correspondence between value functions and diameter Next we establish some basic facts about
the above-define value functions and their relationships to the diameters of P and P.

Letting E be the expectation with respect to the original MDP P and T = inf{t > 0 : S; = s} be the
first hitting time of state s (where we allow the “hit” to occur at time 0), we have

VT.(s') = ET, Zﬂ{:ﬁ <t}

SEDS A (T > 1))

t=0

1

>— —E5LS KT, >t}

o0

1
=1—~" PT, (Ts > t)
IR
1
=———ELT,
L=y
where we used the fact that Y~ ~* , the monotone convergence theorem to interchange the expecta-

tion and the infinite sum, and the fact that smce T, takes values in the non-negative integers, > .~ ( PT, (T > t) =
E7Ts.
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Then

1
V;S(S/) = Slﬂl-p VI)S(S/) = ﬁ - H7lrfE m —D.

Therefore VX, > ﬁl — D1 elementwise. Since also V% < ﬁl, we have that ||V |lspan < D.

Now we show another relationship, that if 171,5 is sufficiently large (for all s), then D cannot be too large.
We formalize this in the following lemma.

Lemma 38. Suppose that v =1 — g5 and for all s € S, > %Ll. Then
D < 12Dlog(3).
Proof. As an intermediate step, we will show for all s,s" € S that
IP’ > (Ts < 6Dlog(3)) > % (82)

Fix a constant k and states s,s’ € S. Then (even if k is not an integer) we have

1 /\A* /\A*

V2 (s )STP * (T <k)+?]P’ (Ts > k). (83)
Now we want to choose k so that only a small amount of value can be contributed from the 7 IP’ o (Ts > k)
term, specifically we will choose k so that v < %ﬁ We calculate that
e 1 1
P < 3 = klog(v) < logg
log 1 log 4
— k> g3 _ og31 _ log 3 :
log(y) log(l1—55) —log(l—55)
log 3
— k> 222 = 6Dlog(3)
6_D

where in the final inequality we use the fact that log(l1 — ) < —z so —log(l — 2) > 2. Then if we set
k = 6D]log(3) in (83), we have that

- 1 1 —a
Vx5 (s < 1—IP’ ~* (Ts < 6Dlog(3)) + gl—]P’S,ﬂ (Ts > 6Dlog(3))
- -

- 1 1 Jo

- IHS SS - _ ,~>s SS

1_71@5 (T, < 6D1og(3)) + 57— (1 BT (T, 6D10g(3)))
1 21

1
_ _ HS < .
375 T 31 ]P’ (T < 6Dlog(3))

establishing (82).

Now since V*,(s') > %ﬁ by assumption, we must have that IP’ * (T, <6Dlog(3)) > 3,
e (T, < b). Then

Next, for convenience let b = [6Dlog(3) ], and note that IP’SPS (Ts <6Dlog(3)) =
for fixed s,s’ € S, using the Markov property,

> 3
P

IE?/:STS < b@j}s (Ts <b) + @j}s (Ts > b) (b + sup IE?LSTS)
S// GS

=b+1@§; (Ts > b) sup B
s"eS

T

s’

1 g
<b+ - sup E_7°T; (84)
2 s"’eS
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using the fact that ]IADj:S (Ty >b) < 1 for any s’ from (82). Now taking the supremum over s’ € S in
inequality (84) and rearranging, we obtain that

sup IEj,:STS < 2b < 12Dlog(3).
s'eS

Since this holds for all s € S, we conclude that

D= sup inf IEQ,TS

s,s'e€S T

-~
< sup E, 7T
s,s’€S

IN

12Dlog(3)

as desired. O

Lower-bounding ‘A/;S Now it remains to complete the proof by setting v = 1 — 6%
for sufficiently large n, with high probability, we have \A/;S > 21 forall s € S, and thus checking the

31—v
conditions of Lemma 38.

and showing that

Proof of Lemma 4. As observed earlier, we may apply our theorems on discounted MDPs to the S MDPs
(P7%)ses (with discount factor v = 1 — 7). Instead of using Theorem 9, it is more direct to use the
bound (31) which appears in the final stage of the proof of Theorem 9. Taking a union bound over all S
MDPs, we obtain that with probability at least 1 — S, for all s € S we have

241og, log, (ﬁ + 4) a (HV:*?SHSPan + 1)
<

oo 1—7 n

/\Tr* ﬂ_*
Hvﬁ;s v

(85)

2 2 *
where o = 161log ((112_5%) = 161log M). As observed above, ||[V53°|lspan < D, so we can sim-

plify (85) to obtain (for all s € S)

A~ * *
Vﬂ-ﬂs _ T s
—S —S

n

1 D+1
< 144Dlog, log, (1— + 4) a(D+1)
o0 —

D+1
< 144D log(24D)y) 2D

20D
< 144D1log(24D)y | 222
n

<D

where we used that log, log,(z + 4) < logdx for x > 1, that D > 1, and in the final inequality we assume
that n > 2 - 144%aD log® (24D).
In this event, we thus have that

lle—Dl—Dlszl

Sx Sr mr, Sk, wr,
Ss s s s
V35 > Voge > V45 Vs —s

since ﬁ = 6D. We can thus combine this fact with Lemma 38 to conclude that D < 12Dlog(3) <
14D. We conclude by choosing the constant Cg such that n > CgD log® (%) implies that n > 2 -

144%2a.D log*(24D). O
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D.2 Proof of optimal diameter-based complexity Corollary 5

Proof of Corollary 5. This result follows from combining Theorem 3 (on the performance of Algorithm 1 with
anchoring and no perturbatlon) with Lemma 4 which bounds the empirical diameter. First, by Theorem 3,
with probability at least 1 — d we have that

= Cslog® (24n o~
o< \/ C18 5 (1 + 1 g+ 1)1 (56)

It remains to bound the terms ||2*||span and HETHSpan in terms of D. First, it is well-known that ||A*||span < D
Bartlett and Tewari [2012]. (As pointed out in [Lattimore and Szepesvdri, 2020, Exercise 38.13], the proof
of this bound provided in Bartlett and Tewari [2012] is incomplete, but Lattimore and Szepesvari [2020]
provide a complete proof.) Next, by applying Lemma 4, if n > C7D log® (S AD ") then with additional failure
probability at most §, the diameter of ﬁ, ﬁ, is bounded by 14D. By condition (2), we have Hh — h H

which implies

— Bn’

~T ~% ~T o~k ~% ~T o~k ~k 2 ~%
Hﬁ ”span S Hﬁ ”span + ”ﬁ _ﬁ ”span S Hﬁ Hspan + 2 Hﬁ _ﬁ Hoo S Hﬁ Hspan + 3_7’L S Hﬁ ”span + 1

Additionally, using Lemma 24 and then the bound from Bartlett and Tewari [2012] again, and then the
bound on ﬁ, we have that

o~k ~ ~

Hh Hsparl S 2||h*HSparl S 2D < 28D

(Note that we can apply the bound Hh lspan < 2Hh*||Span from Lemma 24 because we are operating under

the event that D < 14D, which in particular implies that Pis communicating so it an optimal gain p* which
is a constant vector.) Plugging these bounds into (86) and simplifying, we obtain that

N C-1 SAn
p”—p*g\/L()(D—i-%D—f—l)l

n

1 SAn
- \/%%T()?’OM

< \/max{3OC5, Cs}log® (S4Pn)

n

D1.

The last inequality ensures that whenever the above bound is non-trivial (the RHS is < 1), then the condition
n > CsD log? (SAD") will be satisfied. Therefore we can conclude by choosing Cy so that Cy log® (%) >

max{30Cs, Cs} log® (S A/D ") (where we have added the of 2 so that the total failure probability is bounded
by 9).

O

D.3 Proof of optimal mixing-based complexity Corollary 7

First we collect some simple facts regarding the relationships between bias and discounted value functions
and Typir for uniformly mixing MDPs. These results are completely standard but we provide their proofs for
completeness.

Lemma 39. Let P be any MDP which has a bounded uniform mizing parameter Tunie. Then for any
Markovian deterministic policy w,

1. Hhﬂ'Hspan < 3Tunif-

2. For any discount factor v € [0,1), HVWWHSP.(m < 3Tunit-
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(We note that the results would also hold for any randomized policy as well if 7,n;¢ were defined over
randomized policies.)

Proof. 1. A bound of this form is essentially claimed in [Wang et al., 2022, Lemma 9, Proposition 10],
although we believe that [Wang et al., 2022, Proposition 10] is not needed, since in a mixing MDP, in
the Markov chain induced by a policy 7, there must be a unique stationary distribution in order for the
mixing time to be defined, and thus there should only be one closed recurrent class. We also believe
that there may be a missing factor of 2 in the proof of [Wang et al., 2022, Lemma 9] (in the second
inequality step). Thus we choose to reprove this bound for completeness (and get a better constant),
but we essentially follow their arguments.

By [Jin and Sidford, 2021, Lemma 1], by uniform mixing we have

125 = P < 2717 a
for all k > Tynir. Also since P, must be aperiodic since the mixing time is finite, we have [Puterman,
1994] that

T—1
g g T t _ T
h™(s) —Tlgx(l)oIE ZRt Tp™( ] Tlgx(l)()t Oes (Pr) ra —Tp"(s).
Therefore we have
T—1
T t T
1™ llspan = |l Th_r)noo ; (Pr)" rx = Tp"||span

T-1
. t T
— Jim | § j (Pr)! 7x = T span

T—o0

Trr || span

[l
?:‘
8
M

< lim ZH (PTtr—PT?O) Tﬂ-”span

= > I (P = P7°) 7allspan.
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Now we can bound this using (87):

0o Tunif—1 %S
DR =PX) rallspan < Y I (PE=P) rrllspan + Y | (Ph = P5°) rallspan
t=0 t=0 t=Tunif
Tunif —1 o0
= Z ”P;TWHSPan'i‘ Z | (Pfi _P;r)o) Tz [lspan
t=0 t=Tunif

0o
Tunif + Z || (P; _P;'r)o) T7'r||span

t=Tunif

IN

< tunic+ ) 2] (P = P) e

t=Tunif

A

<rtumit+ Y 2||PE— P

rx
oo—»oo” Tlloo

t=Tunif
[e'S)
S Tunif + 2 E 27Lt/TllnifJ
t=Tunif
)
= Tunif + 2 27"
= Tunif Tunif
k=1

= Tunif + 2Tunit = 3Tunif

where in the first equality step we used that P°r. = p™ is a constant vector, then we used that
| Piry|lspan < 1 (since 1 > Plr, > 0 elementwise).

2. We repeat a very similar argument. By the Neumann series expansion,

T —1
VIi={U—-7vP) 'rx
= Z Y Plr,.

t=0

Since p™ is a constant vector,

1
”Vyﬂ”sPan = HV";T n Epﬂ”Span

[eS)
1
= || Z’YtP;'Tﬂ' - 1 — PﬁoTﬂHspan
t=0 7

o0
= Hz/yt (P;- _P:O) Tfr”span
=0
~
S Z ”/yt (P‘f- - P:O) Tfr”span
t=0

< Z ” (P; _P;r)o) TWHSpan
t=0

where we used that ;2 0 vt = ﬁ in the third equality. We can conclude by noting that in the
previous part of this lemma we have already bounded this exact final term by 37ynis.
O

Proof of Corollary 7. This follows immediately from Theorem 6, since both ||A*||span and || ﬁﬁﬂspan can be

bounded by 37y (using Lemma 39, in particular noting that |2 [|span = 1Vi/nll by Lemma 24 so we

s
span

can apply the second part of Lemma 39.) Also Tunir > 1, 80 ||A*||span + ||ﬁ%||Span + 1 < TTunit- O
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E Other DMDP Results

Proof of Theorem 11. Analogously to the proof of Theorem 8, we will show that for sufficiently small per-
turbation, the exact solution of the perturbed empirical DMDP (P, 7, ) is a sufficiently small approximate
solution of the unperturbed empirical DMDP (]3, ).

Let 7 be the exact solution of the perturbed empirical DMDP (ﬁ, 7,7). By applying Lemma 37 with
rn=7r,ro=r,and P = 16, we obtain that

P it

VE>V* -2 S A

_pr_ 1
1—7 1—7 n’

Therefore the policy 7 satisfies the conditions of both Theorem 9 and Theorem 10. Applying both theorems
and taking the union bound, 7 satisfies both guarantees with probability at least 1 — 26. Adjusting the

constants to make the overall failure probability §, and absorbing & = 1;_ny into the other terms within
the log factor of the guarantee of Theorem 10, we can immediately conclude by choosing Ci¢ sufficiently
large. O

Proof of Lemma 12. We will use Theorem 9 to prove this result. By inspecting the proof of the theorem,
specifically the chain of inequalities (33), on the same event that the theorem holds (which is a probability
at least 1 — d event) we have that

3 SAn
1 C1 log =0T

< S_ﬁommﬁﬁmwﬂ) (88)

HV*_‘/}*
[ee] 1—")/

Also the optimality condition on 7, equation (3), implies that V> VR >V - %, which in turn implies
that H\A/?Hspan < |HA/*||Span + 1. Also by triangle inequality we have that

17 s < IV s+ 17 = V¥ llspas < 1V g + 2 [ V* = 7

oo

Plugging both of these bounds into (88), we obtain that (again, on the event that Theorem 9 holds)

Cilo 3( SAn )
~ 1 11og - 1 =
HV* _7l < — T-ms (|V*|span + - 1V llspan + 2 HV* —V| 4+ 1)
Cilo 3( SAn )
1 1108 - ~
< (I—v)o (2|‘V*Hspan+2HV*_V* +2)
1—7 n 00
3 SAn
1 Cl 10g ( — ) R
<1 A (4 pan + 2|V = 7|+ 2) (89)

using that ||V*||span < 2[|A*||span [Wel et al., 2020, Lemma 2] in the last inequality, which holds since we
assumed that P is weakly communicating. Now squaring both sides and rearranging, we obtain

2 2Cllog3((15_‘4’;6) R 2(7110g3 (%)
[v =7 - IV -7 - e e+ 1) <0
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Using the larger root given by the quadratic formula for this polynomial in HV* — P

, we can bound

Hv*_‘/}*
2
3 SAn 3 SAn 3 SAn
Cilog’ () 1 | (2008 () | sCve’ (@) L
n(1—7)? 2 (1 — )2 n(1—7)? o
3 ( SAn 3(_SAn 3 S4n
Crlog? (#55)  Cilos® (i) | |2C11og” (1) (2012l span + 1) (90)
(1= )2 n(1—)? n(1 =) o

Cq1 3 SAn

where in the second inequality we used that va + b < y/a+ Vb, Now if we assume that n > (17;)2?H£fh’”5}rl) ,
span

og® (F255)

C11
or equivalently that W < ||h*]|span + 1, then plugging this into (90), we obtain that

HV*_‘/}*

=208 llspan +1) + \/2(Hh*|\span + 1)(2[[2*|lspan + 1) < 4([[A"[|span + 1)
as desired. O

Proof of Theorem 13. From the choice of v, we have that

1 - n < n
11—y Cllog?’(%”z)_ C’llog?’((ff‘,y’;a)

(where for the inequality we use the coarse bound that ﬁ < mn). We can thus immediately check from this
inequality that the condition of Lemma 12 is satisfied (note we also assume P is weakly communicating),
so we obtain that with probability at least 1 — 4, ||‘A/*||Span < 4(||h*||span + 1). Also by the condition (3),
we have V* > V% > V* — 1 s0 H‘/}%HSpan < ||‘7*Hspan + L. Plugging these bounds into the guarantee from
Theorem 9, as well as the bound ||V*||span < 2||*||span from [Wei et al., 2020, Lemma 2] (which holds since
P is weakly communicating), we obtain that

0103(5An
" . 1 1108\ m=>ys ~
L A (Vg + 177 apa + 1)
0103(5An
1 108" \ 1—)s 1
< 2/|h*[[span + — 4+ 4([|2* ||span + 1) + 1
S " 1A*llspan + — + 4([17*[|span + 1) +
60103(5An
1 108\ i—9)s
<10 (1 pan + 1): (91)

Now, we pause to restate the the main AMDP-to-DMDP reduction result from Wang et al. [2022] (in a form
closer more immediately useful for us):

Theorem 40. [Wang et al., 2022, Theorem 1] If P is weakly communicating, then for any policy m, we have
pr =" < (1= 7) (818 span + 3 [V = V7] ) 1.

Plugging our bound on HV% — V*HOO and our choice of v into this theorem, we obtain that

3 SAn
c 1og3(5‘%"2) 1=~ 6C log ((1_”6

) h*san 1)1
- T - (I7*llspan + 1)

pr =" < 8l|h*[|span




and by using the inequality v/a + Vb < 2v/a + b, that ||h*||span < 5I1A* 12,00 + 3 by AM-GM, and choosing
C11 appropriately, the RHS can be bounded by

- C’lllogB(w)
p* —-—p S \/#5 (Hh*ngan + 1)1

as desired. (Note that the total failure probability is actually just < ¢ since by the proof of Lemma 12, the
event of Lemma 12 is contained within the event that the bound from Theorem 9 holds.) O

F DMDP Reduction Approach

Here we provide theorems with identical guarantees as to those of Theorems 3 and 6, but instead of requiring
solutions to the anchored (resp., perturbed) emprical AMDP (P, r) (resp., (P, 7)), the optimality condition is
expressed in terms of solutions to the empirical (resp., perturbed empirical) DMDPs (ﬁ, r,7) (resp., (]3, ,5))
withy =1-— % Thus, the same conclusions hold for the DMDP reduction approach using an effective horizon
of ﬁ = n, which does not require prior knowledge. Because of the close connection between anchoring and
horizon-n-discounted reductions, the proofs are completely trivial.

Theorem 41. Suppose P is weakly communicating. Set € =0 and vy =1 — % in Algorithm 2. Also suppose
that SolveDMDP is guaranteed to return a policy T~ satisfying
Hf/\'l*_% _ ‘7'177'7

1
<=
n

1
n 1100

Then with probability at least 1 — 0,

- Cs log® (S4n ~
P —pt < \/T(J) (”h*”swn + IV} 1 [lspan + 1)1-

-

Proof. Note that the proof of Theorem 3 uses Lemma 27 to show that any 7 satisfying the optimality
condition (2) which appears in the statement of Theorem 3 also satisfies the condition (41), and then the
rest of the proof only uses the fact that 7 satisfies the condition (41). Since the above requirement that

o~

> i
“/;*_L -V v,
n

-1 < % is exactly the condition (41), the rest of the proof immediately goes through for 7,

o0
in place of 7. Lastly, we can use Lemma 24 to obtain that ||ﬁ*||Span = ||V 1 |lspan and thus replace the
HE*Hspan term which appears in Theorem 3. O

Theorem 42. Suppose P is weakly communicating. Set £ € (0, %] and vy =1-— % in Algorithm 2. Also
suppose that the policy T returned by SolveDMDP is guaranteed to be the exact discounted optimal policy of

the DMDP (ﬁ, 7,7). Then with probability at least 1 — ¢,

Cs log3 (56—‘2"

S (0 pan + V7 lspan + 1)1

pr—p <
Proof. As noted in the proof of Theorem 6, under the event that the theorem’s guarantee holds, the policy 7
which is the exact Blackwell-optimal policy of the AMDP (P, 7) is identical to the exact discounted-optimal
policy of the DMDP (ﬁ, r1— %), so we immediately obtain the bound which appears in Theorem 6. Then
using Lemma 24, we have ||2™ [|span = HVﬁj 1 llspan, S0 we can replace the ||™||span term which appears in
Theorem 6. " o
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G Proof of Theorem 14

Proof of Theorem 1/. First we provide the MDP, P as well as an MDP P which has a constant probability
of being sampled from P.

Figure 1: A true MDP P and an MDP P which has constant probability of being sampled from P when n
samples are drawn from each state-action pair. Dashed lines are used to indicate all possible stochastic next-
state transitions after taking a given action, with each dashed line being annotated with the probability of the
particular next-state transition. They differ only in state-action pair (s,a) = (1,1), for which P(2[1,1) =1
but P(2]1,1) = 0.

Since there are two states we encode each Markovian deterministic policy as a tuple (7(1),7(2)). First
we compute properties of P, starting with the gains of the Markovian deterministic policies. It is easy to
see that both policies which take action 1 in state 2 will stay in state 2 once reaching it. Also it is easy to
see that both policies which take action 2 in state 2 will converge to a limiting distribution which is uniform
over the two states. Therefore we will have that

ay [k 1 141 0
pr = {i} 7p(271) = [i] 7p(1.’2) = [i 4 2_fl} 7p(2’2) = |:0] .
2 2 77T 2n

Thus policies (1,1) and (2,1) are both gain-optimal and the optimal gain is p* = %1. Comparing between
these two policies it is clear that (1, 1) is the only bias-optimal policy (and thus the only Blackwell-optimal
policy), since these two gain-optimal policies induce the same distribution over states (the Markov chains
P11y and Pyp) are equal), and thus the only difference is the reward obtained in state 1, which is larger if
action 1 is taken. Now we compute h*. The Markov chain P(; ;) is eventually absorbed in state 2, so (since
we must then have PT;) = 1[0, 1] and we have Piyht = 0) it is immediate that 2*(2) = 0. Using the first
row of the equality p* + h* = r( 1) + P(1,1)h*, we have

1,11 1\ ., 1,0 1.1 1),
5+h(1)—2+n+(1 n)h(1)+nh (2)_2+n+<1 n)h(l)

1 1
<~ —h*(1)=—
n n

<~ h*(1) =1.

Thus ||2*||span = 1.

It is immediate that the diameter of this MDP is equal to D = n, since the expected hitting time of state
2 from state 1 (from any policy) is the expected value of a Geom(4) RV (with range {1,2,...}), which is
D, and likewise for reaching state 1 from state 2, only action 2 leads to this state, and it again has expected
hitting time of n = D. To calculate myuir for P, since either action taken in state 1 has the same next-state
distribution, we simply need to compute the mixing times of the Markov chains with transition matrices

1-1 1 1—-1 1
o i)
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The first of these matrices is symmetric and (as mentioned before, or is trivial to check) has stationary

distribution [%, %] and is irreducible, and thus its mixing time is bounded by a constant times its relaxation
time [Levin and Peres, 2017, Theorem 12.4]. This matrix has trace 2—2 and determinant (1-1)?— 24 =1-2,

so it eigenvalues are 1 and 1 — % Therefore this matrix has absolute spectral gap % and thus relaxation

time %, so it has a mixing time which is ©(n). For the second of the matrices in the above display, since the
stationary distribution is simply a distribution with all its mass on state 2, the mixing time is simply the
smallest integer ¢ such that P1(n2 < t) > 3 where 7, is the hitting time of state 2 (and Py is the probability
distribution induced by this Markov chain starting in state 1). Since 7o ~ Geom(L) (where this is the

Geometric random variable taking values in the range {1,2,...}), setting ¢ = n1n2 we obtain

n~ In2 In2
1 1 1 1
< =1—- - — >1—( - =1—- ===
Pi(ne <nln2)=1 ((1 n)) >1 (e) 1 5= 3

where we used the fact that n — (1 — %)" is an increasing function which approaches 1/e. Thus the Markov
chain associated with this second matrix also has mixing time ©(n), so we have Tynir = O(n).

Later we will need the fact that HV'V* — VV(I’Q)H > %2, which we will check now by showing that

V,Y(1’2)(2) < Vr(2) - %2 First we compute V.Y(1’2). For convenience we will abbreviate this as V. By

the Bellman evaluation equations we have

V(1) = % + % +7 <1 - %) V) + %V@)
ek 2) (2o S
_ % + % v (1 e t;_ 1) V(1) + ni; v (2)
which implies
v = ot (e ). (92)

Writing the other evaluation equation, we have

V(2) =~ <1 - %) V() + %V(l)
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Substituting (92) into the above display,

n?+n-—1 n?—1 n? 1 1 n?2-1
—V(2) = -+ —
n3 @ n3 n2+n—1( T

2 n n3
n?+n—1 n?—1 n?-1 n?—1 1 1
= - VR)=————(=+-
( n3 n2+n—1 nd ) @) n2+n—1 <2+n>

o (S - o 1)

(n?+n—1)n3 n?+n n
— (("2 tn- 13;_ (n* — 1)2> V(2) = (n? - 1) <% + %)
= (W) V(2) = (n?—1) (% + %)
— %V@) —n? (% + %) .

Therefore

S

2n? +n —2 o (1 1 o1 1

(using that n > 10) so V(2) < n?3 (3 + &) = n.
Now we can easily observe V*(2) > m% =n’i
state and is absorbed there, collecting reward % at all times (in fact this action is optimal but we don’t need

to check this). Therefore we have that

since there exists a policy which takes action 1 in that

Vr(2) = V2 (2) > n?

3
2
v ™10

N~

which implies that HV; - V'y(1’2)H > %2
1

Now we check that the probability of P being equal to the instance displayed above is at least o=.
There are 4 state-action pairs which are sampled independently so we can compute the probability for
each state-action pair separately. There are only two states, so we can encode P with the values of a
random variable N (s, a) which for each s,a counts how many transitions to state 1 are observed. We have
N(1,1) ~ Binom(n,1 — 1), N(1,2) ~ Binom(n,1 — 1), N(2,1) ~ Binom(n,0), and N(2,2) ~ Binom(n, 1).
With this definition of N, we get the P displayed in Figure 1 if we have N(1,1) = n, N(1,2) = n — 1,
N(2,1) =0, N(2,2) = 1. By independence and the Binomial pmf we have

P(N(1,1)=n,N(1,2) =n—1,N(2,1) = 0,N(2,2) = 1)
=P(N(1,1) = n)P(N(1,2) = n — D)P(N(2,1) = 0)P(N(2,2) = 1)

n n—1 n—1
:(1_l> .nl(l_l) .1.nl(1_l)
n n n n n

and it is a standard fact that this final expression is increasing in n, so we can lower bound it by plugging

1

in the lowest value n = 10 for which we obtain (1%)30 > 0.04 = 21—5 (As n — oo this approaches .)

From here we operate on this event that P is equal to the instance shown in Figure 1. It is easy to see
that P is communicating, since in both states action 2 has positive probability of leading to either state.
First we compute the Blackwell optimal policy 7* of P. It is easy to see that

4+ 1 1,1 1 0
1 n:|7ﬁ<172): |:i+i:|7ﬁ(211): |:i 7ﬁ<272): ol
2 n 2

1
D — [5
2
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Therefore the only Blackwell optimal policy is the only gain-optimal policy, (1,2). As we have already
checked, this policy has suboptimality (in the true P)

1 1 1 1 1 1
- - — - + -— > - - — = —.
o 2 4 2n) 4 20 5

Next we compute the discounted optimal policy for effective horizon ﬁ = n?. It is obvious that the

optimal action in state 1 will be action 1, so we will compute and compare the value functions VD and
V(2 Tt is easy to see that

~ 1 141

V(lvl) - _ |:2 1 n:|

L=yl 3

Hpu,z) _

since both states are absorbing under this policy. Now we compute v, First, since state 1 is absorbing,

it is immediate that 17(1’2)(1) = ﬁ (% + %) =n? (% + %) From the Bellman evaluation equation for state
2 we have that

1 1 11 1\ ~
12 (2) =0+ WEV(l’Q)(l) +v (1 - 5) 1:2)(2) = yn (— + E) + (1 - E) V2 (2)

1% 1%
) 2
1 ~ 1 1
= (1—7(1——)>V(1’2)(2):7n (——l——)
2 n
1 1 ~ 1 1 1
—= (1-(1-=)(1- vade) =(1- = — 4=
(1= (1-5) (1-2)) prre = (1= ) n (35
n?4+n—1-~ 1 1 1 n 1 1 Z+n?-2-1
7(1.2) (9 1= I R I 2
n3 (2) n? " 2+n 2 2n  n? n?
pupgg_ " FAni-3-l Hanomon Hay oy o
— T n24n-1 n? n2+n-—1 n2+n—1 2

where the final strict inequality requires "73 —n > 0, which holds for all n > 2. Thus we have shown that

V2 (2) > "—; = ﬁ% = V(®1)(2), so the optimal policy for the DMDP with horizon ﬁ is (1,2). As we
2
have previously checked, this policy has suboptimality in P at least “-.

Now it remains to check the final two statements of the theorem. Fix a constant C' > 0. Then since the
term 4/ % goes to 0 as n — oo, we can choose n sufficiently large so that C'y/ % < % Then considering

the instance P constructed with the parameter n, since it has ||*||span = 1, we have

0B _ g [ o8 T ) _ 1

n n

As we have argued, there is probability at least % that P is sampled from P, and under this event, we
have both Hp* —pﬁ*HOO > % and HVA;k — Vf*

o 2 %2 = ﬁ% (where we choose vy =1 — #) Therefore the

statements
5 * . * L
P >p" — C\/'h [[span 10g ([[7*[|spann) 1 1
n 25
o 1 l|7*[lspan log (||2* ||span7) 1
v > * _
IE"(VV _V,Y Cl—'y\/ - > 1 5%
are both false. O
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