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Motivated by robust and quantile regression problems, we investigate the stochastic gradient descent (SGD)
algorithm for minimizing an objective function f that is locally strongly convex with a sub—quadratic tail. This
setting covers many widely used online statistical methods. We introduce a novel piecewise Lyapunov function
that enables us to handle functions f with only first-order differentiability, which includes a wide range of
popular loss functions such as Huber loss. Leveraging our proposed Lyapunov function, we derive finite-time
moment bounds under general diminishing stepsizes, as well as constant stepsizes. We further establish the
weak convergence, central limit theorem and bias characterization under constant stepsize, providing the
first geometrical convergence result for sub—quadratic SGD. Our results have wide applications, especially in
online statistical methods. In particular, we discuss two applications of our results. 1) Online robust regression:
We consider a corrupted linear model with sub—exponential covariates and heavy-tailed noise. Our analysis
provides convergence rates comparable to those for corrupted models with Gaussian covariates and noise.
2) Online quantile regression: Importantly, our results relax the common assumption in prior work that the
conditional density is continuous and provide a more fine-grained analysis for the moment bounds.
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1 INTRODUCTION

The problem of minimizing objective functions that are not strongly convex has garnered consid-
erable attention across various domains, including modern statistical machine learning—such as
matrix and tensor completion [25, 26, 71], deep neural networks [35, 45, 50], and robust statistics
[32, 44, 47, 48]—as well as in optimization [18, 54] and stochastic approximation [2].

Specifically, in robust regression [6, 47, 48], the goal is to recover the underlying model when the
data is contaminated by outliers and/or corruption. In particular, it aims to find the global optimizer
0" of the population-level loss function:

fO) =E[l(y-xT0)], (1)
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when given observations of independent and identically distributed (i.i.d.) data {(xy, yn) }n>0 gen-
erated from a corrupted linear model: y = x " 0* + € + s, where € represents the error and s denotes
the corruption. In robust regression, the error € is typically heavy-tailed without a second moment
bound. It is well recognized that the classical squared loss function cannot handle heavy-tailed
errors or corruption effectively. To encourage robustness, the field has been widely using loss func-
tions [ that have sub—quadratic tails to assign less weight to outliers. Common robust loss functions
include Huber [31], Pseudo-Huber loss [29] and log-cosh loss [63]. Importantly, the population-level
loss f inherits the sub—quadratic tail behavior of the loss function /. Meanwhile, we observe that f
is strongly convex in a neighborhood of 8*. The problem of minimizing objective functions with
local strong convexity and sub—quadratic tails also arises in quantile regression [28, 41]. Quantile
regression estimates the conditional quantile of the response given covariates, and is widely used
in various applications [5, 49, 68].

Motivated by the robust and quantile regression problems, we consider stochastic gradient
descent (SGD) algorithms aimed at approximating the global minimum 6* € R¥ of a non-strongly
convex function f : R? — R, using unbiased estimates of the function’s gradients:

Ont1 = On — an (Vf(0n) + wn(0n)), (2)

where V£ denotes the population-level gradient of objective function f, {a,}n>0 are the stepsize
sequence, and {w,(-) }n»0 are i.i.d. copies of a random field w(-) with E[w(8)] = 0 for all § € R%.
In this work, we focus on a class of objective functions that are locally strongly convex around
0" and exhibit a sub—quadratic tail. Throughout the paper, we refer to this function class as
sub—quadratic functions and, for brevity, we call the corresponding SGD procedure sub—quadratic
SGD.

Sub-quadratic SGD covers many widely used online statistical algorithms, including those for
online robust regression [27, 55] and online quantile regression [11, 36, 64, 69]. Classical studies
on robust regression [6, 47, 48] and quantile regression [28, 41] primarily focus on processing
complete datasets, which can be computationally inefficient and memory intensive. In many
practical applications, however, data either arrives sequentially or is too large to be processed all
at once, making SGD algorithms a natural and scalable alternative for the optimization problem.
Research on online robust/quantile regression remains relatively limited. Prior work on online
robust regression [55] focused on corrupted linear models with Gaussian-distributed covariates
and error. For online quantile regression, earlier work [11, 36, 64, 69] assumed that the covariates x
are at least sub—Gaussian and that the conditional distribution of the error € given x has a density
that is continuous everywhere. In this work, by studying the class of sub—quadratic SGD, we
introduce a unified framework for a more complete analysis of both online algorithms, and relax
the assumptions imposed in previous work.

In Table 1, we summarize some most related work on SGD. One line of work considers strongly
convex objective functions f, where the behavior of the iterates {0, }n>0 is well-understood under
both diminishing stepsizes (@, — 0) and constant stepsizes («, = «). With diminishing stepsizes,
studies have demonstrated that setting @, = i/(n + k) achieves the optimal convergence rate of
E[l16, — 0*]|?] = O(1/n) [9, 12]. Under a constant stepsize a, the iterates {6, },>o form a Markov
chain that converges geometrically to a limiting random variable Géoa), which oscillates around 6*
[19, 74]. Notably, the asymptotic bias E[Béoa)] — 0" is typically nonzero. When Vf is continuously
differentiable at 6%, this bias is proportional to the stepsize « [19, 33, 75]; when V f lacks continuous
differentiability the bias is proportional to va [74].

In contrast, our understanding of SGD for minimizing sub—quadratic functions f is very limited.
Prior work [38, 42] has primarily focused on deterministic gradient descent (w(-) = 0), providing
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convergence rates for ||0, — 0*|| with diminishing stepsizes. Recent work [24] considered sub-
quadratic SGD with diminishing stepsizes and derived non-asymptotic moment bounds for E[||6, —
0*||”]. However, their analysis requires twice differentiablility of the function f and restrictive
assumption on the noise sequence {wy(-) }n>0, due to the limitation of their proposed Lyapunov
function. Beyond diminishing stepsizes, the study of constant stepsize sub—quadratic SGD via a
Markov chain perspective remains scarce. In recent developments, [58] introduced a novel technique
to analyze the weak convergence of Markov chains, validating their approach with specific examples
of sub—quadratic SGD involving solely additive (i.e., w(0) is independent of 8) and heavy-tailed
noise.

Stepsi diti Weak convergence
Objective function f Noise w(6) €ps1z€ ConAition 1 with constant stepsize | Bias
for moment bounds ()
0, = 0
strongly convex [12] | E[|jw(0)]|?] < o a:rz Egjr'i)]g’ — —
strongly convex [19] | E[|[w(0)[*] < o an =« geometric O(a)
subquadratic . an = — =7,
’ - (n+x)€ — —
£ e C2(RY) [24] sub—Gaussian Fei/2)
some special 91 _ _ . _
subquadratic f [58] Elllw(9)II] = e polynomial
subquadratic, o = 1
f e C'(RY), sub-exponential " <8+’;)§’ geometric 0(a)
This work felo]

Table 1. Summary of most related work on SGD under different settings. We examine conditions on the
objective function f and the noise w(0), stepsize condition required for establishing moment bounds E[||6,, —
6%||%P], and discuss weak convergence result and bias characterization. Here, C™(R?) denotes the class of
real-valued functions on R¢ that are m-times continuously differentiable.

In this paper, we investigate sub—quadratic SGD, focusing on scenarios where the objective
function f is only first-order differentiable and exhibits tails with at least linear growth. This
function class covers many widely adopted loss functions in various domains. Building upon this
class of SGD, our main contributions are summarized as follows.

e A Novel Piecewise Lyapunov Function: As elaborated in Section 3.1, the key challenge of
analyzing the convergence of the iterates {6,},>0 is to construct an appropriate Lyapunov
function. This task is complicated by the piecewise behavior of the objective function, which
is locally strongly convex around * but has a sub—quadratic tail. Prior work [24] develops
a Lyapunov function for sub—quadratic SGD but imposes restrictive conditions on both the
objective function and noise. In Section 3, we propose a novel piecewise Lyapunov function that
effectively exploits the structure of sub—quadratic SGD without such restrictive assumptions.
This new Lyapunov function allows us to derive the following analytical results.

e Finite-Time Moment Bounds: We provide finite-time analysis of the moments E[ |0, — 6*||?"]
for both diminishing and constant stepsizes. While [24] also obtain moment bounds, they only
considered diminishing stepsizes a, = m with & € [1/2,1). In contrast, with our new
piecewise Lyapunov function, we are able to analyze a broader class of diminishing stepsizes
with & € (0, 1]. In particular, we recover the results in [24], without requiring the objective
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function to be twice differential or imposing restrictive assumptions on the noise sequence. Our
techniques also enables us to establish moment bounds under constant stepsizes (@, = a), and
such bounds play a crucial role in the fine-grained characterization of the Markov chain {6,}.
These results are presented in Section 4.1.

e Weak Convergence, Central Limit Theorem and Bias Characterization: We investigate
the SGD update (2) with a constant stepsize, and establish the weak convergence of the iterates
{0} n>0 to alimiting random variable 950“). In particular, leveraging the new piecewise Lyapunov
function, we extend the drift and contraction (D&C) technique [57] to show that constant stepsize
sub—quadratic SGD with sub—exponential noise converges geometrically to 920“). To the best of
our knowledge, this is the first geometric convergence result for SGD applied to sub—quadratic
functions. Having established weak convergence, we further prove a central limit theorem
for the Markov chain {0, },>¢, which is crucial for statistical inference [46]. Additionally, we
characterize the asymptotic bias E[Béoa)] — 0" and show that it is proportional to the stepsize «
up to higher-order terms. These results are detailed in Section 4.2.

o Applications in Robust Regression and Quantile Regression: We apply our results on
general sub—quadratic SGD to important statistical problems: online robust regression [27, 55]
and online quantile regression [11, 36, 64, 69]. For both settings, our new Lyapunov analysis
allows us to relax restrictive assumptions considered in prior work and thereby provide a more
comprehensive analysis. Specifically, our results are applicable to online robust regression with
sub—exponential covariates and heavy-tailed error, and similarly to online quantile regression
with sub—exponential covariates without requiring the continuity of the conditional density of
the error €. These findings are presented in Sections 5 and 6.

1.1 Additional Related Work

Stochastic Gradient Descent and Stochastic Approximation. The study of stochastic gradient descent
(SGD) and stochastic approximation (SA) began with the seminal work of Robbins and Monro [60].
Early research focused on diminishing stepsizes [7, 8], proving almost sure asymptotic convergence
for contractive SA and strongly convex SGD algorithms. Later, Ruppert [62] and Polyak [56]
introduced the Polyak-Ruppert averaging technique to accelerate convergence. Recent works have
explored non-asymptotic convergence with diminishing stepsizes. Studies in [10, 13, 15] focus on
contractive SA, establishing moment bounds on E[||6,, — 6*||?”], and [14] provides non-asymptotic
confidence bounds on the estimation error. However, these works are limited when considering
subquadratic SGD. Gadat et al. [24] address diminishing stepsize subquadratic SGD, providing
moment bounds for raw and averaged iterates under the assumption of twice differentiability of the
objective function f. In contrast, we analyze subquadratic SGD requiring only once differentiability
of f by proposing a novel piecewise Lyapunov function.

There is growing interest in studying SGD and SA with constant stepsizes due to their ease
of implementation and potential for faster convergence and robustness [19]. However, constant
stepsizes eliminate the almost sure convergence guarantee present with diminishing stepsizes.
Instead, convergence is to a limiting random variable 95:‘) [19, 33,73, 75], often exhibiting asymptotic
bias where ]E[Gf,oa) ] # 0". For contractive and locally smooth SA updates, studies have shown
that the asymptotic bias is of order ®(«a) [19, 33, 75]. Zhang [74] investigates contractive but
non-differentiable SA updates with specific structures around 6*, proving that the asymptotic
bias is of order ©(+/@). In the constant stepsize regime, several works provide non-asymptotic
moment bounds; for example, [43, 53] focus on linear SA, and [13] uses the generalized Moreau
envelope to analyze general contractive SA. However, limited prior work addresses constant stepsize

, Vol. 1, No. 1, Article . Publication date: February 2025.



A Piecewise Lyapunov Analysis of sub—quadratic SGD: Applications to Robust and Quantile Regression 5

subquadratic SGD. In this paper, we establish similar results for constant stepsize subquadratic
SGD as those for constant stepsize strongly convex SGD and contractive SA.

Markov Chain Studies. When considering SGD with a constant stepsize, the raw iterates {6, }n>0
form a time-homogeneous Markov chain in a general state space [19, 74]. Previous work focusing
on Markov chains in general state spaces has proposed various techniques to verify convergence
and provide convergence rates. Most convergence results are established by verifying drift and
minorization (D&M) conditions [1, 4, 73]. However, verifying D&M conditions often relies on
assuming that the density of the noise is lower bounded from 0 in a selected region, which may
not hold when the noise term follows certain discrete distributions. Recently, [58] proposed a
contractive drift (CD) condition, under which convergence with polynomial, subgeometric, and
geometric rates can be verified. However, their analysis heavily depends on the smoothness of the
update (see [58, Assumption 2]) and it is not clear how to analyze their locally Lipschitz constant
when the noise w(-) is not an additive nouse. In this work, we utilize an alternative framework
proposed by [57] that verifies drift and contraction (D&C) conditions, which can be used to provide
a geometric convergence rate of a Markov chain in the Wasserstein-1 distance.

Online Robust Regression and Online Quantile Regression. Robust regression [6, 47, 48] and quantile
regression [28, 41] have a long-standing history in statistics. Notably, most previous methods are
based on a batch framework, where the entire dataset is available before estimation begins. Recently,
attention has shifted towards online methods. In online robust regression, previous work [55]

studied the fj-corrupted linear model with Gaussian covariates and noise, providing a convergence
rate of O (rl(%n)z) For online quantile regression, [64] considered the SGD update but restricted
to Gaussian covariates, establishing a convergence rate of O(1/n). In this work, by utilizing results
on sub—quadratic SGD, we provide more fine-grained analyses in both settings.

2 PRELIMINARIES
In this work, we study the SGD of sub—quadratic objective functions f satisfying the following

assumptions.

AssUMPTION 1 (SMOOTHNESS). There exists a constant L > 0 such that, for all 6,0 € RY,
IVF(0) = V@) < LlIo-0"]l.

AssUMPTION 2 (LOCAL STRONG CONVEXITY AND SUB—QUADRATIC Ta1r). There exist 0* € R? and
constants y,a,b, A > 0 and k € [1,2) such that:

(1) V0, 0" € {0 e R : ||0 - 6*|| < A},

(O = 0. F(0) = VF(0")) = o' - 0" "
(2) V0 eR¥ e {8 eR: |60 -6 > A},
IVF(O)Il < allo—6°I*"  and (6-6-Vf(6)) = bll6-6"".

A few remarks are in order. In Assumption 2, the first condition requires that the objective function

f is locally strongly convex in a neighborhood of 8*. The second condition states that f grows at

least as fast as ||§ — 0*||F. As an immediate consequence, Assumption 2 ensures that f has a unique
minimum at 8*. Moreover, many popular loss functions in robust statistics satisfy Assumptions 1

112, if [t] < 6,
S|t| - %(52, otherwise,

I(t) = 82(\/1+ (t/5)% — 1) [29] satisfy the above two assumptions with k = 1. Additionally, the

and 2. For example, the Huber loss I(t) = and the Pseudo-Huber loss
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generalized Charbonnier loss I(t) = (2 + cz)w/2 [66] and Barron’s general robust loss I(t) =
laf;z‘((ffx/—_c;lz + 1)0(/2 - 1) [3] satisfy the above two assumptions with k = a when a € [1,2).
Furthermore, as we will see in Sections 5 and 6, online robust regression and online quantile
regression can be reformulated as SGD for sub—quadratic functions with k = 1.

In this work, we focus on the parameter regime k € [1,2). We intentionally exclude k = 2 since
the case k = 2 (i.e., one point convexity) has been studied extensively [19, 73], while analysis for
k € [1,2) remains relatively scarce. Compared with the previous assumptions on the sub—quadratic
objective function [24], we relax the assumption that the objective function is twice differentiable
by only requiring the first-order differentiability. Although we need an additional assumption that
(60— 0", V£(6)) > b||0 — 6*||F, we argue that this is verifiable in both online robust regression and
quantile regression. Furthermore, our Assumption 2 leads to a better designed Lyapunov function,
which requires fewer additional assumptions about the objective function and the noise, as detailed
in Section 3. Importantly, our Assumption 2 allows us to include more commonly used objective
functions that are only once differentiable, such as the widely used Huber loss.

To state the assumption on the noise {wy(+) }n>0, we introduce the 1,;-Orlicz space [67].

DEFINITION 1 (/4—ORLICZ SPACE). Let X be a real random variable in the 4-Orlicz space, denoted
by Ly, . Then, the following properties are equivalent; the parameters Kq; > 0,i € [2] appearing in
these properties differ from each other by at most an absolute constant factor.

(1) P(X| = t) < 2exp(—tq/KZO), Yt > 0.

(2) (BIX|P)'/P < Kq1p'/9,¥p > 1.

(3) Eexp(A9|X]9) < exp(Kg,z}tq),V/l such that0 < A < Ii

In this paper, we consider i.i.d. noise sequence {w,(-)}n»o that is uniformly in the 1/;—Orlicz
space for some g € (0, 1], as stated in the following assumption.

AssUMPTION 3 (Q). [|w(0)|| is in Ly, with the parameters Kq; > 0,i € [2] forall 0 € R4,

We note that Ly, represents the class of all sub-exponential random variables, and Ly, denotes
the class of all sub—Gaussian random variables, and Lqu] C L%Z whenever g; > g;. In this work, we
focus on objective functions that satisfy Assumption 2 with a parameter k € [1, 2). Consequently,
we require the noise sequence to fulfill Assumption 3(q) with q = 2 — k by default. Throughout
the remainder of the paper, when we refer to Assumption 3, it specifically denotes the case where
g = 2 — k. We say that a random variable x is c—sub-exponential if x € Ly, with K = o.

Furthermore, it is crucial to highlight that for SGD with strongly convex objective functions,
previous studies [51, 74] only require that the expected squared norm of the noise satisfies
E[lw(0) ] € O(]|@ — 6*||> +1) for all § € R?. In contrast, as we will expain in Section 3, achieving
similar results as those for strongly convex SGD in the context of sub—quadratic SGD necessitates
more stringent conditions beyond merely having finite moment bounds and Assumption 3 is
exactly the least assumption we need. Additionally, we remark that [24] imposes a more restrictive
assumption on the noise sequence by requiring that {wy(-)},>o uniformly resides in the Ly, ,
space. In contrast, our approach only requires g = 2 — k < 4 — 2k, thereby relaxing the assumption
on the noise sequence compared to [24]. Moreover, as to be discussed in Sections 5 and 6, the noise
for online robust regression and online quantile regression satisfies Assumption 3.

2.1 Notations

Let I represent the d X d identity matrix, and let N denote the set of natural numbers. The symbols
> and [] are used to indicate summation and product operations, respectively. When the lower
index exceeds the upper index, i.e., a > b, we define Zf-’:a =0and Hf—’:a = 1. For any n € N, the
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notation [n] stands for the set {0, 1,...,n}. If x € R? is a vector, ||x|| denotes its Euclidean norm,
and if A € R¥ is a matrix, ||A|| represents its operator norm. A function g : R — R is called
1-Lipschitz if for any 6,6 € R?, |g(8) — g(6”)| < ||6 — €’||. We use ® to denote the tensor product.

We denote P;(RY) as the space of integrable probability measures on R¥. For a random vector
0 € R, £(0) represents its distribution. The Wasserstein 1-distance between two distributions y
and v in P; (R?) is defined as

Wilwv) = inf /R Nu=olldé(uo) =inf B0~ 0'll] : £O) =p LO) =v}, ()

Eell(p,

where IT(y, v) denotes the set of all joint distributions in P (R¢ x R?) with marginals y and v.
For real-valued functions ¢;(x), g2(x) : R* — R*, we write g;(x) € 0(gz2(x)) if limy—c Z;E—;; =
We denote g1(x) € O(gz(x)) if there exists a constant C > 0 such that g;(x) < Cg,(x) for all
sufficiently large x, and g;(x) € Q(g2(x)) if g1(x) > Cgy(x). Finally, we have g;(x) € 0(g2(x)) if

g1(x) € O(g2(x)) and g;(x) € Q(ga(x)).

3 CHALLENGES OF ANALYZING SUB-QUADRATIC SGD AND A NEW PIECEWISE
LYAPUNOV FUNCTION

In this section, we discuss the challenges associated with analyzing sub—quadratic SGD and provide
an intuition behind our proposed Lyapunov function. For illustration purpose, we consider the
following simple SGD algorithm with a constant stepsize @ and only additive noise, as presented in
[58, Section 8.2]:

0, — a (0, +wy) if |6,] < 1,

4
0, — a(sign(0,)|0a1P~" + wy) if|6,] = 1, @)

Onse1 = On — a(f'(On) + wn) = {
where § € [1,2) and {wy, },>0 denotes the i.i.d. zero mean additive noise sequence independent of
0. The corresponding objective function is defined as

62/2 if 0] < 1,

01f/—1/+1/2 if|6] = 1. (5)

f(0) = {
It is easy to verify that the objective function (5) satisfies Assumptions 1 and 2.

3.1 Limitations of Prior Work and Challenges of Analyzing sub-quadratic SGD

For the simple example in (5), when f = 2, the objective function is global strongly convex. The
corresponding SGD dynamic (4) is well studied [19], where the iterates {6, } converge geometrically
to a limiting random variable 9§Oa>, assuming the noise has a finite second moment (E[|wp|?] < o).
Meanwhile, for functions with local strong convexity and sub-quadratic tail (f € [1,2)), our
understanding of the SGD convergence is much limited. For the special case of deterministic
gradient descent without noise (w, = 0), one can show that the iterates converge geometrically to
6* = 0 due to the local strong convexity of f, achieving Q-convergence of order 1'.

However, challenges arise with the presence of gradient noise {w, }. It remains unclear whether
the SGD update (4) can still achieve geometric weak convergence as the deterministic case or
strongly convex setting. Interestingly, recent work [58] showed that when the noise is heavy-tailed
with E[|wg|"] < oo for y € (1,2] and y + > 3, the iterates {6, } converge weakly to a stationary

_YHp3
distribution at a polynomial rate of O (n E= ). For the special case § = 1 and y = 2, they establish
an nonexplicit convergence rate o(1), which is argued to be non-improvable to any polynomial

[On41-L|
[6n—L]

1A sequence {0} converges to L with Q-convergence of order 1if 0 < limy—co <1
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rate. The distinct behaviors of this class of SGD demonstrate the compounding effect of the noise
and the sub—quadratic tail on the convergence rate.

On the other hand, in many applications with sub—quadratic objective functions, such as robust
regression and quantile regression (cf. Sections 5-6), the gradient noise is inherently light-tailed,
such as sub—exponential distribution. Intuitively, when the noise wy, is light-tailed with higher-order
moments, the iterate 6, tends to move closer towards the local strongly convex region compared
to the heavy-tailed case. This raises the question of whether the iterates {6, } can converge to
a stationary distribution at a faster, possibly geometric, rate when the noise is light-tailed. We
remark that the method in [58] is limited to the heavy-tailed noise with y € (1, 2] and it is unclear
how to extend their approach to the light-tailed case.

To analyze the dynamic of a stochastic sequence {6,}, a common approach is to investigate
the drift of an appropriately chosen Lyapunov function to bound the moments of the error |6, —
07| [13, 15, 33, 65]. The key challenge here is the construction of a proper Lyapunov function.
Specifically, to establish geometric convergence of the iterates {6, }, the Lyapunov function V :
RY — R* is expected to satisfy the following drift condition:

E[V(6;)] < (1-an)V(6) +O0(a*), Vb, € R. (6)

Lyapunov functions with the above property are crucial for deriving geometric moment bounds of
strongly convex case [12, 15], as well as for establishing geometric weak convergence of Markov
chain by verifying the drift and contraction (D&C) condition [57]. While there are other techniques
developed for proving geometric convergence, they have limitations as discussed in Section 1.1.

To gain intuition on identifying Lyapunov functions of property (6) for sub—quadratic SGD, let
us consider the simple example (4). By taking Taylor expansion of V(6;), we note that there exists
a random variable A > 0 depending on 6, and wy such that

E[V(61)] = V(60) — aB[V’ (60)(f(60) + wo)] + a*/2E[V" (8 — aA(f” (60) + wo)) (" (60) + w0)°]

=V(0) —aV’'(0o)f" (6o) + %E[V”(QO — aA(f(6o) + wo)) (f' (6o) + wo)*]. (7)

Combining equation (7) and our goal (6), we aim to find a Lyapunov function that satisfy

(1) V' € Q(V);

(2) E[V” (A0 + (1 = 1)00) (f' (60) + w(00))*] € O(V(6p) + 1);

(3) Require minimal additional assumptions on the objective function f and the noise w.
Given condition (1), we argue that the classical polynomial Lyapunov function V(6) = |0|?? for
strongly convex case can not be applied to sub—quadratic SGD, since V’(0) /() = 2p|0|%**F~2 ¢
Q(V(0)) when |6| > 1. In fact, to ensure condition (1) holds, we need to analyze (1) in two regions.

Region 1 (local strong convexity): |6| < 1. In this case, (1) simplifies to: V/(6)0 o< V(6), which
implies V() o 0 by solving the ordinary differential equation (ODE) y’x = 2py for any p € N*,

Region 2 (sub—quadratic tail): |0] > 1. Here, (1) becomes: V' (8) sign(8)|0|#~! o« V(8), leading to
V(6) x exp (%) by solving the ODE ¢’ sign(x)|x|#~! = y.

Importantly, we observe that for sub—quadratic SGD, the Lyapunov function has to admit an ex-
ponential tail with the order of at least exp(|0]>~#) in Region 2. Consequently, to ensure E[V (6;)] =
E[V(6y — a(Vf(6y) + wo))] well-defined, the noise should at least satisfy E[exp(|wo|>~#)] < 0.

There are two approaches to define a Lyapunov function that satisfies the above properties in
the two distinct regions. One option is to construct a unified Lyapunov function, which offers
great convenience for analysis. However, such a function may fail to capture key behaviors of the
SGD across different regions and often require additional assumptions. For instance, recent work
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[24] considered a similar class of sub—quadratic functions f and introduced a unified Lyapunov
function of the form V(0) = f(0) exp(¢(f(6))). Since their Lyapunov function depends on f, they
require the twice differentiability of f to perform the Taylor expansion (7). Moreover, they need to
assume E[exp(|wo|*"?#)] < oo to ensure condition (2) holds. The alternative approach is to define
a piecewise Lyapunov function, which offers more flexibility in capturing the specific behaviors of
SGD in each region. The key challenge with this method lies in the analysis of condition (2), as it
becomes difficult to determine which region the random variable 8y — aA(f’(6p) + wy) falls into. In
this work, we piecewisely define the Lyapunov function, and address the challenge by carefully
analyzing the impact of the noise on the drift of the Lyapunov function; see Section 3.3 for details.

3.2 A New Piecewise Lyapunov Function

The discussions in Section 3.1 provide insights into constructing an appropriate piecewise Lyapunov
function for a general sub—quadratic SGD (2). Building on the discussion and under Assumption 2,
the suitable piecewise Lyapunov function V should be formulated as:

0 —0%11>7K) =1y, if[|0 - 07| > A,
Vo)< [P (I8 —n iflO -0l >
r3||@ — 677, if |0 - 67| < A.

To ensure that the Lyapunov function V is twice differentiable everywhere—an essential requirement
for analyzing the remaining terms in the Taylor expansion (7)—we carefully select the constants r,
1o, and r3 so that V is continuous and has continuous first and second derivatives. These constants
are uniquely determined, leading to the following Lyapunov functions.

For all k € [1,2) consistent with Assumption (2), we define:

kll6-6"]7% k . *
o e (B — -k exp(Ep). ifl0- 071 > A, .
k0 (0) =\ kexp(k =k 10-0" 2 : : ®)
A7 , if || - 0" < A.
Subsequently, we define:
Viep(6) = 110 = 0"[1 - Vio (0),  Vp >0, ©)

which serves as a Lyapunov function for analyzing the higher moment bounds of the SGD iterates.

3.3 Pivot Results

In this subsection, we explore key properties of our proposed Lyapunov functions Vi ,. We present
two essential pivot results that are crucial in establishing our main findings in Section 4.
We summarize important properties of the Lyapunov function Vj ,, in the following lemma.

LEmMA 1. Given Vi, defined in equation (9), we have

(1) Vip(0) = keXp(k/(z_zkA)z)He_e*”M, V6 € RY.

(2) Vi p(+) is twice differentiable everywhere for allk € [1,2) andp > 0.

(3) There exist some constants ck, ¢, > 0 that depend only on k and A such that for all 0 € R,

o
7 2 *
IV, (O e (1+p)°[16 — 67| exp(m :
- o
17 ’ 2 * 2-2k
||Vk,p(9)|| <ci (1+p)7)16 — 0" [P* CXP(W .

(4) Under Assumption 2 with k € [1,2), for all @ € R?, we have

bk
(Vg (0. FF(0)) 2 min {2 p(2.+.) Vi (0)
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Several important observations are worth mentioning. First, Lemma 1-(2) and Lemma 1-(4)
confirm that our proposed Lyapunov function Vj , is indeed a proper choice, i.e., satisfying the
condition (1) in Section 3.1. In certain situations, it is necessary to establish an upper bound on
higher-order moments, such as || — 6*||**?. Lemma 1-(1) allows us to achieve this by directly
bounding Vi , (). Furthermore, when performing the Taylor expansion as outlined in equation (7),
it is essential to carefully bound the second-order derivative terms. Lemma 1-(3) provides tight
upper bounds for these terms. Notably, in Lemma 1-(3), we present two upper bounds: the first
bound is tighter when [|6 — 6%|| < A, and the second bound becomes tighter when ||6 — 6| > A.
Proof of Lemma 1 is provided in Appendix A.

Our two pivot results are stated below.

PROPOSITION 1. Under Assumptions 1 and 2 with k € [1,2), there exists ayo > 0 such that
E [Vio (0 = a(VF(0) +w(0)))] < (1= apeo) Vi (0) + o’cl. Y0 € R: o < a,
where i o = min(zi’%, ) and ¢, is a constant independent of .
ProPOSITION 2. Under Assumptions 1 and 2 withk € [1,2), Vp > 2, there exists ®kp > 0 such that
E [Vk,p (9 —a(Vf(O) + W(Q)))] <(1- (Xﬂk,p)vk,p(g) + azck’ka,p_z(G) + Olp+zc;gp, VO e R% a < Ok ps

bk
2A2-k>

where i, = min( ”(ZTH))) and cy.p, c,’cp are constants not depending on a.

Proposition 1 demonstrates a one-step contraction of Lyapunov function Vi up to a higher-order
bias term. We note that we cannot let A — co in Proposition 1 to recover the results of strongly
convex SGD, because we restrict k € [1,2), which implies A < co. Importantly, Proposition 1 is
crucial for deriving second-order moment bounds (cf. Section 4.1), as well as fine-grained analysis
of the Markov chain under a constant stepsize, including establishing weak convergence, the central
limit theorem, and bias characterization results (cf. Section 4.2). The proof of Proposition 1 depends
on Lemma 1 and a precise discussion of the value of noise w(#), and is provided in Appendix B.

Although Proposition 2 does not offer an exact one-step contraction, it establishes a recursive
relationship among Vi ,(0n+1), Vip(0n), and Vi ,_2(6,), which would allow us to upper bound
E[Vk,»(0,)] by employing induction on p and n. We emphasize that Propositions 1 and 2 together
enable us to derive higher moment bounds (detailed in Section 4.1). The proof of Proposition 2 is
provided in Appendix C.

4 MAIN RESULTS

In this section, we present the main results for the sub—quadratic SGD defined in Section 2. In Section
4.1, we analyze the moment bounds under both constant stepsize and diminishing stepsize regimes.
In Section 4.2, we focus on constant stepsize sub—quadratic SGD and examine the weak convergence,
central limit theorem and bias characterization of the Markov chain {60, },5¢. Surprisingly, we
highlight that by our proposed Lyapunov function, we achieve the common results for strongly
convex SGD under the sub—quadratic SGD setting.

4.1 Finite-Time Moment Bound

In this subsection, we explore the finite-time moment bounds for constant and diminishing stepsizes.

4.1.1 Moment Bound with Constant Stepsize. For the SGD update (2) with a constant stepsize
(an = a), the following theorem provides the finite-time bounds for the 2p-th moment of the error
116, — 6"1I.
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THEOREM 1 (MOMENT BounDs wITH CONSTANT STEPSIZE). Consider dynamic (2) with a, = a.
Under Assumption 1-3 withk € [1,2),Vp € N, 8, € RY, there exists ®kp > 0 such that when a < Q. p,

207V 3 (00) ~pln(a)
|| 2p+2 P . _ n Pl —_
Bl = 0'177") < ot s (1= )"+ 0y, z B

where i 2p = = min(-25., u(1+ 1)), Viop(+) is defined in (9) and dy 2y is a constant independent of .

ZAZ 2ne %o H

Theorem 1 indicates that with a constant stepsize, the 2p-order moment E[||0,, — 6*||??] is upper
bounded by two terms: one that converges to zero geometrically fast, with a rate scaling with
the stepsize a; another representing an order-O(a?) bias that does not vanish with the iteration
n. Interestingly, this result resembles the behavior of constant stepsize SGD for strongly convex
objective functions [12, 74]. To the best of our knowledge, this is the first result that establishes
high moment bounds for constant stepsize SGD with sub—quadratic objective functions. It is worth
pointing out that Theorem 1 plays a crucial role in analyzing the Markov chain {6, },>¢ induced
by constant stepsize sub—quadratic SGD in the next subsection. Theorem 1 is proved by applying
Propositions 1 and 2 on the drift guarantee of our Lyapunov functions to bound Vj 3, followed by
using Lemma 1-(1) of Vj 3,, to derive the moment bounds. The full proof can be found in Appendix D.

4.1.2 Moment Bounds with Diminishing Stepsize. We next consider the SGD update (2) under a
general class of diminishing stepsize with the form «a, = m The following theorem provides
the finite-time second moment bounds.

THEOREM 2 (MOMENT BouNDs wITH DIMINISHING STEPSIZE). Consider dynamic (2) with a,, =
m, under Assumptions 1-3 with k € [1,2), Vi > 0, there exists k, > 0, such that when we choose
K >k, Y6y € R?, we have

(1) When & =1 and 1 > 1/ gk, for alln > 0, we have

202V 0(0o) ( K )lﬂk,o . SE‘ZAZC;QO 1
= Kexp(k/(2 - K)) (ko — Dk exp(k/2— k) n+x’
(2) When & € (0,1), for alln > 0, we have
20V (60) ox ( Hicot
“kexp(k/(2-k)) 1-¢
.\ 41A%c l/c,O . 1
Jokexp(k/ (2= k) (n+R)E
AT k,y) and Vi o(-) is defined in equation (8).

E[16, - 6°1I"] <

n+k

BLIG, - 0°I] < ((n+10)7 = x175))

Here o = = min(=&

Theorem 2 examines how the convergence rate of ]E[||9 — 0*]|] is influenced by & and : in
the stepsize a,, = e K) — 7. Specifically, by setting a, = -+ with 1 > 1/, we obtain the optimal
convergence rate of O(1/n). In contrast, when & € (0, 1), the convergence rate becomes sub-optimal
at O(1/n%), but this rate comes with greater robustness, since it does not depend on the choice of .
Similar convergence results have been established for SGD with strongly convex functions [12].
Recent work [24] also studied sub-quadratic SGD and provided upper bounds on E[||6,, — 6*[|%"]
and E[||én — 0*||?] under diminishing stepsizes, where 0, = % > 0, is the average of the iterates.
They further showed that the convergence rate of E[||én — 0*||?] attains the Cramér-Rao lower
bound (CRLB) [59]. It is important to note that [24] imposes more restrictive assumptions on both
the objective function f and the noise sequence {wy(-) }n>0, requiring f being twice differentiable
and E[exp(|wo|*~?#)] < co. Additionally, they only consider £ € [1/2, 1), whereas we address the
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convergence rate for the full range of ¢ € (0, 1]. Furthermore, we remark that in [24], the upper
bounds on E[||8, — 6*||?] and E[||én — 0*||?] are derived based on their key Theorem 11(i). In
our work, Propositions 1 and 2 on the drift guarantees of our proposed Lyapunov functions play
a crucial role in proving Theorems 1 and 2, and importantly they imply Theorem 11(i) of [24].
Therefore, in Theorem 2, we provide only the second moment bound for raw iterates 6,,. The higher
moment bounds and the second moment bounds for the averaged iterates can be directly obtained
by using our Propositions 1 and 2, and following the line of argument in [24]. We will discuss the
second moment bounds on the averaged iterates for applications in robust regression and quatile
regression in Sections 5 and 6. The proof of Theorem 2 can be found in Appendix E.

4.2 Weak Convergence, Central Limit Theorem and Bias Characterization

In this subsection, we study the fluctuations of {0, },>¢ of sub-quadratic SGD with constant
stepsize.

Since the noise sequence {wy },>¢ are independently and identically distributed and the stepsize
an = a does not depends on the time step n, the sequence of iterates {60, },>¢ forms a time-
homogeneous Markov chain. Our first goal here is to establish a weak convergence result showing
that the Markov chain {6, },>¢ converges to a limiting stationary distribution in the Wasserstein-1
distance (W}). To this end, we require some additional assumptions.

ASSUMPTION 4. There exists c,, > 0 such that Wy (L(w(6)), L(w(0"))) < c,,[|0 6], V6,0 € RY.

Assumption 4 ensures that the variation in the random field w(-), as measured by the W) metric,
is controlled by the change in the parameter 6. This is a common assumption for studying weak
convergence in the Wasserstein distance. For SGD with strongly convex objective functions, the
authors of [51] assume W2 (L(w(6)), L(w(6"))) € O([|6 — 0’||*) and argue that the co-coercivity
in expectation used in [19] implies their assumption in the linear regression setting. We point out
that our Assumption 4 is weaker because Wi (p, v)? < W2(p, v) forall p,v € P1(RY).

AssuMpTION 5. Consider the same A > 0 in Assumption 2. There existr,@ > 0 such thatra < 1
and for any two initial points 6 and 6’ with 6,0’ € {6 € R? : ||§ — 6*|| < A}, we have

Wi (L0 — a(Vf(0) +w(0))), LO —a(VF(O)+w(8))) <(1-ar)]0-0|, Va<a.

Assumption 5 indicates that, given two initial points in a neighborhood around 6*, the Wasserstein
distance between their subsequent iterates shrinks compared to the Euclidean distance between
the initial points. We remark that if Assumption 2 holds and E[||w(6) — w(8")|?] € O(||6 - &'||?),
then Assumptions 4 and 5 are readily satisfied. We need Assumption 5 since we employ the drift
and contraction (D&C) condition technique for Markov chain convergence analysis [57], where
Assumption 5 plays a crucial role in verifying this condition.

Several other conditions have been considered to establish weak convergence results. The drift
and minorization (D&M) condition [20, 52, 61] requires a restrictive minorization condition on the
noise, which in general does not hold for discretely distributed noise sequences. Recently, [58]
introduced a contractive drift (CD) condition and applied their framework to specific sub—quadratic
SGD algorithms with only additive noise. Their framework heavily relies on an accurate estimate
of the smoothness of the noisy gradient Vf(6) + w(8). However, when considering a general SGD
where w(-) is multiplicative noise, it becomes unclear how to precisely bound the local Lipschitz
constant of the noisy gradient. In this work, we employ the drift and contraction (D&C) condition
approach and establish the following theorem.
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THEOREM 3 (WEAK CONVERGENCE). Under Assumptions 1-5 with k € [1,2), there exists dx > 0
such that when o < @y, there exists a unique limit random variable Hc(,oa) such that V0, € RY,

A(Vip(6o) +2)
kexp(k/(2-k))

Wi(L(6,), L(8)) < (1-p)" Vn=>o,

where Vi o (+) is defined in equation (8) and p € ©(«a). Furthermore, L(Qéoa)) is also the stationary
distribution of the Markov chain {60, },>0.

Theorem 3 indicates that the Markov chain {0, },>¢ generated by the constant stepsize sub—
quadratic SGD converges geometrically to a stationary distribution. Similar weak convergence
results have been established for SGD with strongly convex objective functions [19, 33, 74]. However,
the method used in strongly convex setting can not be applied to the sub-quadradic case as discussed
in Section 3.1. While the recent work [58] investigates the weak convergence of sub—quadratic SGD
with a constant stepsize, they focus on some specific objective functions and only consider additive
noise. It remains unclear how to generalize their technique to the general sub—quadratic setting. In
our work, by leveraging our newly introduced Lyapunov function Vj ,(-) in Section 3, we establish
the weak convergence of sub—quadratic SGD. The proof of Theorem 3 is provided in Appendix F.

One immediate implication of the weak convergence result is the establishment of the central
limit theorem (CLT) for the Markov chain {0, },>¢, as presented in the following theorem.

THEOREM 4 (CENTRAL LiMIT THEOREM). Under the same setting as Theorem 3, for any 1-Lipschitz
g(-) : RY — R, define S,(9) = X1 (9(6;) — E9~L(9§3>)[9(6)])' We then have that o*(g) =

) [S2(g)] exists and is finite. Furthermore, for L(6)-almost every point 0y € R¢,

Su(g)/Nn = N (0,6%(g)), asn— oo.

The proof of Theorem 4 is carried out by verifying Conditions A1l and A2 provided in [37],
following the weak convergence result. Establishing this CLT is crucial for uncertainty quantification
and statistical inference [46]. Similar results have been established for SGD with quadratic tails
[51, 73] and for Q-learning [72, 75]. The detailed proof is provided in Appendix G.

Building upon the weak convergence result, and under the additional assumption that the
objective function is differentiable to a higher order, we can further characterize the asymptotic

lim,;, 00 %E90~£(9£")

bias E[0)] - 6%, as presented in the following corollary.

COROLLARY 1 (B1as CHARACTERIZAION). Under the same setting as Theorem 3 and further assuming
that the objective function f is three times differentiable, then there exists a; > 0, such that

E[0] = 0" + aB + O0(a*?),
where B = £ ()7 f" (%) (f” (0") ® Ig + I ® [ (6"))7'S(67) and S(6) = E[w(O)w()T].

We emphasize that employing a constant stepsize in sub—quadratic SGD leads the raw iterates
{01} n>0 to converge to a limiting random variable G;a) at a geometric rate, as stated in Theorem 3.
This convergence rate surpasses the O(1/n) rate achieved with diminishing stepsizes, as presented
in Theorem 2. However, using a constant stepsize induces an asymptotic bias E[Qéoa)] — 0" that
is in general not zero. As demonstrated in Corollary 1, this asymptotic bias is proportional to
a up to higher-order terms. This finding has important algorithmic implications for reducing
the bias to higher orders of a through Richardson-Romberg (RR) extrapolation technique [30],
as discussed in prior work [33, 34, 74, 75]. Therefore, by applying RR extrapolation to constant
stepsize sub—quadratic SGD, one can achieve fast convergence with a reduced bias term.
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Leveraging Theorem 1 alongside Fatou’s lemma [21, Theorem 1.6.5], we can show that E[||9(£oa) -
6*]1?] € O(a) and E[||9§O‘X) - 0*||*] € O(a?). Consequently, Corollary 1 follows directly by building
on Theorems 1 and 3, as well as by following the proof argument for [19, Theorem 4]. Therefore,
we omit the proof of Corollary 1.

5 APPLICATION TO ONLINE ROBUST REGRESSION

In this section, we examine our main results in Section 4 in the context of online robust regression.

5.1 Model Setup

We assume that we have access to i.i.d. data sequence {(xp, y»)}n>0 from the online oblivious
response corruption model [55]:

y=x"0", +e+s, (10)

reg

where Qfeg € R is the true parameter we wish to recover, x € RY is the zero mean covariate, € € R
is the zero mean noise and s € R is the corruption, and x, €, s are independent with each other.
Given the differentiable loss function I(-) : R — R™, the population-level loss and gradient are

defined as:
fieg(®) =E[l(y —x"0)] and  Vfieu(6) = -E[I'(y — x0)x].

It is easy to verify that Vfreg(efeg) = E[lI'(e + s)x] = E[I'(e + s)]E[x] = 0. Given the i.i.d. data
sequence {(xp, Yn)}n>0, we consider the online robust regression that performs the following
iterative update:

Ons1 = On + anl’ (yn — X1 0,) . (11)
For model (10), we consider the following assumption.

AsSUMPTION 6. The covariate x, the noise € and the corruption s are independent random variables
that satisfy the following properties:

(1) x is a zero mean random variable such that E[xx"| = I; and ||x|| is ox-sub—exponential.
(2) € is a zero mean random variable such that E[|e|] < co.
(3) s is a random variable such that E[|s|] < oo

We note that the first two conditions in Assumption 6 are standard in robust regression [47, 48].
These conditions focus on settings where the covariate x is isotropically distributed and sub-
exponential, and the noise € possesses only a finite first moment. This framework includes many
heavy-tailed noise distributions, such as a-stable distributions for a € (1, 2]. We highlight that the
assumption of isotropically distributed can be easily relaxed to E[xx | being positive definite. For
the ease of exposition, we focus on the setting E[xxT] = I,.

Regarding corruption s, offline robust regression typically assumes 5-corruption, where at most
an 1 fraction of the offline dataset is corrupted. In contrast, the online oblivious response corruption
model [55] assumes that s follows a specific distribution and is independent of (x, €).

Furthermore, Assumption 6—(3) ensures that the population-level loss fieg(6) is well-defined
for all 6 € R?, particularly for loss functions with at least linear growth. Prior work [55] requires
E[serf(s/c)] < oo, where erf(+) is the Gaussian error function. Since s erf(s/c) € ©(|s|), this con-
dition is equivalent to our assumption E[|s|] < co. Additionally, [55] assumes that both covariates
and noise are Gaussian, whereas we consider broader distribution classes.

For the loss function /(-), we make the following assumption.

AssuMPTION 7. The loss function I(-) satisfies the following properties:
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(1) There exists L; > 0 such that |I'(t) = U'(t')| < Li|t = ¢'|, V&t €R.
(2) I'(+) is non-decreasing, I’(0) = 0 and there exists aj > 0 such that |I'(t)| < a;, VteR.
(3) There exist Ay, iy > 0 such that forallt,t’ € {t e R: |t| < Aj} andt > 1/,

U@)=U) = w@E-t).

By Assumption 7, our analysis focuses on a class of loss functions that are both locally strongly
convex and exhibit linear growth. Notably, this class cover many widely-used robust loss functions,
including the Huber loss [31], pseudo-Huber loss [29], and log-cosh loss [63].

Lastly, we impose an additional assumption that the corrupted noise term € + s has a strictly
positive probability mass within the strongly convex region of the loss function /().

AssuMPTION 8. There exists Acs < A; such that P(|e +s| < Acs) > 0.

A few remarks are in order. Assumption 8 is satisfied when P(s # 0) < 1 and the noise ¢ follows
a continuous distribution, which is common in robust regression setting [6, 17, 55]. Furthermore,
by defining 7j = P(|e + s| > A;), we note that Assumption 8 holds if and only if 7 < 1. Here we call
7] as the effective outlier proportion as defined in [55].

It is clear that the online robust regression update (11) can be cast as an SGD update as in (2),

Ons1 =0, — ay (Vfreg(en) + Wreg,n(en)),
where the noise sequence {wregn(0)}n>o i Wreg(0) = —Vfreg(0) = 1'(y - xT9)x.

5.2 Main Results for Online Robust Regression

We verify that the population-level gradient V f.;(6) and the noise term wyg(-) satisfy the assump-
tions required for the main results in Section 4, as stated in the following theorem.

THEOREM 5. Under Assumptions 6—8, the online robust regression update (11) can be reformulated

as a sub—quadratic SGD satisfying Assumptions 1-5. Specifically, Assumptions 1-5 hold with L =
A _Aes

LE[IIxIP]. p = §P(le +5| < Aes).a = aElllxlIl.b € O(gm) A = sieriapmy K = Lew =

2L AE[||x]|*] andr = %P(|e+s| < Acs).

The proof of Theorem 5 is provided in Appendix H. We highlight that verifying the last condition
of Assumption 2 (i.e., (0 — Gfeg, Vfreg(0)) 2 bl|0~ Gfeg || when ||6 — Gieg || > A)is the most challenging
part and the proof can be outlined in the following three main steps:

(1) Prove that (6 — 0}cg, V freg(60)) > 0 for all 6 # 0y,

reg’
(2) Show that there exist b’ > 0 and A" > A such that (0 — 0}y, V freg(0)) 2 b[|0 — 075 || when
||9 - G:eg | > N.
(3) By step (1), we have MiNgeRdA< |00y, | <A’ (0 = Oreq V freg(0)) > 0. Then, there always exists
) MiNgerd < 0-0,, | <a {0 = Oreg> Vfreg(0))
b = min{b’, A >0

such that (0 — 07, V freg(0)) > b]|0 — 04|l when [|6 — 0]l > A.
Building upon Theorem 5, we investigate the main results from Section 4 in the context of online
robust regression (11), as presented in the following corollaries.
COROLLARY 2 (MOMENT BOUNDS). Consider the dynamic (11) under Assumptions 6—8. We have:
(1) When ap = a, Vp € N, there exists tregp > 0 such that when a < oeg p, We have

2(A; = Ae s)2V1 Zp(GO) —pIn(a)
E[]16, — 0, |I*P*] < . (1-a "t 0P g 0p, VO € R, n > —
(116 reg” ] eo_)zc lnz(SE[||x||4]) ( ﬂreg,Zp) reg,2ps VU0 Tflrego
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(2) When ay, = - with 1 > 1/ jireg 0, there exist k, > 0 such that when we choose k > «,, for all
n >0 and 6, € RY, we have

2 2.
2(Al - Ae,s)ZVl,O(GO)( K )l#reg,o + et (Al - Ae,s) C1’0 1

et In®(BE[||x[|*]) "n+x (iirego — Deo? I 8E[[Ix|[*]) n+x

E[[16n = Oreg|I”] <

(3) When a, = W with & € (0,1), foralln > 0 and 6, € R¢,
. 2(A1 — Nes)*Vi(60) Hreg,0l
T e L
eoy In“(8E[|x]|*]) 1-¢
+ 4i(A - Ae,s)zc;,o 1
fregoecs In*(E[[Ix[4])  (n+x)%

((n+1)'=% — Kl_g))

(4) When a, = —z with & € [1/2,1), if1(:) is twice differntiable, for alln > 0 and 6, € RY,

dE[I' (¢ +5)?] +0( 1 )

A _ p* 2 _
E[”9n Greg” ] < nE[l//(e_l_s)]Z n(§+1/2)/\(2_§)

% is the CRLB of robust regression with loss function I(-) and a sample size n.

Here pireg2p € O(p(1—17)(1+p)), Vi2p(*) is defined in equation (9), ¢} , is defined in Proposition 1
and dyeg2p is a constant not depending on a.

where

The first three statements in Corollary 2 on the moment bounds of raw iterates 6, follow
directly from Theorems 1, 2, and 5. The last statement on the mean-square error of the averaged
iterate 0, is obtained by using Propositions 1 and 2, along with the verification of Assumption
Hg introduced in [24]. To the best of our knowledge, statements (1)—(3) provide the first results
on non-asymptotic higher moment bounds under constant stepsizes and second moment bounds
under general diminishing stepsizes for online robust regression. Additionally, by the definition of
Hreg,2p> We conclude that the larger the effective outlier proportion 7 is, the slower the algorithm (11)
converges, which aligns with the intuition that the more dispersed the distribution of outliers, the
more difficult it is for the algorithm to converge. Proof of Corollary 2 are provided in Appendix L.

It is worth pointing out that the last statement of Corollary 2 combined with Assumption 7 allows
us to derive the upper bound E[Hén - ergHZ] € O(n“;i”)z) This is because I’ is non-decreasing,
|I'| < oo and |I"”(x)| = p when I (-) exists and |x| < A;. This bound is consistent with the
convergence rate reported in [55] for a more restrictive setting.

COROLLARY 3 (WEAK CONVERGENCE, CENTRAL LIMIT THEOREM AND B1As CHARACTERIZATION).
Consider the dynamic (11) under Assumptions 6—8 and a, = a. We have the following:

(1) There exists ateg > 0 such that when a < ayeg, there exists a unique limit random variable 9§oa)
such that V6, € R4,

(Al - Ae,s)(Vl,O(GO) + 2)
Veoy In(8E[]|x[|*])

where p € ©(a) and L(Qéoa)) is also the stationary distribution of the Markov chain {0} ,>0.

(2) For L(Hgo“))-almost every point 6y € R?, we have the CLT as stated in Theorem 4.
(3) If the regression function I(-) is three times differentiable, we have

Wi(L(6,), L)) <

(1-p)", Vn=0,

E[0"] = 0%, + aB+O(a*?), withB= —%E[l”’(e +9)|E[ (e + )2 ]E[x]Ix|I?] /E[” (¢ + 5)].

reg
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Notably, Corollary 3 provides the first Markov chain analysis of constant stepsize online robust
regression. In particular, the weak convergence and CLT results could be potentially leveraged for
statistical inference tasks, such as constructing confidence intervals. The final statement ensures
that we can apply Richardson-Romberg extrapolation technique, as discussed under Corollary 1, to
construct iterates that not only converge geometrically but also achieve a reduced bias. Corollary 3
follows directly from Theorems 3-5 and Corollary 1. Therefore, we omit the proof of Corollary 3.

6 APPLICATION TO ONLINE QUANTILE REGRESSION

In this section, we apply our main results in Section 4.1 to the context of online quantile regression.

6.1 Model Setup

For a given 7 € (0, 1), we assume that we have access to i.i.d. data sequence {xp, Y, }n>0 from the
following classical quantile regression model [11]

y=x10"+¢ (12)
where the covariate x is a random variable supported on Q, C R? and the error € € R satisfies
Ple<0|x)=1, VxeQ,

which implies that x7 6% is the r—quantile of y conditioned on x.

We denote Fy(+) to be the cumulative distribution function (CDF) of € given x. Consequently, we
have F,(0) = 7 for all x € Q,. We focus on the setting where the covariate x and the conditional
CDF F, (+) satisfies the following assumption.

AssUMPTION 9. The covariate x and the conditional cumulative distribution function Fx(-) satisfy
the following properties:

(1) E[xxT] = I; and ||x|| is o —sub—exponential.

(2) There exists Ly > 0 such that for all t,t' € R, |Fy(t) — Fx(t')| < L |t = t'|, Vx € Q.

(3) There exist A, pi; > 0 such that forallt,t’ e {t e R: |t| < A} andt >V,

Fe(t) = Fe(t') > p(t —t'), Vx € R4

Similar to the robust regression setting in Section 5, here we assume x to be isotropically dis-
tributed (i.e. E[xx”] = I;) for the ease of exposition and it is easy to generalize E[xx”] to be
positive definite. We note that Assumption 9-(1) is common in classical quantile regression, while
previous work further assumes ||x|| is either bounded [22] or sub-Gaussian [11, 64]. In contrast, we
only require ||x|| to be sub—exponential. Assumption 9-(2) requires Fy (-) being uniformly Lipschitz
continuous for all x € Q. Previous work [22, 36, 64, 69] further assumes the existence and conti-
nuity of conditional density function py (-) of Fy(-) with respect to the Lebesgue measure and the
uniformly boundness of p,(+), which implies Assumption 9-(2). The last condition guarantees the
uniformly strong monotonicity of Fx(+) in a neighborhood of 0. Such a locally strong monotonicity
condition is also standard [22, 36, 64, 69] and can be easily verified if the density p,(-) is uniformly
lower bounded by a positive constant within a neighborhood of 0. Notably, when Assumption 9
holds, 0 is the unique point such that F,(0) = 7 for all x € Q,.

Importantly, thanks to our proposed piecewise Lyapunov functions (8) and (9), Assumption 9
does not require the continuity of the conditional density function p,(-). This flexibility allows
for many conditional distributions of € whose support is bounded and whose density p,(-) may
be discontinuous at the support boundaries. Another example is a mixture of a continuous dis-
tribution and a point mass, commonly observed in applications such as survival analysis [39],
econometrics [70], or insurance modeling [40]. In such cases, the density is discontinuous at the
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point mass. In contrast to our Assumption 9, most prior work relies on the continuity of p,(-), and
some work [16, 64] further assumes that € has a finite first moment.
The online quantile regression update [64] is expressed as:

Ons1 =0, — an(]l{yn—x,{ﬁ,,go} - T)xn~ (13)

We define the population-level gradient V£ (0) := E[(1,_sr9<oy — 7)x]. After taking the condi-
tional expectation over € given x, by model (12), we have

Vf:(0) = E[E[(1(yxro<0) — D)xIx]] = E[(Fx(x"0 ~ x767) - 1)x].

It is easy to verify that Vf;(0;) = 0 and we can further reinterpret (13) as a SGD update as in (2)
with the noise sequence {w;,,(6)}n>0 . wr(0) = (Ly—xrg<0y — D)x = Vf(0).
We note that when x = 1, the update equation (13) simplifies to the recursive quantile estimation

[16]. Consequently, our results in Section 6.2 also apply to the recursive quantile estimation setting.

6.2 Main Results for Online Quantile Regression

We verify that the population-level gradient V f;(-) and the noise term w,(+) satisfy the assumptions
required for the main results in Section 4.1, as stated in the following theorem.

THEOREM 6. Under Assumption 9, the online quantile regression update (13) can be reformulated
as a sub—quadratic SGD satisfying Assumptions 1-3. Specifically, Assumptions 1-3 hold with with

L= LE[lxIP].p = pe/2a = (1+ DELx].b € OC/E[xl|*]). A = Sgbipeyy andk =1

The proof of Theorem 6 is in Appendix J. Since the update (13) is not smooth with respect to 6,
it is unclear whether constant stepsize online quantile regression exhibits weak convergence; we
discuss why this may not hold in Appendix K. Nonetheless, building on Theorem 6, we extend the
main results from Section 4.1 to online quantile regression (13), as shown in the following corollary.

COROLLARY 4 (MOMENT BOUNDS). Consider the dynamic (13) under Assumption 9. We then have:
(1) When an = a, Vp € N, there exists a;, > 0 such that when a < agp,
202V 5, (6, —pl
E[Ilgn _ 9:”2p+2] < - T 1,2[7( 0) . (1 _ aﬂr,Zp)n + ap+ldr,2p> Vn > M
eoy In(8E[]|x||*])? Apiro

(2) When ap = — with 1 > 1/, there exist k, > 0 such that when we choose k > x,, for all

n > 0and6f, € RY,

. 202V (6, 8e1?A2¢! 1
L1160, - 0117) = —me (X 10 L
eay In(8E[[lx][*])? "n+x (thro — ez In(8E[[|x]|*])? n+x
(3) When ay, = W with & € (0,1), foralln > 0 and 6, € R¢,
202V0(6
116, ~ 0:1%) < — om0 (= 20 (491 - )
eay In(8E[ | x[1*])? 1-¢
41A§c1’0 1

+ . .
pizoeas In(8E[||x[I*])?  (n+x)¢
(4) When an = - with & € [1/2,1), if the conditional density px(-) is continuous, for alln > 0 and
90 S Rd,

E[110, - 6;11°] <

(1= 7) Tr(E[px (0)xxT] 71 - E[px (0)xxT]71) 0 1
n " (n<§+1/z)A<z—§> )

where the first term is the CRLB of quantile regression with a sample size n.
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Here iz 5p € O(p:(1+p)/2), Vizp(-) is defined in equation (9), ¢ is defined in Proposition 1 and
dy3p is a constant not depending on a.

To our best knowledge, only statement (2) of Corollary 4 has been established in recent work
[64] under the assumption that the covariate x is Gaussian distributed. Through Corollary 4, we
provide a more complete analysis of online quantile regression under different stepsizes and weaker
assumptions. By the definition of yi, 3, and the first three statements, we conclude that if the
conditional CDF F is flatter around 0, y; would be smaller and leads to a slower convergence
rate under both constant and diminishing stepsizes. Notably, statement (4) is the first result on
the convergence of the averaged iterates with a convergence rate that meets the CRLB for online
quantile regression. Under Assumption 9, we can further lower bound p, (0) by ., yielding

2) * dT(l )
BlI0. - 0;11°] € O “==2).
n T
We also note that, [16] considered recursive quantile estimation, a special instance of quantile
regression, and established statement (4) by requiring € to have a finite second moment. In this
work, when considering recursive quantile estimation (x = 1), by defining p;(0) as the density of €

at 0, we obtain E[ (6, — 67)%] € O( ;;j(or))z ), which aligns with the results in [16], but we require a

weak assumption on the error €. Proof of Corollary 4 is provided in Appendix L.

7 NUMERICAL EXPERIMENTS

In this section, we present numerical experiments for both online robust regression, as defined in
equation (11), and online quantile regression, as defined in equation (13).

For online robust regression, we consider the model y = xO;'eg + € + s, where P(x = 3) = 0.25,
P(x =-1) =0.75, Greg =0, € follows a Student’s t-distribution ¢, with degrees of freedom v = 1.1,
and s = 0.01. The loss function uses the pseudo-Huber loss I(t) = V1 + 2 — 1.

For online quantile regression, we consider the model y = x6} + €, where x ~ N (0,1), 6} = 0,
and € ~ Cauchy(-1, 1). Consequently, for all x € R, we have P(y < 0 | x) =P(e < 0) =0.75, and
we perform online quantile regression with 7 = 0.75.

First, we run both algorithms with diminishing stepsizes a, = 1/ né and £€{0.4,0.6,0.8} and an
identical initial point 6, = 40. For both online robust regression and online quantile regression, we
perform 10'° iterations. We plot the error |0, — 6*| for both algorithms (where 6* denotes Oreg OF 07
in the corresponding settings), as shown in Figures 1a and 1c. We observe that for all diminishing
stepsizes, both algorithms converge, and converge more rapidly after 10® iterations when using a
larger £. Additionally, we smooth the last iterates using a sliding window median, approximate it
with a linear function, and calculate the slope, as depicted in Figures 1b and 1d. For both algorithms,
the convergence rate of |6, — 6| is approximately £/2, which aligns with Corollaries 2—(3) and
4-(3) for the online robust regression and online quantile regression, respectively.

For online robust regression, we also conducted experiments with constant stepsizes to verify our
Markov chain results presented in Corollary 3. Our first experiment demonstrates the asymptotic
normality of the averaged iterates of online robust regression. Using the same model as before,
we consider different initializations 6, various numbers of iterations n, and different stepsizes
a = 0.4 and o’ = 0.42. We plot the density of n=/2S,,(¢) = n™/2 3,7 _ ¢(6) with the test function
¢ (Or) = 0 — Oreg| Over 4000 Monte Carlo runs.

Figure 2a shows the effect of different initializations (represented by the blue and orange curves)
on the normality of the distribution after a moderate number of iterations, specifically n = 10%. We
note that the influence of the initialization diminishes over time, as evident in Figure 2b, where
the distribution converges towards a Gaussian form. Additionally, Figure 2c illustrates the impact
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(a) Different initializations with
the same stepsize. Run a small
number (10%) of iterations.

(b) Different initializations with
the same stepsize. Run a large
number (10°) of iterations.

(c) Different stepsizes with the
same initialization. Run a large
number (10°) of iterations.

Fig. 2. Asymptotic Normality for online robust regression

of different stepsizes on normality. In particular, using a larger step size « (shown by the orange
curve) leads to a larger mean value, i.e., larger bias. These findings are consistent with Corollary 3.

Our next experiment demonstrates the existence of the asymptotic bias E[0{%] - 0re and the
bias characterization stated in Corollary 3—(3). In this part of experiment, we additionally consider
another model with different covariate x ~ N (0, 1). For these two models, we run algorithm (11)
for 10'° iterations with constant stepsizes a € {0.2,0.4,0.8} and diminishing stepsizes a, = 1/n¢
with & € {0.75,0.9}. Furthermore, as frequently studied in previous works [33, 34, 75], we also
consider the tail-averaged (TA) iterates 9_,(10’) = % ZZ;Ol 9,<Ca), where the superscript () denotes the
iterates driven by using the constant stepsize a, as well as Richardson-Romberg (RR) Extrapolated
iterates éff‘) = 29-’(1:1) - 9_,(120{). We plot the error of |9_,(f‘) - Qfeg| and |€~,(1“) - 9:eg| for constant stepsizes
and the error of |0, — 0y, | for diminishing stepsizes.

Figures 3a and 3b show that using constant stepsizes enables faster convergence for TA iterates
compared to diminishing stepsizes, with larger constant stepsizes converging faster. Notably,
diminishing stepsizes with a large £ = 0.9 result in slow initial convergence, as observed in the
first 10'° iterations of Figures 3a and 3b. When x is asymmetric, E[x|x|?] # 0, leading to a nonzero
bias term aB in Corollary 3—(3). In Figure 3a, RR-extrapolated iterates further reduce this bias for
the first model (P(x = 3) = 0.25 and P(x = —1) = 0.75), aligning with Corollary 3. Conversely—(3),
when x is symmetric, the leading term in the bias vanishes (with coefficient B = 0). As shown in
Figure 3b, TA and RR iterates induces similar errors without improvement from RR extrapolation.

In our last set of experiment, we investigate how the model parameters affect the error. For online
robust regression, we run the algorithms with a constant stepsize a = 0.4 for 10% iterations. We
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Fig. 3. Error of TA and RR-extrapolated iterates using constant stepsize comparing with the error of raw
iterates using diminishing stepsize for online robust regression

consider different noise € € {t;.1,30 X t1.1, 100 X t; 1 }, where t; ; denotes the Student’s t-distribution
t, with degrees of freedom v = 1.1, and different corruption levels s € {0.01, 1, 2}, and evaluate the
error of the averaged iterates |9_,(,a) - 9:eg|. Figures 4a and 4b show that with a noise distribution
more concentrated near zero and a lower corruption level, online robust regression converges faster.
This result is consistent with Corollary 2—(1), which indicates that a more centered noise and lower
corruption level reduce the effective outlier proportion 7, thereby increasing preg 2p. Figures 4a
and 4b also suggest that a more centered noise and lower corruption reduce bias. We note that
this relationship cannot be directly inferred from Corollary 3—-(3), as the leading term of the bias
has a complicated form, making it unclear how noise and corruption levels jointly influence the
bias. For online quantile regression, we use a diminishing stepsize a, = 1/n%°> over 108 iterations
and consider € ~ Cauchy(-z, z) with z € {0.1, 50, 100}. By setting different values of z, we ensure
P(e < 0) =0.75 and p,(0) = ﬁ We then plot the error of the averaged iterates |én - 9§| Figure 4c
shows that with smaller z—where the conditional CDF F, sharpens around zero— online quantile
regression converges faster, as discussed under Corollary 4. This observation supports the result

~
2 T(1-7 . .
E[(6, - 07)%] € O( n1(> (0))2 ), which follows directly from Corollary 4—(4).
1
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Fig. 4. Online robust regression and quantile regression with different model parameters
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8 CONCLUSION

In this paper, we study sub—quadratic stochastic gradient descent (SGD) algorithms where the
objective function is locally strongly convex with sub—quadratic tails. We introduce a piecewise
Lyapunov function that effectively captures the behavior of sub—quadratic SGD, allowing us to
relax previous assumptions on the objective function and noise. Utilizing this Lyapunov function,
we provide a finer analysis of sub—quadratic SGD, including moment bounds with general stepsizes
and results on weak convergence and bias characterization with constant stepsizes. We apply
our results to online robust and quantile regression. For online robust regression, we consider a
general corrupted linear model with sub—exponential covariates and heavy-tailed noise. Given
an effective outlier proportion 7, we show that using diminishing stepsizes and averaged iterates

achieves a convergence rate of O ( ) We also provide a comprehensive analysis for online

—_4d__
n(i-7)”
robust regression with constant stepsize. For online quantile regression, we remove the previous
assumption that the conditional density of the noise is continuous everywhere and provide the
first convergence rate that achieves the Cramér-Rao lower bound. One direction of immediate
interest is extending our results to sub-linear SGD is an interesting direction for future work. We
note that our proposed Lyapunov function does not work when k < 1, and it is not clear whether
sub-linear SGD exhibits results similar to sub—quadratic SGD. Exploring weak convergence results

for constant stepsize online quantile regression is another interesting future direction.
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A PROOF OF LEMMA 1

In this section, we prove the four properties in Lemma 1.

Polynomial Lower Bound. Define h(:) : [1,c0] — R such that h(x) = exp(kx ) — (1 -
k/2)exp(k/(2 - k)) — w . Then, we have

kxz—k
K (x) = kx" " exp( - ) — kexp(k/(2 - k))x = kxg(x).

where g(x) = x Fexp kzxjck) —exp(k/(2 - k)).

2—-k 2—-k

kx
k 1-2k
) + kx exp( -

, e kx
g (x) = —kx* 1e><p( )

k) > 0.

= —kx7k- exp

Then, we have g(x) > g(1) =0, h’(x) > 0 and h(x) > h(1) = 0. Thus, substituting x with 16-¢"l 6'*\|

when ||0 — 67| > A, we obtain

kexp(k/(2—K))[l0 - 67|

Vio(0) = =

hen [|6 - 67| > A.

Finally, by the definitions of Vi o and Vi ,, we have Vi ,(0) > kexp(k/(z2—Ak2))||9—e*||2 and Vi ,(0) >

kexp(k/(2-k))[10-6*** d
A7 for all 8 € R%.

Verifying Twice Differentiability. We first verify that Vi ,(+) is twice differentiable everywhere
forall k € [1,2) and p > 0. When p = 0, with the explicit expression of Vi o, we have V/ (0) =

kexp(AL-0LE .

—erige e (0-0%) when [|0-0%]| > Aand V[ (0) = “22ELER) . (9—67) when [|0—67]| < A.
kexp(k”gfe |2\1 kk) k k k

Because —rpistnr— - (0 — 07) = “2REEZ0) L (9 — 0%) when || - 0%]| = A, we have Vi to be

differentiable everywhere for all k € [1,2) and

k||6-0* |2 k )

(2-k)a2-k * : *
V() =1 ~wrger (0-0)  if]0-07>4A (14)

kop®RI@ED . (9—0%)  if]lo - 6°|| < A.

kexp(

k||6-0* |2 k )

k2
A2k ) k= exp( (2—k)A2-F
A4 zklle o* |2k

|9 0* |2 k (0 0*)(0 -

For the second order derivative, we have V” ,(0) = (-

Klo-6* |2~k

kexp( o _
6)7 + —ria— - o when [|0 - 6| > A and V), (6) = K2R L when [|6 - 0°]| < A,
. k2 exp (KL= E exp(%) kexp(k/(2-k))
A (2-k)A * «\T (2-k)A _ kexp -
o—6-1% k) A2k 9— 0~ |2k (‘9_9 )(9_9 ) AZ-K|[0—0|[F = A2 Ia

Because (1—
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when ||0 — 67| = A, we have V¢ to be twice differentiable everywhere for all k € [1,2) and

2 kllo-0% |2~k Kllo-0*|2~k
k* exp( (tnTk ) kexp( )

2-k * * =k)a% i "
Vi) = (1= Tteter) - e - (0= 000 -0+~ L 10— 0°] > A,
kephGR) 19— 6] < .

(15)

To verify that Vi, (6) is twice differentiable everywhere for all k € [1,2) and p > 0, we only need
to verify Vi, () is twice differentiable around 6" for all k € [1,2) and p > 0. When [|0 — 0*|| < A,

we have Vi, (0) = kexP(k/(z;]Z)z)He_g*”w . Therefore, we have
/ (2+p)kexp(k/(2 - k))||6 - 07||? .
V(0 = IS (0-0")
” (2+p)kexp(k/(2-k)) . 1p— . . .
Viep(0) = P 222 (pll6 = O°11P~2(6 - 6*)(6 — ") +]16 - 6*|IPIz).  (16)

When 0 = 0*, we define Vk’p(Q*) =0and Vk"p(Q*) =0forall k € [1,2) and p > 0. Then, we have
proved that Vi, (0) is twice differentiable everywhere for all k € [1,2) and p > 0.

Bounding the second derivative. To bound ||V,;'p(9)||, when ||0 — 0%|| < A, by equation (16), we

have
" 2+ +1)kexp(k/(2 -k N
7,0y < 2D >2A2 p(k/(2=K) ) oo
_p*l12-k
When [|6—6°]| > A, we have Vi (6) = 06" 1P exp(“ L5530 ) — (1-K/2) exp(k/ (2-k))[10-6"[|7
and
Y il
17 " 2 * 2-2k
IV, (O <l (1-+ p)*ll0 = 011 exp( o).

where ¢}/ > 0 denotes a universal constant depends only on k and A.

Therefore, there exist some universal constants cy, c]’c > 0 that depend only on k and A such that

k|10 = 0*|*~*
17 2 *
VeSO <ex(1+p)°|16 - 67| eXp(—(2 Tl )
- kll6 - 6*[*~*
” ’ 2 # || p+2—2k
IV, @) <ei 1+ p)10 = 01~ exp(( ).

Valid Lyapunov Function. When ||0 — 0%|| > A, we have
(Vi ,(0).Vf(6))

vio_s  Kl|@ =6 |PF k(|6 — 6*|>~* i
=(iplo - 0r1p~2+ LT e ('L_ 5 ) = p(1 = k2) expk 2~ )II6 ~ 6°12)
(6~ 6,5£(8))
Klo-o ™ klo—o Pt
> e 0 - 0.9 0)
bk||6 — 0*||? k||9—9*||27k bk
= A2-k (2 — k)A2k ) 2 A2-k Vi (0).

When |6 — 0%|| < A, we have
W, (0), v f () = ErRkexp(k/ @2 k)10 = 6"}

S (0 -0, Vf(0))
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o 12+ p)kexp(k/(2-k))|l6 - 67]|P*
B 2A2?
thereby completing the proof of the last statement of Lemma 1.

= p(2+ p)Viep (0),

B PROOF OF PROPOSITION 1

To prove Proposition 1, the following lemmas play a crucial role, whose proofs are deferred to
Appendices B.1 and B.2.

LEMMA 2. Under Assumptions 1 and 2 with k € [1,2), Va > 0,0 € R?, we have
E[Vip (0 — a(Vf(0) + w(6))] — Vip(0)
<- amin(%n#(z +P)Vip(0) + szE[ygl[%ﬁ] IV, (6 = ya(V£(8) + w@ODIUIVFO)I* + [Iw(O)I*)]
LEMMA 3. Under Assumptions 1and 2 withk € [1,2), when ||0—0*|| > A and < min(2bA*7%/a?, ZaA_I’H)’
we have
%H@ -0 <16 -6"—aVf(O)ll < 6-06.

In the following, we bound the term E[maxye[q1) ||Vk”p(0 —ya(VL(O) + wONDIIVFO)]1? +

lw(6)]2)] in Lemma 2 for p = 0. When ||6 — 6%|| > A, we have
E[yrg%ﬁ] 1V (0 = ya(VF(0) + w( OV (O + [w(0)]1*)]
=E[ygl[%§] 1V0(0 = ya(VF(0) + wODIUVF O + 1w(O*) L (afjwio)<fi6-61/}] (17)
+ E[yrg%ﬁ] 1V (0 = ya(VF(0) + w(ODIUVS O + 1w(OI) L (afwioyy=no-0-1/a3]- (18)

For term (17), by Lemma 1, we have

(17) <62 max 10 - ya(T(6) + w(O) | exp(*1 y“((zv ! (,f))AZ_V,f(G))"2_k>(||Vf(e>||2 + IO

a1 <l0-0-1 /31

k||6 — 67> *
(2—far ) P
ak||w(6)]1**
(2 - k)Az-k

akl|lw(6)|**
(2 - k)Az-k

20;242"_215[”9 07| exp( YUIVFOZ + |lw(0)]1*)]
(i)

kllo — 6* 2—k
Sc;<42k_2 eXp( || ”

T )(a+ [w(O)[*A**9)]

)E[exp(

@
< ¢/ Vio(0),

where (i) follows from the following Lemma 3 (with the proof deferred to Section B.2), (ii) is
established by Assumption 2 and (iii) holds since the noise sequence {w,(-)},>0 is uniformly in
the y,_—Orlicz space and ¢} is a constant not depending on a.

For term (18), by Lemma 1, we have
k|16 — 0" = ya(Vf(0) + w(O)|I**
18) <ciE
(18) <ex [yrenl%ﬁj exp (2 — k)A2F

(i) k|6 - 6|)>F kllw(6)]1-*
< 7T Elexp( X222
Sck XU, a1 T

YUAIVEO N + 1w (O IP)L (afwio) |2 16-6" 14} ]
) (@210 = 07172 + [[w (DI L (e wo) |2 10-0%11 /4 ]
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@ ek KIO = 0°|1*7* .
<O(ll0 -6 eXp(W))P(aIIW(G)II 2 (16 -0711/4)
kllo — 67>~ 16 — 67>~

<O(]|0 - 6"]** exp( NI - Olexp(-—37—)) € 0(1)

(2 - k)nz-k
where (i) follows from Lemma 3 and Assumption 2, (ii) and (iii) holds since the noise sequence
{wn () }n>0 is uniformly in the ¥/, _;—Orlicz space.

When ||6 — 0%|| < A, we have

B[ max V(0 = ya(V£(0) + w(O) I (IVFO) + [w(0)[1*)]
k10 — 0" — ya(V£(0) +w(6))|2*
<CkE[yI€nl%>§J exp( (2= k)AZF

Therefore, there exist o > 0 and a constant c;C 0 such that
E[Vio(0 — a(Vf(0) + w(0)))]

bk 7’
(1—am1n( k,,p(2+p))+a2 )Vio(0) + Cho

YUIVAOI +[lw(0)11*)] € O(1).

bk
<(1- amm( = k,,,u(Z +9)/2))Vio(0) + & Ck,o’ Va < a,
thereby completing the proof of Proposition 1.

B.1 Proof of Lemma 2
Given fixed € R?, by the fact that E[w(#)] = 0, we obtain

E[Vip(0 = a(Vf(0) +w(0)))] = Vi,p(0)

a(V, ,(0),Vf(0)) +a’E / / (Vep (0 = ya(VF(0) + w(0)))(Vf(0) +w(6)), Vf(0) + w(6))dydx]

1p(0): VF(0)) +— [m[aX IV, (0 = ya (V£ (8) + w(OD VS (6) +w(O)]*]
a(V{ ,(0),Vf(0)) +a’ [y?[%%] IV, (0 = ya (V£ (0) + w( O IIVFO)* + [lw(O)]I*)]

bk ”
< - amin(5,, 1(2+p)Viep (9) +a’ [yrél[%f] V{0 = ya(VE(O) + w@ONIUIVFO I + [lw(O)*)],
where the last inequality holds by Lemma 1. Therefore, we finish proving Lemma 2.

B.2 Proof of Lemma 3
10— 0" = aVF(O)| = (116 - 0°[I* - 2a(0 — 6, V£(0)) + IV (O)[*)'*
< (/16 - 6°]|* - 2ab[|6 — 6°[|* + &®a®||0 — 67| %)%,
where the last inequality holds by Assumption 2. When |6 — 6*|| > A and a < 2bA*7/a?, we have
2ab||0 — 6 ||F > 2abA**||0 — 0%]|%7% > a?a?||6 — 6%||%< 2.
Therefore, we have
100" —aVfO)l <116 -6"]|
For the other direction, we have

10— 6" —aVf(O)ll = 116 - 6"l -l V(D)
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> 10 - 0°|| - ac||0 — 0% [|F!
16 = 6*||(1 = aaAF~2)

\%

1
2aAk-2"

v

1

=60 -0, Va<
2

Therefore, we finish proving Lemma 3.

C PROOF OF PROPOSITION 2
Based on Lemma 2, when ||0 — 6*|| = A and p > 2, we have

E[yrenlaof 1V, (0 = ya(VF(0) + w@ONIUVFO* + [w(O)]1*)]

kll0 = 6 — ya(Vf(0) + w(0))|I**
(2 - k)AZk

0, * ]
<c.(1 +p2)E[yr€n[%)§] 10 — 6 — ya (V£ (0) +w(h))||P*? 2% o xp(

~(IVFOI* + w1171
(@ kllo — 67>~ kllw(O)II>*

<O(ex (m))E[eXP(W

(iii)
€ 0 (Vip(0)),

)
)16 = 0[P + lw(O) [IP**72) (a®[10 = 0172 + [[w () %)]

where (i) holds by Lemma 1, (ii) is established by Lemma 3 and (iii) holds by Assumption 3.
When |0 — 0*|| < A, we have

E[ygl[%)i IV, (6~ ya(VF(0) + wONIUIVFO) I+ lw(B)I*)]
k|16 — 0% = ya(VF(0) +w(0))|>*
(2 = k)AZ*

<ou(1+p)E max 10 -6~ ya(VF(0) +w(O) | exp(
(VSO + [w(©)])]

(;)O(E[((l +aL)?]|0 = 0°|1P + a[|w(0)|IP) exp(

)

kllw(9)11*~*

2 k)Az_k)(LZIIG = 0°11” + Iw(O)11")]

0116 - 6°117) + 0(a) € O(Vip-5(6)) + O(a?)

where (i) holds by Lemma 1, (ii) holds by Assumption 2 and the fact that |0 — 6*|| < A, and (iii)
holds by Assumption 3.
Therefore, there exist ax, > 0 and constants cg p, , not depending on « such that

E[Vip(0 - a(Vf(0) +w(0)))]
<(1 = amin( bkk,,p(z +)) +0(a*))Vip(0) + O(a®) Vi p—2(0) + O(a?*?)
bk
<(1- amin( 5=, p(2 +0)/2))Viep(0) + & ciepViep—2(0) + aP*ocp
thereby completing the proof of Propsition 2.

D PROOF OF THEOREM 1

To bound the 2p—th moment of (8,, — 0%), the following lemma plays a crucial role, whose proof is
deferred to Appendix D.1.
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LEMMA 4. Vp € N, given a < min(ag, @k, - , Xk,2p), Where oo is defined in Propositions 1
and 2, there exists a constant d;_ 2p NO1 depending on a such that

’ - ln(a)
B[Veap(On)] < (1= @jtap) "Viap (00) +dy pya?™, v > 2L =
0
By Lemmas 1 and 4, we have
202 20 (1 — gt 2p) " Vie 2p (00) 20PT N2 d 5,

E[l10n -

E[Viap(0n)] <

0*||2+2p] < = + ,
kexp(k/(2-k)) kexp(k/(2-k)) kexp(k/(2-k))

thereby finishing the proof of Theorem 1.

D.1 Proof of Lemma 4
By Proposition 1, when a < aj o, we have
E[Vio(0n)] < (1 — apic0) E[Vio (On1)] + azc;c’o

n-1

< (1= apte0) "Vieo (00) + D (1 = apae)ael
i=0

< (1= apio)"Vio(00) + acl [pigo. ¥ > 0.

Assume that for p € [l — 1], we have

p-1 P
E[Viap (0n)] (1= @pizp)"Viap (B0) + Y @™ (1 = apueas2)"Vieai (00) - | | ezl e
i=0 Jj=i+l
P ) P
+ Z ap+l+lc;c,2i/ﬂk,2i 1—[ Cr2j/Hkzj>  Yn >0, < min(oko, Ak, -, Akoi-2)-
i=0 Jj=i+l

When p = [, By Proposition 2, we have

E[Viar(02)] <(1 = api ) E[Viea1 (0n-1)] + @*ci 2t B[ Viea1-2 (0n-1)] + 0!2”20;'{,2,

<(1 = apean) "B [ Vit (00)] + aciar/ pear - BIVizi—2(0n-)] + ¢} / e
-1 !
<(1 = apre21) " Vie 21 (0o) + Z &1~ apg gi-2)"Viai(6o) - 1—[ Ck,2j/ Hi,2j

i=0 Jj=i+l
1 1
I+i+1 7 .
+ Z a ckygi/ﬂk,Zi 1_[ Ck2j/Hkz2j>» Yn 2 0,a < min(ako, Q-+, Ak21)-
i=0 Jj=i+l

where the last inequality holds by induction. Therefore, by induction, we have proved that for all

n>0andp € N, when @ < min(ax, ks - - ,ak’gp), we have
p-1 ' P
E[Vi2p(0n)] <(1 = apig2p)" Vi 2p (6o) + Z P (1 = apige i) " Vie2i (0) - 1_[ Ck.2j/ Hk2j
i=0 j=itl

p
+i+1 7 .
+ Z o™ Ch i/ Hk2i 1_[ Ck2j/ M2, YN 2 0,a < min(akg, k2, > Ak2p)-
=0 j=itl
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In order to obtain a? ' (1— aug2;)" < aP*1,Vi € [p—1], itis equivalent to have n > Ll In(e) v o

In(1-apyz:)’

[p — 1]. Notice that

(i+1)In(a) < —pln(a) < —pln(a)

In(1 - apeai) = @iz~ ko
Therefore, Vp € N, given a < min(ay, a2, " -+ , %k,2p), there exists a constant d]’C 2 not depending
on « such that

" , —pIn(a
E[Vk2p(0n)] < (1 = apig,2p)" Vi 2p(00) +dk’2pap+1’ Vn > ZT)-
0
E PROOF OF THEOREM 2
By Proposition 1, given ay < ay o we have
E[Vio(0n)] < (1 = @n1p10)E[Vio (6n-1)] + @y}, ¥ 2 0.

Therefore, we have

n—1

E[Vio (0n)] < | (1 = cuptco) Vieo (60) + ¢l Z o ]_[ (1= Qo)
t=0 u=t+1
By Lemma 1, we have
2 /
20? _ 20%Vieo(60) 2A%c
E[l|6n — 0°11°] € ——————— | |(1 — arpro) + (1 = aupip)-
kexp(k/(2— k) H 50 ¥ e kT ) Z l_[ uhko

Therefore, by the proof of Corollaries 2.1.1 and 2.1.2 in [12], we finish the proof of Theorem 2.

F PROOF OF THEOREM 3
In this section, we prove Theorem 3 by verifying conditions A1-A3 in [57].

Verifying Condition A1. V0,0’ € R4, we have
6 —01l <6—0"+10 -6

A Vkexp(k/(2-k)) ) Vkexp(k/(2-k)) .
0-06 0 -6
PTG k))( A Il I+ A Il 1)}
A kexp(k/(2-K))lI6 - 6*||? . kexp(k/(2 - k)6 - 6*|1* +1)
kexp(k/(2 - k)) 242 20
A

0 o’ ,
Fon (/1) (Vieo(0) + Viep(0") + 1)

where the last inequality holds by Lemma 1.
By Proposition 1, we have

PVio(0) = V(0) = E[Vio(0 — a(VF(0) + w(0)))] — Vio(0)
< apVio (0) + a?dy,

thereby completing verifying the condition A1.
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Verifying Condition A2. By Assumption 5, we have
Wi(01,0) < (1= a6y - 6)ll, V00,0, € (0 R 5 10— 0°]] < A},
By Assumptions 1 and 4, we have
Wi (61,07) < E[l160 — 6 — (V1 (6) — VF(0)) — a(w(8) - w(O)I]
< (1+aL+acy)||6 — G5l

By Lemma 1, when Vj.(6) < w, 60— 0% <A.

kexp(k/(2—k))p

, we have
kexp(k/(2 —k)) S 202 dy
2 Ot flk

kexp(k/(2-k))pu
4dy.

. Then, we can choose ¢ < min(ay, ) and conditions A1 and A2 will be satisfied.

Verifying Condition A3. We aim to verify that

kexp(k/(2=k) | |

1
log(1 + aL W) log(1 + 2a%d 1 )
og(1+al + acy) log(1 + 2a°dy) < og(1 ) g(a#kkexp(k/(z 5 4 2otdr + 1

For the LHS, by the fact that log(x) < x — 1, Vx > 0, we have
LHS < 2a°(L + ¢.,)dk

For the RHS, by the fact that log(x) > 1 — 1/x,Vx > 0, we have
kexp(k/(2-k))
<o) 41

RHS > ar - log(
kexp(k/(2-k
QpEK € P(z /(2—=k)) Zszd 1

kexp(k/(2-k))
<Pt 41

> ar - log ( .
K exp (k] (2—k
kg (KD | gz

exp(k/2-k)
r - 95 . .y
Therefore, when a < |5777—- - log ( aukkexp(k/(Z o, de 1), we verify condition A3.

Then, by Corollary 2.1 and Remark 2.3 in [57], we finish the proof of Theorem 3.

G PROOF OF THEOREM 4
In this section, we prove Theorem 4 by verifying conditions Al and A2 and leveraging Theorem 9
in [37].

Verifying Condition Al. Condition Al is satisfied by the geometric convergence rate stated in
Theorem 3.

Verifying Condition A2. Let Vi.(0) = V2 ,(6). Therefore, we have

exp(ALVL) — (1= By exp(k/(2- k) 1667 > A,

2k/(2=k)10-6"|* . *
k% exp( /(4A4 DI Il 1f||0—0 ” < A.

Vie(0) =

Given fixed 6 € RY, we have
E[Vi(6 — a(Vf(8) + w(0)))] - Vi (6)
=—a(V((0),Vf(6))
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1 x
+ azE[/O /0 (V' (0 = ya(Vf(0) +w(0))(VF(0) +w(6)), VF(0) +w(6))dydx]

<= a(V{(0), V£ (0)) (19)
2
+ %E[y?[%)i] IV (0 = ya(VF(8) + w(@ONIIVF(O) +w(O)]*]. (20)

Below, we bound the terms (19) and (20) when ||0 — 6%|| < A and ||6 — 67| > A.
When [|6 — 6%|| < A, we have

K2 exp(zk/(zA: N0 =01 o g 50

K pexp(2k/(2 - k)]0 - 0*||* Y
. _akpexp( /(N )l I seuiico)

By Assumption 3, we have (20) € O(a?).
When ||0 — 0%|| > A, we have

(19 = -=

k10 — 0%]| % exp(L=CIZEy

_ p* 2—k 2-k
<19>=—a(exp(%> - (1= 5y expk/ 2~ k) -6 vF (@)
_ pr12—k bk exp(k”f s ”zzkk)
< —a(exp(%) - (1= 5y explk/ 2 ~ k)| ———
<~ 0).

Notice that
IVl = IIZV,C',O(G)V,C’,O(G)T +2Vio (VL (O)]
< 2l (DI + 2| Vieo DIV (O]
2k||6 — 6*||>~*
(2 - k)A2k

where the last inequality holds by following equations (14) and (15). Therefore, with the similar
arguments in the Section B, we obtain

(20) € O(@*Vi(0)) + O(a?).

€ O([10 - 0"[I*** exp( )

Therefore, for all 8 € RY, there exists . > 0 such that when a < «,, we have

E[Vi(0 = a(VF(O) +w(0)] < (1 -« rnln( dap) +O0(a*))Vi(0) + O(a?)

A2k’

<(1- amm( Zkk,Za,u))Vk(G) +0(a?),

which implies for all 8, € R4, we have

E[Vi(0,)] < (1 — amin( -5 2ap1))"Vie(60) + O(a).

A2-k’
Therefore, by Fatou’s lemma ([21, Theorem 1.6.5]), we have

E[V,(057)] = B[V (657)] € & < oo,
thereby verifying the condition A2.
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H PROOF OF THEOREM 5
H.1 A Few Preliminary Facts

LEMMA 5. Given random variable x € R? such that E[xxT| = I and ||x|| is o -sub—exponential,
there exists Ay = o, In(8E[||x||*]) such that

1
uWBloox  Ljypen,Ju > 5||u||2, Yu € R%.

Lemma 6. VO € RY, 0 # Oreg» We have
(Vfreg(0),0 = Or) > 0.
LEMMA 7. There exists ¢; > 0 such that
tl'(t) > clt|, te{t:|t]| > A}

LEMMA 8. Given random variable x € R such that E[xxT| = I; and E[||x||*] < oo, foralla > 0
and 0 # 0, we have

9

E[|xT6|1 = 328 ([l
[lx" 01 |yrg)24] < 32E[ [|x|4]

01l - a

H.2 Main Proof
Verifying Assumption 1. V6,0’ € R, by Assumption 7, we have
IV freg(8) = Vfieg (8"l = IIE[ (y — x" 0)x] = E[I'(y = x"6")x]||
<E[(y = x"0)x = I'(y — x"6")x|l]
< LE[lIxI°116 - 6’1, (21)
thereby completing verifying the Assumption 1 with L = L;E[||x||?].
Verifying Assumption 2. By Lemma 5,V0’,0” € {0 € R? : ||0 — Oregll < =5}, we have
(Vfieg(0") = Vfreg(0”), 0" = 0”)
=(E[l'(y - xT0")x] —E[I'(y - xT6")x], 0’ — 0")

=B[(I'(x"Opg = x" 0" +e+5) = I'(x 01y = x" 0" + e+5))(x" 0" —x"6")]
() ’ sk 1’ 7’ * ’ ’ 24
2E[(I'(x Oy —x" 0" +€+5) = I'(x Ofeg —x 0" +e+5))(x" 0" —x"6 VT gt T 0 ves] <ALIXT Org—xT 0 +eks

g E T@l TGN 2]1

> B[ (x ) [xT 0}y —xT 0" +e+s| <A, |xT9r*%—x79”+e+s|<Al]
>uP(le +5| < A)E[(x"0 = xT0") 1 g,

>P(le +5| < Aes) (0 = 0”) E[xx" 1<, 1(0" = 0”)

(111)‘ul

—xT0'|<A;-Ae, |xT9reg—xT6'”|<A1—Ae]

S P(le+sl < Ayl - 0"1I%, (22)

where (i) and (ii) hold by Assumption 7, and (iii) holds by Assumption 6. Therefore, we have verified

the local strong convexity of fie; when || — GregH < AA” with p = ”’P(|e +s] < Acy).
For all € RY, by Assumptions 6 and 7, we have
IV freg (Ol = IIE[ (y — x"0)x]| < aiE[|x]], (23)

thereby verifying the gradient V f;, is bounded with a = a;E[]|x|[].
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To verify the last property in Assumption 2, we have

(Vfreg(6), 0 — 6reg)

=(B[l'(x" Opeg = x" 0+ € + 5)x], O}y — 6)

=E[I'(x7 0o — x" 0 + € +5) (x" o — x" 0)]

=E[I'(x" 01 = x70) (x Ol — X O) | +E[(I' (x Ol —x" 0+ €+5) = I'(x7 o — x0)) (x" 0 = xT0)] .
T T

For term Ty, by Lemmas 7 and 8 when 0 # 0;,,, we have

reg’

T p* T
Ty 2 B[|x" O — x7 0|1 x74;, —x70)>n,]

reg
2L 110~ Ol - i
— C1A].
32E[ll 1] e
Because I'(-) is increasing and bounded, there exist ¢; > 0 such that |[I'(¢") — I'(t")]| <
9cy ’” 77 _

W forall t,t” € {t : t > ¢;} and all /,¢" € {t < —c;}. Therefore, for term
T,, we have

T =E[(I'(x" Oy — xT0+ € +5) = I'(xT 0oy — x70)) (x" O} — x7 )1 (|57p:

reg reg reg reg

+ B[ (x" g = x" 0+ € +5) = I'(x" 01y = x70)) (x Ol — x" 0) 17

SE[(I'(x" 0y —x" 0+ e+5) = I'(x7 0}y — x70)) (x" 0y — x" 0)1 (|,10:

reg reg reg reg

—xT0]22¢}]

O —x70)<2¢;} |

<7221 ] = 2¢;Li(E[le]] + E[ls]])

:E[(ll (xTe;keg —xT0+e+ S) - l/(xTG:eg - xTG))(xTQ:eg -X e)l{leaeg—xTBPZC \e+s|>|x79reg—xT0\/2}]

+EB[(I'(x7 g —xT 0+ €+5) = I'(x" 01y = x70)) (x Ol — x7 0)1 (%705
= 2¢;Li(E[|e[] + E[ls]])
9¢;
Z —4
64E[ [|x|I*]
+EB[(I(x7 g —xT 0+ € +5) = I (x 0}y — x70)) (xT 0 — x"0) 1y 7¢:
9¢;

> "

64E[[|x|I*]

_2a1E[||xT€reg xT9||]1{|x70, ,—xT0|22¢),|e+s|2|xT0
9¢;

z - 4

64E[[|x||*]

—xT0]22¢) |e+s| <|xT 0o —xT01/2} )

reg

10 -0 2¢;Ly(E[le[] + E[Is|])

reg”

—xT0]22¢) | e4s] 2 |xT Ot —x70] 2} ]

reg reg

16 = Oregll — 2c;Li(Ellel] + E[Is]1)

O -x701/2}]

16 — Oregll — 2c;Li(E[lel] + E[Is]1)

Eflel] +E[lsl]

= 2aiB[||x" 0%y — xT O 1 1o _ T opm2ery o]
(e O T G — <70

reg

9c;

W“G Oregll = (2a1 + 2¢;Ly) (E[|e]] + E[]s]]).

Therefore, together with the bounds for T; and T, we obtain

9cy

(Vfieg(6).0 = 0rg) > m

116 = Oregl -
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where ¢ = (2a; + 2¢;L;) (E[|e]] + E[[s|]) + c;A; Therefore, for all 6 € R< such that ||0 — Oregll =

%’ we have
9¢;
Vfreg(0).0 = Oreg) 2 e 10 = Oregll-
(V fieg(0), reg 128E[|| I* ]H el
If 128E[9ﬂxH e o Algfe,s’ we have verified the last property in Assumption 2.

128E[ ||x]|*]c . Ar—Acs
If Sc; > =5, by Lemma 6, we have

C;, = min <Vﬁeg(9) 60— 9reg> >0,

€,S % x|41c
0 (O 27080 < 00| < 22BN )
and for all @ € R? such that ||0 — ereg” > Al;fe,s . we have
. 9¢; 9Clc”
<Vﬁeg(9) 0 — Greg> > min( )0 - Greg”

128E[[lx[|*]” 128E[||x[|*]c
thereby completing verifying the last property of Assumption 2.

Verifying Assumption 3. V0 € RY, by inequality (23), we have
WOl = IV freg(8) +1' (y = x"O)xI| < wE[Ix[I] + asllx]].

Because [|x|| is sub—exponential by Assumption 6, we have verifying the Assumption 3 that ||w(-)||
is uniformly sub—exponential.

Verifying Assumption 4. V6,0’ € R, we have
E[llw(6) = w(0)I*] =E[IV freg(8) +I'(y = x"0)x = Vfreg(6") +I'(y — x" 0")x||*]
<2||V freg(0) = Vfreg (0117 + 2E[III' (y = x"0)x = I'(y = x"6")x||’]
24L12E[IIXI|4]||9 A (24)
where (i) holds by following inequality (21) and Assumptions 6 and 7. Therefore, we have
E[lw(0) - w(®)l] < VE[llw(0) - w(6")[2] < 2L, VE[[Ix[*][16 - ']
thereby verifying the Assumption 4 with ¢,, = 2L, \/W .

Verifying Assumption 5. By inequality (22), V8’,0” € {§ e R% : ||0 — Oregll < A’;—f“}, we have
E[10" = a(Vfieg(0) + w(0")) = 0" + a(V freg(6”) + w(6))l]
S\/E[IIG’ — a(Vfreg(6") + w(6)) = 0”7 + a(V freg(0”) + w(6”))I?]

=\/II9’ — 0" = a(Vfieg(0") = Vireg (07 )II* + a®E[llw(0") — w(0”)]1?]

(i)
< \/IIG’ =07 = a(Vfieg(0') = Vreg(0”)11? + 4L7E[||x]|*] 0| 6” — 07 ||?

S\/(l —apP(le +s] < Acy) + @®LTE[[Ix[219)110” — 0”[|2 + 4L7E[||x]|*]a?(|6” — 67|

1 ’ ’”
<(1 - jauB(le+s| < Acs)) 107 = 07,

where (i) holds by following inequality (24) and the last inequality holds by choosing o <
P(let+s|<Aes))
2(LYE[||x 1212 +4LE[1x[*]) °
Therefore, by the definition of Wasserstein 1-distance (3), we have verified Assumption 5.

, Vol. 1, No. 1, Article . Publication date: February 2025.



A Piecewise Lyapunov Analysis of sub—quadratic SGD: Applications to Robust and Quantile Regression 37

H.3 Proof of The Preliminary Facts
H.3.1  Proof of Lemma 5. Yu € R? and § > 0, we have

uTE[xxT]l”xHSg]u =ulElxxT|u - uTE[xxT]l||x||>5]u

= [lull® - u"Blxx" 1jyy>su

> [full® = lul Bl L o]

> Jlull® = [l *VE[Ix[[*]R(llx]| > 6)
l[ull* = el V2E[I|x[|*] exp(=5/ox).
Therefore, there exists A, = o, In(8E[||x]|*]) such that

\

1
uTE[xxT]l”x”SAx]u > §||u||2, Yu € RY,

H.3.2  Proof of Lemma 6. V0 € R%, 0 # 0, we have
(Vfieg(0),0 = Org) =E[I'(xT (00 = 0) + € +5) - xT (0 = O))].

reg
Let u = xT(Gﬁ‘eg — 0). By Assumption (6), we have u is independent with € and s, E[u] = 0,

E[u®] = [|0 - ;4] > 0 and u is sub-exponential.

Observe that
E[(I'(u+e+s)u]l =E[(I'(u+e+s)u] —E[(I'(e +5)u]
=E[l'(u+e+s)—1'(e+s)((u+e+s)—€—s)]
2E[l'(u+e+s)—1'(e+s)((u+e+s)—e—s)Nessi<a.y]
> B[ (it Ljuj<a-ney + (A1 = Des)*Ljusn—ac ) L{jessi<acs)]
=P(le+s| < M) Bl Luy<a-ac, + 1A= Des)*L{jui>a-a sy ]-

KE[('(u+e+s)u] =0,wehave P(u # 0, [u] < Aj—Acs) =0and P(|u] > A — Acs) = 0, which
implies P(u = 0) = 1. By [23, Proposition 2.16], we have E[u?] = 0, which contradicts with the fact
that E[u?] > 0. Therefore, we have proved that E[I’(u + € + s)u] > 0, thereby finishing the proof
of Lemma 6.

H.3.3  Proof of Lemma 7. By Assumption 7, we have —I'(=A;) > A; > 0 and I’(A;) > pyA; > 0.
Because I (+) is increasing, we have

tl'(t) 2 min(=1'(=Ap), ' (A))[t] = it
thereby completing the proof of Lemma 7 with ¢; = yyA; > 0.
H.3.4  Proof of Lemma 8.
E[|x" 011 xrg)50] =E[Ix" 1] = E[Ix"0[1 7|4
>E[|xT0]] - a

=/ P(1x70] = t)dt —a
5

=0

o/
2/ P(|x70| > t)dt —a
t=0

1
ZEP(legl > [1011/2)110]] - a
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1
=§P(IXT9|2 > [1011/9)116]] - a
® 9 E[|x"0]*]?
=32 E[|xT6]]
_9 ey
32 E[|xT0]4]

9
2 == 191 = a
32E[Ilx|1]

0]l - a

101l - a

where (i) holds by following Paley-Zygmund inequality [76].

I PROOF OF COROLLARY 2

In this section, we verify the Assumption Hs in [24] for online robust regression. Recall that
Wreg(0) = =V freg(0) = I'(y — xT9)x. Define S(6) = ]E[w,eg(G)wreg(H)T] and we aim to prove that
S(+) is lip-continuous.

Observe that

5(0) = BL(=V fieg(0) — I'(y — x0)) (—V feg(0) — I'(y — xT0)x)"]
= E[(I'(y T O0) (I'(y — x70)0)T] = V foeg (O fieg (O)T.
Therefore, for all 0,0’ € R?, we have

15(0) - S(60)'l
<IEL (g = x70) = I (y — x0T + 1V fieg(O)V fieg ()T — ¥ fieg (6)V feg (0]l
Q2aELIx[P1IO = 6| + 1V fiog (6)(V fieg (6) — V feg O

17 foog(0) = ¥ oeg () freg(0)T |
Q 2aBlIxIY] + 2aLENIPELI*IDI60 - 6],

where (i) holds by Assumption 7 and (ii) holds by following Theorem 5. Therefore, we verify the
Assumption Hg in [24] for online robust regression.

J PROOF OF THEOREM 6
J.1 A Few Preliminary Facts

In this subsection, we present some useful preliminary lemmas. The proofs of Lemmas 9 and 10 are
similar to those of Lemmas 6 and 7; hence, we omit them.

LEMMA 9. VO € RY, 0 # 0;, we have
(Vf:(0),0 - 067) > 0.
LEMMA 10. There exists ¢, > 0 such that
tFe(t) > c;|t], Vx eR%Lte{t:|t| > A}

J.2 Main Proof

In this section, we prove the Theorem 6 by verifying the Assumptions 1-3.
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Verifying Assumption 1. For all 6,8” € R?, by Assumption 9, we have
IV£(0) = V() = IE[Fx(x"60 = x"6;)x] - E[Fx(x"6" —x"60;)x]]|
< LE[||x[I*]]16 - 6",
thereby verifying the Assumption 1 with L = L. E[||x||?].

Verifying Assumption 2. Recall A, = o, In(8E[||x||*]) defined in Lemma 5. For all §’,0” € {0 €
R?: |0 - 07|l < A;/Ax}, by Assumption 9, we have

(0" =0",Vf(0') = V£(0"))
=E[(Fe(xT0" = xT0%) — Fe(xT0” = xT0%))(x760" — xT0")]
2pBL(x" 0" = xT0") 21 (3o g <n, w707 —xTor | <} ]
>p (0" = 0”) E[xx" L jxj<ay 1(6 = 0”)
>E 10— 01

For all € R?, we have
IV£ (O = [E[(Fx(x"6 = x"67) = )x]I| < (1 + 0)E[I|x[l].
To verify the last property in Assumption 2, by Lemma 10, when 6 # 67, we have
(0 =07, V1 (0)) = (Bl(L(y-xro<0) — T)x], 0 = 07)
= B[(Fe(x70 - x760) — F(0)) (x760 - x762)]
> E[(Fx(x70 = x70) = Fx(0)(x"0 = x"01) 1 {|,79_x7: 5,
> CTEHXT@ - xTezjlﬂ{leg_ngj;leT}]
9¢,
= 522 (x|

where the last inequality holds by Lemma 8.
Therefore, when ||6 — 67| > %, we have

16 -0zl -

(0-0;,Vf(0)) = 16 -0zl

>t
64E[|lx(1*]

1f S4B

< A , we have verified the last property in Assumption 2.

It 64Eg£xH I A_x’ by Lemma 9, we have

c, = min (Vf:(0),0 -067) >0,

T
Be{eeRd:Aig”e_g;”S%}
and for all § € R? such that || — 67]| > 2=, we have

9c; QC;AT
64E[[lx[|1*]” 64E[||x(I*]
thereby verifying the last property of Assumption 2.

(Vf:(0),6 — 07) > min(

)6 = 6711,

Verifying Assumption 3. By the definition in Section 6, we have
lwe ()1 = [I(L(y—xro<0y — Dx = V(O] < 2lx]| + (1 + DE[Ix]l],

which implies that the noise sequence is uniformly in the 1/; —Orlicz space.
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K DISCUSSIONS ON THE LACK OF WEAK CONVERGE FOR QUANTILE REGRESSION

In this section, we focus on the recursive quantile estimation problem, which is a special case of
online quantile regression when x = 1. We try to illustrate that it is not clear if constant stepsize
recursive quantile estimation has the weak convergence results.

The constant stepsize recusive quantile estimation has the following update

0n+1 = 9n - O{(Il{ynggn} - T).

Because 6, € R for all n > 0, we use the following formula to calculate the Wasserstain-1 distance:

W (i, i) = /R IFy(x) = Fo(x)] dx,

where F; denotes the cumulative probability function of y; for i =1, 2.
Without loss of generality, we assume that 6’ < 0 < 0’ + /4 and 6,6’ € [-A,, A;]. We have

Wi(L(0 - a(lix<oy — 1)), L' — a(lix<ory — 7))

=(0—-0)F(0')+ (0’ —0+a)(F(0)—F(0"))+(0—-06")(1-F(9))

=0-0"+(a—-2(0-0"))(F(9) - F(#))

>(0-0")+a/4(F(0) — F(6"))

>(1+ap/4)(60-06").
Consequently, we demonstrate that two iterates near zero diverge in the W; distance, indicating
that the weak convergence result may not hold for recursive quantile estimation. However, this
does not rule out the possibility of weak convergence under a metric weaker than W;, which we
leave for future work.

L PROOF OF COROLLARY 4

In this section, we verify the Assumption Hs in [24] for online quantile regression. Recall that
wr(0) = (Ly_yxr9<0y — 7)x — Vf(0). Define S(0) = E[w:(0)w;(0)T] and we aim to prove that
S(+) is lip-continuous.

Notice that

S(0) = E[((L{y—xro<0y — D)% = V(O (L1 y-rr<0y — T)x = V£(6)]
= B[(1y_xro<0y — 0)*xx" | = VA (O VS (0)"
=E[(1 - 20)F (x70 — xT0")xxT] + 2E[xxT] = V£ (O) V£ (0)T.
Therefore, for all 6,0’ € R, we have
15(0) = Sl

<(1-20)B[|Fe(x"0 = x76;) = Fe (x7 6" = x"0)|[Ix[I”] + IV £(O)Vf(0)" = V(0 V(0|
<(1 = 20) LE[|Ix|*110 = 0’ + IV A (O IVf(0) = V(O + IV f(O)IV£(0) = V(0]
<((1 = 20)LE[||x[P’] + 2(1 + ) LE[|x[1E[lIx]I*]) 16 - 6|

where the last inequality holds by Theorem 6. Therefore, we verify the Assumption Hg in [24] for
online quantile regression.

, Vol. 1, No. 1, Article . Publication date: February 2025.



	Abstract
	1 Introduction
	1.1 Additional Related Work

	2 Preliminaries
	2.1 Notations

	3 Challenges of Analyzing sub–quadratic SGD and A New Piecewise Lyapunov Function
	3.1 Limitations of Prior Work and Challenges of Analyzing sub–quadratic SGD
	3.2 A New Piecewise Lyapunov Function
	3.3 Pivot Results

	4 Main Results
	4.1 Finite-Time Moment Bound
	4.2 Weak Convergence, Central Limit Theorem and Bias Characterization

	5 Application to Online Robust Regression
	5.1 Model Setup
	5.2 Main Results for Online Robust Regression

	6 Application to Online Quantile Regression
	6.1 Model Setup
	6.2 Main Results for Online Quantile Regression

	7 Numerical Experiments
	8 Conclusion
	References
	A Proof of Lemma 1
	B Proof of Proposition 1
	B.1 Proof of Lemma 2
	B.2 Proof of Lemma 3

	C Proof of Proposition 2
	D Proof of Theorem 1
	D.1 Proof of Lemma 4

	E Proof of Theorem 2
	F Proof of Theorem 3
	G Proof of Theorem 4
	H Proof of Theorem 5
	H.1 A Few Preliminary Facts
	H.2 Main Proof
	H.3 Proof of The Preliminary Facts

	I Proof of Corollary 2
	J Proof of Theorem 6
	J.1 A Few Preliminary Facts
	J.2 Main Proof

	K Discussions on the Lack of Weak Converge for Quantile Regression
	L Proof of Corollary 4

