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Rendezvous with sperm whales for biological observations is made challenging by their prolonged dive patterns.
Here, we propose an algorithmic framework that codevelops multiagent reinforcement learning-based routing
(autonomy module) and synthetic aperture radar-based very high frequency (VHF) signal-based bearing estima-
tion (sensing module) for maximizing rendezvous opportunities of autonomous robots with sperm whales. The
sensing module is compatible with low-energy VHF tags commonly used for tracking wildlife. The autonomy mod-
ule leverages in situ noisy bearing measurements of whale vocalizations, VHF tags, and whale dive behaviors to
enable time-critical rendezvous of a robot team with multiple whales in simulation. We conducted experiments at
sea in the native habitat of sperm whales using an “engineered whale”—a speedboat equipped with a VHF-
emitting tag, emulating five distinct whale tracks, with different whale motions. The sensing module shows a
median bearing error of 10.55° to the tag. Using bearing measurements to the engineered whale from an acoustic
sensor and our sensing module, our autonomy module gives an aggregate rendezvous success rate of 81.31% for
a 500-meter rendezvous distance using three robots in postprocessing. A second class of fielded experiments that
used acoustic-only bearing measurements to three untagged sperm whales showed an aggregate rendezvous
success rate of 68.68% for a 1000-meter rendezvous distance using two robots in postprocessing. We further vali-
dated these algorithms with several ablation studies using a sperm whale visual encounter dataset collected by

marine biologists.

INTRODUCTION

Sperm whales are known for their multilevel social structure, com-
plex communication system, advanced cognition, rich behavioral
diversity, and cultures (1-8). To support further studies of these
whales, detailed data collection is crucial. Over the past several
years, innovative technologies such as underwater acoustic sensing
to record whale vocalizations and inertial measurement unit-enabled
animal-worn tags have been applied to collect increasingly rich
continuous datasets from sperm whales (9). These tags have enabled
researchers to localize and track sperm whales to study their diving
behavior, foraging, and communication (10-13).

Acquiring in situ (at sea) visual observations of whales, hence-
forth referred to as “rendezvous,’ is critical for validating tag deploy-
ments, acoustic recordings of whale vocalizations underwater, and
other remotely sensed data. These observations provide highly val-
ued ground-truth labels, for example, physical proximity and inter-
actions between individuals, photo-identification, and tracking of
other contextual or behavioral events, allowing for important ties
between vocalizations and behavior (14). Specifically, the ability to
combine whale-generated acoustic data with visual in situ observa-
tions provides valuable information about the function of whale vo-
calizations (15, 16). This is one of the major goals of several whale
observation and science projects, including the Earth Species Project
(15) and the Cetacean Translation Initiative (CETI) project (17, 18).
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Project CETI, which this work is a part of, focuses on decoding the
acoustic communication of sperm whales in Dominica by applying
advanced machine learning and state-of-the-art robotics (18).

Unfortunately, collecting in situ observations of whales is very
time consuming, even with advancements in animal-worn sensor
tags. Researchers still face challenges in deploying these tags and
collecting data, primarily because of the behavior of sperm whales,
who spend less than 25% of their time at the surface (Fig. 1A) (19).
This limited surface activity results in frequent missed rendezvous
opportunities, further complicating data collection efforts. Conse-
quently, substantial time and effort are required to successfully
implement tagging and monitoring procedures. Figure 1B shows
the recorded time lag between consecutive visual whale identifica-
tion times in an example study of social sperm whale behavior in
Dominica. Any time lag of more than roughly 1 hour indicates a
missed visual rendezvous opportunity, given that the time between
consecutive whale surfacings in this community is ~57 min (20).

Angle-of-arrival (AOA) tracking of whales can be used to im-
prove rendezvous outcomes, by measuring AOA of animal-worn
very high frequency (VHF) signal-emitting tags when they are sur-
faced (21-24) and measuring AOA to whales using acoustic tracking
of their vocalizations while they are underwater. Using GPS-enabled
tags can also provide useful information about whale locations, but
the VHF tag alternatives are generally less expensive and more
power efficient, making them more compatible for fielded opera-
tions (25). Sensing the AOA for VHF tags is traditionally done in
the field using directional antennas (26-29), which most often re-
quire manual operation and provide coarse AOA accuracy because
of their reliance on signal strength.

The application of robotics and autonomy, such as fleets of au-
tonomous unpiloted aerial vehicles (UAVs) or surface vehicles, could
mitigate manual effort and costs, improving rendezvous success.
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Fig. 1. AVATARS framework for sperm whale rendezvous. (A) An instance of a sperm whale’s vertical dive profile obtained from pressure sensor data showing very short
surfacing duration (79). (B) Missed sperm whale rendezvous opportunities based on observations collected over 8 years by marine biologists (20). (C) Our framework,
where a UAV with our sensing module obtains AOA to a VHF signal-emitting tag attached to a whale. Acoustic sensors such as hydrophone buoys or towed arrays enable
acoustic AOA when whales dive underwater. Robots with our autonomy module use AOA from different sensing modalities while accounting for uncertainty in whale
positions due to noisy sensor measurements and stochasticity in surfacings to localize whales and achieve rendezvous with whales when they surface.
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This would allow for more efficient and comprehensive data acquisi-
tion, both spatially and temporally, thereby improving research out-
comes (16, 30, 31).

At its core, the whale rendezvous problem can be thought of as a
variant of an autonomous vehicle routing problem with time window
constraints, albeit with some critical differences, which we will out-
line later. Here, all surfaced whales can be modeled as stochastically
appearing requests that must be serviced by a group of autonomous
robots and where the locations and servicing time windows of the
requests are unknown a priori. Previous work introduced a multia-
gent rollout-based reinforcement learning (RL) approach in which
each agent sequentially minimizes an expected cost by evaluating its
available controls, one agent at a time. This process scales linearly
with the number of robots (32). Here, several possible futures are
“rolled out;” and the expected cost over these futures is often calcu-
lated using Monte Carlo simulations. Thus, the quality of these ap-
proaches is often characterized by how well they can approximate the
future. Rollout-based RL has shown great promise for learning mul-
tiagent policies that take uncertainty into account over long planning
horizons, and some variants can also deal with partial observability
of the state (33-39). Rollout-based RL methods have also shown prom-
ising results in routing problems, with their ability to adapt to changes
in environmental uncertainties by using online replanning with the
latest data as they become available, combined with offline learned
models that help better estimate future costs (34, 35, 37, 40). These
attributes also make rollout-based RL appealing for the problem of
whale rendezvous.

However, critical differences from the vehicle routing problem
must be addressed when planning rendezvous with whales. The
whale rendezvous problem is characterized by a hybrid discrete-
continuous state, time criticality, and partial observability. First, the
hybrid discrete-continuous state refers to the whales’ position in
three-dimensional space, which represents the continuous compo-
nent, whereas the discrete component indicates the whales™ brief
surfacing intervals. This dual nature adds complexity to the plan-
ning process. Second, the issue of time criticality arises because
sperm whales typically spend less than 10 min at the surface each
hour, making timely rendezvous essential. Last, the problem is fur-
ther complicated by partial observability. While whales are under-
water or surfaced but out of visual range, only sparse and highly
uncertain measurements of their position or heading are available,
either through acoustic AOA estimates of their vocalizations or, in
the case of tagged whales, VHF AOA from whale-worn tags during
surfacing. This lack of precise positional data introduces challenges
to the RL framework. Ideally, a rollout-based RL method could use
biological models to accurately capture whale motion while allow-
ing for replanning that is responsive to in situ-sensed data about the
whales’ whereabouts. For example, sensing AOA to VHF pings from
animal-worn tags can enable detection of the surfacing of the whale
because VHF signals are usually detectable over several miles. This
is needed to refine routes to successfully catch their short rendez-
vous window and thus highlights the criticality of improving in situ
sensing for developing whale-specific RL methods for autonomy.

In this work, we codeveloped the core algorithms of our frame-
work, Autonomous Vehicles for whAle Tracking And Rendezvous
by remote Sensing (AVATARS) (Fig. 1C), that combines an RL-
based autonomous routing algorithm and VHF signal-based sens-
ing (Fig. 2) to maximize the chances of rendezvous with whales. The
two interrelated modules of autonomy and sensing are as follows.
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The autonomy module comprises a multiagent rollout-based RL al-
gorithm that determines the positioning commands to autonomous
robots to maximize whale rendezvous opportunities by fusing data
from multiple sensors, such as acoustic and VHF AOA. This is done
to determine likely surfacing times of the whales and coordinates
the fleet of robots to be in the right place at the right time to catch
the surfacing opportunity. The rollout horizon computes the cost
of assigning a robot to visit with a particular whale as the expected
total time to rendezvous with all whales while accounting for future
whale surfacing behaviors. The cost is then minimized over all pos-
sible assignments to increase rendezvous success. Key innovations
to our approach include resampling future uncertainties during
the rollout horizon, considering discrete events like whale surfacing,
and dynamically adjusting whale motion predictions and robot as-
signments by adapting to sensed information. Better sensing is
crucial for adjusting future projections of whale surfacings and loca-
tions over the rollout horizon, which, in turn, greatly affects success-
ful rendezvous. The sensing module involves the development of
a waterproof sensing payload that addresses the size, weight, ex-
treme environments, and power constraints for deployment at sea
and a signal processing algorithm based on synthetic aperture radar
(SAR) that measures AOA to the VHF tags. SAR methods apply sig-
nal processing to phase differences from several pings acquired over
the flight of the UAV, thereby emulating the AOA-finding capabili-
ties of a multiple antenna array in software and providing higher
accuracy than signal strength-based methods (41-47). We show
that high-accuracy VHF azimuth AOA can be obtained using a UAV
via extensive hardware experiments in the field. The sensing module
is compatible with off-the-shelf passive VHF tags, which are the
most widely used in field operations (22-25). All core aspects of
our sensing and autonomy modules were validated using heteroge-
neous sensor data collected in the sperm whale environment along
the coast of Dominica using a speedboat and sperm whale tracks, as
well as through various ablation studies.

RESULTS

We validated the algorithmic developments of the AVATARS frame-
work across three expeditions in 2023 and 2024, both in situ at sea in
Dominica and through various ablation studies. We first performed
controlled experiments with an engineered whale, an 8-m-long
Zodiac speedboat equipped with a passive VHF-emitting tag. We col-
lected real-time acoustic and VHF AOA measurements as the engi-
neered whale mimicked sperm whale movements. Next, we collected
the real-time acoustic AOA measurements to three untagged sperm
whales. Acoustic AOA to both the engineered whale and sperm
whales during their underwater phases was acquired using a towed
hydrophone array (fig. S1), whereas the VHF AOA was acquired us-
ing our sensing UAV. These field experiments were conducted across
several days, covered different whale-surfacing patterns across ex-
periments, and used different sensor configurations (acoustic AOA
only for sperm whales and acoustic and VHF AOA for the engi-
neered whale). The in situ AOA measurements were provided to
our autonomy module, which postprocessed these measurements
and furnished routing commands for autonomous robots in simula-
tion. The robots’ routes were verified against the ground-truth whale
tracks to report rendezvous success or failure. We report rendezvous
success for different distances between the autonomous robots and
a surfaced whale, henceforth referred to as the rendezvous radius.
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Fig. 2. System design of AVATARS autonomy and sensing modules. (A) Whales are localized using a UKF that uses noisy AOA measurements from acoustic and
VHF sensors. (B) Autonomy module’s multiagent rollout architecture. The sperm whale’s motion model accounts for future uncertainties by predicting future surfacing
times, duration (79), and changes in whale heading. The module then performs a series of optimizations to assign whales to robots. Each optimization uses the knowledge
of the optimized assignment decision communicated by the previous robot in the series. The module furnishes control commands to enable the rendezvous of robots
with whales in minimal time. (C) VHF AOA computation flowchart. (D) Our formulation has two antennas with a fixed separation. The UAV's orientation is denoted by ¢.
(E) SwellPro SplashDrone 4 UAV and sensing payload hardware. The payload weighs 1.6 kg with dimensions of 18 cm by 12 cm by 8 cm. The UAV dimensions are 40 cm by
40 cm by 30 cm. PC-CF, polycarbonate material with reinforced carbon fiber.
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Setup

A whale motion behavior model corresponding to their under-
water and surface phases was used by the autonomy module to
predict future surface intervals and whale motion. We obtained this
information using the Dominica Sperm Whale Project (DSWP)
dataset. This dataset contains a rich set of sperm whale sighting
data collected over 15 years by marine biologists (19, 20). It also
includes information about the duration of sperm whales’ surface
and underwater phases; we approximated these from empirical

. . . . . — 2 —_ 2
data using Gaussian dlstrlbutlor;s N (Burface =95 O e =3 ) and
_ 2 _ .
N (pundemater =34,6 4. =19 ), respectively. We used these val-

ues for the fielded experiments with sperm whales and the ablation
study. For the experiments with the engineered whale, the model
was obtained on the basis of the engineered whale’s controlled be-
havior with the time duration of the underwater and surface phases.

Robots obtained acoustic and VHF AOA observations, whenev-
er available, from sensors whose positions could be calculated. We
considered these sensor measurements to have zero-mean Gaussian
error, with SDs G,coustic and oyyp, respectively. Table S1 shows vari-
ous parameters used in our experiments.

While running our autonomy algorithm in postprocessing, we
considered the maximum speed of the robots to be v, = 15 m/s. The
position of each whale was initialized in the horizontal plane using
the location at their first surface end time. For the field experiments
with the engineered whale, we used a custom VHF beacon that oper-
ated at 500 mW. It sent continuous signal pulses with a duration of
80 ms and an interpulse duration of 1000 ms. The engineered whale
also relayed its ground-truth GPS locations in real time over a
telemetry radio. Ground-truth positions for sperm whales were
obtained from visual observations at the whales’ surface end times
from the catamaran CETI-1. These ground-truth positions were used
when evaluating the autonomy and sensing modules.

Metrics for evaluation

A rendezvous was considered successful when a robot was within a pre-
defined distance (rendezvous radius, prendezvous) from a surfaced whale;
the robot needed to rendezvous with a whale only once. The perfor-
mance of the autonomy module was evaluated on the basis of the follow-
ing metrics. “Successful rendezvous percentage” denotes the ratio of the
number of successful rendezvous to the total surfacing events for a group
of whales until the end of mission, expressed as a percentage. “Mission
time” denotes the total time from the start of the mission until the last
whale was rendezvoused during the operation time horizon. “Missed
whale frequency” denotes the normalized frequencies of the num-
ber of whales that were never visited during the total operation time.

Fielded validation in Dominica

We performed two experiments in the Caribbean Sea along the west
coast of Dominica (Fig. 3A). These experiments required addressing
challenges such as limited sensor availability and accuracy, tracking
sperm whales for data collection, intermittent rain, varying tempera-
tures, and wind speeds of 4 to 5.5 m/s with gusts of 6.5 to 9 m/s.

The first experiment used a speedboat named CETI-2 as an engi-
neered whale with the VHF tag aboard (Fig. 3B). It emulated a sperm
whale’s motion by moving with fixed headings along a specific direc-
tion during each underwater phase. During this time, we collected
acoustic AOA to it using a towed linear array of four hydrophones,
with a 100-m-long cable connected to the passive acoustic monitoring
software PAMGuard, which uses target motion analysis (48, 49).

Jadhav et al.,, Sci. Robot. 9, eadn7299 (2024) 30 October 2024

The VHF AOA was obtained by deploying our sensing UAV to
emulate a virtual antenna array in real time (movies S1 and S2); this
also validated the practicality of our payload design. Both the towed
array and the UAV were deployed from CETI-1.

We evaluated the autonomy module by postprocessing measure-
ments from acoustic AOA collected during the engineered whale’s
underwater phases and VHF AOA collected during the engineered
whale’s surface phases. The module then generated actions that would
be furnished to a team of robots attempting to rendezvous with the
whales. For the second experiment that involved sperm whales, we
collected acoustic AOA to underwater whale vocalizations using the
towed array for four untagged sperm whales and applied our au-
tonomous routing in postprocessing.

Data collection for the engineered whale

We controlled the engineered whale to closely emulate a sperm
whale’s underwater and surface phases as observed by biologists
(20). During the underwater phase, we continuously moved the en-
gineered whale at a constant speed of 2.5 m/s. We collected acoustic
AOA of its engine noise in lieu of a sperm whale’s underwater vocal-
ization for a total of 15 underwater phases.

The surfacing phase involved two behaviors. “Logging,” which refers
to surface resting, was achieved by stopping the engineered whale so
that it drifted by 15 m on average over the entire duration of this phase.
“Traveling” refers to active motion at the slowest speed of 0.75 m/s that
resulted in a movement of 50 m on average during its surface phase.
During this phase, we launched the UAV that collected data along
for 40 s to compute real-time VHF AOA of the engineered whale’s
tag. The VHF AOA values were estimated for 12 surfacing phases.

We measured acoustic AOA only during the underwater phase and
VHF AOA only during the surface phase because sperm whales often
do not vocalize on the surface. Across the expeditions, we collected
data from the engineered whale emulating five individual sperm
whales in an area of 175 km® by overlaying the tracks together in post-
processing (Fig. 3C). Each track consisted of three surfacing and three
underwater phases with the mean duration being 8.33 + 8.89 min and
15.06 + 5.29 min, respectively. During these experiments, the engi-
neered whale’s distance to CETI-1 varied between 65 and 285 m.
Evaluating AVATARS performance with the
engineered whale data
Figure 4A shows a sample UAV trajectory during the AOA estima-
tion process in varying wind speeds, as evident by the trajectory
distortion. The corresponding AOA profile is shown in Fig. 4B; the
AOA error was computed using the average ground-truth position of
the engineered whale when the UAV was in flight. The AOA estima-
tion (Fig. 4C) was not affected by the UAV’s displacement because the
SAR formulation uses the relative channel between the two antennas
on the UAV, resulting in translation resilience; given a fixed separation
between two antennas, the relative position vector only changes with
rotation (43). For the logging behavior, we observed a median abso-
lute error of 8.49° with an SD of 18.36° across eight samples. For
the traveling behavior, we observed a median absolute error of 14.51°
with an SD of 7.69° across four samples. Overall, we observed a com-
bined median absolute error of 10.55° with an SD of 15.27°.

We applied our autonomy module by overlaying different tracks
of the engineered whale over several days. The error in acoustic
AOA (in degrees) was approximated using a Gaussian distribution
N'(0,3.34%), estimated using the acoustic sensor and ground-truth
data. The error in VHF AOA was based on measurements from
the UAV flights. We leveraged our field logs to determine the
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Fig. 3. Field experiment of system validation with the engineered whale. (A) The location of data collection and experiments in the Caribbean Sea, 7 km off the west
coast of Dominica. (B) Instance showing the UAV, deployed from the catamaran CETI-1, estimating AOA of the VHF signal tag on the engineered whale, speedboat CETI-2,
emulating a sperm whale’s motion. (C) Overlaid reconstructed tracks of the engineered whale in postprocessing using acoustic and VHF AOA. A lighter shade denotes the
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azimuth AOA estimation with ground truth indicated by the red line. The accuracy was preserved despite trajectory distortion due to wind because of the translation-
resilient property of our formulation. (C) Real-time VHF AOA accuracy for different surface behaviors of the engineered whale. (D) An instance of the postprocessing
showing an initialization of three robots (stars) and five engineered whales (triangles). Robots used a rendezvous radius of 500 m. (E) Robot 3 achieved rendezvous with
whale 1 and moved toward whale 5 while robot 2 continued to track whale 2. (F) Robot 1 tracked whale 4 after rendezvous with whale 3 and robot 2 rendezvous with

whale 2. (G) The end of the mission shows a successful rendezvous with all the engineered whales.
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engineered whale’s transition between underwater and surface
phases. At each time step, the localization algorithm estimated a
whale’s horizontal position using the AOA collected from the acous-
tic and VHF sensors, with a mean localization error of 224.04 +
180.95 m. The simulated autonomous robots attempted to rendez-
vous with the whales while moving at a maximum speed of 15 m/s
(velocity of a speedboat used by biologists when tracking sperm
whales in the field) for rendezvous radii of 200, 300, and 500 m. We
generated aggregate results for different numbers of robots over 50
runs each (see Fig. 6A and table S5). For each run, the initial loca-
tions of the autonomous robots were randomized within the opera-
tion region and the start time of the individual whale tracks were
randomized within their first underwater phases. We observed that
a radius of 500 m achieved the highest successful rendezvous per-
centage of 80.4% =+ 10.7% for four engineered whales and two au-
tonomous robots. Figure 4 (D to G) shows another instance where
three robots achieved successful rendezvous with five engineered
whales. Different science missions may need different rendezvous
radii. A smaller rendezvous radius may be needed to support short-
range complex operations, such as whale tagging (50), and a larger
rendezvous radius can be used for long-range tasks such as visual
data collection. Our results demonstrated the effectiveness of using
the AVATARS sensing module to attain smaller rendezvous radii.
Data collection for sperm whales

We collected acoustic data during the underwater phases from three
different sperm whale groups, referred to as units henceforth. Two
groups were from well-studied social units unit F and unit R (20, 51).
We collected data for two instances from the whale Pinchy (whale
#5560) of unit F (3.5 hours with five surfacings and 2 hours with
three surfacings), one instance from unit R (2 hours with three
surfacings), and one instance of a whale from an unidentified unit
(1.5 hours with two surfacings). Although there has been some prog-
ress toward identifying individual whales solely on the basis of
whale vocalization measurements (52), it is still an open challenge.
Hence, we only considered instances where it was known with high
probability that the acoustic data were captured from a single whale.
An exception was made for the data collected for unit R, where four
whales were observed socializing in close proximity of one another
(within 10 m). Because the whales made several shallow dives while
traveling together and maintained proximity throughout their un-
derwater and surfacing phase, we considered the corresponding
acoustic AOA measurements to be obtained from a single whale.
Details about ground-truth estimation of whale positions are pro-
vided in the Supplementary Materials.

Evaluating AVATARS autonomy module with sensor data from
sperm whales

Because the sperm whales were untagged, we computed their ground-
truth positions during surface end time on the basis of the photos
of their fluke (tail) (Fig. 5A). We collected acoustic AOA during
their underwater phases and filtered the raw measurements by ap-
plying a set of selection criteria (Fig. 5, B and C). Complete details
of these steps are provided in the Supplementary Materials.

We collected the four whale tracks in an area of 720 km® and
overlaid them in postprocessing (Fig. 5D). A mean localization
error of 408.12 + 171.15 m was observed for these tracks (fig. S3
shows individual errors).

We used rendezvous radii of 500 m, 1000 m, and 1500 m when
evaluating our autonomy module in postprocessing. We observed a
successful rendezvous percentage of 70.4% =+ 7.1% for a combination
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of three whales and two robots with a rendezvous radius of 1500 m,
aggregated over 50 runs. Figure 6, A and B, shows the aggregated
successful rendezvous percentage and mission time, and Fig. 6C
shows the missed whale frequency. The start locations of the rendez-
vous robots were randomized within the operation region for each
run. Results with three whales were aggregated over all possible com-
binations of three out of four whale tracks.

From these experiments, we observed that the autonomy module
explicitly allows for adapting to varying dive duration on different
days or even during different times on the same day. For example,
the whale from unit F was swimming with prototypical dive dura-
tion, closely following the whale dive model (20), whereas the one
from unit R had longer dive periods.

Ablation study for AVATARS autonomy module

Simulated sensor setup and evaluation

We simulated an acoustic sensor and a VHF sensor that moved north-
bound with a speed of 2.57 m/s, starting from 3.2 and 6.4 km, re-
spectively, off the shore of the dock located at 15.3092° latitude and
-61.3794° longitude. Such a strategy is often exercised when tracking
whales using the towed array along Dominica’s coastline by project
CETT’s team. We interpolated fluke sightings in the DSWP dataset
to simulate whales” pseudo-tracks (see the Supplementary Materials)
and simulated AOA observations using the pseudo-tracks. The VHF
and acoustic sensors sampled AOA measurements for a whale’s surfac-
ing and underwater phases with Gaussian errors in degrees of N" (0, 22)
(following best-performing field experiments) and N (0, 3?), respec-
tively. We also simulated a more accurate sensing, such as using mul-
tiple hydrophone buoys with underwater localization error in meters
of N (0, 2002) and specialized GPS tags with localization error in
meters of N' (O, 102) when the whale surfaces. The acoustic sensing
errors are based on (53). For each run, we uniformly randomly se-
lected 50 sets of four whales out of 334 whale sightings from the
DSWP dataset. For each whale, we randomly chose 2 hours’ worth
of data. We reported successful rendezvous percentage and mission
time, aggregated over these 50 runs, each containing four whales with
two robots. The start locations of the robots were randomized within
the operation region. We report the results of the autonomy module
applied over a horizon of 120 min in postprocessing.

To test the effect of sensing modality on the AVATARS autonomy
module’s performance, we used different combinations of simulated
sensors that resulted in varying localization accuracy (Fig. 7A). Incor-
porating VHF AOA with acoustic AOA improved the results of our
approach. We also observed an improvement in performance resulting
from reduced localization error due to better sensor configuration. How-
ever, we note that the availability of such accurate localization will require
higher cost and more power requirements than low-power VHF tags.

Next, we studied the effect of varying rendezvous radii on our
autonomy module using the values of 200, 300, and 500 m for the
rendezvous radius. These values showed that a higher rendezvous
radius is required to improve success when using sensors with high
error, such as acoustic AOA-only sensing, as opposed to sensors
with low localization error, including GPS localization. For a 500-m
rendezvous radius with acoustic and VHF AOA sensing, our ap-
proach achieved successful rendezvous with 53.03%.

Last, we performed a comparison study of our approach with other
routing algorithms. Because our algorithm is an online approach, we
compared it against two other widely used online methods, namely,
the instantaneous assignment (IA) method inspired by the multitarget
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Fig. 5. Data collection for sperm whales. (A) A sample GPS trajectory of the catamaran CETI-1 between two consecutive whale surfacings. The ground-truth position of
awhale was calculated using range (derived from the fluke/tail photo and the actual tail size) and bearing (from the camera’s internal compass). (B) Raw acoustic AOA data
samples from a sperm whale. (C) Cleaned acoustic AOA data samples from a sperm whale after applying the data selection criteria explained in the Supplementary Mate-
rials. (D) Whale tracks were estimated using UKF-based localization and acoustic AOA measurements. A lighter shade denotes a surfacing phase (also indicated by the

dashed circles), and a darker shade denotes an underwater phase.

observation problem (Fig. 7B) (54) and the vehicle routing problems with
time window constraints (VRP-TW) (Fig. 7C) (55, 56). Given that these
methods do not account for future uncertainties, our autonomy module
outperformed them across all metrics because we considered the stochas-
tic nature of whale behavior over a future planning horizon. Implementa-
tion details of IA and VRP-TW are provided in Materials and Methods.

Jadhav et al.,, Sci. Robot. 9, eadn7299 (2024) 30 October 2024

Ablation study for the sensing module
Experiments with off-the-shelf VHF tags
Off-the-shelf passive VHF tags have been used for wildlife tracking
because of their low power usage and long battery life (57, 58). Our
results show compatibility of our SAR-based approach for such a tag
with a 20-ms pulse duration and a 1100-ms interpulse duration. The
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Fig. 6. Aggregated results for postprocessed data collected during field experiments. Results for the three metrics—successful rendezvous, mission time,
and missed whale frequency—were generated with randomized initial locations of the robots within the operation region and the start time of individual tracks
of the whales within their first underwater phases. The bars in engineered whale results in (A) and sperm whale results in (B) indicate means, and error bars
indicate SD over 50 samples. For results with three sperm whales, we used all possible combinations of the four sperm whale tracks. (C) For the sperm whale
experiment, the normalized frequency of the number of whales that were missed within the mission time. In the sperm whale experiments, we used the DSWP
dataset to estimate the future surface minutes spent [J\/(9, 32)] and the future underwater minutes spent [N(34, 192)], and, in the engineered whale experi-
ments, we used the engineered whale’s engine start and stop times to estimate the future surface minutes spent [J\/(8, 92)] and the future underwater minutes

spent [N(15,5)].

experiments were performed at Horn Pond, Massachusetts
(Fig. 8, A and B). We used an off-the-shelf tag and our custom tag
during these experiments and compared their performance. The
transmitter antennas of the VHF tags were not more than 40 cm
above the water surface. Data to compute VHF AOA were col-
lected for 40 s, during which the tags drifted by 2.5 m on average.
During the experiments, the distance between the tag and the re-
ceiver was maintained between 100 and 200 m. We collected 17
samples for our custom tag and rejected two samples as per our
data selection criteria (see the Supplementary Materials). We
observed a median error of 5.59° with an SD of 7.52° for the custom
tag. For the off-the-shelf tag, we collected eight samples and rejected
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three samples and observed a median error of 4.41° with an SD of
7.99° (Fig. 8C).

Experiments with a stationary tag in ideal conditions

We demonstrated VHF AOA accuracy for a stationary VHF tag in
the Ohiri field at Harvard University (fig. S5). The custom tag was
located ~150 m away and transmitted a signal every second. We
chose three random locations for the tag to obtain aggregate results
and placed the tag at a height between 0.5 and 1 m to avoid interfer-
ence from the ground surface. We collected 34 samples in total and
rejected two samples as per our data selection criteria. The median
error for the 32 samples was 7.11° with an SD of 5.05°. Additional
comparison details are provided in the Supplementary Methods.
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Fig. 7. Results of ablation and comparison study for autonomy module. Results of successful rendezvous percentage and mission time (in minutes) with two autono-
mous robots and four simulated whales using the DSWP dataset (20) for various sensing modalities and rendezvous radii. Results show means (bar plots) and SDs (error
bars) for different metrics generated over 50 trials with randomized initial locations of the robots within the operation region and randomized the start time of individual
tracks of the whales within their first underwater phases. The figure shows the performance of (A) our autonomy algorithm, (B) IA, and (C) VRP-TW. We used the DSWP
dataset to estimate the future surface minutes spent [A(9,32)] and the future underwater minutes spent [A(34, 19%)1.

DISCUSSION
This work codevelops an algorithmic framework that combines an
RL-based autonomous routing algorithm and VHF signal-based
sensing to maximize the chances of rendezvous with whales at sea.
The primary challenges in developing this framework involve sparse
and uncertain in situ AOA measurements, as well as learning from
and adapting to whale position and surfacing variability. In addi-
tion, we developed a UAV sensor payload to enhance AOA mea-
surement quality from passive VHF tags using a signal phase-based
sensing algorithm specifically designed for maritime operations. Our
experiments were conducted over three separate expeditions in
Dominica. The experiments included the real-time deployment of
the sensing module, sensor data collection from both engineered
and sperm whales, and the postprocess validation of rendezvous
performance by the autonomy module. In addition, we conducted
various ablation studies. These experiments validated the performance
of our framework in different environments, with different numbers
of sperm whales, and with different configurations of sensors (using
acoustic and VHF AOA versus using acoustic AOA only).

Our results demonstrate 68.68% rendezvous success for the con-
figuration of two robots and three sperm whales, with a rendezvous
radius of 1000 m using only acoustic AOA. For the experiments with

Jadhav et al.,, Sci. Robot. 9, eadn7299 (2024) 30 October 2024

the engineered whale mimicking different whale surface motions,
such as logging and travelling, we show a median accuracy of 10.55°
for VHF AOA and an 80.4% rendezvous success rate for a rendezvous
radius of 500 m, using AOA from acoustic and our VHF-sensing mod-
ule for a configuration of two robots and four engineered whales. We
report rendezvous success for several different radii. Our field experi-
ments demonstrate the AVATARS ability to obtain accurate real-time
AOA to VHEF tags. Using this information improves rendezvous suc-
cess with a tighter rendezvous radius in postprocessing.

Our experiments also reveal several open challenges. The sensing
module is limited in detection range for commercial tags, and im-
provements to signal pulse detection methods will enable low power
signal pulse extraction at longer distances (29). The real-time deploy-
ment of the autonomy module with a robotic team to rendezvous with
sperm whales necessitates several infrastructure and operational set-
ups. These include tagging of whales and real-time AOA computation
capabilities of underwater acoustic sensors. In addition, the system
must support the streaming of acoustic AOA data from underwater
sensors to the robots. A mesh communication network among the
robots will be necessary to enable real-time coordination. Further-
more, the robots must share a common belief regarding whale posi-
tions to facilitate distributed computation. Last, a fleet of physical
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Fig. 8. Results of ablation study for sensing module. (A) Hardware experiment showing an instance of AOA estimation for floating VHF signal beacons approximately
150 m away from the bank tested at Horn Pond, Boston, Massachusetts. White star indicates floating UAV. (B) Floating UAV SwellPro fisherman max, with our custom tag
and off-the-shelf tag from ATSTrack. The custom tag includes a Pixhawk, a GPS module, and a telemetry radio for obtaining position of the VHF tags to enable real-time
ground-truth data collection. (C) Cumulative distribution function (CDF) plot comparing VHF AOA estimation performance for different tags used in this experiment.

robots certified for maritime operations and capable of long opera-
tional duration would be essential for successful deployment. Some of
these efforts are already underway as part of a larger effort by Project
CETI (10, 11, 16, 59) but are out of scope for the current work. The
focus of this paper was to develop and validate the critical algorithmic
pieces of the AVATARS framework, thus taking the initial steps to-
ward achieving autonomous data collection for Project CETL

We also learned critical lessons when transitioning from the lab to
the field. We incorporated multiple stages of outdoor experiments
with increasing complexity, including experiments at a local pond
and flight tests in the Boston harbor. This resulted in efficient prepa-
ration for field experiments regarding issues such as equipment setup
and maintaining hardware structural integrity, among others, as
given in table 1 of (60). A unique challenge that we encountered
was acoustic AOA acquisition. The towed array used for the ex-
periments lacks an inertial or positional sensor and accumulated
more noise than a dedicated underwater buoy for acoustic tracking
because of its drag in the ocean and the engine noise of the towing
boat. These issues made the acoustic AOA measurements challeng-
ing and required that we apply the data selection criteria. The length
of the towed array made maneuvering the boat challenging, and the
availability of CETT’s marine operations and biology team, with prior
experience in whale science, was instrumental in the process of
data acquisition. We also had to ensure that the boat captain was
on a constant lookout for neighboring fishing or tourist boats and
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proactively communicated with them about our use of the array
when in their proximity. Simultaneous deployment of the towed ar-
ray and the UAV required assigning specific roles to all crew mem-
bers, with everyone maintaining situational awareness. Additional
details about how we addressed these unique challenges are pro-
vided in the Supplementary Methods.

The AVATARS framework presented here provides a critical step
along the path of enabling robots to assist in capturing visual data
for whale science at sea. A long-term vision for this work is one in
which teams of UAVs can be continually and autonomously de-
ployed from depots stationed at sea whenever the likelihood of a
whale surfacing and rendezvous is high. This will enable whale tag-
ging and/or capturing visual data fully autonomously and across
spatially distant areas of the environment. In this way, we hope that
this work will help our efforts to arrive at a future where robots
are our science “avatars” at sea, allowing for scientific discovery with
less manual effort than what is possible today.

MATERIALS AND METHODS

AVATARS autonomy module

We formulated a finite horizon partially observable Markov decision
process (POMDP) with a hybrid discrete-continuous belief space
that included discrete whale surfacing phases and continuous whale
locations. The whale locations were estimated using a Gaussian
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distribution, obtained from the output of an unscented Kalman filter
(UKEF) inspired from (61) (see details in the Supplementary Materials).
The UKF used the latest AOA observations from heterogeneous sen-
sors to update its predictions at each time step. To solve the POMDP,
we implemented a model-based RL approach, namely, multiagent
rollout [inspired by (32, 37)], that performed a sequence of optimiza-
tions, one per robot, in a given order, scaling linearly in the number
of agents. In each one-step lookahead optimization (Eq. 1), a robot
was assigned to a whale for rendezvous, such that the expected cost
for each possible whale assignment was minimized, thereby increas-
ing the rendezvous success percentage. The expected cost for an as-
signment (Eq. 2) includes both the time to rendezvous with the
currently assigned whales and the time to rendezvous with whales in
subsequent assignments while accounting for future whale location
and surfacing uncertainties. The expectation was calculated via sev-
eral Monte Carlo simulations, sampling future whale locations and
surfacing times from the whale dive model estimated from the
DSWP dataset (20). After a successful rendezvous with a whale in the
current assignment, we applied binary integer programming (BIP;
Eq. 4) at a future time step in the planning horizon to assign robots
to the subset of the remaining whales without considering subse-
quent assignments. In other words, the BIP acted as a myopic policy
that is easily obtainable for a given surfacing interval, which our roll-
out approach further improves by looking into future uncertainties
using the look-ahead optimization. Figure 2 (A and B) shows various
components of our autonomy module. Figure S2 shows a detailed
view of the rollout optimization for a robot in the multirobot setup.
Input and assumptions

Our robot model assumed that each robot knows all robots’ posi-
tions. We considered homogeneous robots with the same maximum
speed vimax, Operating time as long as the total operation time, and
a finite rendezvous radius prendezvous- A successful rendezvous hap-
pens when a whale is at the surface and within prendezvous distance
from a robot. Robots could receive the initial position of a whale in
the horizontal plane with a zero mean Gaussian error, which is used
to initialize the UKF for each whale’s location. Robots could deter-
mine whether a whale is on the surface, either from acoustic data
and if the whale is tagged, from the VHF signal.

We used Gaussian distributions to estimate future uncertainties
in surfacing times in the planning horizon of the rollout optimiza-
tion. In particular, the time spent by a whale during its surface and
underwater phases were estimated using Gaussian distributions
N (Bourtaces 2 e ) AN N (Hynderwaters 02 gerwater b FESPECtively. Robots
obtained acoustic and VHF AOA observations, whenever available,
from sensors whose positions could be calculated. We considered
these sensor measurements to have zero-mean Gaussian error, with
SDs Gacoustic and oyyp, respectively.

Belief state formulation

The belief state of m autonomous robots and n whales at time k is
denoted by xx, which is represented as a set of S belief particles. The
sth belief particle at time k is denoted by xx, s = [k, d, Wy, Z, I, .,
where d, = [d!, ..., d"], where d' € R” is robot s position in the
horizontal plane; w, = [w!, ..., w"], where w! € R* is whale g’s loca-
tion and velocity in the horizontal plane obtained from the output of the
UKF-based localization using AOA measurements; z, = [zsl, ...,zs"],
where z{ is whale ¢s surface indicator for belief particle s and is set to
1 if whale g is on the surface at time k and is set to 0 otherwise;
I, = [I},...,1"} where I = {[a,,b,], |ay, b,]..... |ar, by}, where a;
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and b; are the start and end of the ith surface interval sampled at time
k and T is the number of intervals sampled over the planning horizon
for whale g’s sth belief particle. Here, 7, = [rly, ..., "], where r’; is whale
¢q’s rendezvous status for belief particle s and is set to 1 if a robot has suc-
cessfully rendezvoused with whale g at any time between 0 to k; other-
wise, 1 is 0.

Multiagent rollout policy

The multiagent rollout policy (outlined in Fig. 2 and fig. S2) finds an as-
signment Wrollout \ Xk ) = W;onout’ s W] for a belief x; by solving
m optimization problems in a sequence. Here, ¥ (ot € {1,....n}is
the whale assigned to robot £, which is obtained by applying a
look-ahead minimization over all possible whales. Robot £ leverages
the knowledge of the whales assigned to robots 1, ..., £—1 using roll-
out optimization earlier in the sequence. Robot { assumes that robots
€+ 1, ..., m that come later in the sequence are assigned to whales
using a base policy given by a BIP. More formally, starting from robot
¢ ={1, ..., m}, the rollout assignment is obtained as follows

{
Wrollout

-1 {+1
[]<xky5’ [lpiollout’ e lI”rollou'f’ 9 WBE’ (xk)’ T WgIP (xk)])]

-1 .
Here, \I/iollom» > W olout are the whales assigned to robots 1, ...,
€—1 by their corresponding rollout optimizations, respectively,

€ arg minqe{l,...,n} [Es

1

and q!élp(xk) € {1,...,n} is the whale assigned to robot z = {0+

1, ..., m} using the BIP policy (Eq. 6).

The cost (in Eq. 1), denoted by J(xi, s, W), represents the time taken
to rendezvous with the first whale in the current assignment ys = [y,
..., Y], starting at belief particle x; , followed by the time taken to ren-
dezvous with whales in future assignments. The future assignments for

a given belief particle are given by BIP policy (Eq. 4). Mathematically,

1
o 0 if all whales are rendezvoused or

( ) the planning time horizon has elapsed,
J (%o W
2 . (1=7r)+7(f (x,.-w),w) if norendezvous happensat time k,

3)

=] (xk,s’ Wgip (xk,s )) otherwise.

2

In the cost function (Eq. 2), case (2) adds a unit cost for each
whale that has not been rendezvoused yet and a recursive cost asso-
ciated with unvisited whales in the planning horizon. Case (3) ex-
presses the cost of the BIP assignment (Eq. 4) once at least one whale
in the current assignment s is successfully rendezvoused.

The state transition function f used in the rollout optimization
(Eq. 2) evolves belief particle xy s to the next belief particle over the
planning horizon by applying the whale assignments for all robots
denoted by y = [y, ..., y"] is

k k+1
d, d,+ [vcos(d)), Vsin((]))] T
Aw
Flaow)=f|| ™ lw|= : 3)
Z [le (xk,s’ III), ,fzn (Xk,s,lll)]
I, I,
L r, | (o w)s oo f (0 W)
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where the distance moved by robots in unit time v = W ..., v™]
and heading angle ¢ = [, .-» "] were obtained from assign-
ment . Robot {’s assignment " determines the heading from the

robot’s location d’ to the whale’s belief location Lw;"f, denoted
b c])€=4<d€,Lw"’“> d velocity vt = mi IL "’i—d@H}

y s> LW ), and velocity v' = minyv,,,., [[Lw} M
Here, matrix L = [1,0,0,0; 0,1,0,0], and Lw € R? extracts the location
in the horizontal plane from the whale’s location and velocity vector
w € R*. The bearing £(s, d) gives the angle between the location
d as calculated from location s. Here, whale motion matrix in the
horizontal plane is A = [1,0,1,0; 0,1,0,1; 0,0,1,0; 0,0,0,1] assuming
constant velocity and a unit time step. Here, f;! (x; ,, y)is an indica-
tor, set to 1, if the planning time step k + 1 belongs to an interval in
the set of surface intervals I, or 3 [a, b] elllk+1e [a, b], and it is
set to 0 otherwise. Notably, in Eq. 3, the set of surface intervals I
for belief particle xi, ; does not change in the planning horizon. The
interval set I, only gets updated during the policy execution, after
an observation regarding a whale surfacing phase is made (see the
Supplementary Materials). In Eq. 3, f; (. W) is the rendezvous
status of whale g at planning time step k + 1.

1 if whale gis already visited (r{ = 1),
if whale g at time k+ 1 is at the surface (£ (x; , w) =1)
and the distance between a robot location df is less than p ., gevous

Flaew)=11
’ ) meter of whale g's location Aw? attimek+1 (3¢ €(1,...,m

. ) T
o+ st ) sn(8) |20 <)

0  otherwise.

The whale assignments to robots at a future planning time
step k for belief particle x.; used in Eq. 2 are obtained by
Wppp (XK,S) = [WEIP(XK,S), s Whp (xm)], where robot { is assigned
the whale \pfm, (%)

} such that

Wélp (%es) < @ if ¥, , =1, wherey solves the optimization

ge{l,...,n},rl=0
Subject to constraints in expression (5)

yf,q .T(xK,S’ t q)
(4)

o . if there are
Each robot { is assigned to exactly one unvisited whale:

qu( Leon)f=0 0 = 1,and
Each unvisited whale q with ! = 0 is assigned to at most one robot:

Zeen,...,m)yqusl’

Each unvisited whale g with ! = 0 is assigned to exactly one robot:

2@6“ m)yéyqzl,and

fewer robots
than unvisited

whales, or m <

>, -r).

otherwise.
Each robot { is assigned to at most one unvisited whale:

<
quu,.‘.m,r_:&o Yeg <L

€)

Here, t(xs £, g) is the time taken by robot £ to rendezvous with
whale g, starting from a belief particle x, at time step k in the

Jadhav et al.,, Sci. Robot. 9, eadn7299 (2024) 30 October 2024

rollout planning horizon. Rendezvous is only possible with whale g
when it is at the surface, which is determined by I.

The whale assignments to robots at the current belief x; used in
Eq. 1 are obtained by "’BIP(ka) = [‘lfllglp(xk)v--)‘llgllp (xk)], where
robot £ is assigned the whale Wpp \ Xk ).

anp (%) < qif ¥, ;= 1, wherey solves the optimization
y €argminye o pma Y. Vg Elt(xis €59)]
(6)

tell,...

qe(l,...,n}rl=0
Subject to constraints in expression (5)

,m},

Here, E, [17 (xk, o, q)] is the expected time taken by robot € to ren-
dezvous with whale g starting from the current belief x;, considering
the uncertainties involved in the whale locations and future surface
intervals associated with all belief particles.

At each time step of policy execution, robots are assigned to whales

[\Vrlollout’ e W:leom] using m rollout optimizations using Eq. 1. Robot
1

rollout and

¢ moves toward whale W .., with a heading angle ¢
0

velocity v

rollout

ol = 4(d‘5, L W\ufouou.),
)

Vrollout max’

=min {v L w"’fonout —dt H}

where d' is the current robot location and L w"eie is the current
location of whale wf‘onom, assigned to robot L.

In principle, each robot can execute its rollout optimization in a
decentralized fashion by sharing its beliefs and controls. We con-
sider an implementation where a central server/computer collects
all AOA observations of whales, assumes access to all agent beliefs
and controls, and dictates the order of rollout optimization. Previ-
ous work (33) has investigated multiagent rollout with communica-
tion constraints and randomized agent order; we leave its integration
as a part of future work. Details on the localization algorithm, whale
surface interval sampling, data preprocessing, and system imple-
mentation are provided in the Supplementary Materials.

Autonomy module comparison

We compared the performance of our autonomy module with two
online routing methods in the comparison study with the DSWP
dataset presented in Fig. 7 in the “AVATARS autonomy module” sec-
tion. The VRP-TW algorithm found routes for a team of robots to
rendezvous with whales with predefined surfacing windows for the
whales. For each whale, we used a time window interval (0, Psyrface)
if the whale was at the surface, and (punderwater) Hunderwater + usurface)
otherwise. VRP-TW minimized the total time to visit all whales,
each only once, with time window constraints. For this comparison
study, we used the VRP-TW implementation (56) where robots
were not reassigned other than the initial route.

The IA algorithm involved a deterministic greedy assignment of
unvisited whales to robots by minimizing the time taken by a robot
to reach the whale at its upcoming surfacing. In contrast with our
rollout-based approach, both VRP-TW and IA methods do not use
stochastic optimization and cannot consider the stochastic nature of
whales” behaviors in their framework without changing their ap-
proach. This resulted in the myopic actions of the robots.
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AVATARS sensing module

Mathematical formulation

The SAR formulation used for emulating a virtual planar circular
antenna array uses relative signal phase between the two fixed om-
nidirectional antennas to cancel channel phase noise. Thus, it allows
for compatibility with passive signal transmitters such as off-the-
shelf VHF fish tags. This capability also enables obtaining VHF
AOA for UAVs that have small form factor and/or constrained dy-
namics, such as fixed-wing UAVs. We note that achieving sufficient
phase change between the two antennas requires that the separation
between them (denoted by r;) to be >M\/2, where A is the signal
wavelength (46). This relative channel h between the physmal antennas

on the UAV at its ith position is obtained as h = h * COnj (h )
where h h denotes the signal collected at the receiver antennas and
conj(.) denotes complex conjugate (43). For a signal arriving from
direction (¢, O7), it is given by

~ 1 —j2nr .
h;= ﬁexp( }\ 2cos((])T—(p,-)mnGT) (8)

Thus, the relative channel is obtained as the product of the com-
plex signal received at the first receiving antenna with the complex
conjugate of the signal received by the second antenna. This removes
signal noise, referred to as carrier frequency offset, in passive VHF
signals while also maintaining translation resilience to mitigate the
effect of trajectory distortion. The signal phase delays across the po-
sitions of the UAV (virtual antenna elements) are represented by the
steering vector a(¢, 0) for the planar circular array (62). a;(¢, 0) is an
element of the steering vector corresponding to this ith position of
the UAV and is given by

j2nr, .
a;($,0) = exp . cos( — @;)sin® 9)
Last, we used the Bartlett equation for computing an AOA profile
f(d, 6) for all pairs of (¢, 0) as follows (63, 64)

2

f($,0)= (10)

1w o
n ; h; a,($,0)

Our system returned the estimated AOA as arg max (i, 0)).
However, prior work has shown that emulating a circular antenna
array can lead to inaccurate estimation of elevation angle 0 (42).
Hence, for practical purposes, only the azimuth angle ¢ is used as an
input to the autonomy module.

System implementation

Real-time estimation of VHF AOA occurred in two stages. First, the
UAV’s pose and the received signal data were collected on board by
Raspberry Pi (RPi) using the Pixhawk and the software-defined ra-
dio (SDR), respectively. We used MAVROS (65) for collecting data
from sensors connected to Pixhawk and the SoapySDR framework
(66) to collect data from the SDR. The SDR data were collected for
the VHF signal frequency of a tag at a sampling rate of 71.428 kHz
and bandwidth of 200 kHz at the two receiver channels of the SDR,
each connected to an omnidirectional antenna. For the experiments
with the engineered whale, we used a custom VHF beacon that uses
a DRA818V VHF module. The off-the-shelf passive VHF tag used
was F1840B from ATSTrack. Next, the RPi transmitted these col-
lected data over Wi-Fi to a remote computer. The AOA algorithm,
implemented in MATLAB filters for VHF signal pings using the

Jadhav et al.,, Sci. Robot. 9, eadn7299 (2024) 30 October 2024

pulse finding algorithm from (21), used Eq. 10 to compute the AOA
profile fl¢, ©) within 3 s on average. Additional details are provided
in the Supplementary Materials.

UAV payload development

The payload consisted of a USRP B210 SDR, with the antennas con-
nected to its two phase-coherent receivers. To collect UAV pose data,
we used a Pixhawk 6C flight controller for easy integration of compass
and GPS sensors. We note that the Pixhawk is optional if the data can
be collected directly via the UAV’s telemetry. The SDR and Pixhawk
were connected serially over USB to the RPi. The Pixhawk and RPi
were powered with two pairs of 3800 mAh LiPO cells; the SDR was
powered by the serial connection. To minimize electromagnetic inter-
ference from the SDR, the payload was covered in a copper foil.

To enable operation in extreme environments, the SDR, RPj,
and Pixhawk were housed inside a waterproof enclosure. However,
complete sealing of the enclosure leads to heat buildup. Hence, the
3D-printed mounts for the electronics used polycarbonate material
with reinforced carbon fiber because of its higher heat resistance.
The RPi also had a separate active heat sink, and an aluminum
sheet was placed inside for passive cooling. The GPS and compass
sensors were mounted outside the payload. Waterproof glands
with O-rings allowed wiring between the external sensors and the
Pixhawk. Two additional glands allowed for connecting omnidi-
rectional antennas to the SDR via cables with subminiature version
A connectors. The contact surface between the enclosure and the
glands was covered with epoxy to prevent water ingress. A tem-
perature sensor monitored and displayed the payload’s inner tem-
perature and humidity.

Our waterproof UAV was a SwellPro SplashDrone 4 with custom
modifications to carry the payload and the antennas. The payload
was attached to the base of the UAV using 3D-printed supports.
Carbon fiber rods extended out from the supports on both sides that
enabled mounting of the antennas. The UAV’s GPS enclosure was
extended out and covered with copper and tin foils to eliminate in-
terference from the SDR. Floaters, covered in Velcro tape, were
added to the UAV’s landing skid to enable buoyancy in water and
landing on the platform installed on our catamaran (movies $3 and
S4). The landing platform was a foldable table (1 m by 2.5 m) affixed
with 5-cm-thick plywood covered with Velcro.

Statistical analysis

To evaluate our autonomy module, we used 50 initial states with
randomized robot locations within the operation region and ran-
domized start times of the whales within their first underwater phases.
We report mean and SDs for the successful rendezvous percentages
and mission times and normalized frequencies for missed whales
for each configuration, including various rendezvous radii and sensing
modalities. Errors in acoustic AOA measurements from the towed
array were estimated using the engineered whales’ AOA and the GPS
ground-truth locations. Error for VHF AOA is reported with median
and SD for 12 runs during the engineered whale experiments.

Supplementary Materials
The PDF file includes:

Supplementary Methods

Figs.S1to S8

Tables S1 to S5

Legends for movies S1 to S4

References (67-73)
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Other Supplementary Material for this manuscript includes the following:
Movies S1 to S4
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