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A bst r a ct

Gr a p h diff usi o n, w hi c h it er ati v el y pr o p a g at es r e al- v al u e d s u bst a n c es a m o n g t h e
gr a p h, is us e d i n n u m er o us gr a p h/ n et w or k-i n v ol v e d a p pli c ati o ns. H o w e v er, r el e as-
i n g diff usi o n v e ct ors m a y r e v e al s e nsiti v e li n ki n g i nf or m ati o n i n t h e d at a s u c h as
tr a ns a cti o n i nf or m ati o n i n fi n a n ci al n et w or k d at a. H o w e v er, pr ot e cti n g t h e pri v a c y
of gr a p h d at a is c h all e n gi n g d u e t o its i nt er c o n n e ct e d n at ur e. T his w or k pr o p os es a
n o v el gr a p h diff usi o n fr a m e w or k wit h e d g e-l e v el diff er e nti al pri v a c y g u ar a nt e es b y
usi n g n ois y diff usi o n it er at es . T h e al g orit h m i nj e cts L a pl a c e n ois e p er diff usi o n
it er ati o n a n d a d o pts a d e gr e e- b as e d t hr es h ol di n g f u n cti o n t o miti g at e t h e hi g h
s e nsiti vit y i n d u c e d b y l o w- d e gr e e n o d es. O ur pri v a c y l oss a n al ysis is b as e d o n
Pri v a c y A m pli fi c ati o n b y It er ati o n ( P A BI), w hi c h t o o ur b est k n o wl e d g e, is t h e first
eff ort t h at a n al y z es P A BI wit h L a pl a c e n ois e a n d pr o vi d es r el e v a nt a p pli c ati o ns.
We als o i ntr o d u c e a n o v el ∞ - Wass erst ei n dist a n c e tr a c ki n g m et h o d, w hi c h ti g ht e ns
t h e a n al ysis of pri v a c y l e a k a g e a n d m a k es P A BI m or e a p pli c a bl e i n pr a cti c e. We
e v al u at e t his fr a m e w or k b y a p pl yi n g it t o P ers o n ali z e d P a g er a n k c o m p ut ati o n f or
r a n ki n g t as ks. E x p eri m e nts o n r e al- w orl d n et w or k d at a d e m o nstr at e t h e s u p eri orit y
of o ur m et h o d u n d er stri n g e nt pri v a c y c o n diti o ns.

1 I nt r o d u cti o n

Gr a p h diff usi o n, c h ar a ct eri z e d b y pr o p a g ati n g si g n als a cr oss n et w or ks, is us e d i n a v ari et y of r e al-
w orl d a p pli c ati o ns. Vari a nts of gr a p h diff usi o n s u c h as P a g e R a n k [ 1] a n d h e at k er n el diff usi o n [ 2]
h as r e v ol uti o ni z e d t h e d o m ai ns s u c h as w e b s e ar c hi n g [ 3], c o m m u nit y d et e cti o n [ 4 – 7], n et w or k
a n al ysis [ 8, 9] a n d a d v a n c e m e nts i n gr a p h n e ur al n et w or ks [ 1 0 – 1 3]. D es pit e t h eir wi d es pr e a d
a p pli c ati o ns, dir e ctl y r el e asi n g diff usi o n v e ct ors c a n i n a d v ert e ntl y l e a k s e nsiti v e gr a p h i nf or m ati o n
a n d r ais e pri v a c y c o n c er ns. H os ki ns et al. [ 1 4] d e m o nstr at e t h at t h e a c c ess t o a s m all s u bs et of
r a n d o m w al k- b as e d si mil ariti es ( e. g., c o m m ut e ti m es, p ers o n ali z e d P a g e R a n k s c or es) c o ul d dis cl os e
si g ni fi c a nt p orti o ns of n et w or k’s e d g es, a p h e n o m e n o n k n o w n as li n k dis cl os ur e [ 1 5]. S u c h att a c ks,
f or i nst a n c e, m a y e n a bl e a d v ertis ers t o d e pl o y i n v asi v e a d v ertisi n g t a cti cs [ 1 6] or r e v e al s e nsiti v e
tr a ns a cti o n i nf or m ati o n wit hi n fi n a n ci al n et w or ks [ 1 7]. C o ns e q u e ntl y, it b e c o m es criti c all y i m p ort a nt
t o d esi g n gr a p h diff usi o n al g orit h ms wit h pri v a c y s af e g u ar ds.

Diff er e nti al pri v a c y ( D P) is r e c o g ni z e d as a g ol d st a n d ar d us e d f or c h ar a ct eri zi n g t h e pri v a c y ris k of
d at a pr o c essi n g al g orit h ms [ 1 8]. H o w e v er, t h e i n h er e ntl y i nt er c o n n e ct e d n at ur e of gr a p h-str u ct ur e d
d at a r e n d ers t h e a d a pt ati o n of D P t o gr a p hs n o n-tri vi al [ 1 9]. Pr e vi o us st u di es oft e n c o n d u ct t h e
a n al ysis of o ut p ut s e nsiti vit y a n d a d o pt o ut p ut p ert ur b ati o n t o k e e p gr a p h d at a pri v at e, w hi c h i n cl u d e
t h e st u d y o n diff er e nti all y pri v at e p ers o n ali z e d P a g e R a n ks ( P P Rs) [ 2 0], a n d ot h er r el e v a nt gr a p h
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al g orit h ms s u c h as m a x fl o w- mi n c ut [ 2 1], gr a p h s p arsi fi c ati o n [ 2 2], s p e ctr al a n al ysis [ 2 3, 2 4].
H o w e v er, o ut p ut p ert ur b ati o n- b as e d a p pr o a c h es oft e n pr o vi d e a l ess-t h a n-i d e al utilit y- pri v a c y tr a d e off.
N u m er o us st u di es s u g g est t h at i n c or p or ati n g n ois e d uri n g t h e pr o c ess, r at h er t h a n at t h e o ut p ut, c a n
p ot e nti all y e n h a n c e utilit y- pri v a c y tr a d e offs [ 2 5].

I n t his w or k, w e i ntr o d u c e a gr a p h diff usi o n fr a m e w or k t h at e ns ur es e d g e-l e v el D P g u ar a nt e es
b as e d o n n ois y diff usi o n it er at es. O ur fr a m e w or k is t h e first t o i n c or p or at e pri v a c y a m pli fi c ati o n b y
it er ati o ns ( P A BI) t e c h ni q u e [ 2 6] i nt o gr a p h diff usi o ns. As gr a p h diff usi o n c a n b e vi e w e d as it er ati n g
c o ntr a cti o n m a ps i n ℓ 1 s p a c e, w e a d o pt p er-it er at e L a pl a c e n ois e d u e t o its b ett er p erf or m a n c e t h a n
t h e G a ussi a n m e c h a nis m c o m m o nl y a d o pt e d i n pr e vi o us P A BI fr a m e w or ks a n d pr o vi d e n e w a n al ysis
d e di c at e d t o L a pl a c e n ois e. We als o pr o p os e a n o v el ∞ - Wass erst ei n dist a n c e tr a c ki n g a n al ysis t h at
c a n ti g ht e n t h e st at e- of-t h e- art P A BI b o u n d [ 2 7] t h at r eli es o n t h e s p a c e di a m et er, w hi c h m a k es
t h e b o u n d v ali d f or pr a cti c al us a g e. N oti ci n g diff usi o n fr o m l o w- d e gr e e n o d es m a y i ntr o d u c e hi g h
s e nsiti vit y, o ur fr a m e w or k als o als o pr o p os es a t h e or y-i nf or m e d d e gr e e- b as e d t hr es h ol di n g f u n cti o n
at e a c h st e p diff usi o n t o i m pr o v e t h e utilit y- pri v a c y tr a d e off. L astl y, w e s p e ci ali z e o ur fr a m e w or k i n
t h e c o m p ut ati o n of P P R f or n o d e r a n ki n g t as ks. E xt e nsi v e e x p eri m e nts r e v e al t h e a d v a nt a g es of o ur
fr a m e w or k o v er b as eli n es, es p e ci all y u n d er stri n g e nt pri v a c y r e q uir e m e nts.

1. 1  M o r e R el at e d W o r ks

E xt e nsi v e r es e ar c h h as b e e n d e di c at e d t o pri v a c y pr ot e cti o n wit hi n gr a p hs, s p e ci fi c all y i n t h e r el e as e
of gr a p h st atisti cs a n d str u ct ur es u n d er D P g u ar a nt e es [ 2 8, 2 9]. T h e pri m ar y t e c h ni q u es t o s af e g u ar d
gr a p h str u ct ur es i n v ol v e t h e L a pl a c e a n d e x p o n e nti al m e c h a nis ms [ 3 0]. E arl y c o ntri b uti o ns b y Nissi m
et al. [ 3 1] c ali br at e d n ois e b as e d o n t h e s m o ot h s e nsiti vit y of gr a p h q u eri es, e x p a n di n g b e y o n d
o ut p ut p ert ur b ati o n. K ar w a et al. [ 3 2] i m pr o v e d t h e ef fi ci e n c y of pri v a c y- pr es er vi n g s u b gr a p h-
c o u nti n g q u eri es b y c ali br ati n g L a pl a c e n ois e a c c or di n g t o s m o ot h s e nsiti vit y. Diff er e nt fr o m t h es e
m et h o ds, Z h a n g et al. [ 3 3] e m pl o y e d t h e e x p o n e nti al m e c h a nis m [ 3 4] t o e n h a n c e pri v a c y pr ot e cti o ns.
C o n c urr e ntl y, H a y et al. [ 3 5] d e v el o p e d a c o nstr ai nt- b as e d i nf er e n c e al g orit h m as a p ost- pr o c essi n g
st e p t o i m pr o v e t h e q u alit y of d e gr e e s e q u e n c es d eri v e d fr o m o ut p ut p ert ur b ati o n m e c h a nis ms. F urt h er,
K asi vis w a n at h a n et al. [ 3 6] us e d a t o p- d o w n d e gr e e pr oj e cti o n t e c h ni q u e t o li mit t h e m a xi m u m d e gr e e
i n gr a p hs, t h us c o ntr olli n g t h e s e nsiti vit y of d e gr e e s e q u e n c e q u eri es. A d diti o n al eff orts i n pri v at el y
r el e asi n g gr a p h st atisti cs i n cl u d e o utli n ks [ 3 7], cl ust er c o ef fi ci e nts [ 3 8], gr a p h ei g e n v e ct ors [ 3 9], a n d
e d g e w ei g hts [ 4 0].

I n t h e r e al m of gr a p h diff usi o n, t h e m ost r el at e d w or k t o o urs is b y E p ast o et al. [ 2 0], w hi c h f o c us es o n
r el e asi n g t h e P P R v e ct or usi n g f or w ar d p us h [ 4 1] a n d L a pl a c e o ut p ut p ert ur b ati o n. S o m e st u di es h a v e
s h o w n t h at i nj e cti n g n ois e d uri n g t h e pr o c ess m a y off er b ett er pri v a c y- utilit y tr a d e- offs c o m p ar e d
t o o ut p ut p ert ur b ati o n m et h o ds [ 2 5] a n d o ur st u d y c o m p ar e d wit h [ 2 0] pr o vi d es a n ot h er us e c as e.
Tr a diti o n all y, t h e c o m p ositi o n t h e or e m [ 4 2] is us e d t o tr a c k pri v a c y g u ar a nt e es f or it er ati v e al g orit h ms,
b ut it r es ults i n a b o u n d t h at m a y di v er g e wit h t h e n u m b er of it er ati o ns. R e c e ntl y, t h e t e c h ni q u e of
P A BI [ 2 6, 2 7] w as i ntr o d u c e d t o str e n gt h e n t h e pri v a c y a n al ysis of a d di n g n ois e d uri n g t h e pr o c ess,
w hi c h d e m o nstr at es a n o n- di v er g e nt pri v a c y b o u n d f or r el e asi n g fi n al r es ults if t h e it er ati o ns a d o pt
c o ntr a cti o n m a ps [ 2 7]. T his s u bst a nti all y ti g ht e ns t h e di v er g e nt b o u n d gi v e n b y t h e n ai v e a p pli c ati o n
of t h e D P c o m p ositi o n t h e or e m [ 4 3, 4 4]. O ur fr a m e w or k als o b e n e fits fr o m t his a d v a nt a g e a n d w e
f urt h er a d a pt Alts c h ul er et al.’s a n al ysis [ 2 7] t o i n c or p or at e t h e L a pl a c e m e c h a nis m a n d pr o vi d e a
ti g ht e n e d s p a c e di a m et er tr a c ki n g, w hi c h m a k es t h e b o u n d pr a cti c all y a p pli c a bl e i n t h e gr a p h diff usi o n
a p pli c ati o n. B esi d es, w or ks t h at s h ar e a si mil ar s pirit i n l e v er a gi n g P A BI h a v e b e e n c o n d u ct e d f or
ot h er s c e n ari os i n cl u di n g m a c hi n e u nl e ar ni n g [ 4 5] a n d i m pr o vi n g hi d d e n st at e D P [ 4 6].

2 P r eli mi n a ri es

L et G = ( V , E ) r e pr es e nt a n u n dir e ct e d gr a p h, w h er e V is t h e s et of n o d es a n d E is t h e s et of e d g es,
e q ui p p e d wit h a n a dj a c e n c y m atri x A ∈ { 0 , 1 } n × n , w h er e n d e n ot es t h e t ot al n u m b er of n o d es, i. e.,
n = | V|. B y est a blis hi n g a n or d er f or t h e n o d es wit hi n t h e gr a p h, w e d e n ot e d = [ d 1 , d2 , ..., dn ]T as
t h e d e gr e e v e ct or. A d diti o n all y, l et D = di a g (d ) a n d e i si g ni fi es t h e i-t h st a n d ar d b asis. We d e n ot e
L (0 , σ) a n d N (0 , σ2 I ) as t h e z er o m e a n L a pl a c e a n d G a ussi a n distri b uti o ns, r es p e cti v el y. We d e fi n e
t h e s et [n ] = { 1 , 2 , . . . , n} , a n d X i :j , i, j ∈ Z + , i ≤ j as j oi nt c o u pl e of (X i , Xi + 1 , . . . , Xj ).

G r a p h Diff usi o n. First, w e i ntr o d u c e t h e c o n c e pt of G r a p h Diff usi o n D , w hi c h is c o m m o nl y
c h ar a ct eri z e d b y a s eri es of diff usi o n m a p ϕ k d e fi n e d b y t h e r a n d o m w al k m atri x P = A D − 1 [ 6, 1 2,
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4 7]. F or m all y, We d e fi n e t h e gr a p h diff usi o n D (s ) wit h t h e i niti al s e e d s as

D (s ) = li m
K → ∞

s K = li m
K → ∞

ϕ K ◦ · · · ◦ ϕ 1 (s ), w h er e ϕ k (x ) = ( γ 1 , k P + γ 2 , k ) x + γ 3 , k s . ( 1)

w h er e s ∈ R | V | is a st o c h asti c v e ct or o n t h e gr a p h, a n d γ 1 , k + γ 2 , k + γ 3 , k = 1 . L et γ m a x =

m a x k |γ 1 , k | + |γ 2 , k | d e n ot e t h e Li ps c hit z c o nst a nt of t h e gr a p h diff usi o n m a p pi n g, a n d γ
( 1 )
m a x =

m a x k |γ 1 , k | d e n ot e t h e m a xi m u m diff usi o n c o ef fi ci e nt. s K is t h e diff usi o n v e ct or at ti m e K . T h e
ess e n c e of a diff usi o n pr o c ess is t o m o d el h o w a n i niti al v e ct or s pr o p a g at es t hr o u g h t h e gr a p h o v er
ti m e. C o ef fi ci e nt γ i, k ’s c o ntr ol h o w diff er e nt r es o ur c es c o ntri b ut e t o t h e k t h st e p diff usi o n. W h e n
t a ki n g γ 1 , k = 1 − γ 3 , k = β a n d γ 2 , k = 0 , E q. ( 1) is r e c o g ni z e d as t h e P a g e R a n k Diff usi o n [ 4 8] wit h
t el e p ort pr o b a bilit y 1 − β . T h e E x p o n e nti al k er n el diff usi o n, w hi c h i n cl u d es t h e s p e ci fi c c as e of t h e
H e at K er n el diff usi o n [ 2], c a n als o b e c h ar a ct eri z e d wit h t h e c o m p ositi o n of diff usi o n m a p pi n gs vi a
t h e i n fi nit el y di visi bl e pr o p ert y [ 4 9].

P e rs o n ali z ati o n. P ers o n ali z e d gr a p h diff usi o ns, t ail or e d t o i n di vi d u al n o d es or l o c ali z e d n ei g h-
b or h o o ds, pl a y a cr u ci al r ol e i n m a n y r e al- w orl d a p pli c ati o ns. T h es e i n cl u d e r e c o m m e n d ati o n
s yst e ms [ 5 0], w h er e p ers o n ali z e d diff usi o ns i m pr o v e s u g g esti o n r el e v a n c e, c o m m u nit y d et e cti o n
f or i d e ntif yi n g s u b gr o u ps wit hi n l ar g er n et w or ks [ 7], t ar g et e d m ar k eti n g str at e gi es f or e n h a n ci n g
c a m p ai g n eff e cti v e n ess [ 5 1]. T h es e diff usi o ns ar e d e fi n e d b y s etti n g t h e gr a p h diff usi o n v e ct or s as
e i f or a n i n di vi d u al n o d e or s = i ∈ S e i / |S | f or a n ei g h b or h o o d s et S . I n t his p a p er, w e pri m aril y
dis c uss t h e si n gl e- n o d e c as e w hil e o ur a n al ysis c a n b e g e n er ali z e d t o a s et of s e e d n o d es.

P ri v a c y D e fi niti o n. Diff er e nti al Pri v a c y ( D P) [ 1 8, 4 2] is wi d el y r e c o g ni z e d as t h e st a n d ar d fr a m e w or k
f or pr o vi di n g f or m al pri v a c y g u ar a nt e es f or al g orit h ms t h at pr o c ess s e nsiti v e d at a. T his fr a m e w or k
h as f urt h er b e e n e xt e n d e d u n d er R é n yi di v er g e n c e [ 4 4]. Its pri n ci pl es h a v e b e e n a p pli e d t o s af e g u ar d
s e nsiti v e str u ct ur es wit hi n gr a p h al g orit h ms, a n m etri c n ot e d as E d g e-l e v el R é n yi Diff er e nti al Pri v a c y
( R D P). D et ails o n t h e c o n v ersi o n fr o m R D P t o D P ar e el a b or at e d i n A p p. E.

D e fi niti o n 1 ( E d g e-l e v el R D P [ 5 2, 5 3]). A r a n d o miz e d gr a p h al g orit h m A is (α, ϵ ) - e d g e-l e v el R D P
if f or a n y a dj a c e nt gr a p hs G , G ′ t h at diff ers i n a si n gl e e d g e, w e h a v e D α (A (G )∥ A (G ′)) ≤ ϵ , w h er e

t h e R é n yi Di v er g e n c e D α (X ∥ Y ) = 1
α − 1 l o g E x ∼ ν

µ ( x )
ν ( x )

α

wit h X ∼ µ, Y ∼ ν .

M or e pr a cti c al c as es fi n d t h at t h e s e e d n o d e ( us er) of p ers o n ali z e d gr a p h diff usi o n al g orit h ms is
alr e a d y a w ar e of t h eir dir e ct c o n n e cti o ns wit hi n t h e n et w or k, s u c h as o n e’s fri e n d list i n s o ci al
n et w or ks, a n d o n e’s tr a ns a cti o n r e c or d i n fi n a n ci al n et w or ks, a n d t h er ef or e pr ot e cti n g t h e e d g es
dir e ctl y att a c h e d t o t h e s e e d n o d e b e c o m es u n n e c ess ar y. I nst e a d, t h e f o c us of pri v a c y pr ot e cti o n
s hifts t o w ar ds o bs c uri n g t h e c o n n e cti o ns b et w e e n t h e r e m ai ni n g n o d es. T o a d dr ess t his s p e ci fi c n e e d,
w e f oll o w t h e pr e vi o us st u d y [ 2 0] a n d i ntr o d u c e P ers o n ali z e d E d g e-l e v el R D P.

D e fi niti o n 2 ( P ers o n ali z e d E d g e-l e v el R D P [ 2 0, 5 4]). C o nsi d er a gr a p h G a n d a p ers o n aliz e d gr a p h
al g orit h m A . T h e al g orit h m A s atis fi es p ers o n aliz e d (α, ϵ ) - e d g e-l e v el R D P if f or a n y n o d e v as t h e
s e e d n o d e i n G , a n d f or a n y gr a p h G ′ a dj a c e nt t o G diff eri n g b y o n e e d g e n ot i n ci d e nt t o v , w e h a v e
D α (A (G , v)∥ A (G ′, v)) ≤ ϵ.

3 M et h o d ol o g y

T his st u d y c e nt ers o n a c at e g or y of γ m a x < 1 Li ps c hit z c o nti n u o us gr a p h diff usi o ns, e n c o m p assi n g
pr e v al e nt t e c h ni q u es s u c h as P a g e R a n k [ 1] a n d P P R [ 5 5]. It is n ot e d t h at e a c h diff usi o n m a p ϕ k

wit hi n gr a p h diff usi o n m ai nt ai ns t h e t ot al m ass of t h e diff usi o n v e ct or s k , o wi n g t o t h e c o n diti o n

i ∈ [ 3] γ i, k = 1 a n d t h e pr o p ert y of t h e r a n d o m w al k m atri x P b ei n g a l eft st o c h asti c m atri x. T his

o bs er v ati o n e nt ails t h at t h e diff usi o n m a p ϕ k i n E q. ( 1) c o nstit ut es a stri ctl y c o ntr a cti o n m a p i n
t h e m etri c s p a c e (R | V |, ∥ · ∥ 1 ). C o ns e q u e ntl y, gr a p h diff usi o n c a n b e c o nstr u e d as a c o m p osit e of
c o ntr a cti o n m a ps. T h e P A BI t e c h ni q u e h as b e e n d e vis e d t o pri v ati z e c o ntr a cti v e it er ati o ns b y i nj e cti n g
r a n d o m n ois e p er it er ati o n. E m piri c al st u di es s u g g est t h at distri b uti n g n ois e t hr o u g h o ut t h e diff usi o n
st e ps c a n pr o vi d e i m pr o v e d utilit y- pri v a c y tr a d e- offs c o m p ar e d t o o ut p ut p ert ur b ati o n al o n e [ 2 5].
T his i nsi g ht s er v es as a k e y m oti v ati o n f or e m pl o yi n g P A BI t o est a blis h pri v a c y- pr es er vi n g gr a p h
diff usi o n.

3. 1  P r eli mi n a ri es: P ri v a c y A m pli fi c ati o n b y It e r ati o n

T h e t e c h ni q u e of Pri v a c y A m pli fi c ati o n b y It er ati o n ( P A BI), ori gi n all y i ntr o d u c e d b y F el d m a n et
al. [ 2 6] f or c o n v e x ris k mi ni mi z ati o n pr o bl e ms vi a n ois y gr a di e nt d es c e nt, b o u n ds t h e pri v a c y l oss
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of a n it er ati v e al g orit h m wit h o ut r el e asi n g t h e f ull s e q u e n c e of it er at es. T his a p pr o a c h a p pli es t o
pr o c ess es g e n er at e d b y C o ntr a cti v e N ois y It er ati o n ( C NI) d e fi n e d as f oll o ws.

D e fi niti o n 3 ( C o ntr a cti v e N ois y It er ati o n ( C NI) [ 2 6]). C o nsi d er a B a n a c h s p a c e (X , ∥ · ∥ ) wit h a n
i niti al r a n d o m st at e X 0 ∈ X , a s eri es of c o ntr a cti o ns (i. e., c- Li ps c hitz f u n cti o ns, c ≤ 1 ) ψ k : X → X ,
a n d a s e q u e n c e of n ois e r a n d o m v ari a bl es { ξ k } . D e fi ni n g B as a c o n v e x b o u n d e d s et, t h e C o ntr a cti v e
N ois y It er ati o n C NI (X 0 , { ψ k } , { ξ k } , B ) is g o v er n e d b y t h e u p d at e r ul e:

X k + 1 = P B [ψ t (X k ) + ξ k + 1 ] ( 2)

w h er e P B is t h e pr oj e cti o n o p er at or o nt o B , r es p e cti n g t h e n or m ∥ · ∥ .

I n t h e P A BI a n al ysis b y F el d m a n et al. [ 2 6], gr a di e nt d es c e nt is c o n c e pt u ali z e d as a c o ntr a cti v e
m a p pi n g ψ t i n t h e ℓ 2 s p a c e. L e v er a gi n g a n a d diti v e G a ussi a n n ois e m e c h a nis m aft er e a c h it er ati o n,
i. e., ξ k ∼ N (0 , σ2 I ), l e a ds t o t h e o bs er v ati o n t h at t h e R é n yi di v er g e n c e of i d e nti c al C NIs wit h
diff eri n g i niti al c o n diti o ns X 0 a n d X ′

0 d e c a ys i n v ers el y wit h r es p e ct t o t h e t ot al n u m b er of it er ati o ns

K . S p e ci fi c all y, it is o bs er v e d t h at D α (X K ∥ X ′
K ) ≤

α ∥ X 0 − X ′
0 ∥ 2

2 K σ 2 . Alts c h ul er et al. [ 2 7] f urt h er
e xt e n d e d t his fr a m e w or k wit h i m pr o v e d b o u n d as f oll o ws:

P r o p ositi o n 1. L et X K a n d X ′
K d e n ot e t h e o ut p uts fr o m C NI (X 0 , { ψ k } , { ξ k } , B ) a n d

C NI (X 0 , { ψ ′
k } , { ξ ′

k } , B ), r es p e cti v el y, w h er e ξ k , ξ′k ∼ N ( 0, σ2 I d ).  D e fi n e dist orti o n ρ : =
s u p k, x ∥ ψ k (x ) − ψ ′

k (x )∥ a n d l et B h a v e di a m et er D . If { ψ k } a n d { ψ ′
k } ar e c o ntr a cti o ns wit h

c o ef fi ci e nt c < 1 , t h e n f or a n y τ ∈ { 0 , . . . , K − 1 } ,

D α (X K ∥ X ′
K ) ≤

α

σ 2
(K − τ )ρ 2

Dist orti o n A bs or pti o n

+ c 2 ( K − τ ) D 2

P A BI

. ( 3)

T h e b o u n d i n E q. ( 3) d e m o nstr at es t h at t h e R é n yi di v er g e n c e b et w e e n t w o C NIs c a n b e q u a nti fi e d
b y t h e c u m ul ati v e R é n yi di v er g e n c e o v er G a ussi a n n ois e wit h a dist orti o n f a ct or ρ (t h e Dist orti o n
A bs or pti o n t er m), c o m pl e m e nt e d b y a P A BI t er m. T h e l att er i n di c at es t h at i d e nti c al c o ntr a cti v e
tr a nsf or m ati o ns a p pli e d t o b o u n d e d pr o c ess es r e d u c e pri v a c y l e a k a g e i n a n e x p o n e nti al m a n n er. N ot e
t h at t h e b o u n d i n E q. ( 3) is c o n v e x wit h r es p e ct t o τ , o pti mi z e d s el e cti o n of τ l e a ds t o n o n- di v er g e nt
u p p er b o u n d ρ̃ (l n( D 2 / ρ̃ ) + 1) w h er e ρ̃ = ρ 2 / 2 l n( 1 / c ).

N ot e o n P a r a m et e r S et Di a m et e r D . T h e pri v a c y b o u n d i n E q. ( 3) r eli es o n t h e ass u m pti o n of
b o u n d e d di a m et er D of t h e p ar a m et er s et B t o u p p er b o u n d ∞ - Wass erst ei n dist a n c e ( d e fi niti o n i n
A p p. A) b et w e e n t h e c o u pl e d C NI pr o c ess es X τ a n d X ′

τ . Alt h o u g h i n t h e or y, t h e u p p er b o u n d of
E q. ( 3) o nl y d e p e n ds o n l o g D b y o pti mi zi n g τ , w e n oti c e t h at t h e v al u e D is i m p ort a nt t o g et a
pr a cti c all y m e a ni n gf ul pri v a c y b o u n d. T o ti g ht e n t his t er m, w e will i ntr o d u c e a n o v el ∞ - Wass erst ei n
dist a n c e tr a c ki n g m et h o d t h at cir c u m v e nts t h e n e e d f or t h e di a m et er p ar a m et er i n L e m m a 3 ( d et ail e d
l at er): A hi g h-l e v el i d e a is t o tr a c k t h e ∞ - Wass erst ei n dist a n c e b et w e e n n ois y it er at es vi a c o nstr u ct e d
c o u pli n gs i nst e a d of usi n g t h e d ef a ult s et di a m et er as a n u p p er b o u n d.

N ot e o n N ois e R a n d o m V a ri a bl es ξ k . T h e tr a diti o n al P A BI a n al ysis pri m aril y e x a mi n es gr a di e nt
d es c e nt wit hi n t h e ℓ 2 s p a c e e m pl o yi n g t h e G a ussi a n m e c h a nis m. I n c o ntr ast, i n t h e c o nt e xt of
gr a p h diff usi o ns, m o di fi c ati o ns t o Pr o p ositi o n 1 ar e n e c ess ar y t o a c c o m m o d at e t h e ℓ 1 n or m a n d
t h e a p pli c ati o n of L a pl a c e n ois e. T his a d a pt ati o n t o t h e L a pl a c e m e c h a nis m, cr u ci al f or t h e gr a p h
diff usi o n a p pli c ati o ns, h as n ot b e e n pr e vi o usl y a d dr ess e d i n t h e lit er at ur e t o o ur k n o wl e d g e.

3. 2  P ri v at e G r a p h Diff usi o ns

We n o w i ntr o d u c e o ur n ois y gr a p h diff usi o n fr a m e w or k, d esi g n e d t o e ns ur e e d g e-l e v el R D P a n d its
p ers o n ali z e d v ari a nt. O ur a p pr o a c h c o nsists of i nj e cti n g L a pl a c e n ois e i nt o t h e c o ntr a cti v e diff usi o n
pr o c ess a n d i nt e gr ati n g a gr a p h- d e p e n d e nt t hr es h ol di n g f u n cti o n t o miti g at e t h e hi g h s e nsiti vit y
ass o ci at e d wit h p ert ur b ati o ns of l o w- d e gr e e n o d es.

Gi v e n a gr a p h diff usi o n pr o c ess D = { ϕ k } ∞
k = 1 , w e i ntr o d u c e a n ois y gr a p h diff usi o n D K, σ w h er e

K d e n ot es t h e diff usi o n st e ps a n d σ is t h e st a n d ar d d e vi ati o n of t h e a d d e d n ois e, c o nstr u ct e d b y a
s eri es of c o m p osi n g n ois y gr a p h diff usi o n m a p pi n gs ϕ k, σ :

D K, σ = ϕ K, σ ◦ ϕ K − 1 , σ ◦ · · · ◦ ϕ 1 , σ , w h er e ϕ k, σ (s k − 1 ) = ϕ k (f (s k − 1 )) + ξ
( 1 )
k + ξ

( 2 )
k . ( 4)
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w h er e f is a gr a p h- d e p e n d e nt d e gr e e- b as e d f u n cti o n s et as f (x ) = mi n( m a x( x , − η · d ), η · d ) wit h
a t hr es h ol d p ar a m et er η t o b al a n c e pri v a c y- utilit y tr a d e- off. S p e ci fi c all y, f cli ps t h e v al u es of t h e
diff usi o n v e ct or a c c or di n g t o n o d e d e gr e es. N ot a bl y, t h e t hr es h ol di n g f u n cti o n f all o ws f or n e g ati v e

si g n als, c a pt uri n g s c e n ari os w h er e t h e diff usi o n c o ef fi ci e nt γ 1 , k c a n b e n e g ati v e. N ois e v ari a bl es ξ
( 1 )
k

a n d ξ
( 2 )
k ar e i n d e p e n d e ntl y s a m pl e d fr o m a L a pl a c e distri b uti o n L (0 , σ). It is n ot e w ort h y t h at o ur

fr a m e w or k c a n als o b e e xt e n d e d t o a c c o m m o d at e G a ussi a n distri b uti o ns. H o w e v er, G a ussi a n n ois e
h as b e e n s h o w n t o b e s u b o pti m al f or gr a p h diff usi o n i n ℓ 1 s p a c e, wit h e m piri c al e vi d e n c e pr o vi d e d i n
A p p. D. 4.

D esi g n of T h r es h ol di n g F u n cti o n f . I n t h e n ois y gr a p h diff usi o n pr o c ess, t h e r ol e of
t h e gr a p h- d e p e n d e nt t hr es h ol di n g f u n cti o n f is t w of ol d. Firstl y, f e ns ur es a b o u n d e d
dist a n c e b et w e e n t h e c o u pl e d diff usi o ns o v er t w o a dj a c e nt gr a p hs, a n al o g o us t o t h e
r ol e of t h e g e n er al pr oj e cti o n o p er at or P B i n t h e st a n d ar d C NI as d e fi n e d i n E q. ( 2).

E d g e P e rt u r b ati o n o n  L o w- d e g r e e N o d e

E d g e P e rt u r b ati o n o n  Hi g h- d e g r e e N o d e

B ef o r e Diff usi o n

Aft e r Diff usi o n

Dist o rti o n

Diff usi o n S etti n gs

Dist o rti o n

Fi g ur e 1: Ill ustr ati o n of Dist orti o n fr o m
E d g e P ert ur b ati o ns o v er A dj a c e nt Gr a p hs
f or N o d es wit h L o w a n d Hi g h D e gr e es.

S u c h a b o u n di n g eff e ct is als o cr u ci al f or t h e l at er a n al-
ysis of ∞ - Wass erst ei n dist a n c e tr a c ki n g i n L e m m a 3.
S e c o n dl y, a n d m or e criti c all y, o ur t h e or eti c al a n al y-
sis r e v e als t h at e d g e p ert ur b ati o n aff e cti n g l o w- d e gr e e
n o d es r es ults i n i n cr e as e d dist orti o n at e a c h diff usi o n
st e p (ill ustr at e d i n Fi g. 1). U nif or m t hr es h ol di n g c o u-
pl e d wit h r a n d o m n ess i nj e cti o n f or all n o d es t y pi c all y
yi el ds s u b o pti m al p erf or m a n c e i n s u c h c as es. O ur
d e gr e e- d e p e n d e nt d esi g n n at ur all y c o ntr ols t h e dist or-
ti o n p er it er ati o n c a us e d b y l o w- d e gr e e n o d es w hi c h
h el ps wit h r e d u ci n g t h e a d d e d n ois e. M or e d et ail e d
dist orti o n a n al ysis o n f is s h o w n l at er i n L e m m a 2.
T h e t hr es h ol d p ar a m et er η is c o m m o nl y e m pl o y e d t o
o pti mi z e t h e pri v a c y- utilit y tr a d e- off i n pr a cti c al a p pli-
c ati o ns [ 2 0]. T h e e m piri c al b e n e fits of f ar e e x pl or e d
i n e x p eri m e nts d et ail e d i n S e c. 4. 2.

Dis c ussi o n o n D u al N ois e I nj e cti o n. O ur fr a m e w or k
e m pl o ys a n ois e-s plitti n g t e c h ni q u e, i nj e cti n g d u al L a pl a c e n ois e at e a c h diff usi o n st e p t o c o nstr u ct
n o n- di v er g e nt pri v a c y b o u n ds, as o utli n e d i n E q. ( 3). T h e or eti c al j usti fi c ati o ns f or t his d esi g n is
pr o vi d e d i n t h e pr o of s k et c h.

F oll o wi n g t his, w e pr es e nt o ur m ai n r es ult o n t h e pri v a c y g u ar a nt e e of n ois y gr a p h diff usi o n:

T h e o r e m 1 ( Pri v a c y G u ar a nt e es of N ois y Gr a p h Diff usi o ns). Gi v e n a gr a p h G , a n ass o ci at e gr a p h
diff usi o n D = { ϕ k } ∞

k = 1 , t h e n n ois y gr a p h diff usi o n m e c h a nis m D K, σ e ns ur es e d g e-l e v el (α, ϵ ) - R D P
wit h ϵ s atis fi es:

ϵ ≤ mi n
τ ∈ { 0 ,1 ,..., K − 1 }

(K − τ ) · g α (σ, ρ diff ) + g α σ,
ρ diff · ( 1 − γ τ

m a x )

1 − γ m a x
· γ K − τ

m a x ( 5)

w h er e g α (σ, ρ ) = 1
α − 1 l n( α

2 α − 1 e x p( α − 1
σ ρ ) + α − 1

2 α − 1 e x p( − α
σ ρ )) d e n ot es t h e R é n yi di v er g e n c e i n-

d u c e d b y t h e L a pl a c e m e c h a nis m [ 4 4], a n d ρ diff = m a x( 4 γ
( 1 )
m a x , 2 γ m a x ) · η r e pr es e nts t h e m a xi m u m

si n gl e-st e p dist orti o n i n c urr e d b y diff usi o n o n a dj a c e nt gr a p hs t h at i n v ol v es Li ps c hitz c o nti n uit y

c o ef fi ci e nt γ m a x , a n d m a xi m u m diff usi o n c o ef fi ci e nt γ
( 1 )
m a x .

B y s el e cti n g τ = ⌈ K − l n(( 1
ρ diff

+ 1
1 − γ m a x

) l n 1
γ m a x

)/ l n( 1
γ m a x

)⌉ , pri v a c y b u d g et ϵ r e m ai ns b o u n d e d b y

ϵ ≲
ρ diff

σ · l n 1
γ m a x

l n
1

ρ diff
+

1

1 − γ m a x
l n

1

γ m a x
+ 1 . ( 6)

T h e pri v a c y b o u n d i n E q. ( 5) c o nsists of t w o c o m p o n e nts: t h e dist orti o n a bs or pti o n t er m (t h e first
t er m o n t h e R H S) a n d t h e P A BI t er m (t h e s e c o n d t er m i n R H S). Dist orti o n a bs or pti o n q u a nti fi es
t h e c u m ul ati v e R é n yi di v er g e n c e o v er L a pl a c e n ois e wit h si n gl e-st e p dist orti o n ρ diff , w hil e t h e P A BI
t er m q u a nti fi es t h e e x p o n e nti al d e c a y r at e, e c h oi n g t h e r es ult i n E q. ( 3). H o w e v er, a k e y diff er e n c e
li es i n o ur a p pr o a c h; i nst e a d of l e v er a gi n g t h e pr oj e ct e d s et di a m et er D t o c o ntr ol t h e dist a n c e
b et w e e n c o u pl e d C NIs, o ur pr o p os e d ∞ - Wass erst ei n tr a c ki n g m et h o d yi el ds a m or e pr a cti c al t er m,

5



ρ diff ·( 1 − γ τ
m a x )

1 − γ m a x
. F urt h er d et ails a n d utilit y e v al u ati o ns of t his t o ol ar e pr es e nt e d i n t h e pr o of s k et c h a n d

S e c. 4. 2, r es p e cti v el y.

T h e f u n cti o n g α (σ, ρ ) , w hi c h m e as ur es R é n yi di v er g e n c e f or t h e L a pl a c e m e c h a nis m, i n cr e as es wit h
dist orti o n ρ a n d d e cr e as es wit h n ois e s c al e σ . T his b e h a vi or i m pli es t h at r e d u ci n g dist orti o n a n d
i n cr e asi n g t h e n ois e s c al e e n h a n c es pri v a c y. T o a c hi e v e b ett er c ali br at e d n ois e wit hi n a gi v e n pri v a c y
b u d g et ϵ , w e c al c ul at e t h e t w o t er ms i n E q. ( 5) f or e a c h τ . L e v er a gi n g t h e m o n ot o ni cit y of g α (σ, ρ ) ,
w e e m pl o y a bi n ar y s e ar c h t o i d e ntif y t h e a p pr o pri at e n ois e s c al e σ . T h e o pti m al n ois e s c al e is t h e n
d et er mi n e d b y s el e cti n g t h e mi ni m u m v al u e a cr oss v ari o us τ v al u es, a c hi e vi n g t his ef fi ci e ntl y wit h
li n e ar c o m pl e xit y r el ati v e t o τ .

It is i m p ort a nt t o n ot e t h at t h e m a xi m u m si n gl e-st e p dist orti o n ρ diff i n E q. ( 5) is ti g ht a n d c o n v e ys
s e v er al m ess a g es. First, as d e fi n e d i n E q. ( 1), w h e n t h e diff usi o n pr o c ess is r el ati v el y sl o w (i. e.,
γ 1 , k < γ 2 , k ), t h e dist orti o n r e m ai ns ti g ht, g o v er n e d b y t h e Li ps c hit z c o nst a nt γ m a x of t h e diff usi o n
m a p pi n g. I n c o ntr ast, w h e n t h e diff usi o n is r el ati v el y f ast (i. e., γ 1 , k ≥ γ 2 , k ), t h e dist orti o n b o u n d
b e c o m es as y m pt oti c all y ti g ht, d e p e n di n g o n gr a p h str u ct ur es, wit h w orst- c as e s c e n ari os d et ail e d i n
A p p. B. 1.

5 1 0 1 0 2 1 0 3
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R D P of G r a p h Diff u si o n s

O u r s

C o m p o si ti o n T h e o r e m

Fi g ur e 2: R D P vs. T ot al Diff usi o n
St e p K wit h γ 1 , k = 0 .8 , γ2 , k =
0 , γ3 , k = 0 .2 , α = 2 , σ = 0 .0 1 , a n d
η = 1 0 − 5 .

I n E q. ( 6), w e d e m o nstr at e t h e c o n v er g e n c e of t h e pri v a c y b u d-
g et wit h r es p e ct t o diff usi o n st e ps K . T his a p pr o a c h diff ers
fr o m t h e a d a pti v e c o m p ositi o n t h e or e m [ 4 2], w hi c h a n al y z es
h o w pri v a c y g u ar a nt e es d e gr a d e w h e n c o m p os e d m e c h a nis ms
ar e a p pli e d. Alt h o u g h t his m et h o d h as c o m m o nl y b e e n e m-
pl o y e d t o pr ot e ct pri v a c y i n gr a p h l e ar ni n g m o d els [ 5 2, 5 3, 5 6],
it l e a ds t o a li n e ar i n cr e as e i n t h e pri v a c y b u d g et wit h t h e n u m-
b er of it er ati o ns K u n d er R é n yi di v er g e n c e [ 4 4], p ot e nti all y
r es ulti n g i n u n b o u n d e d l oss es as K gr o ws t o i n fi nit y. M or e
i m p ort a ntl y, e v e n f or a s m all n u m b er of diff usi o n st e ps, o ur
fr a m e w or k a c hi e v es a si g ni fi c a ntl y b ett er pri v a c y b u d g et u n d er
pr a cti c al P P R diff usi o n s etti n gs, as ill ustr at e d i n Fi g. 2. F urt h er
e m piri c al e v al u ati o ns ar e d et ail e d i n A p p. D. 4.

3. 3  P r o of S k et c h of T h e o r e m 1

P r o of I d e a. Si mil ar t o E q. ( 3), t h e pri v a c y l oss of a dj a c e nt gr a p h diff usi o n pr o c ess es c a n b e b o u n d e d
as t h e s u m of dist orti o n a bs or pti o n t er m i n c urr e d b y L a pl a c e n ois e a n d a P A BI t er m at i nt er m e di at e
st e p τ ( St e p 1 & 2). S u bs e q u e ntl y, w e e x pl or e d e gr e e- b as e d t hr es h ol di n g t o m a n a g e dist orti o n,
a c hi e vi n g a s u p eri or utilit y- pri v a c y tr a d e off ( St e p 3), a n d i ntr o d u c e ∞ - Wass erst ei n dist a n c e tr a c ki n g
t o f urt h er ti g ht e n t h e di v er g e n c e at τ ( St e p 4).

St e p 1: I nt e r p r et ati o n of It e r at es as C o n diti o n al C NI S e q u e n c es. C o nsi d er t h e c o u pl e d gr a p h
diff usi o ns D = { ϕ k } ∞

k = 1 a n d D ′ = { ϕ ′
k } ∞

k = 1 , a n d t h e t hr es h ol di n g f u n cti o ns f a n d f ′, o p er ati n g o v er
a dj a c e nt gr a p hs G a n d G ′, r es p e cti v el y. I n e a c h diff usi o n st e p, t h e first n ois e c o m p o n e nt c o nstr u cts
n ois y it er at es, w hil e t h e s e c o n d n ois e c o m p o n e nt is us e d t o a bs or b dist orti o n i n c urr e d b et w e e n t h e
a dj a c e nt gr a p hs. We e n c a ps ul at e t h e dis c ussi o n as f oll o ws:

s k = ϕ k (f (s k − 1 )) + ξ
( 1 )
k

I d e nti c al C NI

+ ξ
( 2 )
k , s ′

k = ϕ ′
k (f ′(s ′

k − 1 )) + ξ
′( 1 )
k + ξ

′( 2 )
k

d
= ϕ k (f (s ′

k − 1 )) + ξ
′( 1 )
k

I d e nti c al C NI

+ ξ̃
′( 2 )
k .

w h er e ξ
( 1 )
k , ξ

( 2 )
k , ξ

′( 1 )
k , ξ

′( 2 )
k ∼ L (0 , σ), a n d ξ̃

′( 2 )
k ∼ L ϕ ′

k (f ′(s ′
k − 1 )) − ϕ k (f (s ′

k − 1 )), σ , a n d
d
=

d e n ot es e q u alit y i n distri b uti o n.

W h e n t h e dist orti o n ϕ ′
k (f ′(s ′

k − 1 )) − ϕ k (f (s ′
k − 1 )) is a bs or b e d b y t h e c o n diti o n al e v e nt of n ois e

v ari a bl es, i. e., ξ
( 2 )
k = ξ̃

( 2 )
k , t h e c o u pl e d diff usi o n v e ct ors e v ol v e wit h i d e nti c al C NIs t hr o u g h t h e

c o ntr a cti v e m a p pi n g ϕ k ◦ f . N ot e t h at t h e L a pl a c e distri b uti o n is ess e nti al f or f ull y e x pl oiti n g ℓ 1

dist orti o n i n o ur a n al ysis.

St e p 2: B o u n di n g P ri v a c y L oss t h r o u g h Dist o rti o n A bs o r pti o n a n d P A BI. T h e pri v a c y l oss of
c o u pl e d it er at es D α (s K ∥ s ′

K ) c a n b e b o u n d e d b y t h e dist orti o n fr o m gr a p h diff usi o n, a n d P A BI:

D α (s K ∥ s ′
K ) ≤ D α (ξ

( 2 )
τ + 1: K ∥ ξ̃

′( 2 )
τ + 1: K )

Dist orti o n A bs or pti o n

+ s u p
ζ

D α (s K |ξ
( 2 )
τ + 1: K = ζ ∥ s ′

K |ξ̃
′( 2 )
τ + 1: K = ζ )

P A BI

( 7)
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T his i n e q u alit y aris es fr o m l e v er a gi n g t h e p ost- pr o c essi n g a n d str o n g c o m p ositi o n r ul es of R é n yi
di v er g e n c e. H er e, ζ r e pr es e nts a j oi nt n ois e r e ali z ati o n, a n d t h e p ar a m et er τ is i ntr o d u c e d t o b al a n c e
t h e pri v a c y l e a k a g e fr o m t h e t w o t er ms — t h e di v er g e n c e b et w e e n t h e s hift e d n ois e v ari a bl es
a c c u m ul at e d fr o m st e p τ + 1 t o st e p K ( Dist orti o n A bs or pti o n), a n d t h e di v er g e n c e a cr oss c o n diti o n al
C NIs e m pl o yi n g i d e nti c al tr a nsf or m ati o ns ϕ k ◦ f ( P A BI).

St e p 3: B o u n di n g Dist o rti o n A bs o r pti o n

L e m m a 2 ( A bs or pti o n of Dist orti o n i n L a pl a c e Distri b uti o n). F or a n y τ ∈ { 0 , 1 , ..., K − 1 } , w e
h a v e

D α (ξ
( 2 )
τ + 1: K ∥ ξ̃

′( 2 )
τ + 1: K ) ≤ (K − τ )g α (σ, ρ̃ ) ( 8)

H er e, ρ̃ q u a nti fi es t h e m a xi m u m dist orti o n i ntr o d u c e d b y a si n gl e-st e p diff usi o n a n d is d et er mi n e d b y

t h e t hr es h ol di n g f u n cti o n f n or m aliz e d b y n o d e d e gr e es, i. e., [f ( s k )] i

d i
.

T h e o bs er v ati o n o n ρ̃ hi g hli g hts t h e i m p ort a n c e of a d e gr e e- b as e d d esi g n f or t h e t hr es h ol di n g f u n cti o n
f . U nif or m t hr es h ol di n g a cr oss all n o d es r es ults i n dist orti o n pr o p orti o n al t o 1

d mi n
, i ntr o d u ci n g

u n n e c ess aril y l ar g e n ois e i n d u c e d b y l o w- d e gr e e n o d es a n d d e gr a di n g o v er all p erf or m a n c e. T his i n
pri n ci pl e i ns pir es t h e c h oi c e of f r el yi n g o n n o d e d e gr e es. C o ns e q u e ntl y, ρ̃ i s ti g htl y b o u n d e d b y

ρ diff = m a x( 4 γ
( 1 )
m a x , 2 γ m a x ) · η .

1 0 − 5 1 0 − 4 1 0 − 3 1 0 − 2

T hr e s h ol d ( η )

1 0 − 5

1 0 − 2

1 0 1

1 0 4

1 0 7

w

C o m p ari s o n of w

Ori gi n al P A BI wit h Di a m et er

∞ - W a s s er st ei n Tr a c ki n g

Fi g ur e 3: S etti n g: Gr a p h Diff usi o n
wit h γ 1 , k = 0 .8 , γ2 , k = 0 , γ3 , k =
0 .2 .

St e p 4: U p p e r B o u n di n g P A BI wit h ∞ - W ass e rst ei n dis-
t a n c e t r a c ki n g. T o p erf or m ti g ht pri v a c y a n al ysis f or t h e
s e c o n d t er m i n E q. ( 7), w e d e v el o p a n o v el ∞ - Wass erst ei n
dist a n c e tr a c ki n g m et h o d f or c o u pl e d C NIs, w h er e w e d e n ot e
t h e ∞ - Wass erst ei n dist a n c e at st e p τ b y w τ . T his m et h o d
dis c ar ds t h e ori gi n al b o u n d e d n ess c o n diti o n i n P A BI ( E q. ( 3)
S e c o n d Ter m), w hi c h r eli es o n t h e di a m et er D .

L e m m a 3 ( P A BI wit h ∞ - Wass erst ei n Dist a n c e Tr a c ki n g).
Gi v e n t w o c o u pl e d gr a p h diff usi o ns m e nti o n e d a b o v e, f or a n y
τ ∈ { 0 , 1 , ..., K − 1 } , a n y n ois e r e aliz ati o n ζ , w e h a v e

D α ( s K |ξ
( 2 )
τ + 1: K = ζ ∥ s ′

K |ξ̃
′( 2 )
τ + 1: K = ζ ) ≤ g α ( σ, γ K − τ

m a x w τ ) ( 9)

w h er e t h e tr a c k e d ∞ - W ass erst ei n dist a n c e o v er c o u pl e d C NIs is gi v e n b y w τ =
ρ diff ·( 1 − γ τ

m a x )
1 − γ m a x

a n d is

n at ur all y u p p er b o u n d e d b y
ρ diff

1 − γ m a x
: = w .

We ar g u e t h at usi n g w τ ( or t h e u p p er b o u n d w ) i nst e a d of t h e d ef a ult di a m et er D is cr u ci al t o
m a k e t h e al g orit h m pr a cti c all y us ef ul. T h er e is n o n u m eri c al e v al u ati o n i n t h e pr e vi o us st u d y [ 2 7].

N u m eri c al c o m p aris o n b et w e e n w a n d t h e di a m et er of t hr es h ol di n g f u n cti o n D = η ·
| V |
i = 1 d i ,

usi n g t h e r e al- w orl d Bl o g C at al o g d at as et ( d et ail e d i n S e c. 4), is ill ustr at e d i n Fi g. 3. w a c hi e v es
or d ers- of- m a g nit u d e i m pr o v e m e nt, w hi c h is still si g ni fi c a nt e v e n if D i m p a cts pri v a c y l oss vi a a
l o g arit h mi c t er m. F urt h er e m piri c al v ali d ati o ns d e m o nstr ati n g si g ni fi c a nt utilit y i m pr o v e m e nts ar e
d et ail e d i n S e c. 4. 2.

B y s u bstit uti n g t h e b o u n ds fr o m E q. ( 8) a n d E q. ( 9) i nt o E q. ( 7), w e est a blis h T h e or e m 1.

3. 4  P e rs o n ali z e d G r a p h Diff usi o n Al g o rit h ms wit h A p pli c ati o n i n P P R Diff usi o n

I n pr a cti c e, gr a p h diff usi o ns oft e n ori gi n at e fr o m a si n gl e n o d e e i , p ers o n ali zi n g t h e al g orit h m t o t his
s e e d n o d e ( us er). Si n c e t h e o ut p ut is pr o vi d e d o nl y t o t h e s e e d n o d e, pr ot e cti n g its e d g e c o n n e cti o ns
( o n e- h o p n ei g h b ors) b e c o m es u n n e c ess ar y, e ns uri n g n o pri v a c y l e a k a g e i n t h e first diff usi o n st e p
u n d er p ers o n ali z e d pri v a c y g u ar a nt e es. C o ns e q u e ntl y, t h e t hr es h ol di n g f u n cti o n is t ail or e d as f oll o ws:
f (x ) = mi n( m a x( x , − η · d̃ ) , η · d̃ ) , w h er e [d̃ ]j = [ d ]j f or j ≠ i a n d [d̃ ]i c a n b e s et t o a n y p ositi v e
t hr es h ol d, i. e., n o c o ntr ol is n e e d e d f or t h e diff usi o n o v er s e e d n o d e. We e m pl o y p ers o n ali z e d
e d g e-l e v el R D P ( D e fi niti o n 2), c ari n g t w o a dj a c e nt gr a p hs wit h a diff er e n c e o nl y i n a si n gl e e d g e n ot
li n k e d dir e ctl y t o t h e s e e d n o d e. T his a p pr o a c h is e n c a ps ul at e d i n t h e f oll o wi n g t h e or e m:

T h e o r e m 4 ( Pri v a c y G u ar a nt e es f or P ers o n ali z e d N ois y Gr a p h Diff usi o ns). Gi v e n a gr a p h G , a n
ass o ci at e gr a p h diff usi o n D = { ϕ k } ∞

k = 1 , t h e n p ers o n aliz e d n ois y gr a p h diff usi o n m e c h a nis m D K, σ

wit h c orr es p o n di n g f (x ) = mi n( m a x( x , − η · d̃ ) , η · d̃ ) e ns ur es p ers o n aliz e d e d g e-l e v el (α, ϵ ) - R D P
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wit h ϵ s atis fi es:

ϵ ≤ mi n
τ ∈ { 0 ,1 ,..., K − 1 }

(K − τ ) · g α (σ, ρ diff · ✶ τ ≠ 0 ) + g α σ,
ρ diff · ( 1 − γ τ

m a x )

1 − γ m a x
· γ K − τ

m a x ( 1 0)

w h er e ✶ d e n ot e i n di c at or f u n cti o n.

N ot e t h at a k e y diff er e n c e fr o m T h e or e m 1 is t h at i n p ers o n ali z e d pri v a c y s etti n gs, t h er e is n o pri v a c y
l e a k a g e i n t h e first diff usi o n st e p (K = 1 ).

P P R A p pli c ati o n. A m o n g v ari o us gr a p h diff usi o ns, P P R st a n ds o ut as a pr e v al e nt n o d e pr o xi mit y
m etri c e xt e nsi v el y us e d i n gr a p h mi ni n g a n d n et w or k a n al ysis. We m a y a p pl y o ur n ois y diff usi o n
fr a m e w or k t o P P R diff usi o n. We c o nsi d er P P R wit h l a z y r a n d o m w al k as f oll o ws:

D (s ) = ( 1 − β )

∞

k = 0

β k W s = li m
K → ∞

ϕ K ◦ · · · ◦ ϕ 1 (s ), w h er e ϕ k (x ) = β W x + ( 1 − β )s . ( 1 1)

w h er e l a z y r a n d o m w al k m atri x W = 1
2 (P + I ) a n d ( 1 − β ) r e pr es e nts t el e p ort pr o b a bilit y wit h

β ∈ ( 0, 1] .

O ur fr a m e w or k i n c or p or at es n ois e i nt o t h e diff usi o n pr o c ess of e a c h st e p of P P R. T h e pri v a c y
g u ar a nt e es f or t his n ois y P P R ar e d eri v e d fr o m T h e or e m 4 wit h ρ diff = 2 β η a n d γ m a x = β . N ot e t h at,
si n c e γ j, k > 0 f or all j ∈ { 1 , 2 , 3 } i n P P R s c e n ari os, all si g n als pr o p a g ati n g a m o n g n o d es s h o ul d b e
n o n- n e g ati v e. C o ns e q u e ntl y, t h e d e gr e e- b as e d t hr es h ol di n g f u n cti o n f c a n b e f urt h er m o di fi e d as
f (x ) = mi n( m a x( x , 0 ), η · d̃ ) .

4 E x p e ri m e nts

I n t his s e cti o n, w e pr es e nt e m piri c al e v al u ati o ns t o s u p p ort o ur t h e or eti c al fi n di n gs. S p e ci fi c all y, w e
a p pl y t h e wi d el y- us e d P P R al g orit h m ( S e c. 3. 4) t o r e al- w orl d gr a p hs. I n pr a cti c e, w e als o i n cl u d e
a pr oj e cti o n st e p o nt o t h e u nit ℓ 1 b all aft er i nj e cti n g L a pl a c e n ois e at e a c h diff usi o n st e p. T his
a dj ust m e nt h as b e e n o bs er v e d t o sli g htl y i m pr o v e t h e utilit y of t h e r es ulti n g P P R wit h o ut i m p a cti n g
o ur t h e or eti c al a n al ysis (s e e A p p. B. 1 f or d et ails). We f o c us o n t h e a c c ur a c y of n ois y P P R i n r a n ki n g
t as ks u n d er p ers o n ali z e d e d g e-l e v el D P d u e t o its pr a cti c alit y as n ot e d i n [ 2 0].

B e n c h m a r k D at as ets. We c o n d u ct e x p eri m e nts o n t h e f oll o wi n g d at as ets: Bl o g C at al o g [ 5 7], a
s o ci al n et w or k of bl o g g ers wit h 1 0, 3 1 2 n o d es a n d 3 3 3, 9 8 3 e d g es; Fli c kr [ 5 7], a p h ot o-s h ari n g s o ci al
n et w or k wit h 8 0, 5 1 3 n o d es a n d 5, 8 9 9, 8 8 2 e d g es; a n d T h e M ar k er [ 5 8], a n o nli n e s o ci al n et w or k wit h
6 9, 4 0 0 n o d es a n d 1, 6 0 0, 0 0 0 e d g es.

B as eli n es. O ur e x p eri m e nt al st u d y i n cl u d es t w o b as eli n es. D P - P U S H F L O W C A P [ 2 0] is t h e o nl y pri v at e
P P R m et h o d usi n g L a pl a c e o ut p ut p ert ur b ati o n, a d a pti n g t h e a p pr o xi m at e P P R al g orit h m wit h p us h
o p er ati o ns [ 4 1]. E d g e - F l i p p i n g is t h e ot h er b as eli n e, w hi c h us es a r a n d o mi z e d r es p o ns e m e c h a-
nis m [ 4 2] o n t h e a dj a c e n c y m atri x, e x cl u di n g s e e d n o d e- c o n n e ct e d e d g es i n p ers o n ali z e d s c e n ari os.
E ntri es ar e r e pl a c e d wit h v al u es i n { 0 , 1 } u nif or ml y at r a n d o m wit h pr o b a bilit y p ( d et ail e d i n A p p. E),
or r et ai n e d ot h er wis e. T his m et h o d r e q uir es O (| V|2 ) ti m e t o g e n er at e a pri v at e a dj a c e n c y m atri x a n d
i n cr e as es its e d g e d e nsit y, w hi c h li mits its pr a cti c alit y. B ot h o ur a p pr o a c h a n d D P - P U S H F L O W C A P
off er b ett er s c al a bilit y. A c o m p aris o n of r u n ni n g ti m es b et w e e n diff er e nt a p pr o a c h es is pr o vi d e d i n
A p p. D. 2. I n all e x p eri m e nts, w e o nl y r e p ort r es ults if a si n gl e tri al c a n b e c o m pl et e d wit hi n 1 2 h o urs
o n a n A M D E P Y C 7 7 6 3 6 4- C or e Pr o c ess or, a n d t h us E d g e - F l i p p i n g c a n n ot b e r u n o n Fli c kr .

M et ri cs. F or utilit y, w e e m pl o y t w o r a n ki n g- b as e d m etri cs: n or m ali z e d dis c o u nt e d c u m ul ati v e
g ai n at R ( N D C G @ R) a n d R e c all @ R [ 5 9], w h er e R d e n ot es t h e c ut off p oi nt f or t h e t o p-r a n k e d
it e ms i n t h e list. I n o ur e x p eri m e nts, R is s et t o 1 0 0. F or pri v a c y ass ess m e nts, w e utili z e t h e
p ers o n ali z e d e d g e-l e v el (ϵ, δ )- D P, wit h δ s et t o 1

# e d g es f oll o wi n g [ 5 3]. T o e ns ur e a f air c o m p aris o n,

b ot h D P - P U S H F L O W C A P a n d E d g e - F l i p p i n g ar e a n al y z e d usi n g R D P. T h e pri v a c y b u d g ets f or all
m et h o ds ar e s u bs e q u e ntl y c o n v ert e d t o D P fr o m R D P r es ults, as el a b or at e d i n A p p. E. All r es ults ar e
r e p ort e d as a v er a g es o v er 1 0 0 i n d e p e n d e nt tri als, wit h 9 5 % c o n fi d e n c e i nt er v als.

4. 1  E v al u ati n g P ri v a c y- Utilit y Tr a d e offs o n R a n ki n g T as ks

I n t his s eri es of e x p eri m e nts, w e ai m t o ass ess t h e r a n ki n g p erf or m a n c e of o ur n ois y gr a p h diff usi o n
( as d eli n e at e d i n S e c. 3. 4) c o m p ar e d wit h b as eli n es o n r e al- w orl d gr a p hs. We s p e ci fi c all y e x a mi n e
pri v a c y b u d g et ϵ r a n gi n g fr o m 1 0 − 2 t o 1 , P P R wit h p ar a m et er β = 0 .8 . C o nsi d eri n g t h at b ot h o ur
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a p pr o a c h a n d D P - P U S H F L O W C A P e m pl o y a t hr es h ol di n g p ar a m et er η t o b al a n c e t h e pri v a c y- utilit y
tr a d e- off, w e s el e ct η fr o m a s et of s e v e n v al u es s p a n ni n g or d ers of m a g nit u d e fr o m 1 0 − 1 0 t o 1 0 − 4 , a
r a n g e e m piri c all y d et er mi n e d t o b e o pti m al a cr oss v ari o us d at as ets f or b ot h m et h o ds ( η = 1 0 − 6 is
c h os e n f or D P - P U S H F L O W C A P i n [ 2 0]). F or e a c h e x p eri m e nt, w e r a n d o ml y c h o os e a n i niti al s e e d f or
diff usi o n a n d e x e c ut e P P R f or 1 0 0 it er ati o ns f oll o wi n g [ 2 0]. We r e p ort t h e a v er a g e N D C G @ 1 0 0 s c or e
a n d R e c all @ 1 0 0 c o m p ar e d t o t h e st a n d ar d n ois e-fr e e P P R diff usi o n ( E q. ( 1 1)) o v er 1 0 0 i n d e p e n d e nt
tri als i n Fi g. 4 a n d Fi g. 5 r es p e cti v el y.

1 0 2 1 0 1 1 0 0

E p sil o n ( )

0. 7

0. 8

0. 9

1. 0

N
D

C
G

Bl o g C a t al o g - N D C G @ 1 0 0

P u s h Fl o w C a p

E d g e Fli p pi n g

O u r s

1 0 2 1 0 1 1 0 0

E p sil o n ( )

0. 7

0. 8

0. 9

1. 0

N
D

C
G

T h e M a r k e r - N D C G @ 1 0 0

P u s h Fl o w C a p

E d g e Fli p pi n g

O u r s

1 0 2 1 0 1 1 0 0

E p sil o n ( )

0. 7

0. 8

0. 9

1. 0

N
D

C
G

Fli c k r - N D C G @ 1 0 0

P u s h Fl o w C a p

O u r s

Fi g ur e 4: Tr a d e- off b et w e e n N D C G a n d P ers o n ali z e d E d g e-l e v el Pri v a c y.

R es ults f o r N D C G @ 1 0 0. As ill ustr at e d i n Fi g. 4, o ur n ois y gr a p h diff usi o n s ur p ass es b ot h b as eli n es
a cr oss all t hr e e d at as ets, w h er e v al u es b el o w 0. 7 ar e i g n or e d. I n a str o n g pri v a c y r e gi m e ( ϵ ≤ 0 .5 ),
o ur a p pr o a c h d e m o nstr at es si g ni fi c a nt i m pr o v e m e nt o v er D P - P U S H F L O W C A P , w hi c h r eli es o n o ut p ut
p ert ur b ati o n. T his v ali d at es o ur cl ai m t h at a n ois y pr o c ess a c hi e v es a s u p eri or pri v a c y- utilit y tr a d e- off
i n stri n g e nt pri v a c y s etti n gs.

R es ults f o r R e c all @ 1 0 0. Fi g. 5 ill ustr at es t h e o v erl a p of t h e t o p- 1 0 0 pr e di cti o ns of pri v a c y- pr es er vi n g
P P R v ari a nts wit h st a n d ar d P P R. A cr oss all d at as ets, o ur m et h o d o ut p erf or ms t w o b as eli n es f or ϵ
v al u es r a n gi n g fr o m 1 0 − 2 t o 1 , f urt h er s u bst a nti ati n g t h e a d v a nt a g es of o ur fr a m e w or k.
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Fi g ur e 5: Tr a d e- off b et w e e n R e c all a n d P ers o n ali z e d E d g e-l e v el Pri v a c y.

A d diti o n al e x p eri m e nts o n t h e s e nsiti vit y of r a n ki n g p erf or m a n c e o v er v ari ati o ns i n η ar e d ef err e d
t o A p p. D. 3, w hi c h d e m o nstr at e t h at o ur a p pr o a c h is si g ni fi c a ntl y m or e r o b ust o n t h e c h oi c e of t h e
h y p er p ar a m et er η .

4. 2  A bl ati o n St u d y

I n t his s e cti o n, w e c o n d u ct a n a bl ati o n st u d y t o v erif y t h e eff e cti v e n ess of o ur t h e or y- g ui d e d d esi g ns,
i n cl u di n g t h e d e gr e e- b as e d t hr es h ol di n g f u n cti o n f , t h e ∞ - Wass erst ei n dist a n c e tr a c ki n g t o ol. E x-
p eri m e nts w er e c o n d u ct e d o n Bl o g C at al o g, utili zi n g P P R diff usi o n wit h p ar a m et er β = 0 .8 , a n d a
t ot al of K = 1 0 0 diff usi o n st e ps. A d diti o n al a bl ati o n st u di es f o c usi n g o n v ari ati o ns i n n ois e t y p e a n d
c o m p ar ati v e a n al ys es of n ois e s c al es a cr oss diff er e nt m et h o ds ar e d et ail e d i n A p p. D. 4.

D e g r e e- b as e d T h r es h ol di n g F u n cti o n & ∞ - W ass e rst ei n Tr a c ki n g. We e v al u at e t h e eff e c-
ti v e n ess of o ur gr a p h- d e p e n d e nt t hr es h ol di n g f u n cti o n f a n d ∞ - Wass erst ei n dist a n c e tr a c ki n g.
We v ar y η u nif or ml y a cr oss s e v e n dis cr et e v al u es i n fr o m 1 0 − 4 t o 1 0 − 1 0 a n d r e p ort t h e o p-
ti m al p erf or m a n c e f or all m et h o ds i n Fi g. 6. Firstl y, w e c o m p ar e t h e d e gr e e- b as e d t hr es h-
ol di n g f u n cti o n f (s ) = mi n( m a x( x , 0) , η · d ) ( R e d • ) a g ai nst its gr a p h-i n d e p e n d e nt v ari a nt

f̃ ( s ) = mi n( m a x( x , 0) , η · 1 ) ( R e d × ), w hi c h u nif or ml y cli ps o v er n o d es r e g ar dl ess of t h eir
d e gr e e. As ϵ v ari es fr o m 0 .1 t o 3 , t h e d e gr e e- b as e d t hr es h ol di n g f u n cti o n c o nsist e ntl y o ut-
p erf or ms its gr a p h-i n d e p e n d e nt c o u nt er p art, wit h a m ar gi n of 0 .1 5 t o 0 .2 i n t h e N D C G s c or e.
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T his v eri fi es t h e eff e cti v e n ess of gr a p h- d e p e n d e nt t hr es h ol di n g f u n cti o n f , w hi c h c a n b al a n c e
t h e pri v a c y- utilit y tr a d e- off m or e eff e cti v el y b y f o c usi n g l ess o n s e nsiti v e l o w- d e gr e e n o d es.

0. 5

0. 6

0. 7

0. 8

0. 9

1. 0

N
D

C
G

0. 0 0. 5 1. 0 1. 5 2. 0 2. 5 3. 0

E p sil o n ( )

0. 0

0. 1

T h r e s h ol di n g & W  T r a c ki n g

G r a p h D e p e n d e n t + - W a s s e r s t ei n T r a c ki n g

G r a p h I n d e p e n d e n t + - W a s s e r s t ei n T r a c ki n g

G r a p h I n d e p e n d e n t + f I n d u c e d Di a m e t e r

G r a p h D e p e n d e n t + f I n d u c e d Di a m e t e r

G r a p h D e p e n d e n t + 1  P r oj e c ti o n

G r a p h I n d e p e n d e n t + 1  P r oj e c ti o n

Fi g ur e 6: Eff e cti v e n ess of d e gr e e-
b as e d t hr es h ol di n g f u n cti o n f a n d
∞ - Wass erst ei n dist a n c e tr a c ki n g.

N ot e t h at t h e gr a p h- d e p e n d e nt (i n) d e p e n d e nt t hr es h ol di n g
f u n cti o n f (f̃ ) n at ur all y i n d u c es a di a m et er η | V| (2 η | E|), r e-
s p e cti v el y, w hi c h c a n b e utili z e d i n t h e m o di fi c ati o n of T h e o-
r e m 1 f or pri v a c y a c c o u nti n g. H o w e v er, t h e gr a p h d e p e n d e nt
t hr es h ol di n g f u n cti o n f r es ults i n a si g ni fi c a ntl y l ar g er di a m-
et er, w hi c h s u bst a nti all y d e gr a d es utilit y. T his u n d ers c or es t h e
i m p ort a n c e of l e v er a gi n g ∞ - Wass erst ei n tr a c ki n g.

We s h o w c as e t h e b e n e fits of o ur ∞ - Wass erst ei n dist a n c e tr a c k-
i n g a n al ysis ( R e d Li n es) o n t h e pri v a c y- utilit y tr a d e off a g ai nst
di a m et er i n d u c e d b o u n ds d eri v e d fr o m ℓ 1 pr oj e cti o n ( Gr e e n
Li n es) or t hr es h ol di n g f u n cti o n-i n d u c e d di a m et er ( Bl u e Li n es).
T h e pri v a c y b o u n d of t h e ℓ 1 pr oj e cti o n is est a blis h e d b as e d
o n a L a pl a c e m o di fi c ati o n of E q. ( 3) wit h a di a m et er of 1. As
s h o w n i n Fi g. 6, m et h o ds e m pl o yi n g ∞ - Wass erst ei n dist a n c e
tr a c ki n g a n al ysis c o nsist e ntl y o ut p erf or m t h os e b as e d o n ℓ 1 pr oj e cti o n a n d t hr es h ol di n g-i n d u c e d
di a m et er. We c o n cl u d e t h at o ur ∞ - Wass erst ei n tr a c ki n g a n al ysis a n d t h e d esi g n of gr a p h- d e p e n d e nt
t hr es h ol di n g f u n cti o n f m ar k e dl y e n h a n c e t h e pri v a c y- utilit y tr a d e off.

5 C o n cl usi o n

I n s u m m ar y, w e i ntr o d u c e a n ois y gr a p h diff usi o n fr a m e w or k f or e d g e-l e v el pri v a c y pr ot e cti o n,
utili zi n g a n o v el a p pli c ati o n of P A BI i n ℓ 1 s p a c e. B y i n c or p or ati n g a t h e or y- g ui d e d d esi g n f or a
gr a p h- d e p e n d e nt t hr es h ol di n g f u n cti o n a n d e m pl o yi n g a n e w ∞ - Wass erst ei n dist a n c e tr a c ki n g t o ol,
w e o ut p erf or m S O T A m et h o ds i n r a n ki n g p erf or m a n c e o n b e n c h m ar k gr a p h d at as ets.

S o ci et al I m p a ct a n d Li mit ati o ns. O ur w or k a d v a n c es t h e d e v el o p m e nt of D P gr a p h al g orit h ms,
off eri n g str o n g pri v a c y pr ot e cti o n w h e n pr o p erl y i m pl e m e nt e d. F or its li mit ati o ns, w e r ef er r e a d ers t o
st a n d ar d t e xt b o o ks o n t h e s u bj e ct [ 4 2]. T h e eff e cti v e n ess of o ur n ois y gr a p h diff usi o n fr a m e w or k h as
b e e n d e m o nstr at e d pri m aril y i n t h e c o nt e xt of P P R diff usi o n. E xt e n di n g t h es e r es ults t o ot h er t y p es
of gr a p h diff usi o ns, s u c h as h e at k er n el diff usi o n, is a pr o misi n g dir e cti o n f or f ut ur e r es e ar c h. T his
p a p er f o c us es o n e d g e-l e v el pri v a c y pr ot e cti o ns; e x pl ori n g e xt e nsi o ns t o n o d e-l e v el D P pr ot e cti o ns
c o ul d f urt h er br o a d e n t h e s c o p e of o ur r es e ar c h.

A c k n o wl e d g e

T his w or k is s u p p ort e d b y N S F a w ar ds C C F- 2 4 0 2 8 1 6, II S- 2 2 3 9 5 6 5, a n d J P M C f a c ult y a w ar d 2 0 2 3.
T h e a ut h ors w o ul d li k e t o t h a n k H a o y u Wa n g, H a ot e n g Yi n f or t h e v al u a bl e dis c ussi o n. T h e a ut h ors
als o w o ul d li k e t o t h a n k Al ess a n dr o E p ast o f or t h e dis c ussi o n a b o ut t h e i m pl e m e nt ati o n of t h e
o ut p ut- p ert ur b ati o n- b as e d diff er e nti all y pri v at e P ers o n ali z e d P a g er a n k.
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A P r eli mi n a ri es

I n t his s e cti o n, d e fi niti o ns a n d l e m m as ar e i ntr o d u c e d t o f a cilit at e t h e pr es e nt ati o n of pr o ofs. R e c all
t h at t h e c o ntr a cti o n m a p pi n g d e n ot e a s elf- m a p pi n g l- Li ps c hit z c o nti n u o us f u n cti o n wit h l ∈ [ 0, 1] ,
a n d t h e ∞ - Wass erst ei n dist a n c e is d e fi n e d as W ∞ (µ, ν ) = i nf γ ∈ Γ ( µ, ν ) e s s s u p ( x, y ) ∼ γ ∥ x − y ∥ , w h er e

Γ( µ, ν ) r e pr es e nts t h e c oll e cti o n of all c o u pli n gs b et w e e n µ a n d ν . F urt h er, d e fi n e R α (σ, ρ ) : =
s u p r :∥ r ∥ ≤ ρ D α (ξ + r ∥ ξ ), w h er e ξ ∼ L (0 , σ), m e as ur es t h e e xt e nt t o w hi c h t h e L a pl a ci a n distri b uti o n

c a n a bs or b s hifts of m a g nit u d e ρ . F or cl arit y, D α (µ ∥ ν ) a n d D α (X ∥ Y ), wit h X ∼ µ a n d Y ∼ ν , ar e
us e d i nt er c h a n g e a bl y w h e n t h e c o nt e xt is cl e ar. B esi d es, w e d e n ot e X i :j , i, j ∈ Z + , i ≤ j as j oi nt
c o u pl e of (X i , Xi + 1 , . . . , Xj ). We i ntr o d u c e S hift e d R é n yi Di v er g e n c e as f oll o ws:

D e fi niti o n A. 1 ( S hift e d R é n yi Di v er g e n c e). L et µ a n d ν b e distri b uti o ns d e fi n e d o v er a B a n a c h s p a c e
(X , ∥ · ∥ ) . F or p ar a m et er z ≥ 0 a n d α ≥ 1 , t h e z -s hift e d R é n yi di v er g e n c e b et w e e n µ a n d ν is d e fi n e d
as

D ( z )
α (µ ∥ ν ) = i nf

µ ′ :W ∞ ( µ, µ ′ ) ≤ z
D α (µ ′∥ ν ) ( 1 2)

T h e f oll o wi n g t w o l e m m as ill ustr at e h o w s hift e d R é n yi di v er g e n c e b e h a v es u n d er n ois e c o n v ol uti o n
a n d c o ntr a cti o n m a p pi n g.

L e m m a A. 1 ( S hift-r e d u cti o n l e m m a [ 2 6]). L et µ, ν, ϱ b e pr o b a bilit y distri b uti o ns o n R n . F or a n y
ρ ≥ 0 ,

D ( z )
α (µ ∗ ϱ ∥ ν ∗ ϱ ) ≤ D ( z + ρ )

α (µ ∥ ν ) + s u p
r :∥ r ∥ ≤ ρ

D α (ϱ + r ∥ ϱ ). ( 1 3)

L e m m a A. 2 ( C o ntr a cti o n-r e d u cti o n l e m m a [ 2 7]). S u p p os e ψ, ψ ′ ar e r a n d o m f u n cti o ns fr o m R n t o
R n s u c h t h at (i) e a c h is a stri ct c - c o ntr a cti o n al m ost s ur el y, a n d (ii) t h er e e xists a c o u pli n g of (ψ, ψ ′)
u n d er w hi c h s u p x ∥ ψ (x ) − ψ ′(x )∥ ≤ ρ al m ost s ur el y. T h e n f or a n y pr o b a bilit y distri b uti o ns µ a n d ν
o n R n ,

D ( c z + ρ )
α (ψ # µ ∥ ψ ′

# ν ) ≤ D ( z )
α (µ ∥ ν ). ( 1 4)

F urt h er, w e r e c all t w o pr o p erti es of R D P i n o ur a n al ysis.

L e m m a A. 3 ( P ost- pr o c essi n g Pr o p ert y of R é n yi Di v er g e n c e). F or a n y R é n yi p ar a m et er α ≥ 1 , a n y
r a n d o m f u n cti o n f , a n d a n y pr o b a bilit y m e as ur es µ, ν , w e h a v e

D α (f # µ ∥ f # ν ) ≤ D α (µ ∥ ν ) ( 1 5)

L e m m a A. 4 ( Str o n g c o m p ositi o n f or R D P). F or a n y R é n yi p ar a m et er α ≥ 1 , a n d a n y t w o s e q u e n c es
of r a n d o m v ari a bl es X 1 , . . . , Xk a n d Y 1 , . . . , Yk ,

D α (P X 1 : k
∥ P Y 1 : k

) ≤
k

i = 1

s u p D α (P X i |X i − 1 = x i − 1
∥ P Y i |Y i − 1 = x i − 1

).

B P ri v a c y G u a r a nt e es f o r N ois y G r a p h Diff usi o n: A n al yti c al P r o ofs

I n t his s e cti o n, w e pr es e nt t h e m ai n pr o of f or t h e r es ults i n T h e or e m 1 as d et ail e d i n S e c. 3.

B. 1  M ai n P r o of

Pr o of of T h e or e m 1. Gi v e n a s e e d s , a t ot al diff usi o n st e p K , a n ois e s c al e σ , a n d d e gr e e- b as e d t hr es h-
ol di n g f u n cti o ns f, f ′, w e c o nsi d er t w o c o u pl e d gr a p h diff usi o ns D K, σ (s ), D ′

K, σ (s ) w hi c h pr o p o g at e

o n t w o j oi nt e d g e-l e v el a dj a c e nt gr a p hs G , G ′ r es p e cti v el y wit h diff usi o n m a p pi n g ϕ k , ϕ′k , k ∈ [K ].
S p e ci fi c all y, w e h a v e

D K, σ (s ) : s k = ϕ k (f (s k − 1 )) + ξ
( 1 )
k + ξ

( 2 )
k , 1 ≤ k ≤ K, ( 1 6)

D ′
K, σ (s ) : s ′

k = ϕ ′
k (f ′(s ′

k − 1 )) + ξ
′( 1 )
k + ξ

′( 2 )
k , 1 ≤ k ≤ K. ( 1 7)

( 1 8)
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w h er e ξ
( 1 )
k , ξ

′( 1 )
k , ξ

( 2 )
k , ξ

′( 2 )
k ar e distri b ut e d a c c or di n g t o t h e l a w L (0 , σ).

St e p 1: Dist o rti o n of Si n gl e- St e p G r a p h Diff usi o n I n e a c h diff usi o n st e p, a dist orti o n o v er t h e
diff usi o n m a p pi n gs ϕ k ◦ f is i ntr o d u c e d d u e t o t h e gr a p h a dj a c e n c y b et w e e n t h e gr a p h diff usi o ns
D K, σ (s ) a n d D ′

K, σ (s ). T his dist orti o n, w hi c h is cr u ci al f or t h e s u bs e q u e nt a n al ysis, is c h ar a ct eri z e d
b y t h e f oll o wi n g l e m m a:

L e m m a B. 1 ( Dist orti o n of Gr a p h Diff usi o n). Gi v e n t w o gr a p h diff usi o ns D K, σ (s ), D ′
K, σ (s ) m e n-

ti o n e d a b o v e. L et f, f ′ d e n ot e c orr es p o n di n g gr a p h- d e p e n d e nt d e gr e e- b as e d t hr es h ol di n g o p er at ors,
i. e., f (x ) = mi n( m a x( x , − η · d ), η · d ). T h e diff usi o n dist orti o n s atis fi es:

s u p
x ∈ R n

∥ ϕ k (f (x )) − ϕ ′
k (f ′(x )) ∥ 1 ≤ m a x( 4 γ ( 1 )

m a x , 2 γ m a x ) · η ( 1 9)

w h er e Li ps c hit z c o nst a nt γ m a x = m a x k |γ 1 , k | + |γ 2 , k |, a n d m a xi m u m diff usi o n c o ef fi ci e nt γ
( 1 )
m a x =

m a x k |γ 1 , k |.

We d e n ot e t his si n gl e-st e p gr a p h diff usi o n dist orti o n b o u n d as ρ diff , i. e., ρ diff = m a x( 4 γ
( 1 )
m a x , 2 γ m a x ) · η .

M or e o v er, i n c or p or ati n g a n ℓ 1 - b all pr oj e cti o n P B i nt o t h e pi p eli n e, i. e., a d o pti n g ϕ k ◦ f ◦ P B , d o es
n ot alt er t his dist orti o n b o u n d.

A c c or di n g t o t h e pr o of, t his dist orti o n a n al ysis is ti g ht a n d
c o n v e ys s e v er al k e y i nsi g hts. First, w h e n t h e gr a p h diff usi o n
pr o c ess diff us es r el ati v el y sl o w, i. e., γ 1 , k < γ 2 , k , t h e dist or-
ti o n is ti g ht a n d pri m aril y g o v er n e d b y t h e Li ps c hit z c o nst a nt
of t h e diff usi o n m a p pi n g. I n c o ntr ast, w h e n t h e diff usi o n is
r el ati v el y f ast, t h e dist orti o n is c o ntr oll e d b y t h e m a xi m u m
diff usi o n c o ef fi ci e nt γ 1 , k . I n t his l att er s c e n ari o, t h e b o u n d
b e c o m es as y m pt oti c all y ti g ht w h e n t h e gr a p h str u ct ur e s atis-
fi es t h e c o n diti o n t h at t h e n o d es c o n n e ct e d b y t h e p ert ur b e d
e d g e h a v e n o c o m m o n n ei g h b ors, a n d t h eir d e gr e es t e n d t o
i n fi nit y. We r ais e a d o u bl e st ar gr a p h as a n t o y e x a m pl e
t h at s atis fi es t h e a b o v e n o c o m m o n n ei g h b or c o n diti o n (s e e
Fi g. 7).

P ert ur b e d E d g e

Fi g ur e 7: D o u bl e St ar Gr a p h.

St e p 3: B o u n di n g t h e P ri v a c y L oss vi a S hift A bs o r pti o n a n d P A BI. N e xt, w e c o nsi d er t h e n ois y
diff usi o n pr o c ess, w h er e L a pl a ci a n n ois e is i ntr o d u c e d d uri n g gr a p h pr o p a g ati o n. N ot e t h at, w e f o c us
o n i nj e cti n g n ois e at t h e i niti al st e p of t h e diff usi o n pr o c ess, alt h o u g h t h e a n al ysis c a n b e dir e ctl y
e xt e n d e d t o i n cl u d e n ois e i nj e cti o n at i nt er m e di at e st e ps. F or k ≥ 1 , dr a wi n g u p o n t h e n ois e-s plitti n g
a p pr o a c h o utli n e d i n [ 2 7], w e miti g at e t h e s hifts c a us e d b y diff usi o n a n d t hr es h ol di n g b y i nt e gr ati n g
t h es e f a ct ors i nt o t h e n ois e distri b uti o n. C o ns e q u e ntl y, w e c o nstr u ct c o n diti o n al C NI s e q u e n c es wit h
i d e nti c al diff usi o n m a p pi n gs f or b ot h pr o c ess es. S p e ci fi c all y, w e r ef or m ul at e t h e diff usi o n pr o c ess
D ′

K, Π (s ) as f oll o ws:

s ′
k = ϕ k (f (s ′

k − 1 )) + ξ
′( 1 )
k + ξ̃

′( 2 )
k , w h er e ξ̃ ′

k ∼ L (ϕ ′
k (f ′(s ′

k − 1 )) − ϕ k (f (s ′
k − 1 )) , σk ) ( 2 0)

w h er e w e i ntr o d u c e ξ̃
′( 2 )
k as s hift e d L a pl a ci a n n ois e a n d n ois e s c al e σ k = σ . T h er ef or e, t h e c o u pl e d

gr a p h diff usi o n pr o c ess es c a n b e s u m m ari z e d as f oll o ws:

s k = ϕ k (f (s k − 1 )) + ξ
( 1 )
k

I d e nti c al C NI

+ ξ
( 2 )
k , s ′

k = ϕ k (f (s ′
k − 1 )) + ξ

′( 1 )
k

I d e nti c al C NI

+ ξ̃
′( 2 )
k , ∀ k ≥ 1 . ( 2 1)

N ot e t h at o ur o bj e cti v e is t o est a blis h a n u p p er b o u n d f or D α (s K ∥ s ′
K ), w e cl ai m t h at f or a n y p ar a m et er

τ ∈ { 0 , 1 , ..., K − 1 } ,

D α (s K ∥ s ′
K )

( a )

≤ D α (s K , ξ
( 2 )
τ + 1: K ∥ s ′

K , ξ̃
′( 2 )
τ + 1: K ) ( 2 2)

( b )

≤ D α (ξ
( 2 )
τ + 1: K ∥ ξ̃

′( 2 )
τ + 1: K )

S hift A bs or pti o n

+ s u p
ζ τ + 1 : K

D α (s K |ξ
( 2 )
τ + 1: K = ζ τ + 1: K ∥ s ′

K |ξ̃
′( 2 )
τ + 1: K = ζ τ + 1: K )

P A BI

( 2 3)

1 6



w h er e ζ τ + 1: K is a n ois e r e ali z ati o n, (a ) is b y t h e p ost- pr o c essi n g i n e q u alit y of R é n yi Di v er g e n c e
( L e m m a A. 3), a n d (b ) is fr o m t h e str o n g c o m p ositi o n r ul e f or R é n yi di v er g e n c e ( L e m m a A. 4).

As d e m o nstr at e d i n E q. 2 3, t h e pri v a c y l e a k a g e c a n b e u p p er b o u n d e d b y t h e R é n yi di v er g e n c e
a cr oss j oi nt L a pl a ci a n distri b uti o ns wit h a s hift (s hift a bs or pti o n t er m) a n d t h e di v er g e n c e a cr oss
c o n diti o n al C NIs e m pl o yi n g i d e nti c al tr a nsf or m ati o ns ϕ k ◦ f ( P A BI t er m). T h e p ar a m et er τ is
i ntr o d u c e d t o b al a n c e t h e pri v a c y l e a k a g e fr o m s hifts b et w e e n n ois e distri b uti o ns a g ai nst t h e l e a k a g e
fr o m C NIs st arti n g fr o m diff er e nt i niti al c o n diti o ns. B ot h t er ms c a n b e f urt h er b o u n d e d as d et ail e d i n
t h e f oll o wi n g l e m m as. It is i m p ort a nt t o e m p h asi z e t h at, f or t h e l att er, w e l e v er a g e ∞ - Wass erst ei n
dist a n c e tr a c ki n g m et h o d t h at g et ri d of t h e di a m et er r e q uir e m e nt i n ori gi n al P A BI a n al ysis. B esi d es,
f or e a c h l e m m a b el o w, w e st at e t h at c o nsi d eri n g pr oj e cti o n o nt o t h e ℓ 1 b all d o es n ot aff e ct t h e
c o n cl usi o ns.

( 1) U p p e r b o u n di n g s hift a bs o r pti o n t e r m:

L e m m a B. 2 ( A bs or pti o n of S hift i n L a pl a ci a n Distri b uti o n). Gi v e n t w o c o u pl e d gr a p h diff usi o ns
m e nti o n e d a b o v e, f or a n y τ ≥ 0 , t h e s hift a bs or pti o n t er m c a n b e u p p er b o u n d e d b y

D α (ξ
( 2 )
τ + 1: K ∥ ξ̃

′( 2 )
τ + 1: K ) ≤

K

k = τ + 1

g α (σ k , ρdiff ) ( 2 4)

w h er e dist orti o n ρ diff = m a x( 4 γ
( 1 )
m a x , 2 γ m a x ) · η , a n d s hift e d L a pl a c e f u n cti o n g α (σ, ρ ) =

1
α − 1 l n( α

2 α − 1 e x p( α − 1
σ ρ ) + α − 1

2 α − 1 e x p( − α
σ ρ )).

( 2) U p p e r b o u n di n g P A BI t e r m:

L e m m a B. 3 ( P A BI wit h L a pl a ci a n Distri b uti o n). Gi v e n t w o c o u pl e d gr a p h diff usi o ns m e nti o n e d
a b o v e, f or a n y τ ≥ 0 , w e h a v e

s u p
ζ τ + 1 : K

D α (s K |ξ
( 2 )
τ + 1: K = ζ τ + 1: K ∥ s ′

K |ξ̃
′( 2 )
τ + 1: K = ζ τ + 1: K ) ≤ D ( w τ )

α (s τ ∥ s ′
τ ) + g α (σ K , γK − τ

m a x w τ )

( 2 5)

T h e l e m m a d e m o nstr at es t h at t h e P A BI t er m is c o ntr oll e d b y t h e s hift e d R é n yi di v er g e n c e at st e p τ
a n d a pri v a c y a m pli fi c ati o n t er m t h at d e c a ys e x p o n e nti all y at a r at e of γ K − τ

m a x w τ . I n pr e vi o us a n al ys es
of t h e P A BI f or t h e G a ussi a n m e c h a nis m, [ 2 7] utili z e d t h e di a m et er of t h e b o u n d e d p ar a m et er s et t o
f urt h er c o nstr ai n t h e s hift w τ . H o w e v er, w e h a v e f o u n d t h at t his b o u n d d o es n ot s atisf a ct oril y a c hi e v e
a f a v or a bl e pri v a c y- utilit y tr a d e- off i n pr a cti c e. S u bs e q u e ntl y, w e d e v el o p a ∞ - Wass erst ei n dist a n c e
tr a c ki n g m et h o d t o m or e eff e cti v el y b o u n d t his P A BI t er m, off eri n g a m or e pr a cti c al a p pr o a c h.

L e m m a B. 4 ( P A BI wit h ∞ - Wass erst ei n Dist a n c e Tr a c ki n g). Gi v e n t w o c o u pl e d gr a p h diff usi o ns
m e nti o n e d a b o v e, f or a n y τ ≥ 0 , w e h a v e

W ∞ (s τ ∥ s ′
τ ) ≤

ρ diff · ( 1 − γ τ
m a x )

1 − γ m a x
= w τ , D ( w τ )

α (s τ ∥ s ′
τ ) = 0 ( 2 6)

w h er e dist orti o n ρ diff = m a x( 4 γ
( 1 )
m a x , 2 γ m a x ) · η .

B y s u m m ari zi n g t h e a b o v e r es ults ( L e m m a B. 2, B. 3, a n d B. 4), w e c o n cl u d e t h e fi n al r es ults:

D α (s K ∥ s ′
K ) ≤ D α (ξ

( 2 )
τ + 1: K ∥ ξ̃

′( 2 )
τ + 1: K ) + s u p

ζ τ + 1 : K

D α (s K |ξ
( 2 )
τ + 1: K = ζ τ + 1: K ∥ s ′

K |ξ̃
′( 2 )
τ + 1: K = ζ τ + 1: K )

≤
K

k = τ + 1

g α (σ k , ρdiff ) + g α (σ K , γK − τ
m a x w τ ) ( 2 7)

=( K − τ ) · g α (σ, ρ diff ) + g α (σ, γ K − τ
m a x ·

ρ diff · ( 1 − γ τ
m a x )

1 − γ m a x
) ( 2 8)
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C Dis c ussi o n o n P e rs o n ali z e d G r a p h Diff usi o n

As dis c uss e d i n S e c. 3. 4, i n m a n y p ers o n ali z e d s c e n ari os, t h e d e fi niti o n of p ers o n ali z e d e d g e-
l e v el pri v a c y s hifts t o pr ot e ct e d g es t h at ar e n ot i n ci d e nt t o t h e s o ur c e n o d e. T his a dj ust m e nt off ers
a d diti o n al b e n e fits i n dist orti o n a n al ysis ( L e m m a B. 1): n o dist orti o n o c c urs i n t h e first st e p. A c c or di n g
t o t h e pr o of of L e m m a B. 1, gi v e n a s e e d n o d e s wit h t h e c orr es p o n di n g i niti al v e ct or s , a n d l etti n g
(u, v ) d e n ot e t h e e d g e diff eri n g o n a dj a c e nt gr a p hs G a n d G ′ w h er e s /∈ { u, v } , w e h a v e:

∥ (A D − 1 − A ′D ′ −1 )s ∥ 1 ≤ 2
[s ]u
d u

+
[s ]v
d v

= 0 ( 2 9)

si n c e [s ]u = [ s ]v = 0 . T h us, w h e n a n al y zi n g n ois y gr a p h diff usi o n i n a p ers o n ali z e d s c e n ari o, t his
disti n cti o n r es ults i n a b ett er b o u n d f or L e m m a B. 2. F urt h er, E q. ( 2 9) d e m o nstr at e t h at w e c a n r el a x
t h e t hr es h ol di n g o v er s e e d n o d e t o s e e k f or b ett er pri v a c y- utilit y tr a d e- offs. T h er ef or e, f or u nif or m
n ois e s c h e d uli n g, w e o bt ai n t h e c orr es p o n di n g r es ults i n T h e or e m 4:

ϵ =  mi n
τ ∈ { 0 ,..., K − 1 }

g α (σ,
ρ diff · ( 1 − γ τ

m a x ) · γ K − τ
m a x

1 − γ m a x
) + ( K − τ ) · g α (σ, ρ diff · ✶ τ ≠ 0 ) ( 3 0)

D A d diti o n al E x p e ri m e nts

D. 1  D at as ets a n d E x p e ri m e nt al E n vi r o n m e nt

As m e nti o n e d i n S e cti o n 4, t his p a p er i n cl u d es t hr e e b e n c h m ar k d at as ets: Bl o g C at al o g, T h e M ar k er,
a n d Fli c kr. T h eir d et ails ar e i n cl u d e d i n Ta bl e 1.

D at as et
Si z e St atisti cs

N o d es | V| E d g es | E| Cl ass es | C| A v g. D e g.  D e nsit y

Bl o g c at al o g 1 0 k 3 3 4 k 3 9 6 4. 8 6 .3 × 1 0 − 3

T h e M ar k er 6 9. 4 k 1. 6 M  N A 4 7 6 .8 × 1 0 − 4

Fli c kr 8 0 k 5. 8 M 1 9 5 1 4 6 1 .5 × 1 0 − 3

Ta bl e 1: B e n c h m ar k d at as ets a n d t h eir st atisti cs.

E x p eri m e nts w er e p erf or m e d o n a s er v er wit h t w o A M D E P Y C 7 7 6 3 6 4- C or e Pr o c ess ors, 2 T B
D R A M, si x N VI DI A R T X A 6 0 0 0 G P Us ( e a c h wit h 4 8 G B of m e m or y).

D. 2  R u n ni n g Ti m e

We r e p ort t h e r u n ni n g ti m e f or a si n gl e tri al of e a c h m et h o d a cr oss all d at as ets i n Fi g. 8. As ill ustr at e d
i n t h e fi g ur e, all si n gl e tri al e x p eri m e nts of o ur m et h o d a n d D P - P U S H F L O W C A P ar e c o m pl et e d wit hi n 1
mi n ut e. I n c o ntr ast, t h e e d g e fli p pi n g m e c h a nis m e x hi bits si g ni fi c a ntl y l o n g er r u n ni n g ti m es, r a n gi n g
fr o m 1 6 mi n ut es t o o v er 1 2 h o urs as t h e si z e of t h e gr a p h i n cr e as es.

Bl o g C at al o g T h e M ar ker Fli c kr

D at as et

1 0

1 0 2

1 0 3

1 0 4

1 0 5

R
u
n
ni

ng
Ti

me
(
Se

co
n
ds

)

2 9s 2 4s

5 9s

1 5s 1 4s

3 7s

1 6 m 5 0s

1 1 h 3 4 m 1 2 h +

R u n ni n g Ti m e C o m p aris o n A cr oss D at as ets

O ur M et h o d

P us h Fl o w C a p

E d g e Fli p pi n g

Fi g ur e 8: R u n ni n g Ti m e f or a Si n gl e Tri al of E x p eri m e nts wit h a Pri v a c y B u d g et of ϵ = 0 .1 .
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D. 3 S e nsiti vit y of R a n ki n g P e rf o r m a n c e t o V a ri ati o ns i n T h r es h ol d P a r a m et e r η .

I n t his s eri es of e x p eri m e nts, w e f urt h er i n v esti g at e t h e s e nsiti vit y of t h e N D C G r a n ki n g p erf or m a n c e
wit h r es p e ct t o t h e s el e cti o n of η . S p e ci fi c all y, w e e n h a n c e t h e gr a n ul arit y of t h e η v al u es wit hi n t h e
e xisti n g r a n g e fr o m 1 × 1 0 − 1 0 t o 1 × 1 0 − 4 b y s el e cti n g 2 0 e q ui dist a nt p oi nts f or e a c h d at as et wit hi n
t his i nt er v al. T h e N D C G r a n ki n g p erf or m a n c e is d e pi ct e d i n Fi g. 9. T h e l eft c ol u m n r e pr es e nts t h e
tr a nsiti o n c ur v e of o ur m et h o d, t h e mi d dl e c ol u m n d e n ot es t h e p erf or m a n c e of D P - P U S H F L O W C A P ,
a n d t h e ri g ht c ol u m n ill ustr at es t h e p erf or m a n c e g a p b et w e e n t h e t w o m et h o ds. F or e a c h pri v a c y
b u d g et ϵ , w e hi g hli g ht t h e o pti m al η c orr es p o n di n g t o t h e b est p erf or m a n c e ( y ell o w f or o ur m et h o d,
c y a n f or D P - P U S H F L O W C A P ). As d e m o nstr at e d i n t h e ri g ht c ol u m n, w h e n η v ari es fr o m 1 × 1 0 − 1 0 t o
1 × 1 0 − 4 , o ur m et h o d c o nsist e ntl y o ut p erf or ms D P - P U S H F L O W C A P u p t o 1 × 1 0 − 6 . T his i n di c at es
t h e s u p eri or st a bilit y of h y p er p ar a m et er s el e cti o n f or o ur m et h o d i n t er ms of r a n ki n g p erf or m a n c e.

1 e- 1 0 1 e- 9 1 e- 8 1 e- 7 1 e- 6 1 e- 5 1 e- 4

T h r e s h ol d 

1.
0

0
0.

7
0

0.
5

0
0.

3
0

0.
1

0
0.

0
8

0.
0

6
0.

0
4

0.
0

2

Pr
i
v
a
c
y 

B
u

d
g
et

 

O u r - N D C G - Bl o g C a t el o g

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

1 e- 1 0 1 e- 9 1 e- 8 1 e- 7 1 e- 6 1 e- 5 1 e- 4

T h r e s h ol d 

1.
0

0
0.

7
0

0.
5

0
0.

3
0

0.
1

0
0.

0
8

0.
0

6
0.

0
4

0.
0

2

Pr
i
v
a
c
y 

B
u

d
g
et

 

P u s hfl o w - N D C G - Bl o g C a t el o g

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

1 e- 1 0 1 e- 9 1 e- 8 1 e- 7 1 e- 6 1 e- 5 1 e- 4

T h r e s h ol d 

1.
0

0
0.

7
0

0.
5

0
0.

3
0

0.
1

0
0.

0
8

0.
0

6
0.

0
4

0.
0

2

Pr
i
v
a
c
y 

B
u

d
g
et

 

P e rf o r m a n c e G a p - N D C G - Bl o g C a t el o g

0. 4

0. 2

0. 0

0. 2

0. 4

1 e- 1 0 1 e- 9 1 e- 8 1 e- 7 1 e- 6 1 e- 5 1 e- 4

T h r e s h ol d 

1.
0

0
0.

7
0

0.
5

0
0.

3
0

0.
1

0
0.

0
8

0.
0

6
0.

0
4

0.
0

2

Pr
i
v
a
c
y 

B
u

d
g
et

 

O u r - N D C G - T h e M a r k e r
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O u r - N D C G - Fli c k r
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P e rf o r m a n c e G a p - N D C G - Fli c k r

0. 4

0. 2

0. 0

0. 2

0. 4

Fi g ur e 9: Tr a nsiti o n C ur v es of T hr es h ol di n g P ar a m et er η R el ati v e t o Pri v a c y B u d g et ϵ f or T hr e e B e n c h m ar k
D at as ets.

D. 4  A bl ati o n St u d y

I n t his s e cti o n, w e c o n d u ct a d diti o n al a bl ati o n st u di es t o c o m p ar e t h e n ois e distri b uti o ns, a n d n ois e
s c h e d ul es b et w e e n o ur T h e or e m 1 a n d t h e C o m p ositi o n T h e or e m. F oll o wi n g t h e e x p eri m e nt al s etti n gs
o utli n e d i n S e c. 4. 2, w e p erf or m e x p eri m e nts o n t h e Bl o g C at al o g d at as et, utili zi n g P P R diff usi o n
wit h a p ar a m et er β = 0 .8 a n d a t ot al of K = 1 0 0 diff usi o n st e ps.

N ois e Dist ri b uti o ns: L a pl a c e v e rs us G a ussi a n. We i n v esti g at e t h e eff e cti v e n ess of i nj e cti n g L a pl a c e
n ois e as c o m p ar e d t o G a ussi a n n ois e wit hi n o ur a n al ysis fr a m e w or k. R e c all t h at st a n d ar d P A BI
a n al ysis h as pri m aril y f o c us e d o n t h e c as e of G a ussi a n n ois e. We r e p ort t h e r a n ki n g p erf or m a n c e i n
Fi g. 1 0 ( L eft). Wit hi n a str o n g pri v a c y r e gi m e w h er e ϵ r a n g es fr o m 0 .1 t o 1 , t h e p erf or m a n c e g a p
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b et w e e n t h e t w o n ois e t y p es is a p pr o xi m at el y 0 .0 5 . T his fi n di n g s u p p orts t h e s u p eri orit y of L a pl a c e
n ois e i nj e cti o n f or gr a p h diff usi o n pr o c ess es i n ℓ 1 s p a c e a n d is of pr a cti c al i m p ort a n c e.

0. 5 1. 0 1. 5 2. 0 2. 5 3. 0

E p sil o n ( )
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0. 8 0

0. 8 5

0. 9 0

0. 9 5

1. 0 0

N
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C
G

P a r a m et e r s etti n g s :
β = 0 .8 ,  K = 1 0 0

N oi s e C o m p ari si o n: L a pl a c e v s. G a u s si a n

O ur s + L a pl a c e

O ur s + G a u s si a n

1 0 4 1 0 3 1 0 2 1 0 1 1 0 0

N oi s e S c al e ( )

1 0 2

1 0 1

1 0 0

D
P 

Pr
i
v
a
c
y 

B
u

d
g
et

 (
) P a r a m e t e r s e t ti n g s :

= 0. 8, = 1 0 5 , K = 1 0 0

N oi s e C ali b r a ti o n: O u r s v s. C o m p o si ti o n

O u r s

C o m p o si ti o n T h e o r e m

Fi g ur e 1 0: L eft: R a n ki n g p erf or m a n c e wit h L a pl a c e a n d G a ussi a n n ois e i nj e cti o n. Ri g ht: C o m p aris o n of n ois e
s c al es b et w e e n o ur m et h o d ( T h e or e m 1) a n d t h e c o m p ositi o n t h e or e m u n d er t h e D P m etri c.

T h e o r e m 1 v e rs us C o m p ositi o n T h e o r e m. As w e dis c uss e d i n S e cti o n 3. 2, o n e c a n n ai v el y a d o pt
t h e D P c o m p ositi o n t h e or e m [ 4 3, 4 4] t o est a blis h t h e pri v a c y g u ar a nt e e f or t h e s a m e n ois y gr a p h
diff usi o n. H o w e v er, it is a g e n er al a p pr o a c h a n d d o es n ot t a k e t h e c o ntr a cti o n pr o p erti es of gr a p h
diff usi o n i nt o a c c o u nt, w hi c h l e a ds t o a w ors e pri v a c y b o u n d i n o ur c as e. We e x a mi n e t h e c ali br at e d
n ois e s c al es σ u n d er e d g e-l e v el D P, c o n v ert e d fr o m R D P. Fi g ur e 1 0 ( Ri g ht) c o m p ar es n ois e s c al es
d eri v e d fr o m o ur T h e or e m 1 ( R e d Li n e) a g ai nst t h os e fr o m t h e st a n d ar d R D P c o m p ositi o n t h e or e m
( Bl u e Li n e). O ur m et h o d a c hi e v es a n ois e s c al e t h at is 1 0 ti m es s m all er t h a n t h at r e q uir e d b y t h e
c o m p ositi o n t h e or e m.

E R D P t o D P C o n v e rsi o n

First, w e pr es e nt t h e st a n d ar d r es ults o n c o n v erti n g R D P t o D P:

P r o p ositi o n E. 1 ( C o n v ersi o n fr o m R D P t o D P [ 4 4]). If M is a n (α, ϵ R D P )- R D P m e c h a nis m, t h e n it

als o s atis fi es (ϵ D P , δ)- diff er e nti al pri v a c y, w h er e ϵ D P = ϵ R D P +
l o g 1

δ

α − 1 f or a n y δ ∈ ( 0, 1) .

T o d et er mi n e t h e D P g u ar a nt e es of t h e t hr e e m e c h a nis ms, w e first c al c ul at e t h e R D P f or e a c h m e c h a-
nis m. S p e ci fi c all y, w e us e T h e or e m 4 f or o ur m et h o d, s e nsiti vit y a n al ysis i n T h e or e m 4. 3 fr o m [ 2 0]
wit h t h e di m e nsi o n al L a pl a c e m e c h a nis m u n d er R é n yi di v er g e n c e ( E q. ( 4 6)) f or D P - P U S H F L O W C A P ,

a n d Pr o p ositi o n 5 fr o m [ 4 4] f or E d g e Fli p pi n g. F or all t hr e e m e c h a nis ms, t h e e x pr essi o n ϵ R D P +
l o g 1

δ

α − 1

is c o n v e x i n α . B y s etti n g δ = 1
# e d g es , w e t h e n s e ar c h f or t h e o pti m al α t o mi ni mi z e t his e x pr essi o n

a n d o bt ai n ϵ D P .

F P r o of of L e m m as

F. 1  P r o of of L e m m a B. 1

Gi v e n a n y x ∈ R n , wit h o ut l oss of g e n er alit y, w e ass u m e t h at t h e e d g e s ets of t w o gr a p hs s atisf y
E = E ′ ∪ ( 1, 2) , i. e., w e r e m o v e e d g e ( 1, 2) fr o m gr a p h G , r es ulti n g i n gr a p h G ′. F urt h er m or e,
l et N (i) d e n ot e t h e n ei g h b ors of n o d e i, a n d d e fi n e t h e f oll o wi n g i n d e x s ets: A : = N ( 1)\ { 2 } ,
B : = N ( 2)\ { 1 } , C : = A ∩ B , A ′ : = A \ C , a n d B ′ : = B \ C . A d diti o n all y, w e c a n r e arr a n g e t h e
n o d e i n di c es i n G s u c h t h at A ′ = { 3 , . . . , |A ′| + 2 } , B ′ = {| A ′| + 3 , . . . , |A ′| + |B ′| + 2 } , a n d
C = {| A ′| + |B ′| + 3 , . . . , |A ′| + |B ′| + |C | + 2 } . We a d o pt t h e s h ort h a n d n ot ati o n f i = [ f (x )] i

a n d ∆ f i = [ f (x )] i − [f ′(x )] i . We first c o nsi d er t h e c as e w h er e d 1 , d2 ≥ 2 , a n d d e fi n e m 1 : =

− f 1

d 1 ( d 1 − 1 ) , m2 : = − f 2

d 2 ( d 2 − 1 ) , ∆ m 1 : = ∆ f 1

d 1 − 1 , ∆ m 2 : = ∆ f 2

d 2 − 1 . Si n c e d e gr e e- b as e d t hr es h ol di n g

f u n cti o n f is s y m m etri c, W L O G, w e c a n ass u m e f is n o n- n e g ati v e, i. e., f (x ) = mi n( m a x( x , 0 ), η ·
d ). We h a v e t h e f oll o wi n g

∥ ϕ k (f (x )) − ϕ ′
k (f ′(x ))∥ 1 = ∥ ϕ k (f (x )) − ϕ ′

k (f (x )) + ϕ ′
k (f (x )) − ϕ ′

k (f ′(x ))∥ 1 ( 3 1)

= ∥ γ 1 , k (P − P ′)f (x ) + (γ 1 , k P
′ + γ 2 , k I )(f (x ) − f ′(x ))∥ 1 ( 3 2)
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= ∥ γ 1 , k (A D − 1 − A ′D ′ −1 )f (x ) + ( γ 1 , k A
′D ′ −1 + γ 2 , k I )(f (x ) − f ′(x ))∥ 1 ( 3 3)

= γ 1 , k







0 1
d 2

0 · · · 0
1
d 1

0 0 · · · 0
· · · · · · · · · · · · · · ·

a n 1 ( 1
d 1

− 1
d 1 − 1 ) a n 2 ( 1

d 2
− 1

d 2 − 1 ) 0 · · · 0












f 1

f 2

· · ·
f n






+( γ 1 , k A
′D ′ −1 + γ 2 , k )






∆ f 1

∆ f 2

· · ·
∆ f n






1

( 3 4)

= ∥ γ 1 , k · [
f 2

d 2
,
f 1

d 1
, m1 , · · · , m1

|A ′ | Ti m es

, m2 , · · · , m2

|B ′ | Ti m es

, m1 + m 2 , · · · , m1 + m 2

|C | Ti m es

, 0 , ..., 0] T

+ γ 1 , k · [ 0, 0 , ∆ m 1 , ..., ∆ m 1

|A ′ | Ti m es

, ∆ m 2 , ..., ∆ m 2

|B ′ | Ti m es

, ∆ m 1 + ∆ m 2 , ..., ∆ m 1 + ∆ m 2

|C | Ti m es

]T + γ 2 , k · [ ∆f 1 , ∆ f 1 , 0 , ..., 0] T ∥ 1

( 3 5)

≤| γ 1 , k | · (|
f 1

d 1
| + |

f 2

d 2
|) + |γ 1 , k | · |A ′| · |(

1

d 1
−

1

d 1 − 1
)f 1 +

∆ f 1

d 1 − 1
| + |γ 1 , k | · |B ′| · |(

1

d 2
−

1

d 2 − 1
)f 2 +

∆ f 2

d 2 − 1
|

+ |γ 1 , k | · |C | · |(
1

d 1
−

1

d 1 − 1
)f 1 +

∆ f 1

d 1 − 1
+ (

1

d 2
−

1

d 2 − 1
)f 2 +

∆ f 2

d 2 − 1
| + |γ 2 , k |(|∆ f 1 | + |∆ f 2 |)

( 3 6)

( a )
= |γ 1 , k | · (

f 1

d 1
+

f 2

d 2
) + |γ 1 , k | · |A ′| ·

|d 1 ∆ f 1 − f 1 |

d 1 (d 1 − 1)
+ |γ 1 , k | · |B ′| ·

|d 2 ∆ f 2 − f 2 |

d 2 (d 2 − 1)

+ |γ 1 , k | · |C | · |
d 1 ∆ f 1 − f 1

d 1 (d 1 − 1)
+

d 2 ∆ f 2 − f 2

d 2 (d 2 − 1)
| + |γ 2 , k | · ( ∆f 1 + ∆ f 2 ) ( 3 7)

( b )

≤| γ 1 , k | · (
f 1

d 1
+

f 2

d 2
) + |γ 1 , k | ·

|d 1 ∆ f 1 − f 1 |

d 1
+ |γ 1 , k | ·

|d 2 ∆ f 2 − f 2 |

d 2
+ |γ 2 , k | · ( ∆f 1 + ∆ f 2 )

( 3 8)

( c )
= |γ 1 , k | · (

f 1

d 1
+

f 2

d 2
) + |γ 1 , k | ·

f 1 − d 1 ∆ f 1

d 1
+ |γ 1 , k | ·

f 2 − d 2 ∆ f 2

d 2
+ |γ 2 , k | · ( ∆f 1 + ∆ f 2 ) ( 3 9)

=

2

j = 1

|γ 1 , k |(f
′
j −

(d j − 2) f j

d j
) + |γ 2 , k | · (f j − f ′

j ) ( 4 0)

( d )

≤ m a x( 4 |γ 1 , k |, 2( |γ 1 , k | + |γ 2 , k |)) · η ≤ m a x( 4 γ ( 1 )
m a x , 2 γ m a x ) · η ( 4 1)

w h er e ( a) f oll o ws fr o m t h e n o n- n e g ati vit y of t h e f u n cti o n f , a n d ( b) is d eri v e d fr o m |A ′ ∩ C | = d 1 − 1
a n d |B ′ ∩ C | = d 2 − 1 . E q u alit y is o bt ai n e d w h e n C = ∅ , i. e., w h e n t h er e ar e n o c o m m o n n ei g h b ors
b et w e e n n o d es 1 a n d 2. (c ) is o bt ai n e d fr o m R es ult 1 a n d (d ) ori gi n at es fr o m R es ult 2 .

R es ult 1. C o nsist e nt wit h t h e a b o v e n ot ati o ns, w e h a v e f j − d j ∆ f j ≥ 0 f or j ∈ { 1 , 2 } .

R es ults 2. C o nsist e nt wit h t h e a b o v e n ot ati o ns, w e h a v e |γ 1 , k |(f
′
j −

( d j − 2 ) f j

d j
) + |γ 2 , k |(f j − f ′

j ) ≤

m a x( 2 |γ 1 , k |, |γ 1 , k | + |γ 2 , k |)η f or j ∈ { 1 , 2 } .

P r o of of R es ult 1. Fr o m t h e a b o v e d e fi niti o ns, w e h a v e f j = [ f (x )] j = mi n( m a x( x j , 0) , η · d j ) a n d
f j − d j ∆ f j = d j f

′
j − (d j − 1) f j w h er e x j is t h e j -t h e ntr y of x . N o w, c o nsi d er t h e f oll o wi n g c as es:

• W h e n x j ≤ 0 , w e h a v e f j − d j ∆ f j = 0 .

• W h e n x j ∈ ( 0, (d j − 1) η ], it f oll o ws t h at f j − d j ∆ f j = d j η x j − (d j − 1) η x j = η x j ≥ 0 .

• W h e n x j ∈ ((d j − 1) η, d j η ], w e o bt ai n f j − d j ∆ f j = ( d j − 1)( d j − x j )η
2 ≥ 0 .

• W h e n x j > d j , f j − d j ∆ f j = 0 .

I n c o n cl usi o n, b as e d o n t h e a b o v e c as es, t h e r es ult is pr o v e n.

P r o of of R es ult 2. We c o nsi d er diff er e nt c as es:
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• W h e n x j ≤ 0 , |γ 1 , k |(f
′
j −

( d j − 2 ) f j

d j
) + |γ 2 , k |(f j − f ′

j ) = 0 .

• W h e n x j ∈ ( 0, (d j − 1) η ], w e h a v e

|γ 1 , k |(f
′
j −

(d j − 2) f j

d j
) + |γ 2 , k |(f j − f ′

j ) =
2 |γ 1 , k |η [x ]j

d j
≤

2 |γ 1 , k |(d j − 1) η

d j
( 4 2)

• W h e n x j ∈ ((d j − 1) η, d j η ], w e o bt ai n

|γ 1 , k |(f
′
j −

(d j − 2) f j

d j
) + |γ 2 , k |(f j − f ′

j ) ( 4 3)

= |γ 1 , k |η
(d j − 1) d j − (d j − 2) x j

d j
+ |γ 2 , k |η (x j − (d j − 1)) ( 4 4)

≤ m a x(
2 |γ 1 , k |(d j − 1) η

d j
, (|γ 1 , k | + |γ 2 , k |)η ) ≤ m a x( 2 |γ 1 , k |, |γ 1 , k | + |γ 2 , k |)η ( 4 5)

N ot e t h at, b as e d o n t h e d eri v ati o ns i n (b ) a n d (d ), w e c o n cl u d e t h at t h e b o u n d is as y m pt oti c all y ti g ht,
wit h t h e w orst- c as e s c e n ari o o c c urri n g w h e n t h e n o d es c o n n e ct e d b y t h e p ert ur b e d e d g e h a v e n o
c o m m o n n ei g h b ors, a n d t h eir d e gr e es i n cr e as e t o i n fi nit y.

A d diti o n all y, w h e n d 1 = 1 or d 2 = 1 , it c a n b e dir e ctl y s h o w n t h at t h e dist orti o n is u p p er b o u n d e d b y

m a x( γ
( 1 )
m a x , 2 γ m a x ) · η . N ot e t h at if w e f urt h er i n c or p or at e E u cli d e a n pr oj e cti o n o nt o ℓ 1 b all, w e c a n

r e g ar d P B (x ) as a si n gl e i n p ut wit h o ut alt eri n g t h e o v er all b o u n d.

F. 2  P r o of of L e m m a B. 2

T o pr o v e t his l e m m a, w e i ntr o d u c e r es ult o n t h e R é n yi di v er g e n c e f or hi g h- di m e nsi o n al L a pl a ci a n
distri b uti o ns wit h s hift. T h e d et ails of t his r es ult a n d its pr o of ar e pr es e nt e d f oll o wi n g t h e l e m m a.

R es ult: Gi v e n a s hift h ∈ R | V |, f or t w o L a pl a ci a n distri b uti o ns L (0 , σ) a n d L (h , σ), if ∥ h ∥ 1 ≤ ρ ,

D α (L (0 , σ)∥ L (h , σ)) ≤
1

α − 1
l n(

α

2 α − 1
e x p(

α − 1

σ
ρ ) +

α − 1

2 α − 1
e x p( −

α

σ
ρ )) ( 4 6)

L e m m a P r o of. Wit h t h e a b o v e r es ult, w e c a n u p p er b o u n d t h e R é n yi di v er g e n c e o v er j oi nt n ois e
distri b uti o ns. F or τ ≥ 0 ,

D α (ξ
( 2 )
τ + 1: K ∥ ξ̃

′( 2 )
τ + 1: K )

( a )

≤
K

k = τ + 1

s u p
ζ τ + 1 : k − 1

D α (ξ
( 2 )
k |ξ

( 2 )
τ + 1: k − 1 = ζ τ + 1: k − 1 ∥ ξ̃

′( 2 )
k |ξ̃

′( 2 )
τ + 1: k − 1 = ζ τ + 1: k − 1 )

( 4 7)

( b )

≤
K

k = τ + 1

D α (L (0 , σk )∥ L (h k , σk ))
( c )

≤
K

k = τ + 1

g α (σ k , ρdiff ) ( 4 8)

w h er e (a ) aris es fr o m str o n g c o m p ositi o n r ul e f or R é n yi di v er g e n c e ( L e m m a A. 4), (b ) is fr o m t h e

d e fi niti o n of ξ
( 2 )
k , ξ̃

( 2 )
k wit h s hift h k = ( ϕ k ◦ f )(x ) − (ϕ ′

k ◦ f ′)(x ) , a n d (c ) is d eri v e d b y c o m bi ni n g

t h e r es ults t h at t h e ℓ 1 n or m of t h e s hift is u p p er b o u n d e d b y ∥ h k ∥ 1 ≤ ρ diff = m a x( 4 γ
( 1 )
m a x , 2 γ m a x )

( L e m m a B. 1) a n d t h e a b o v e L a pl a c e b o u n d u n d er R é n yi di v er g e n c e ( E q. ( 4 6)) wit h g α (σ, ρ ) =
1

α − 1 l n( α
2 α − 1 e x p( α − 1

σ ρ ) + α − 1
2 α − 1 e x p( − α

σ ρ diff )).

S u m m ari zi n g t h e a b o v e, w e pr o v e t h e l e m m a. N ot e t h at f urt h er c o nsi d eri n g a pr oj e cti o n o p er at or
d o es n ot aff e ct t h e dist orti o n, as est a blis h e d i n L e m m a B. 1, a n d t h us l e a v es t h e b o u n d d eri v e d h er e
u n c h a n g e d.

P r o of of R es ult. N o w c o nsi d er L a pl a ci a n distri b uti o n, f or h ∈ R | V |, l et h i d e n ot e t h e i-t h e ntr y of
t h e v e ct or, w e h a v e

D α (L (0 , σ)∥ L (h , σ))
( a )
=

| V |

i = 1

1

α − 1
l n(

α

2 α − 1
e x p(

α − 1

σ
|h i |) +

α − 1

2 α − 1
e x p( −

α

σ
|h i |)) ( 4 9)
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w h er e (a ) is fr o m t h e a d diti vit y of R é n yi di v er g e n c e [ 6 0] a n d t h e R é n yi di v er g e n c e o v er o n e-
di m e nsi o n al L a pl a ci a n n ois e [ 6 1]. B y c o nsi d eri n g t h e w orst c as e h , w e c a n r ef or m ul at e t h e pr o bl e m
as:

m a xi mi z e
h

| V |

i = 1

1

α − 1
l n(

α

2 α − 1
e x p(

α − 1

σ
|h i |) +

α − 1

2 α − 1
e x p( −

α

σ
|h i |)) ( 5 0)

s.t. ∥ h ∥ 1 ≤ ρ ( 5 1)

F or t h e a b o v e o pti mi z ati o n pr o bl e m, l et λ 1 = α
2 α − 1 , λ2 = α − 1

σ , λ3 = α − 1
2 α − 1 a n d λ 4 = α

σ .

D e fi n e f (h i ) = 1
α − 1 l n(λ 1 e x p( λ 2 · h i ) + λ 3 e x p( − λ 4 · h i ).  C o nsi d er t h e gr a di e nt t er m

∇ D α (L (0 , σ)∥ L (h , σ)):

∂ D α (L (0 , σ)∥ L (h , σ))

∂ h i
=

∂ f (h i )

∂ h i
=

λ 1 λ 2 e x p( λ 2 h i ) − λ 3 λ 4 e x p( − λ 4 h i )

λ 1 e x p( λ 2 h i ) + λ 3 e x p( − λ 4 h i )
( 5 2)

F urt h er f or H essi a n m atri x ∇ 2 D α (L (0 , σ)∥ L (h , σ)),

∂ 2 D α (L (0 , σ)∥ L (h , σ))

∂ h 2
i

=
λ 1 λ 3 (λ 2 + λ 4 ) 2 e x p( λ 2 h i ) e x p( − λ 4 h i )

λ 1 e x p( λ 2 h i ) + λ 3 e x p( − λ 4 h i )
> 0 , ( 5 3)

∂ 2 D α (L (0 , σ)∥ L (h , σ))

∂ h i h j
= 0 , i ≠ j. ( 5 4)

Fr o m t h e ei g e n v al u e crit eri o n f or p ositi v e d e fi nit e n ess, ∇ 2 D α (L (0 , σ)∥ L (h , σ)) ≻ 0 , i. e.
D α (L (0 , σ)∥ L (h , σ)) is a c o n v e x f u n cti o n. As t h e f e asi bl e s et is c o n v e x, m a xi m u m is o bt ai n e d o n
t h e b o u n d ar y of f e asi bl e s et. T h us, t h e pr o bl e m c a n b e f urt h er f or m ul at e d as:

m a xi mi z e
h

| V |

i = 1

1

α − 1
l n(

α

2 α − 1
e x p(

α − 1

σ
|h i |) +

α − 1

2 α − 1
e x p( −

α

σ
|h i |)) s.t. ∥ h ∥ 1 = ρ ( 5 5)

N e xt, w e us e t h e a dj ust m e nt m et h o d t o s ol v e t h e a b o v e o bj e cti v e m et h o ds. First, w e d e fi n e

L (h 1 , h2 , . . . , h| V |) =
| V |
i = 1 f (h i ) a n d w e fi x h 3 , . . . , h| V |. We ai m t o o pti mi z e:

m a xi mi z e
h 1 , h2

L (h 1 , h2 , h3 , . . . , h| V |) ( 5 6)

wit h r es p e ct t o h 1 a n d h 2 , c o nsi d eri n g t h e c o nstr ai nts ∥ h ∥ 1 = ρ . T his is e q ui v al e nt t o

m a xi mi z e
h 1 , h2

2

i = 1

L (h 1 , h2 , . . . , h| V |), s.t. h 1 + h 2 = ρ −

| V |

i = 3

h i . ( 5 7)

D e fi n e c t = ρ −
V
i = t h i . Si n c e c 3 is fi x e d, a n d h 2 = c 3 − h 1 , t h e o bj e cti v e f u n cti o n b e c o m e a

u ni v ari at e f u n cti o n, b y c al c ul ati n g t h e d eri v ati v e

∂ L

∂ h 1
=

(λ 1 λ 3 λ 4 + λ 1 λ 2 λ 3 )( e x p( λ 2 h 1 + λ 4 (h 1 − c 3 )) − e x p( λ 2 (c 3 − h 1 ) − λ 4 h 1 ))

(λ 1 e x p( λ 2 h 1 + λ 3 e x p( − λ 4 h 1 )))( λ 1 e x p( λ 2 (c 3 − h 1 )) + λ 3 e x p( − λ 4 (c 3 − h 1 )))
( 5 8)

T h e d eri v ati v e ∂ L
∂ h 1

r e a c h es 0 w h e n h 1 = c 3

2 . F urt h er m or e, ∂ L
∂ h 1

< 0 f or h 1 < c 3

2 , a n d ∂ L
∂ h 1

> 0 f or

h 1 > c 3

2 . T h us, t h e m a xi m u m v al u e of t h e f u n cti o n is att ai n e d at t h e e n d p oi nts.

m a xi mi z e
h 1 , h2

L (h 1 , h2 , h3 , . . . , h| V |) ≤ m a x L (c 3 , 0 , h3 , . . . , h| V |), L( 0, c3 , h3 , . . . , h| V |) ( 5 9)

As t h e f u n cti o n is s y m m etri c, t w o e n d p oi nts att ai n t h e s a m e v al u e, i. e. L (c 3 , 0 , h3 , . . . , h| V |) =
L ( 0, c3 , h3 , . . . , h| V |). N o w, w e ai m t o m a xi mi z e t h e o bj e cti v e f u n cti o n b y e a c h ti m e a dj ust m e nt t w o
v ari a bl es a n d fi x e d t h e r est v ari a bl es u n c h a n g e d:

m a xi mi z e
h 1 , h2 ,..., h| V |

L (h 1 , h2 , h3 , . . . , h| V |) = m a xi mi z e
h 1 , h2 , h3 ,..., h| V |

h 1 + h 2 + c 3 = ρ

L (h 1 , h2 , h3 , . . . , h| V |) ( 6 0)

≤ m a xi mi z e
h 3 ,..., h| V |

m a xi mi z e
h 1 , h2

h 1 + h 2 = ρ − c 3

L (h 1 , h2 , h3 , . . . , h| V |) ( 6 1)
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( a )

≤ m a xi mi z e
h 3 , h4 ,..., h| V |

L (ρ − c 3 , 0 , h3 , . . . , h| V |) ≤ m a xi mi z e
h 4 ,..., h| V |

L (ρ − c 4 , 0 , 0 , . . . , h| V |) ( 6 2)

≤ · · · ≤ L (ρ, 0 , 0 , ..., 0) =
1

α − 1
l n(

α

2 α − 1
e x p(

α − 1

σ
ρ ) +

α − 1

2 α − 1
e x p( −

α

σ
)ρ ) ( 6 3)

w h er e (a ) is fr o m E q. ( 5 9), a n d f or e a c h i n e q u alit y, w e a dj ust t h e v al u es of h 1 a n d h i t o m a xi mi z e d
t h e o bj e cti v e f u n cti o n w hil e k e e p t h e r est v ari a bl es fi x e d. Fr o m t h e a b o v e r e as o ni n g, w e m a xi mi z e d
t h e R é n yi di v er g e n c e o v er t w o L a pl a ci a ns wit h s hift.

F. 3  P r o of of L e m m a B. 3.

T o pr o v e t h e u p p er b o u n d of s u p ζ τ + 1 : K
D α (s K |ξ

( 2 )
τ + 1: K = ζ τ + 1: K ∥ s ′

K |ξ̃
′( 2 )
τ + 1: K = ζ τ + 1: K ), w e

m ai nl y l e v er a g e t h e d e fi niti o n of s hift e d R é n yi di v er g e n c e ( D ef. A. 1) wit h t w o pr o p erti es u n d er
n ois e c o n v ol uti o n a n d c o ntr a cti o n m a p pi n g ( L e m m a A. 1 a n d L e m m a A. 2). S p e ci fi c all y, r e c all t h at
R α (σ, ρ ) = s u p r :∥ r ∥ ≤ ρ D α (ξ + r ∥ ξ ) w h er e ξ ∼ L (0 , σ), d e fi n e φ k = ϕ k ◦ f , f or a n y ζ τ + 1: K , d e fi n e
w K = 0 ,

D α (s K |ξ
( 2 )
τ + 1: K = ζ τ + 1: K ∥ s ′

K |ξ̃
′( 2 )
τ + 1: K = ζ τ + 1: K ) ( 6 4)

= D ( w K )
α (s K |ξ

( 2 )
τ + 1: K = ζ τ + 1: K ∥ s ′

K |ξ̃
′( 2 )
τ + 1: K = ζ τ + 1: K ) ( 6 5)

( a )

≤ D ( w K + a K )
α (φ K (s K − 1 )|ξ

( 2 )
τ + 1: K − 1 = ζ τ + 1: K − 1 ∥ φ K (s ′

K )|ξ̃
′( 2 )
τ + 1: K − 1 = ζ τ + 1: K − 1 ) + R α (σ K , a K )

( 6 6)

( b )

≤ D
(

w K + a K
γ m a x

)
α (s K − 1 |ξ

( 2 )
τ + 1: K − 1 = ζ τ + 1: K − 1 ∥ s ′

K |ξ̃
′( 2 )
τ + 1: K − 1 = ζ τ + 1: K − 1 ) + R α (σ K , a K ) ( 6 7)

w K − 1 =
w K + a K

γ m a x== = = = = = = = = == D ( w K − 1 )
α (s K − 1 |ξ

( 2 )
τ + 1: K − 1 = ζ τ + 1: K − 1 ∥ s ′

K |ξ̃
′( 2 )
τ + 1: K − 1 = ζ τ + 1: K − 1 ) + R α (σ K , a K )

( 6 8)

≤ · · · ( 6 9)

≤ D ( w τ + 1 )
α (s τ + 1 |ξ

( 2 )
τ + 1 = ζ τ + 1 ∥ s ′

τ + 1 |ξ̃
′( 2 )
τ + 1 = ζ τ + 1 ) +

K

k = τ + 2

R α (σ k , a k ) ( 7 0)

≤ D ( w τ )
α (s τ ∥ s ′

τ ) +
K

k = τ + 1

R α (σ k , a k ) ( 7 1)

w h er e (a ) is fr o m L e m m a A. 1, a n d (b ) is d eri v e d fr o m L e m m a A. 2 as φ k is γ m a x - c o ntr a cti v e
( c o m p ositi o n of t w o c o ntr a cti o ns). F urt h er, w e h a v e






w τ + 1 = γ m a x w τ − a τ + 1

w τ + 2 = γ m a x w τ + 1 − a τ + 2 = γ 2
m a x w τ − γ m a x a τ + 1 − a τ + 2

· · · = · · ·

w K = γ K − τ
m a x w τ −

K − τ − 1

k = 0

γ k
m a x a K − k

( 7 2)

B y s etti n g a τ + 1 = 0 , ..., a K − 1 = 0 , w e h a v e a K = γ K − τ
m a x w τ . T h er ef or e, w e h a v e

D α (s K |ξ
( 2 )
τ + 1: K = ζ τ + 1: K ∥ s ′

K |ξ̃
′( 2 )
τ + 1: K = ζ τ + 1: K ) ≤ D ( w τ )

α (s τ ∥ s ′
τ ) + R α (σ K , γK − τ

m a x w τ ) ( 7 3)

Fr o m t h e r es ult i n t h e pr o of of L e m m a B. 2, R α (σ K , γK − τ
m a x w τ ) = g α (σ K , γK − τ

m a x w τ ). S u m m ari zi n g
t h e a b o v e, w e o bt ai n

D α (s K |ξ
( 2 )
τ + 1: K = ζ τ + 1: K ∥ s ′

K |ξ̃
′( 2 )
τ + 1: K = ζ τ + 1: K ) ≤ D ( w τ )

α (s τ ∥ s ′
τ ) + g α (σ K , γK − τ

m a x w τ ) ( 7 4)

F urt h er, w e p oi nt o ut t h at i n c or p or ati n g t h e pr oj e cti o n o p er at or, i. e., φ k = ϕ k ◦ f ◦ P B , d o es n ot
aff e ct t h e c o ntr a cti v e n ess of t h e m a p pi n g. I n d e e d, pr oj e cti n g a v e ct or o nt o t h e ℓ 1 - b all vi a E u cli d e a n
pr oj e cti o n yi el ds a n o n e x p a nsi v e o p er at or u n d er t h e ℓ 1 n or m [ 6 2], a n d t h us t his e xt e nsi o n d o es n ot
alt er t h e b o u n d.
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F. 4  P r o of of L e m m a B. 4.

T o pr o v e t his l e m m a, w e c o nsi d er tr a c ki n g t h e ∞ - Wass erst ei n dist a n c e of t h e c o u pl e d it er at es. Gi v e n
D K, Π a n d D ′

K, Π , f or τ ≥ 1 , r e c all t h at f or a n y k (k ≥ 1) ,

D K, Π (s ) : s k = ϕ k (f (s k − 1 )) + ξ
( 1 )
k + ξ

( 2 )
k , D ′

K, Π (s ) : s ′
k = ϕ ′

k (f ′(s ′
k − 1 )) + ξ

′( 1 )
k + ξ̃

′( 2 )
k . ( 7 5)

F or a n y st e p k (k ≥ 1) , l et µ k a n d ν k d e n ot e t h e distri b uti o n of s k a n d s ′
k r es p e cti v el y. F urt h er, d e fi n e

µ̃ k a n d ν̃ k d e n ot e t h e distri b uti o n of S k = ( ξ 1: k , ξ̃ 1: k ) a n d S ′
k = ( ξ ′

1: k , ξ̃ ′
1: k ), r es p e cti v el y. F or st e p 1 ,

w e h a v e

W ∞ (µ 1 , ν1 ) = i nf
π 1 ∈ Γ ( µ 1 , ν1 )

e s s s u p
( s 1 ,s ′

1 ) ∼ π 1

∥ s 1 − s ′
1 ∥ 1 ( 7 6)

= i nf
π̃ 1 ∈ Γ ( µ̃ 1 ,ν̃ 1 )

e s s s u p
( S 1 ,S ′

1 ) ∼ π̃ 1

∥ ϕ 1 (f (s 0 )) + ξ
( 1 )
1 + ξ

( 2 )
1 − ϕ ′

1 (f ′(s 0 )) − ξ
′( 1 )
1 − ξ

′( 2 )
1 ∥ 1 ( 7 7)

( a )

≤ e s s s u p
( S 1 ,S ′

1 ) ∼ π̃ ∗
1

∥ ϕ 1 (f (s 0 )) − ϕ ′
1 (f ′(s 0 ))∥ 1 ≤ ρ diff ( 7 8)

w h er e (a ) is fr o m s el e cti n g a c o u pli n g π̃ ∗ s u c h t h at r. v.s S 1 a n d S ′
1 ar e i d e nti c al.

N e xt, f or a n y τ , f oll o wi n g t h e a b o v e pr o c e d ur e, d e fi n e π̃ ∗
k ∈ Γ( µ k , νk ) s u c h t h at S k , S ′

k ar e i d e nti c al,
w e h a v e

W ∞ (µ τ , ντ ) = i nf
π τ ∈ Γ ( µ τ , ντ )

e s s s u p
( s τ ,s ′

τ ) ∼ π τ

∥ s τ − s ′
τ ∥ 1 ( 7 9)

≤ i nf
π̃ τ ∈ Γ ( µ̃ τ ,ν̃ τ )

e s s s u p
( S τ ,S ′

τ ) ∼ π̃ τ

∥ ϕ τ (f τ (s τ − 1 )) + ξ ( 1 )
τ + ξ ( 2 )

τ − ϕ ′
τ (f ′

τ (s ′
τ − 1 )) − ξ ′( 1 )

τ − ξ ′( 2 )
τ ∥ 1 ( 8 0)

≤ e s s s u p
( S τ ,S ′

τ ) ∼ π̃ ∗
τ

∥ ϕ τ (f τ (s τ − 1 )) + ξ ( 1 )
τ + ξ ( 2 )

τ − ϕ ′
τ (f ′

τ (s ′
τ − 1 )) − ξ ′( 1 )

τ − ξ ′( 2 )
τ ∥ 1 ( 8 1)

= e s s s u p
( S τ − 1 ,S ′

τ − 1 ) ∼ π̃ ∗
τ − 1

∥ ϕ τ (f τ (s τ − 1 )) − ϕ ′
τ (f ′

τ (s ′
τ − 1 ))∥ 1 ( 8 2)

F oll o wi n g t h e a n al ysis i n L e m m a B. 1, b y i n d u cti o n,

e s s s u p
( S τ − 1 ,S ′

τ − 1 ) ∼ π̃ ∗
τ − 1

∥ ϕ τ (f τ (s τ − 1 )) − ϕ ′
τ (f ′

τ (s ′
τ − 1 ))∥ 1 ( 8 3)

≤ e s s s u p
( S τ − 1 ,S ′

τ − 1 ) ∼ π̃ ∗
τ − 1

∥ ϕ τ (f τ (s τ − 1 )) − ϕ τ (f τ (s ′
τ − 1 ))∥ 1 + ∥ ϕ τ (f τ (s ′

τ − 1 )) − ϕ ′
τ (f ′

τ (s ′
τ − 1 ))∥ 1

( 8 4)

( a )

≤ e s s s u p
( S τ − 1 ,S ′

τ − 1 ) ∼ π̃ ∗
τ − 1

γ m a x · ∥s τ − 1 − s ′
τ − 1 ∥ 1 + ρ diff ( 8 5)

≤ · · · ( 8 6)

( b )

≤ e s s s u p
( S 1 ,S ′

1 ) ∼ π̃ ∗
1

γ τ − 1
m a x · ∥s 1 − s ′

1 ∥ 1 + ρ diff 1 + γ m a x + · · · + γ τ − 2
m a x ( 8 7)

( c )

≤ γ τ − 1
m a x ·

( 1 − γ m a x ) · ρ diff

1 − γ m a x
+

ρ diff · ( 1 − γ τ − 1
m a x )

1 − γ m a x
( 8 8)

=
ρ diff · ( 1 − γ τ

m a x )

1 − γ m a x
( 8 9)

w h er e (a ) is fr o m L e m m a B. 1, (b ) is fr o m i n d u cti o n, a n d (c ) aris es fr o m E q. ( 7 8).

T h er ef or e,

W ∞ (µ τ , ντ ) ≤
ρ diff · ( 1 − γ τ

m a x )

1 − γ m a x
( 9 0)

F urt h er, w h e n w e s et w τ =
ρ diff ·( 1 − γ τ

m a x )
1 − γ m a x

, w e h a v e

D ( w τ )
α (s τ ∥ s ′

τ ) = i nf
µ ′

τ :W ∞ ( µ τ , µ′τ ) ≤ w τ

D α (µ ′
τ ∥ ν τ ) = 0 ( 9 1)

w h er e t h e e q u alit y is a c hi e v e d b y s el e cti n g µ ′
τ = ν τ .
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