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ABSTRACT

We study the Differential Privacy (DP) guarantee of hidden-state Noisy-SGD al-
gorithms over a bounded domain. Standard privacy analysis for Noisy-SGD as-
sumes all internal states are revealed, which leads to a divergent Rényi DP bound
with respect to the number of iterations. Ye & Shokri (2022) and Altschuler &
Talwar (2022) proved convergent bounds for smooth (strongly) convex losses, and
raise open questions about whether these assumptions can be relaxed. We provide
positive answers by proving convergent Rényi DP bound for non-convex non-
smooth losses, where we show that requiring losses to have Holder continuous
gradient is sufficient. We also provide a strictly better privacy bound compared to
state-of-the-art results for smooth strongly convex losses. Our analysis relies on
the improvement of shifted divergence analysis in multiple aspects, including for-
ward Wasserstein distance tracking, identifying the optimal shifts allocation, and
the Holder reduction lemma. Our results further elucidate the benefit of hidden-
state analysis for DP and its applicability.

1 INTRODUCTION

Noisy Stochastic Gradient Descent (Noisy-SGD), also known as DP-SGD (Abadi et al., 2016),
is now the fundamental workhorse for privatizing machine learning models with the guarantee of
differential privacy (DP) Dwork et al. (2006). The popularity of DP-SGD is due to its effective-
ness and simplicity — it is nothing but SGD with per-sample gradient projected to a {5 ball (also
known as gradient clipping) and additive Gaussian noise. Despite the simplicity and ubiquity of the
DP-SGD algorithm, we still do not have a holistic understanding regarding its privacy loss'. One
such evidence is that standard privacy analysis based on composition theorem (Kairouz et al., 2015;
Mironov, 2017) gives a divergent privacy loss with respect to the number of iterations. On the other
hand, a naive but convergent privacy loss can be obtained by output perturbation when the domain is
bounded. It shows that neither of these analyses provides a tight privacy bound, which worsens the
privacy-utility trade-off by overestimating the amount of noise required for training with DP-SGD.

A natural question is open: Is there a privacy loss bound that outperforms the Pareto frontier of
standard composition and output perturbation? Two recent seminal works (Altschuler & Talwar,
2022; Ye & Shokri, 2022) partially answer this question under various assumptions on the loss. They
show that for smooth (strongly) convex losses over a bounded domain, the privacy loss of Noisy-
SGD is convergent and lower than the output perturbation bound. Unfortunately, both works require
losses to be smooth and (strongly) convex, which precludes the applicability of their results to more
general problems beyond convexity and smoothness. Whether these restrictive assumptions can be
relaxed is stated as an important open question in Ye & Shokri (2022); Altschuler & Talwar (2022).
Specifically: Can these restrictive assumptions be removed while still having a privacy loss bound
that outperforms the Pareto frontier of standard composition and output perturbation?

"We refer privacy loss to the DP parameters for the last iterate of Noisy-SGD.
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Figure 1: (a) Our RDP guarantees for smooth losses over the bounded domain, where the noise
variance is the same for all lines. Orange and green lines indicate the cases where the loss is further
assumed to be (strongly) convex. The output perturbation directly utilizes the Gaussian mechanism
with sensitivity chosen to be the diameter of the bounded domain. (b) The detailed comparison of
our privacy bound with Altschuler & Talwar (2022); Ye & Shokri (2022) for smooth strongly convex
losses. The setting is the same as (a). We relegate the detail setting to Appendix A.13.

Table 1: Summary of the required assumptions of existing analysis. v" indicates the assumption is
necessary and © indicates one can optionally incorporate that assumption for a better privacy bound.
TIf we do not assume smoothness, we must have Holder continuous gradient instead. *If we assume
strong convexity, the bounded domain assumption can be dropped.

Strongly convex Convex Smooth Bounded domain

Ye & Shokri (2022) v v v
Altschuler & Talwar (2022) ® N v o*
Ours ©) ©) of o*

1.1 OUR CONTRIBUTIONS AND ANALYSIS OVERVIEW

Contributions. We give a positive answer to the aforementioned open questions in this work. We
show that the privacy loss of the Noisy-SGD algorithm is indeed convergent to a non-trivial value
over a bounded domain even without convexity or smoothness assumptions. The least restrictive
assumption we need is Holder continuous (see Definition 2.5) gradients of order A € (0, 1], which
is a more general assumption compared to the loss being smooth. We say a function f has Holder
continuous gradient with constant L and order \ if it satisfies |V f (x)—V f(y)|| < L||z—y]||* for any
x,y in the domain. Specifically, when A = 1 we recover the standard smoothness assumption. Note
that there are non-smooth functions that still have Holder continuous gradient. An iconic example
is f(z) = sign(x)%|x|4/3, where f’(z) = |z|'/3. One can show that f has Holder continuous
derivative of order 1/3 with constant 22/3 but not smooth (Appendix A.14). Even for a smooth
function, the corresponding Holder constant may be significantly smaller than the smooth constant
for a smaller Holder order A\, which potentially leads to a better privacy bound. See Figure 2 (a) for
a neural network example. Interestingly, our analysis also gives a strict improvement over existing
privacy bounds (Altschuler & Talwar, 2022; Ye & Shokri, 2022) under the same set of assumptions
with smoothness and strong convexity (Figure 1 (b)).

Analysis. We study the projected Noisy-SGD algorithm with per-sample gradient clipping, which is
the projected version of the popular DP-SGD (Abadi et al., 2016). We defer all missing definitions
in the preliminaries section 2. Let D = {d;}" ; € X" be a training datasets of n data points, where
each data point d; associate with a loss function ¢(+; d;) on a convex set K of diameter D. For any
step size 7, batch size b and initialization Wy € K, we iterate 7" times the Noisy-SGD update

1
Wi =i |We = np Y T, [VEW)]+ G (1)
1EB

where Ik is the Euclidean projection to the closed convex set /C, I, is the projection to the {5
ball of radius K (also known as gradient clipping), G; ~ N(0,02I) and B; is the mini-batch of



Preprint

RDP for losses with (L, A)-Holder continous gradient

0.5 Wiy < Mg [t (W) + Gl Wy
=== Standard Composition
e Qutput Perturbation
0.4 i wy
A=1.0 - . — 1A
— A=0.9 w T Wer < Ty [0 (W) + G
- 0 =~ -
S 03 == 1=08 =~ __
J — 1=07 () (C) ==
W 0.2 -
W1 < Oy [ (W) + Ge] (B)
0.1 (A): Standard composition
(B): Shifted divergence analysis Wr
0.0 (C): Forward W, - distance tracking

0 25 50 75 100 125 150 1, 1;: gradients on D, D' respectively.
T (Iterations)

(a) (b)

Figure 2: (a) Our RDP bound for non-smooth loss with (L, A)-Holder continuous gradient, where we
empirically estimate the Holder continuous constant L of a 2 layer Multi-Layer Perceptron (MLP)
for each A. See Appendix A.13 for the detailed setting. (b) The illustration of the overall analy-
sis. The decomposition of (A) + (B) parts is developed by Altschuler & Talwar (2022). It done by
constructing a coupling (G4, G}), resulting a coupled process W;. Part (A) is handled via standard
composition or privacy amplification by subsampling in the mini-batch setting. Part (B) is handled
by the shifted divergence analysis for smooth convex losses, which is also known as privacy ampli-
fication by iteration and will depend on the infinite Wasserstein distance W, (W.., W.). Altschuler
& Talwar (2022) use the domain diameter D as an upper bound. In contrast, we perform a careful
forward W, distance tracking analysis (part (C)) to give a better bound, which provides a strict
improvement to the final privacy loss bound. We further modify the analysis of part (B) so that it
becomes applicable to even non-convex non-smooth losses with Holder continuous gradients.

indices at time ¢. Our goal is to establish a worst-case upper bound of the Rényi divergence between
distributions of the last iterate W and W7 that are trained on any two adjacent datasets differing
with one point. Prior work (Altschuler & Talwar, 2022) has shown that such Rényi divergence can
be decomposed via coupling argument into two parts, see Figure 2 (b) for the illustration. Part (A) is
the Rényi divergence between two processes with different gradient updates but the same start W/
for some intermediate time step 7. This part can be handled via standard composition theorem and
privacy amplification by subsampling. Part (B) is the Rényi divergence between two processes with
the same gradient updates but different start W.., W'. This part is handled by the shifted divergence
analysis, which is originally known as privacy amplification by iteration (Feldman et al., 2018) and
requires smoothness and convexity. Our main technical contributions are to improve the analysis of
part (B), which allows us to not only relax the convexity and smoothness assumptions but also have
a strictly tighter analysis for smooth strongly convex losses.

We first perform a careful forward Wasserstein distance tracking analysis (Lemma 3.5) until time
step 7 (part (C)). Compared to Altschuler & Talwar (2022) that utilize the domain diameter D di-
rectly, our approach leads to a tighter bound for part (B) when further combined with the shifted
divergence analysis. One design choice in the shifted divergence analysis is how we allocate the
“shifts” for time step ¢ € [r,T — 1]. We identify the optimal shift allocations that not only lead to
a superior privacy bound compared to the Pareto frontier of standard composition and output per-
turbation for smooth non-convex losses but also a strictly tighter privacy bound for smooth strongly
convex losses. Our key intuition is that shifted divergence analysis provides us with a way to dis-
tribute the maximum discrepancy W, (W, W) to shifts in each time step ¢ € [r,T — 1]. This
phenomenon does not rely on the convexity of losses, where the convexity only plays a role in the
constraints that these shifts have to obey. To relax the smoothness assumption, the main challenge
is that shifted divergence analysis strongly relies on the Lipschitz property of the gradient update
(i.e., the Lipschitz reduction lemma 3.3) for establishing the proper constraints of shifts in each time
step. We alleviate this issue by proving the Holder reduction lemma (Lemma 3.7) which allows us
to work with the general Holder continuous gradient condition.
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2 PRELIMINARIES

Notations. We consider the empirical risk minimization problem, where the loss for weight w on
dataset D is L(w; D) = L3 ¢(w;d;). We denote [n] := {1,2,---,n}. We denote ffu the
pushforward of a distribution ; under a function f. We denote X;.; as shorthand for the vector
concatenating X, --- , X;.

(Rényi) differential privacy. In this work we focus on replacement DP for simplicity, while exten-
sions to notions of dataset adjacency are possible. We say two datasets D, D’ are adjacent (denoted
as D ~ D’) if one can be obtained from the other by replacing one data point arbitrarily. One may
adopt the zero-out adjacency definition (Kairouz et al., 2021) for a smaller privacy loss as well. A
popular way of deriving DP guarantees is to work with Rényi Differential Privacy (RDP) (Mironov,
2017), which relates to the Rényi divergence defined below.

Definition 2.1 (Rényi divergence). For any o > 1, the a-Rényi divergence between two probability
measures 4 and v is Dy (p||v) = 15 log ([ (u(z)/v(2))*v(x)dz) if 4 < v, and oo otherwise.

Definition 2.2 (Rényi differential Privacy). A randomized algorithm A satisfies («,e)-RDP if
D, (A(D)||A(D")) < e for all possible D ~ D'.

With a slight abuse of notation, for random variables X ~ pand Y ~ v we define D, (X||Y) =
D, (ul||lv). Rényi divergence has various nice properties, where we introduce the post-processing
property and strong composition property as follows.

Lemma 2.3 (Post-processing property). For any o > 1, any function f, and any probability distri-
bution p1,v, Da(hipl (1) < Dalplv),

Lemma 2.4 (Strong composition for Rényi divergence). For any o > 1 and any
two sequences of random variables Xi,---, Xy and Y1, -+ ,Yi, Do(X1ix||Y1k) <

k
Zi:l SUPg, ., D(I(Xi|X1:1171=2?1:i71 | ‘Yi|Y1:i—1=x1:i—1 )

Both of the above lemma are known to the literature and we refer interested readers to Altschuler &
Talwar (2022) for a more thorough discussion.

Potential assumptions on the loss ¢. Throughout, the loss function corresponding to a data point
d; or d’ is denoted by ¢;(-) = £(;d;) and £.(-) = £(-; d}) respectively. Let K C R? be an arbitrary
closed convex set in which our model parameters w lie.

Definition 2.5 (Holder continuity). For a function f : K + R%, we say f is (L, \)-Holder continu-
ous if for all w,w’ € K, || f(w) — f(w')|| < L||w — w’||*, where L > 0 and \ € (0, 1].

Note that (L, 1)-Holder continuous is equivalent to L-Lipschitz continuous. Thus a function has
(L, 1)-Holder continuous gradient is equivalent to L-smoothness when gradient exists. Hence, the
(L, X)-Holder continuous gradient assumption is indeed more general. The other standard defini-
tions such as Lipschitz, convexity, and smoothness are deferred to Appendix A.1.

Shifted Rényi divergence analysis. Our analysis generalizes the shifted Rényi divergence analysis
developed by Feldman et al. (2018); Altschuler & Talwar (2022), where we merely need the Holder
continuous gradient instead of requiring the loss to be convex, smooth, and Lipschitz continuous.
Below we introduce the definitions of infinite Wasserstein distance and shifted Rényi divergence
which will play a central role in our proof.

Definition 2.6 (1, distance). Let x, v be probability distributions over R?. The infinite Wasser-
stein distance between 1, v is defined as W (1, V) = infep(,,.) ess SUP(X,y)nry |X = Y|, where
T (w, v) is the set of all possible coupling of p, v.

Definition 2.7 (Shifted Rényi divergence). Let j,v be probability distributions over R%. For
any z > 0 and a > 1, the shifted Rényi divergence is defined as D (ullv) =
iy w e (upy <z Da (i [[V)-

3  OUR HIDDEN STATE DP-SGD PRIVACY LOSS ANALYSIS

Our goal is to show that the last iterate of the DP-SGD update (1) Wr is («, £(a))-RDP and charac-
terize the bound e(«) under our weak assumptions. This is equivalent to bound the Rényi divergence
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of any two adjacent processes Wy, W defined by D ~ D’ respectively in the worst case. The ad-
jacent process of (1) with respect to the dataset D’ is defined as follows

1
Wi =Tl |Wi—np 3 Tls, [VEW)L+ G| @)
icB,

where the initializations are identical almost surely Wy = Wj.

Note that there are different possible mini-batch strategies adopted in practice such as without re-
placement subsampling, shuffled cyclic mini-batch, and full-batch cases. All of these are compatible
with our analysis and we will study them separately. For simplicity, we start with the full batch set-
ting 5; = [n] to demonstrate the key insight of our analysis.

3.1 FULL BATCH CASE WITH SMOOTH LOSSES

We start with introducing our first theorem, which gives a state-of-the-art privacy bound for smooth
losses. Our theorem gives a lower privacy loss when more structural assumptions are presented,
where we cover the case from strongly convex to non-convex losses in a unified manner.

Theorem 3.1 (Privacy loss of Noisy-GD with smooth loss). Assume ¢ is L-smooth. Then the Noisy-
SGD update (1) with full batch setting is (v, e(«))-RDP for o > 1, where

T-1 2Kn\2 s 2nK 71 ¢ 2

L« (=1) min(=L= 3" " ', 2nKT, D)
< — n n 3
e(a) < rglﬁn 202 (Z 5, + tT:le(l — By)c—2(t=T+1) ’ ©)
st.te€{0,1---,T—1}, B €[0,1], V¢ > 7, c=1+nL. 4)

If U is also convex, K -Lipschitz and choose n < 2/L, we have ¢ = 1. If £ is also m-strongly convex,
K-Lipschitz and choose n < 1/L, we have ¢ = 1 — nm.

Theorem 3.1 indicates that after a burn-in period of iterations, there is no further privacy loss for
both convex and non-convex cases as shown in Figure 1 (a). Our result degenerated to the results
of Altschuler & Talwar (2022) for the convex case, and we show that a similar phenomenon also
holds without convexity but requires a longer burn-in period of iterations with a larger final privacy
loss. When the loss is m-strongly convex, our Theorem 3.1 provides a strict improvement over the
result of Altschuler & Talwar (2022); Ye & Shokri (2022)2. See Figure 1 (b) for the illustration.

Below we provide a sketch of proof for Theorem 3.1 and the missing part can be found in Ap-
pendix A.4. The analysis presented in this section is the foundation of more general cases, such as
non-smooth losses with Holder continuous gradient and mini-batch settings. We start with introduc-
ing several technical lemmas that are crucial for our proof. The first two are the shift and Lipschitz
reduction lemma, which establishes the relation of how an additive Gaussian noise and Lipschitz
map affect the shifted Rényi divergence. They are the core of the shifted divergence analysis.

Lemma 3.2 (Shift reduction lemma (Altschuler & Talwar, 2022; Feldman et al., 2018)). For any
probability distribution u, v on RY o> 1and a,z > 0, we have

2
DE) (g N(0,0*1)|[v  N(0,0°1)) < DEH () + S 5)
ag

Lemma 3.3 (Lipschitz reduction lemma Altschuler & Talwar (2022)). Assume the mapping ¢ is
c-Lipschitz for ¢ > 0. Then for any probability distribution j1,v on R%, o > 1 and z > 0, we have

D) (¢tul|ptv) < D (ul|v). (6)

On the other hand, one can show that the gradient update « <— = — nIlg, [V f(z)] is Lipschitz if
the loss f is at least smooth (Hardt et al., 2016; Altschuler & Talwar, 2023).

’In recent work concurrent to this paper, Altschuler et al. (2024) also proposed the improved analysis for
strongly convex case that does not require a bounded domain and match our results asymptotically. Still, our
analysis provides a strict improvement in the non-asymptotic regime.
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Lemma 3.4 (Lipschitz constant of the gradient update map). Let ¢)(z) = x —nllg, [V f(z)] be the
gradient update map with loss [ and step size n > 0. If f is L-smooth, ¢ is 1 + nL Lipschitz. If
f is further convex, K-Lipschitz and n < 2/L, ¢ is 1 Lipschitz. If f is further m-strongly convex,
K-Lipschitzandn < 1/L, ¥ is 1 — nm Lipschitz.

Finally, we introduce our forward Wasserstein distance tracking lemma, which is crucial to obtain
strict improvement over the prior bounds for all number of iterations for smooth strongly convex
losses. Notably, Chien et al. (2024b); Wei et al. (2024) have also adopted the similar idea of Wasser-
stein distance tracking analysis, but their analysis is for machine unlearning and DP-PageRank re-
spectively, which are different from ours.

Lemma 3.5 (Forward Wasserstein distance tracking for Lipschitz gradient update). Consider the
adjacent processes Wy, W/ defined in (1) and (2) respectively Assume the gradient update map
V() =@ — L3 e Wb [VE(@)], Yi(x) = 2 — 1 3201 Wy [V ()] are c-Lipschitz for the
full batch setting By = B}, = [n]. Then we have

Woo (Wi, W{) < min(Dy, D), Dy = min(¢Dy—1 + 2nK/n, D1 + 2nK), Dy =0. (7)
Now we are ready to state the proof of sketch for Theorem 3.1.

Proof. We start with the argument of Altschuler & Talwar (2022), which constructs a specific cou-
pling between the adjacent Noisy-SGD processes (1) and (2). To ease the notation, we denote ), 1)}

to be the gradient update map in (1) and (2) respectively and 2 for equivalent in distribution.

W1 £ T[gn(We) + Vi + Zi), Wiy 2 g [he(W)) + Yi + Z}], (8)

where Y; ~ N(0, (1 — B;)o?I), Z; ~ N(0,Bi02I) and Z; ~ N (b, (W/) — 1 (W}), Byo*I) for
B+ € [0,1]. Notice that condition on Z; = Zt, the two processes exhibit the same gradient update
and additive noise. For any time step 0 < 7 < T — 1 to be chosen later, we adopt this coupling for
all t > 7. Then by Lemma 2.4, we have the following decomposition of the privacy loss

Do(Wr|[W7) < Do(Wr, Zrr—)|(Wr, Z17-1)) )
< Da(ZT:T—IHZ;—:T—l) + sup Da(WT|ZT;T71:ZT;T71||W%|Z;:T,1:ZT;T71)- (10)
Zr:T—1

The first part can be handled by further applying the standard composition theorem (Lemma 2.4 for

each time step), which leads to a bound Zt 3 ﬁ?a? (QZK )2 and correspond to part (A) in Figure 2
(b). For the second term, we may iteratively apply Lemma 3.2, 3.3 to upper bound it with a shifted
Rényi divergence term and additive Gaussian mechanism terms. Let us denote the shift for time
step t as a; > 0, which will be determined later. With slight abuse of notation, we neglect the

conditioning of Z, Z’ but keep in mind that the analysis below is under such conditioning.

Do(Wr||[W4) = DO (T [hr—1 (Wr—1) + Y1 + zp 1 ]|[Tc[br 1 (Wh_y) + Y1 + 270_1])

(a)
< DO (1 (Wr_y) + Yra)[|[br—1 (Wi_y) + Yr_1)

(b) aa?
< D am-) (W ||W) =1
( T— 1” T— 1)+ 2(1_5T71)0_2
(T e 077t ay) = aa}
< Dot=7 t(WIIW’ +§ 77‘5

where (a) is due the projection and constant shift are 1-Lipshitz maps and thus by Lemma 3.3, (b)
is due to Lemma 3.2 and 3.3, where the Lipschitz constant c can be obtained from Lemma 3.4 based
on different assumptions on the losses. The last inequality is by applying the argument iteratively
until time step 7. Note that while the shifted divergence term is in general non-tractable, it is 0
when W, (W..||W”) is less then the accumulated shifts according to its definition 2.7. By enforcing
this constraint, we obtain a closed-form privacy loss bound to be optimized with respect to 7, 3¢, as,
where the constraint can be characterized by forward Wasserstein distance tracking lemma 3.5.

T-1

1 277K aaf —(t—7+1) :
min 202 Z (1 —ay st. Y ¢ a; > min(D,, D), an

t=1
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where 7 € [0,7 — 1], 8; € (0,1),a; > 0 and D, is defined in Lemma 3.5. Finally, observing
this constrained optimization can be further simplified by characterizing the optimum solution as
follows. By Cauchy-Schwartz inequality, we have

-1 2 T—1 _—
[Z (1_’5&)1 . [Z(l — 5t)(c—2(t—r+1)) > (Z atc—(t—r+1))2’ (12)

t=r1 t=1

where the equality holds if the ratio (C‘lﬁ is the same for all 7 < ¢ < T — 1. Appar-

1-PB¢)

ently, this is attainable by choosing a; properly according to 3¢, ¢~ *=7+t1)_ Note that (1 —5)
and ¢~ (=71 are all non-negative so that this characterization of a, still matches its non-negative
constraint. As a result, the optimization problem above can be further simplified as stated in Theo-
rem 3.1, where we complete the proof. O

It is worth noting the interpretation of Theorem 3.1, which is the root of our key intuition stated
in Section 1.1. Under the optimum choice of a; determined by (12), we know that a; o (1 —
B¢)e~ =71 where the left-hand side is closely related to the denominator of the second term
(1 — B¢)c™2(t=7+1) in the privacy bound of Theorem 3.1. As a result, the second term in the
privacy bound of Theorem 3.1 can be interpreted as how we distribute the maximum discrepancy
min(ZZlK Z]:()l c',2nKr, D) to the shifts a; each time step ¢t € [r,T — 1] along with weights
¢~ =7+ Eyen if the losses are non-convex so that ¢ > 1, it is still possible to distribute the
maximum discrepancy to more than one shift and thus a bound better than output perturbation is
possible. We emphasize the discussion so far still relies on the smoothness assumption. Relaxing
the smoothness assumption requires further non-trivial analysis as presented in the following section.

3.2 NON-SMOOTH LOSSES WITH HOLDER CONTINUOUS GRADIENT

Prior hidden-state Noisy-SGD privacy analysis requires the loss to be smooth (Altschuler & Talwar,
2022; Ye & Shokri, 2022), which restricts their application to non-smooth problems. Our Theo-
rem 3.6 shows that Holder continuous gradient is sufficient to enable the similar phenomenon of
convergent privacy loss after a burn-in period. See Figure 2 (a) for an illustration.

Theorem 3.6 (Privacy loss of Noisy-GD with Holder continuous gradient). Assume V¢ are (L, \)-
Holder continuous with A € (0,1]. Let g(z) = = + nLax> with domain and range being R>o and
h = g~L.Then the Noisy-SGD update (1) with full batch setting is (v, e(«))-RDP for o > 1, where
T-1

e 1 9 a?

e(a) < min — — + )

( ) 7,8,a 202 — Bt( ) 1-— ﬁt
st. 7€ {071 5T7 1}7 ﬁt € [031]7 ag > 0vt 27_7 AT > DT} (14)

Ar =Dy =0, A1 = h(A; + as—1), Dy = min(g(Dy—1) + 2nK/n, D1 + 2nK, D). (15)

2nK

n

(13)

Below we provide the key lemmas that enable the analysis in Section 3.1 to be generalized to non-
smooth losses with Holder continuous gradient. Note that when the loss is non-smooth, the gradient
update map ¢ can no longer be guaranteed to be Lipschitz, and thus Lemma 3.3 cannot be utilized.
We prove the following key lemma which allows us to work without smoothness assumption.

Lemma 3.7 (Holder reduction lemma). Assume the map ¢ is (L, \)-Hdlder continuous for L > 0
and \ € (0,1]. Then for any probability distribution i, v over R%, a > 1 and z > 0,

DI+ ¢)ull(I + ¢)tw) < DI (ully), (16)

where h(z) is the solution map of the equation © + Lz = z for x > 0 and I is the identity map.

Note that the gradient update map 1) can indeed be written as I + ¢, where [ is the identity map and
¢ is the gradient term. We further prove that the map h is “well-behaved”.

Lemma 3.8 (Properties of h). Forany z > 0, let h(z) be the solution map of the equation x+ Lx> =
zforx > 0. Forany L > 0 and A\ € (0,1, we have 1) h : R>g — Rxq, 2) h is strictly
monotonic increasing and continuous, 3) h is bijective, 4) when A = 1/2, we have the close-form

2
characterization h(z) = (_L*‘i VQLQ'HZ) .
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Finally, we perform the forward W, distance tracking in this case.

Lemma 3.9 (Forward Wasserstein distance tracking). Consider the adjacent processes Wy, W/ de-
fined in (1) and (2) respectively. Assume that V{;(z), V() are (L, X)-Holder continuous for all
i € [n]. Denote g(x; L) = x + L™, then we have

Weoo (Wi, W) < min(Dy, D), Dy = min(g(Dy—1;mL) + 2nK/n, Dy—1 + 2nK), Do = 0. (17)

The proof of Theorem 3.6 follows by a similar analysis in Section 3.1, but replacing the Lipschitz
reduction lemma with Lemma 3.7 and Lemma 3.5 with Lemma 3.9. The full proof can be found in
Appendix A.2 by specializing the minibatch results to full batch [n] setting.

3.3 MINI-BATCH CASES

Our analysis naturally supports two different popular mini-batch settings: subsampling without re-
placement and shuffled cyclic mini-batch. While the privacy analysis for subsampling without re-
placement is more elegant, shuffied cyclic mini-batch can be implemented more efficiently and is
closer to the standard mini-batch construction. We recommend interested readers to the recent ex-
cellent study on their pros and cons when deploying them in practice (Chua et al., 2024).

Subsampling without replacement. To express the result, we first introduce the Sampled Gaussian
Mechanism (Mironov et al., 2019).

Definition 3.10 (Rényi divergence of Sampled Gaussian Mechanism). For any o > 1, mixing
probability ¢ € (0,1) and noise parameter o > 0, define

Salg,0) = Do (N(0,0%)||(1 — ¢)N(0,0%) + ¢N(1,0%)). (18)

Note that S, can be computed in practice with a numerically stable procedure for precise computa-
tion Mironov (2017). Now we are ready to state the result for subsampling without replacement.

Theorem 3.11. Assume V{;, NV, are (L, \)-Holder continuous for L > 0 and A € (0,1]. Let h
be the solution map defined in Lemma 3.7 with constant nL, \. Then the DP-SGD update (1) under
without replacement sampling mini-batches of size b is («, e(«))-RDP for o > 1, where

b Btab aa?
= 1
£(. B) 3“225 n ZnK o= p) (19)
st.re{0,1-,T—1}, B €[0,1], ax >0Vt > 7, A, > D,, Ay = Dy =0, (20)

A1 = h(As + ai—1), Dy = min(g(Dy—1;nL(b —1)/b) 4+ 2nK/b, Dy + 20K, D),  (21)
where g(z; L) = x + La™ and S,(q, o) is defined in Definition 3.10.

The proof is similar to the proof of Theorem 3.6, except that we adopt the Sampled Gaussian Mech-
anism S, to bound the first term (i.e., part (A) in Figure 2 (b)), which can be found at Appendix A.3.
One can further specialize Theorem 3.11 if more structure assumptions are given, which leads to the
subsampling without replacement version of Theorem 3.1. We leave it as an exercise for readers.

Shuffled cyclic mini-batch. The analysis for shuffled cyclic mini-batch is more tedious, but the
main idea still follows Section 3.1. Due to the space limit, we defer the results to Appendix A.2.

4 RELATED WORKS

There are three types of privacy analysis for hidden-state Noisy-SGD, which are related to either
Langevin dynamic, contraction of hockey-stick divergence, and shifted divergence. Chourasia et al.
(2021) is the first that leverages Langevin dynamic analysis for deriving convergent privacy bound
in the full batch setting. Ye & Shokri (2022) extend and refine their analysis to the mini-batch set-
ting, yet both of which require smooth strongly convex losses. Chien et al. (2024a) also leverage
the Langevin dynamic analysis but for machine unlearning problem. In the meanwhile, Asoodeh &
Diaz (2023) utilize the bounded domain property with the contraction analysis of the hockey-stick
divergence. Unfortunately, their bound heavily relies on the privacy amplification by subsampling
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effect, where their result degenerates to output perturbation in the full batch setting and is differ-
ent from our approach. Finally, Altschuler & Talwar (2022) developed the analysis that combines
privacy amplification by subsampling and iteration (Feldman et al., 2018) in a clever way, which
leads to the state-of-the-art privacy bound for Noisy-SGD under smoothness and convexity assump-
tion. Altschuler & Talwar (2023); Chien et al. (2024b) adopted a similar analysis for studying the
mixing time of Noisy-SGD and its unlearning guarantee respectively. We improve their results with
not only a generalization to non-smooth non-convex losses with Holder continuous gradients, but
also a tighter bound for the smooth strongly convex losses.

5 CONCLUSIONS AND OPEN PROBLEMS

We provide an affirmative answer to the open question raised in Altschuler & Talwar (2022); Ye
& Shokri (2022): hidden-state Noisy-SGD indeed has non-trivial convergent privacy loss over the
bounded domain even when the convexity and smoothness assumptions are relaxed. Our analysis
shows that requiring losses to have Holder continuous gradient is sufficient for convergent privacy
loss that is better than the Pareto frontier of standard composition analysis and output perturbation.
To the best of our knowledge, this is the least restrictive assumption in the literature. We further
provide the superior privacy bound for smooth strongly convex losses compared to prior works.

While our results make a step forward toward the ultimate goal of providing a better privacy-utility
trade-off of Noisy-SGD (or equivalently, DP-SGD) for training deep neural networks, several gaps
remain. We discuss some future directions that can further progress in this direction.

Gradient clipping. While our Theorem 3.6 and 3.1 directly rely on gradient clipping in non-convex
cases, it additionally requires losses to have bounded gradient norm “continuously”. For simplicity,
we directly require losses to be Lipschitz to satisfy this condition. While the gradient clipping
operation can also ensure the bounded gradient norm, it inevitably induces discontinuous derivative
of gradients on a set with negligible measure. The same open question is raised in Altschuler &
Talwar (2022). The key question is whether we can prove the gradient update map ¢(z) = = —
Nlg, [V f(z)] to be ¢ < 1 Lipschitz when the loss f is known to be (strongly) convex and smooth.
We conjecture this analysis can be done but potentially require additional assumptions on f.

Better practical privacy accounting. For ease of analysis, current hidden-state Noisy-SGD litera-
ture treats the model weight as a whole real vector as well as the assumptions of loss corresponding
to it. This inevitably makes the corresponding Lipshitz, smooth, or Holder constants large for neural
networks even if they are naturally or modified to satisfy these assumptions. A recent interesting
work (Béthune et al., 2024) proposes to directly enforce layer-wise Lipschitzness of neural networks,
so that gradient clipping can be dropped to reduce the time and space complexity of DP-SGD. They
show that a per-layer analysis provides a better privacy-utility trade-off compared to requiring the
Lipschitzness of the neural network as a whole. We conjecture a similar idea is necessary to improve
the practicality of hidden-state Noisy-SGD analysis.

Non-uniform Hoélder continuous gradient. Another aspect of improving the practicality of our
work is to consider the non-uniform Holder continuous gradient. Indeed, whenever the parameter
difference ||z — y|| < 1, a smaller Holder constant can be obtained for A < 1. One interesting idea
is to introduce the non-uniform (local) Holder continuous gradient assumption for neural networks
depending on the parameter difference. We conjecture that this is closer to the actual behavior of
neural networks and potentially gives smaller constants and thus final privacy loss bound. This
also requires additional investigation into what actual structural properties the neural networks have.
We hope to see more collaboration between the theoretical and empirical ML community toward
answering the last question.

Uniform strict improvement over standard composition theorem. Our current results show that
there is no improvement before some burn-in period compared to the standard composition the-
orem for Noisy-SGD. A natural question to ask is whether a uniform strict improvement in the
privacy-utility trade-off over the standard composition theorem can be made. Positive evidence to
this question is the recent astonishing advances of DP-FTRL (Kairouz et al., 2021), which shows
that a better privacy-utility trade-off can be achieved compared to standard composition theorem
analysis if non-independent Gaussian noise is utilized. It is interesting to see if our analysis can be
combined with DP-FTRL to further provide a better privacy-utility trade-off.
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Lower bound aspect of our analysis. An interesting question is how tight is our derived privacy
bound. We conjecture that our analysis is indeed relatively tight. The positive evidence is that our
analysis degenerates to the result of Altschuler & Talwar (2022) for smooth convex losses, where
they have constructed an order-wise matching lower bound on the privacy loss. We conjecture that a
similar analysis can be conducted for our setting, which may elucidate the tightness of our analysis.

Better privacy amplification by shuffling analysis. While we have a privacy amplification by shuf-
fling analysis from Ye & Shokri (2022) (see Corollary A.3), the resulting bound cannot be computed
in a numerically stable way. Although Ye & Shokri (2022) propose a numerically stable approxi-
mation, it is unclear how such approximation affects the actual privacy guarantee. Ideally, we need
a provable privacy upper bound for numerical approximate as in standard privacy accounting (Gopi
et al., 2021) for rigorous DP guarantee. It is interesting to see if the privacy upper bound of the
approximation method in Ye & Shokri (2022) can be established. A better privacy amplification by
shuffling analysis is also an important open question as mentioned in Chua et al. (2024).
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A APPENDIX

A.1 STANDARD DEFINITIONS

Let f : K C R? + R be a mapping. We define smoothness, Lipschitzsness, and strong convexity
as follows:

L-smooth: V.z,y € K, [V f(z) = Vf(y)ll < L]z — (22)
m-strongly convex: ¥V 2,y € K, (x —y, Vf(z) — Vf(y)) > mllz — yl|? (23)
M-Lipschitz: ¥ 2,y € K, [|f(2) — f(y)]| < MlJz — y]|. 4

Note that a function f being L-smooth is equivalent to f having L-Lipschitz continuous gradients.
It is also equivalent to f having (L, 1)-Hélder continuous gradient. Furthermore, we say f is convex
if it is O-strongly convex.

A.2 PRIVACY GUARANTEES FOR SHUFFLED CYCLIC MINI-BATCH

In this section, we assume for simplicity that b divides n so that B = n /b s a positive integer. Given
the number of total iterations T, there will be E = |T'/B| + 1 epochs so that T = (E — 1)B + T.
At the beginning of epoch 0 < e < FE, we randomly partition the index set [n] into B mini-batches
{B¢}EL, where we denote B, = B{ if t = eB + i. Note that the mini-batch generation process
is independent of the dataset D (as long as they have size n), the noise G4, and the underlying
model parameters ;. In what follows, we will first derive the RDP guarantee for any fixed mini-
batch sequence {Bt}?:_ol and then improve the bound by taking into account the randomness of the
mini-batches.

*When b does not divide n, we can simply drop the last n — |n/b|b points.

11
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Theorem A.1. Assume V{;, VU, are (L, \)-Holder continuous for L > 0 and A € (0,1]. Let h
be the solution map defined in Lemma 3.7 with constant nL, \. Given any mini-batch sequence
B = {B:}=! from shuffled cyclic mini-batch strategy, define {t.}?__, be the set of time steps that
we encounter i* at epoch e, where t_1 = 0 and assume we will encounter i* in the last epoch up to
time step T. Then the DP-SGD update (1) with the given mini-batch sequence B is (o, e(«, B))-RDP
for a > 1, where

E (2K7])2 T—1 aa2
. b t . ..
_ Vb E /7 = ti_1,ts 25
e, B) ‘Hlﬁlgj:j 2B,0° = 20%(1=By) Jr= i € il )

st.Te{0, 1.  T—1}, B =0Vt ¢ {t}; , B €[0,1]Vt € {t}, , a, >0Vt >,
(26)
A; > D, Ar =0, As—1 = h(As + as—1), Dy is defined in Lemma A.2. 27)

If we do not encounter i* in the last epoch up to time step T, replace E by E — 1.

A.2.1 THE ANALYSIS

We will need the following W, distance tracking lemma, which is crucial to contain privacy ac-
counting based on the standard composition theorem (Mironov, 2017) as our special case. A similar
idea is also used for proving unlearning guarantees for SGD unlearning (Chien et al., 2024b) and
tight DP guarantees for the hidden-state PageRank algorithm (Wei et al., 2024).

Lemma A.2 (Forward Wasserstein distance tracking). Consider the adjacent processes Wy, W/
defined in (1) and (2) respectively. Given any mini-batch sequences {IB;} and B; = B;, denote t,
be the time step that i* € By, at epoch e so that |t./B| = e. Assume that V{(-,d) is (L, \)-Holder
continuous for any d € X. Then we have

Weo (W, Wt/) < min(Dy, D), (28)
O lft S t07
2nK /b ift=ty+1,

Dy ={"" _ : . (29)
mln(g(thh 77L(b - 1)/b) + 277K/b1 thl + 277K) lft -1 S {tE}e:h
min(g(D¢—1;mL), Di—1 + 2nK) otherwise |

where g(x; L) = x + La™.

Now we are ready to prove Theorem A.1.

Proof. The key idea of the shifted Rényi divergence analysis is constructing a coupling between
Wy, W, so that the analysis can be simplified (Altschuler & Talwar, 2022). According to our
assumption, we have that B, = Bj is some given fixed mini-batch sequence. Let us define the
overall update map at time ¢ to be ¢, (W) = W — n3 > ies, By [VE(W)]. Similarly, we can
define 9, (W) to be the overall update map for dataset D’. Then we construct a specific coupling
between G4, G} as follows

Wisr = T [o(Wi) + Yi + Z], Wiy =T [6)(W)) + Yo + Z) S T0c [ (W) + Y + 2],
(30)

where th ~ N(O, (1 - /Bt)0'21), Zt, Zt ~ N(O,ﬂtazf) and Zé ~ N('(Z)é(Wt/) - ’l)[)t(Wt/), 6150'2[). It
is worth noting that ¢; (W) = 1;(WY) for any ¢ such that i* ¢ B;. Let us denote t. to be the time
step such that i* € B; at epoch e. Then clearly v, 1] are only different at {t.}£ .

Let us denote t_; = 0. If we condition on Z; = Z, for all ¢ € {te}eE:j for some —1 < j < FE,

then we know that W;, W/ are two processes with identical update mapping 1, = 1} for any t > ¢;.
Thus, we can upper bound the Rényi divergence between W, W7, as follows: for any given 7 €

{te}E__,, let j, be the corresponding epoch index e including —1. Let us denote Zj = Zy; and

12
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ZJ’ = Z{j, then we have

(@) N .
Da(Wr||W7) < Da((Wr, Zj..0)[|(Wr, Zj_.5)) GD

(b) N N
< Da(ZjT:EH E) + sup D, (WT‘Z

Rjr:E

HWT|Z’ ) (32)

T E=2jr:E :E~Rjr:E

where (a) is due to post-processing property of Rényi divergence (Lemma 2.3) and (b) is due to
strong composition property (Lemma 2.4).

The first term corresponds to the standard composition theorem but starts only after time step 7. Let
us first analyze the quantity my; = ¢; (Wy,) — ty; (W}, ). Observe that for any W, we have

1464, (00) = e, (V)| = 123 T [VE(W)] = T, [VEW)] | (33)
iEBt]»

@2 (T V8 (W)] = i [VE. (W) (34)

< L(Mg,e (V2 (W] | + Mg [VE (W)])]) (35)

< 200 (36)

where (a) is due to the fact at ¢; we have ¢; = ¢ except for i = ¢* (i.e., the only data point that
differs between D, D’. The rest is by triangle inequality and the projection operator I, . As a

result, we know that ||y, || < @ for any 1;, and thus almost surely.

As a result, we can further bound the first term in (31) as follows

D, (Z} 2 Z; .5) 37)
(a)
< Z sup D | Zjrij—1=Zjr:j— 1HZ/|Z§ 1 Ririi— 1) (38)
j=7jr Zjrij—1
®) &
= Y sup Da(N(0, B, 0”T)||N(my,, Bi,0°1)) (39)
:] Zjrij—1
(0 & allmy, |I? “0)
— 2
=g lme; | <250 2Bi,0
2K7])2
< 41
< Z ST (41)

where my; = ¢y (Wy) — o, (W{,) condition on ZJ j—1 = Zj,.j—1. (a) is due to strong com-

position of Rényi divergence (Lemma 2.4), (b) is by the definition of Z, Z' (see above), (c) is due
to (33) and the close-form of Rényi divergence between two gaussian of the same variance but
different mean Mironov (2017). Together we have successfully bound the first term.

For the second term in (31), note that it is now condition on ZjT:E = Z;T:E = z;..g so that the
two processes will have the same update iterations. For brevity, we omit the conditioning in the

following derivation but all discussions are conditioning on Z i E = A ;T .E = %, if not specified.

Forall t € {t.}E . , the two process becomes

e=j.>
Wi, g1 =i [the, (We,) + Y, + ze], W =T [0e(W]) + Vi, + 2], (42)

and for all other t ¢ {t.}E_. , we already have

e= j ’

Wit = Ui [0(We) + Yi + Zi], Wiy = Ui [0 (W) + Vi + Z4) 43)
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Note that we can simply choose the coupling for Zitobe Z, = Z; forall t ¢ {te}f:jT. Recall that

by our definition of Y, Z, we know that Y; + Z; = G; ~ N(0, 021). Now we are ready to bound
the second term in (31), which is done as follows. For all ¢ € {te}fzy; , we have for any z; .z and
z >0,

DE (W, 41||W/ 1) (44)
= D) (T [vhe, (W) + Vi, + ze] | [, (W) + Y2, + 2e]) 45)
(a)
< D (b, (W) + Ya, + ze|[0e(W)) + Vi, + ze) (46)
(b)
< D) (¢, (W) + Vi, [0 (W]) + Y2,) 47)
QDU (g (Wi (W) + = 48)
S Ua te (W, t(Wy, 21— B, )02
(d) aa?

(h(z+at,)) / te
< Dy . S 4
= (Wte”Wte) + 2(1 _ ﬂt6>02 ( 9)

where (a), (b) is due to the that both IIxc and constant translation are 1-Lipschitz. So the inequal-
ities follow by the Lipschitz reduction lemma (Lemma 3.3). (c) is due to shift reduction lemma
(Lemma 3.2) for some a;, > 0 to be optimized later. (d) is due to Holder reduction lemma
(Lemma 3.7), since ¢ = I + ¢ where ¢ is the sum of mini-batch gradients. By our assumption
that V¢ are (L, \)-Holder continuous (and thus nV¢ are (nL, \)-Holder continuous), indeed our
Lemma 3.7 can be applied.

On the other hand, we can repeat a similar analysis for the case ¢t ¢ {t.}2_ ;.» which leads to
DE (Weia[[W]14) (50)
= D (Wi [ (W2) + Ga) ([T [0 (W) + Gi]) (51)
< DO W) + Gullen (W) + G 52
< D (W) e (W) + % (53)
< e ) + 2% (54)

202’

where (a) is due to the that both I and constant translation are 1-Lipschitz. So the inequalities fol-
low by the Lipschitz reduction lemma (Lemma 3.3). () is due to shift reduction lemma (Lemma 3.2)
for some a; > 0 to be optimized later.

As a result, we can unroll D, (Wr||W) using the bounds (49) (54) above until time ¢ = 7, which
leads to the following bounds. For brevity, we denote 1, := 1{t € {t.}Z_; } as the indicator
function of whether ¢ € {te}f:jT} or not. For any z;_.g,

Do(Wrl|Wh) = DO (Wr||Wh) @ DY (Wl W) (55)
2
< D(’L(AT+aT_1)) W _ W/ OéaT*l 56
— « ( T ].H T—l) + 20_2(1 _ﬂTfl]-Tfl) ( )
Y DA (W W) + -y (57)
- =V 962 (1 — Br_i1r-1)
T—1 O[CL2

<o < DA (WL |W! S A— 58

< D (W] T)+;202(1_ﬁt1t), (58)

where (a), (b) is due to that we denote Ap = 0, A;—1 = h(A; + a;—1) forall ¢ > 7 + 1. Finally,
note that by Wasserstein forward tracking lemma (Lemma A.2), we know that W, (W, W) <
min(D,, D) (see Lemma A.2 for the definition of D;). As a result, if A, > D,, then
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D&AT)(WTHW;) = 0. Thus by combining everything so far, we have the following optimization
problem for the privacy loss

E 2}(717)2 T—1

) (=5 aa?
59
mhe 2 3B,0% t; 202(1— By)’ 9
st.re{tyll , Br=0Vt ¢ {te}; , Bre(0,1]Vte{te}; , ap >0Vt >7,  (60)
A >D;, Ar =0, Ay_1 = h(As + a;—1), Dy is defined in Lemma A.2. (61)
Together we complete the proof. O

A.2.2 IMPROVED BOUND BY SHUFFLING

Note that the privacy bound we derived in Theorem A.1 holds for any realization of shuffled cyclic
minibatch sequences. As we can see, the bound indeed depends on the time step {t.}Z , that
we encounter ¢* at each epoch e, which is inevitably controlled by the worst-case scenario when
requiring a data-independent RDP bound. To alleviate the worst-case issue, it is critical to take the
randomness of the shuffled cyclic minibatch sequence into account. The following corollary serves
for this purpose

Corollary A.3. Let c(a, B) be the optimal privacy loss derived in Theorem A.1 give a cyclic mini-
batch sequence B. Under the same assumption as in Theorem A.l, the DP-SGD update (1) is
(o, e(@0))-RDP, where

£(0) < —— log (B exp (o — 1)e(a, B)) - (©2)

a—1
A.3 PRIVACY GUARANTEES FOR WITHOUT REPLACEMENT SUBSAMPLING MINI-BATCHES

In this section, each mini-batch B; is sampled independently and identically from [n] for time step
t in the without replacement fashion of size b. That is, we randomly sample B; out of the uniform
random subset of size b from [n]. This strategy of mini-batch sampling is known as without replace-
ment subsampling. In what follows, we derive the RDP guarantee for DP-SGD update (1) under
without replacement subsampled mini-batches.

A.3.1 THE ANALYSIS

Let us first introduce a technical lemma before we introduce our proof. Note that the original Sam-
pled Gaussian Mechanism is defined in one dimension. Altschuler & Talwar (2022) extends this
notion to a higher dimension by identifying the worst-case scenario therein. Alternatively, one can
directly work with high-dimensional Sampled Gaussian Mechanism as in Altschuler et al. (2024).

Lemma A.4 (Extrema of Sampled Gaussian Mechanism, Lemma 2.11 in Altschuler & Talwar
(2022)). For any a > 1, q¢ € (0,1) and the noise parameter o > 0, dimension d € N and ra-
dius R > 0,

sup )Da(N(O, o13)[|(1 = q)N(0,0°14) + q(N(0,0°14) % p1)) = Sa(q,0/R),  (63)
Qe R

where P(BRr) denotes set of all Borel probability distributions over the {5 ball of radius R in R¢.

In practice, S, (g, o) is computed via numerical integral for the tightest possible privacy accounting.
Nevertheless, to have a better understanding of the quantity, Lemma 2.12 in Altschuler & Talwar
(2022) shows that it is upper bounded by 2aig? /o? for some regime of (c, o, q). In what follows,
we keep the notation of S, (g, o) but is useful to keep this simplified upper bound in mind.

Now we are ready to prove Theorem 3.11.

Proof. Following the same analysis, we have that
Do (Wr||W5) (64)
< DOZ<ZT¢T*1HZ7/':T71) + sup Da(WT|Z72T71:ZT:T71||W§1|Z;:T71:ZT:T71)- (65)

Zr7—1
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For the first term, we bound it as follows

Da(ZT:T—lHZ:—:T—l) (66)
T—-1
< sup Da(Zt|ZT:t—1:ZT:t71||Zt/|Zﬂ/.:t,1=ZT:t71) (67)
t=7 “Tit-1
T-1 b b
=Y Du(N(0,B0%D)||(1 — SN, BeaI) + —N(my, Bia?I)) (68)
t=1
T—1
b ﬂtO'
< a\ ™ ) 6
- ;S (n 277K/b) (69

where we use the fact that ||m;|| < 21K /b almost surely, since each gradient term is bounded by
nK due to gradient clipping 15, and there is at most 1 out of b term that corresponds to ¢*. Hence,
one can apply Lemma A .4 for the last inequality. For the second term, the analysis follows similarly
as in the proof of Theorem A.1. Hence we complete the proof. O

A.4 PROOF OF THEOREM 3.1

Proof. We start with the argument of Altschuler & Talwar (2022), which constructs a specific cou-
pling between the adjacent Noisy-SGD processes (1) and (2). To ease the notation, we denote )y, 1}
to be the gradient update map in (1) and (2) respectively. Then note that

W1 L T [ (Wh) + Y + Zi), Wiy £ Tc[h(W)) + Yy + Z), (70)

where Y; ~ N(0,(1 — B¢)o?I), Z; ~ N(0, Bio?I) and Z; ~ N (,(W/) — 1 (W}), ByoI) for
B¢ € [0,1]. Notice that condition on Z; = Zj, the two processes exhibit the same gradient update
and additive noise. For any time step 0 < 7 < T — 1 to be chosen later, we adopt this coupling for
all ¢ > 7. Then by Lemma 2.4, we have the following decomposition of the privacy loss

Do(Wr|[Wp) < Do((Wr, Zro-1)|(Wr, Z1.01)) (71
< DQ(ZT:T—1HZ7/':T—1) + sup Da(WT|Z72T71:ZT:T71 ||W§_‘|Z;—:T_1:ZT:T71)' (72)
Zr:T—1

The first part can be handled by further applying Lemma 2.4 as follows.

T-1
Da(Z‘r:T—1||ZL:T—1) < Z sup Da(Zt‘ZT:tfl_zT:tfl|‘Z£|Z;:t71—27;t71) (73)
t=1 Zrit—1

T-1
= > sup Da(N(0, B0 DN (W (W)) = (W), B:0* Dl 22, 20 y) (T4

t=7 FTit—1

T-1

a 2nK ,

< —_ 75
—;2@02%)’ (75)

where the last step is due to the fact that ||1); (W) — ¢ (W)|| < % for any W. This corresponds to
part (A) in Figure 2 (b). The rest proof is the same as described in Section 3.1. Hence we complete
the proof. O

A.5 PROOF OF LEMMA 3.3

The proof is essentially follows Altschuler & Talwar (2022; 2023). We include the proof for com-
pleteness.

Proof. Let v be a probability distribution certifies DS (u||1'). That is, Do (v||p’) = DS (u]|pt')
and W, (v, ) < z. Since ¢ is c-Lipschitz, we have

Weo (o, ¢pp) < cWoo (v, 1) < e 2. (76)

16



Preprint

It implies that ¢fv is a feasible solution for D (¢tu||ptu’). Hence we have

@ ®
DI (otullptn’) < Da(@tvllofy’) < Da(vlln) = DE (ull'), (77)
where (a) is due to data processing inequality of Rényi divergence and (b) is due to our definition
of v. Together we complete the proof. [

A.6 PROOF OF LEMMA 3.4

The proof is essentially a simple application of Lemma 3.6 of Hardt et al. (2016) or Lemma 2.2
of Altschuler & Talwar (2023). We denote () = x — nllg, V f(x).

When f is L-smooth only, we have for any z,y € R%:
[¥(2) =) < [l =yl + 0l Vf(z) - s V()] (78)
<=yl +0lVF@) = Vil < llz -yl +nLlle -yl = A +nL)[le -yl (79)
Here we use triangle inequality, the projection operation is 1-Lipschitz and L-smoothness sequen-
tially. Thus we complete the proof for the smooth case.

When f is further K-Lipschitz, note that we always have Iz, V f(x) = V f(z) since |V f(z)| <
K. Thus we can drop the projection operator directly. Then the convex and m-strongly convex
cases directly follow Lemma 3.6 of Hardt et al. (2016) or Lemma 2.2 of Altschuler & Talwar (2023).
Together we complete the proof.

A.7 PROOF OF LEMMA 3.5

This is a special case of the proof of Lemma A.2. A similar proof also appears in Chien et al.
(2024b). We nevertheless prove this special case again for the readers.

Recall that by definition,
Weo (Wi, W/) = inf esssup || X — Y. (80)
VEL (XY )~y
It means that we may choose a specific coupling between W, W/ to serve as an upper bound. We
choose the naive coupling G; = G}. Under this coupling, the only randomness is the initialization
W. Let us denote the index that is differ between D, D’ to be i*. Then we have

W= Wil = Wy = Wy — 23U, (VWi )] = T, [VEW DI 8D

€N
(a) 1
< - S Wiy = W = n(Ilp, [VE(Wi_1)] = T [VL(W_))| (82)
i€[n]\{i*}
1
+AWeer = Wiy = (g, [V (Wim)] = g, [VE. (WD, (83)

where (a) is due to the fact that ¢; = £} for all ¢ # ¢*. For the first term, notice that the gradient
update map is identical. By the assumption that the map is c-Lipschitz, we have

1
- Yo Wi = Wiy —n(Ip, [VE(Wee1)] = g, [VE(W/_)) (84)
ien]\{i*}
1 , n—1 ,
<= N elWe = Wi S W = W (85)
ie[n\{i*}
For the second term, we may further bound it with triangle inequality.
1
Wiy = Wiy = (Il [Vlis (Wem1)] = I [V (W] (86)
1
< Wiy = Wiy = (Mg, [V (Wim)] = g, [V (W] (87)
1
+ 0|, [V (W) = L, [V (W) (88)

2nK

1
<c—||Wiog =W/ ||+ — (89)
n n
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Combining the two parts, we arrive the bound

277K

esssup ||W; — W/|| < esssupc||[W;_1 — W/_{|| + (90)
W() WO

Notice that choosing D; = esssupyy, [|W;—W/||and D;_1 = esssupyy, c||W;_1—W{_, || will give
the desired recurssive relation. Also note that by definition W;, W/ both start with the same initial-
ization Wy, and thus Dy = 0. Finally, notice that we always have a trivial bound W, (Wy, W{) < D
do to the projection IIx where D is the diameter of K. Together we complete the proof.

A.8 PROOF OF LEMMA 3.7
Proof. Let v be a probability distribution certifies DS (p||pt/). That is, Do (v||i') = D (ul|i)
and W, (v, 1) < z. By definition, we know that there exist a coupling v* € I'(v, ) such that

esssup [|[X —Y| <= 1)
(X,Y)~y*

Now, let us consider this specific coupling v* and (X,Y") ~ v*. We have

Woo (I + 6)tv, (I + 6)tn) 2)

(a)

< esssup || X +o(X) — (Y + oY) ©3)
(XY )~y

< esssup | X =Y +[o(X) — oY) O
(X,Y) oy

(b) A

< esssup [|[X - Y|+ L|X -Y] 95)
(X,Y)~y*

< esssup | X —Y| + esssup L|lx -y|* (96)
(X,Y )~y * (X,Y)~

< esssup || X — Y|+ L( ess sup X —Y|)* o7
(XY )~y X;Y)~

(c)

where (a) is due to the fact that any coupling ~ € T" will give an upper bound to the infimum over I',
(b) is due to the assumption that ¢ is (L, A)-Holder continuous, (c¢) is due to our construction (91).

As a result, we know that when W ((I + ¢)fv, (I + ¢)fu) < 2’ for some 2z’ > 0, if we can find a
z > 0 such that 2’ = z + Lz, then the construction (91) is valid. By our definition of h, we know
that z = h(z’) gives such a valid choice. This implies that

DEV (I + @)l + o)tu') (99)
< Dl + ST + o)) (100)
< Dalulln) (101)
< DG (') (102)

where (a) is due to the fact that v indeed satisfies W (I + @)v, (I + ¢)iu) < 2’ by setting
z = h(z'), (b) is from post-processing property of Rényi divergence (Lemma 2.3), (¢) is due to our
construction in the beginning. By plugging in the relation z = h(z’) we complete the proof. O

A.9 PROOF OF LEMMA 3.8

Recall that we define h(z) to be the solution map of the equation z + Lz* = z for all z > 0
and x > 0. When L > 0,\ € (0,1], we essentially want to show that A is the inverse map of

f(z) =  + La*. Observe that 2L f(z) = 1 + La*~! > 0 for all z > 0, we know that f(z) is
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strictly monotone increasing. Furthermore, it is not hard to see that f is continuous. Then combining
with facts that f(0) = 0 and f(z) — +o00 as x — +00, we know that f : R>o — R is bijective.
As aresult, h = f~!is bijective, h : R>o — R> and h is strictly monotonic increasing as well.
We are left to show the close-form characterization of h when \ = % In this special case, we have

f(z)=a+ La* =2+ Ly/x. (103)
Let us denote u = 1/, then we know that the solution of w2+ Lu = zis
, —L+VL?2+4z
W=
2 )
where we always have u > 0. As a result, the solution i(z) = (u*)2. Thus we complete the proof.

(104)

A.10 PROOF OF LEMMA 3.9

This is a full batch special case of Lemma A.2. We refer readers to the more general proof of
Lemma A.2 and leave the proof of this special case as an exercise for readers.

A.11 PROOF OF LEMMA A.2

Recall that by the definition of DP-SGD iterates (1) and (2), we have

Woo (Wer1, Wig1) = Woo (Tic (Wi + ¢¢(Wh) + Gl e (W7 + ¢4(W)) + Gi)) (105)
Clearly, the diameter D of the projection set /C is a natural upper bound. Also, note that I is
1-Lipschitz, thus we have

Wee Wig1, Wiy 1) (106)
< Weo (Wi + 6:(Wh) + G, WY + ¢y (W) + GY) (107)
(a)

< esssup | Wy + ¢ (W) — (W[ + ¢, (W) || (108)
< esssup [|W; — Wil + [|o:(Wy) — ¢, (W) | (109)

where (a) is due to the fact that we take a specific coupling G; = G, for all ¢. Now, let us denote
the ¢, to be the time step that we encounter 7* (i.e., the index that D, D’ differs) at epoch e. Clearly,
for all ¢ < ¢y, since we have not encountered :* yet so the two adjacent processes have identical
updates. Combining with the fact that W, = W, we have W; = W/. This proves the case ¢ < t.
For t =ty + 1, know that we have

Wao(Wigs1, W), 41) < esssup [ W, — Wi I+ léee (Wey) — 6 (W) (110)
@ 1o (Way) — ), (Wi )| (111)
b 2K
© T, V83 (Why) — T, V8. (W) < =52 (112)

where (a) is due to our discuss that W, = W for all ¢ < ¢, (b) is due to the fact that £; = ¢; for all
1 # 1*. Thus we have proved the case t = ¢y + 1.

For the case t — 1 € {t.}Z_,, we similarly have

Woo (Wi, 41, W, 1) < esssup [We, = W || + 60, (W2,) = & (W,)]| (113)

< esssup | Wo, =W ||+ D (o, V(W) = g, VEW, )| (114)
€8¢,

(a) / n ’

= esssup [Wr, — W/ ||+ > M, VE(Wy,) = T, VLW (115)
i€Be \{i*}

ML Ve (We,) = T, Ve (W) (116)

Sesssup [ W, = WL |+ D I VEW:) ~Ip VAW (1)
i€B, \{i*}

n 2fb<n7 (118)
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where (a) is due to the fact that ¢; = £, for all ¢ # ¢*. Note that now we have two valid upper
bounds. One is to utilize I g, directly for the rest gradient difference terms, this leads to

(a)
Woo (W41, W/ 1) < esssup [|[Wy, — W/ || +2Kn < Dy, + 2K, (119)

where D is the upper bound of ess sup ||WW; — W/|| under the coupling that G; = G}, for all ¢. The
other one is to leverage the Holder continuous properties of V£;, which leads to

2K
Woo (W41, W/ 1) < esssup |[|[W,, — W/ || + Tn (120)
U
Ty 2 IVE) = Ve )| (121)
i€B \{i*)
2K b—1)L
< esssup Wy, — Wy |+ 2504 WO Dy g (122)
2K b—1)L
< esssup |[Wy, — W; || + Tn + esssup %HWQ -w P (123)
(@) b—1)L 2K
2 p, + M ; ) D} + bn (124)
b—1)L. 2K
—g(n,,; ! ; ) - (125)

where D; is the upper bound of esssup |W; — W/|| under the coupling that G; = G for all ¢.
By taking the minimum of the two bounds, we have proved the case t — 1 € {t.}Z . Finally, for
the rest ¢ we can repeat the same analysis above, but this time we will not encounter ¢* so we have
g(Dy,;nL) instead. To conclude the proof, note that all our iterations for D, are derived for the
specific coupling G; = G. Thus D, is indeed a valid upper bound for esssup |W; — W/||. This
concludes the proof.

A.12 PROOF OF COROLLAY A.3

The proof follows by applying the joint convexity of KL divergence, which is also used in Chien
et al. (2024b).

Lemma A.5 (Lemma 4.1 in Ye & Shokri (2022)). Let vy, ,vpy, and vy, - -+ ,v), be distributions

rrm

over R, For any o > 1 and any coefficients p1,-- - ,py, > 0 such that S pi = 1, the following
inequality holds.
m m
exp((a = 1)Da(d>_pivill Y piv})) (126)
i=1 i=1
<> piexp((a — 1) Dy (vi]|)). (127)

i=1

By applying the lemma above, we can convert the 3 dependent result in Theorem A.1 to an average
case bound. Thus we complete the proof.

A.13 NUMERICAL EVALUATIONS

Numerical setting for Figure 1. ~We choose smoothness constant L and the strong convexity
constant m to be 1 for simplicity. We set gradient clipping norm K = 2, noise standard deviation
o = 1.0, domain diameter D = 1.0, the dataset size n = 5, and the step size n = 0.1.

Numerical setting for Figure 2. For the experiment shown in Figure 2 (a), our model is a 2-layer
MLP with a hidden dimension of 64. The task is classification on the UCI Iris dataset (Fisher, 1988)
as a toy example. We set the learning rate to be 0.1, training epoch 200, gradient clipping norm
1.0, and use cross-entropy loss with an additional 0.1 multiplicative factor. To estimate the Holder
constant, for each weight along the training trajectory we sampled 100 points uniformly at random
from a ¢ ball of radius 1 centered at the weight. Then we compute the maximum ratio between
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the norm of gradient difference and weight difference of power A, which is the estimated Holder
constant. We further repeat this process with 20 different initialization and take the maximum of
the estimated Holder constant as the final estimated for computing the privacy loss under the same
setting as Figure 1.

We emphasize that this experiment is merely a proof of concept, and in reality, we conjecture that
the loss is at least locally satisfying the Holder continuous gradient condition. As we discussed in
Section 5, one may need to explore these properties in a per-layer fashion. We also conjecture that
a non-uniform Holder continuous gradient condition involving different A locally is the actual case
for deep neural networks.

A.14 AN EXAMPLE NON-SMOOTH FUNCTION THAT HAS HOLDER CONTINUOUS GRADIENT

This example and the proof are from Martin R*. We repeat it here for completeness.

Consider f(z) = sign(z)2|2|*/3. It is not hard to see that G(z) = f'(z) = |z|'/*. Here we show
that G(z) is (2%/3, %)-Hélder continuous but not Lipshitz.

Case 1. z,y > 0. Without loss of generality assume x > y > 0. Then

2Py P < (w— )P e 2B < (- )R 4y (128)
Note that for all a,b > 0, s € (0, 1], we have
a b a b
1= < s —)"%. 129
a+b+a+b*(a+b) +(CL—H)) (129)

This inequality is due to the fact that z® > z for all s € (0,1] and z € [0,1]. Then by choosing
a=x—1y, b=y, wehave

1< (JJ;Z/)l/g 4 (%)1/3 o 2/3 < (z _y)l/S +y1/3 o gl/3 _y1/3 <1-(z —y)1/3. (130)

Clearly 1 < 22/3 2 1.587. So our claim is true for case 1.

Case 2. x,y < 0. Without loss of generality assume x < y < 0. Then the same analysis from case
1 applies since |G(z) — G(y)| = |G(—z) — G(—y)| < |(—z — (—y))| = |* — y|. So our claim is
true for case 2.

Case 3. z, y are of opposite sign. Without loss of generality assume x < 0 < y. Then

IG(z) = G(y)| < Clo — y|'* & |a|'/* +y'/* < C (|2 + 9)'/* (131)
|| 1/3 Y \1/3

& + (—— <C. 132

(|x|+y) (\x|+y) - (132)

Note that both fractions are less than 1, so C' can be chosen to be 2. A tighter estimate can be
obtained by solving the maximization u'/3 + (1 — u)'/3 for u € (0,1), which gives C' = 22/,
Together we complete the proof that G is (2%, 1)-Hélder continuous.
To show that G is not Lipschitz (and thus f is non-smooth), observe that for x > 0
G(x) — G(0
)-GOl _ -, 133
T

which is unbounded when x — 0. Hence G is not Lipschitz continuous.

*https://math.stackexchange.com/q/3213522
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