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Abstract

We present Real2Code, a novel approach to reconstructing articulated objects
via code generation. Given visual observations of an object, we first reconstruct
its part geometry using an image segmentation model and a shape completion
model. We then represent the object parts with oriented bounding boxes, which are
input to a fine-tuned large language model (LLM) to predict joint articulation as
code. By leveraging pre-trained vision and language models, our approach scales
elegantly with the number of articulated parts, and generalizes from synthetic
training data to real world objects in unstructured environments. Experimental
results demonstrate that Real2Code significantly outperforms previous state-of-
the-art in reconstruction accuracy, and is the first approach to extrapolate beyond
objects’ structural complexity in the training set, and reconstructs objects with up
to 10 articulated parts. When incorporated with a stereo reconstruction model,
Real2Code also generalizes to real world objects from a handful of multi-view
RGB images, without the need for depth or camera information. !
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Figure 1: We propose a novel method for reconstructing articulated objects via code generation,
leveraging pre-trained large language models (LLMs). Real2Code takes visual observations as input,
and performs both part-level geometry reconstruction and joint prediction. When evaluated on an
extensive set of real and synthetic objects with varying level of kinematic complexity, Real2Code can
reconstruct complex articulated objects with up to 10 parts, and generalize to real world objects from
a handful of pose-free RGB images.

1 Introduction

The ability to reconstruct real-world objects in simulation (real-to-sim) promises various downstream
applications: automating asset creation for building VR/AR experiences, enabling embodied agents to
verify their interaction in simulation before execution in the real world [1-3], or building large-scale
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simulation environments that support data-driven policy learning [4]. We are particularly interested
in articulated objects, for both their ubiquity in household and industrial settings and the unique
challenges they pose in contrast to single-body rigid objects. To reconstruct articulated objects, prior
learning-based methods typically train supervised [5] or test-time-optimized [6] models on synthetic
objects with simple articulation structures (i.e., one or two moving parts per object). This results
in limited generalization ability to objects with more complex visual appearances and kinematics.
In addition, prior work only provides object part reconstructions of limited quality: the extracted
meshes are often incomplete and the predicted articulation parameters require manual cleanup before
being usable for simulation.

We propose Real2Code, a novel approach to address the above limitations. We represent object
articulation with code programs, and use language modeling to predict these code programs from
visual observations. This formulation scales elegantly with objects’ structural complexity: to process
an articulated object with multiple joints, prior methods would require either changing the output
dimension of their articulation prediction model, or run multiple inferences on pairs of before- and
after- interaction observations to predict one joint at a time. In contrast, the next-token prediction
formulation in language modeling allows generating arbitrary-length outputs, i.e., the model archi-
tecture needs no adjustment to handle varying number of object joints. Whereas prior work on
shape programs [7] needs to define task-specific code syntax, we represent objects with simulation
code in Python, which takes advantage of recent progress in large language models (LLMs) that are
pre-trained with code generation capabilities.

Although capable at code generation, LLMs pre-trained on text are not as equipped at predicting
accurate numerical values from spatial geometry information, which is required in our task in order
to obtain articulated joint parameters. To address this, we propose to use oriented bounding boxes
(OBBs) as an abstraction layer that summarizes the raw sensory observation to the LLM in a concise
yet precise manner. Given partial observations of an object, we first perform part-level segmentation
and reconstruction via a combination of 2D segmentation and a 3D shape completion model; next,
OBBs are extracted from the reconstructed object parts, and serve as input to the LLM. Instead of
having to regress to continuous values, the LLMs can predict joints as a classification problem by
selecting the closest OBB rotation axis and box edges.

In unstructured real world environments, another challenge is the lack of accurate depth and camera
information. To address this, we incorporate a pre-trained dense stereo reconstruction model, namely
DUSt3R[8], into our pipeline: we show the dense 2D-to-3D point-map prediction from DUSt3R
can be combined with our fine-tuned SAM model to achieve view-consistent 3D segmentation. As
a result, Real2Code can then reconstruct real world objects from only a handful of pose-free RGB
images.

For more systematic evaluation, we validate Real2Code on the well-established PartNet-Mobility
dataset [9], using an extensive test set of unseen objects that contain various numbers of articulated
parts. Compared to the prior state of the art, Real2Code significantly improves both 3D reconstruction
and joint prediction accuracy. Real2Code is the only approach to reliably reconstruct objects with
more than three articulated parts, whereas prior methods fail completely on such objects. Fig. 1
highlights our results on both synthetic multi-part objects (left column of input images), where we
show Real2Code can reconstruct objects with up to 10 articulated parts, and generalize to real world
objects (right column of input images) using RGB images captured from in-the-wild furniture objects.

In summary, our contributions are threefold:

1. We present Real2Code, a novel approach to reconstructing articulated objects from a handful of
unstructured RGB images. We formulate joint prediction as a code generation problem and adapt
pre-trained large language models to specialize in this task.

2. We address part reconstruction via kinematic-aware view-consistent image segmentation and a
learned 3D shape completion model, which leads to high-quality mesh extraction that generalizes to
multi-part real-world objects.

3. Empirical results demonstrate that Real2Code significantly outperforms the prior state of the art
at both articulation estimation and part reconstruction. To the best of our knowledge, Real2Code is
the first method to accurately predict objects with more than three parts, and generalizes beyond the
training dataset to objects with up to 10 articulated parts.



2 Related Work

LLMs for Visual Tasks. Pre-trained LLMs have been used for visual reasoning and grounding
tasks[10, 11]. LLMs’ code-generation capability has also been exploited for generating programs
that solve visual tasks [12—14]. These works use zero-shot pre-trained LLMs such as GPTs [15, 16]
and require prompt engineering, such as providing in-context examples, to guide the model to
generate desirable outputs; in contrast, we directly fine-tune the weights of a code-generation model
to specialize in our articulation prediction task, and do not use any hand-crafted prompting.

Shape Programs. Code-like programs have been studied in computer vision as a compact represen-
tation for 2D and 3D shapes. A main challenge for learning code programs is the lack of supervision,
and prior work has explored using learned differentiable code executor [7], pseudo-labeling [17], dif-
ferentiable rendering [18], imitation learning on code sequences [19], or reinforcement learning [20].
More recent work has explored constructing large-scale datasets of shapes[21] or scene layouts[22]
and train supervised LLM-like models to generate code outputs. In contrast to ours, these prior work
focuses on either individual object shapes or scene-level room layouts, but does not estimate joint
articulations. In addition, instead of the task-specific code programs, such as customarily-designed
language syntax [7, 17, 22] or Computer-Aided Design (CAD) code [19, 21], we represent object
articulation with Python code that 1) closes matches the pre-training distribution of code-generation
LLMs, which allows fine-tuning with limited data, and 2) can be directly executed by a physics
simulator [23], which makes the reconstruction more usable for and requires less manual cleanup.

Articulation Model Estimation. Prior work has investigated estimating pose and joint properties of
articulated objects without full reconstruction. A common setup is to assume physical interactions
on an object to infer its articulation information: classical sampling-based algorithms[24, 25] are
proposed to estimate joint parameters based on sensory inputs from an object’s different configuration
states; other learning-based methods train end-to-end models to predict part-level segmentation,
kinematic structure, object part poses, or articulated joint parameters [26-36]. Some propose
specialized neural network architectures to improve estimation performance[37-39]. Other work
focuses on learning to propose the most informative physical interactions on an object to help robot
manipulation[40], or to better isolate and segment articulated parts and joints[41]. These articulation
estimation tasks provide useful metrics for 3D shape reasoning [28], and the predicted object pose
and joint information are shown useful for robot task learning [42-45]. However, prior work typically
handles objects with simple structure (i.e.,one or two moving parts) and does not address full object
reconstruction. In contrast, our method handles objects with more than ten moving parts, and performs
shape reconstruction via extracting part meshes.

Articulated Object Reconstruction. The most closely related to ours are methods that reconstruct
both the geometry and joints of articulated objects. A popular approach is to train end-to-end models
on synthetic data to jointly segment articulated parts and predict joint parameters, assuming either
observations from interactions [5, 46—48] or single-stage [49-51] observations. Another approach
uses per-object optimization [6, 36] without training. Based on observations of the object at two or
more different joint states, it optimizes for joint parameters to match observed motion correspondence
and optionally performs 3D reconstruction by extracting from learned neural rendering fields. Most
existing methods assume a single joint and do not scale well with number of joints: for example, to
handle an object with N joints, methods like Ditto [5] would need to move the N joints one by one,
record the observations before and after each interaction, and run /N inferences on each observation
pair. PARIS [6] would need to optimize N neural fields and joint parameters, which may lead to
a much more complex optimization landscape. The approach presented in [36] handles multiple
joints but requires a complete sequence of point-cloud observations and is not able to reconstruct 3D
shapes.

3 Method

We address the problem of reconstructing multi-part articulated objects from visual observations. An
articulated object is composed of a set of rigid-body parts that are connected via joints. We assume
joint types are either prismatic or revolute: a prismatic joint is parameterized by a joint axis u? € R?
and a translation offset d; a revolute joint is parameterized by a position p” € R, a rotation axis
u” € R3, and a rotation angle 6. For an object with N moving parts, we assume each to be connected
with its parent via exactly one 1-DoF joint. Therefore, the transformation between each part’s frame
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Figure 2: Overview of our proposed pipeline. Given unstructured multi-view RGB images, we
leverage the pre-trained DUSt3R model [8] to obtain dense 2D-to-3D pointmaps, and use a fine-tuned
2D segmentation model[52] to perform part-level segmentation and project to segmented 3D point
clouds. A learned shape-completion model takes partial point cloud inputs and predicts a dense
occupancy field, which is used for part-level mesh extraction. We fine-tune a large language model
(LLM) [53] that takes mesh information in the form of oriented bounding boxes, and outputs full
code descriptions of the object that can directly be executed in simulation.

and its parent’s frame is uniquely determined by the joint parameters — this observation motivates
our OBB-based formulation described in Sec. 3.2. To obtain visual input of our system, we assume
an object is manipulated such that each of its articulated joints is at a non-zero state, i.e.,d > 0 or
6 > 0, and record a set of RGB (and optionally depth) images of the object. Our system outputs a set
of 3D meshes — each a reconstruction of the object’s parts — and a list of joint types and parameters
represented as code. The meshes and joints can then be used to create the object’s digital twin in
simulation and enable downstream applications.

Fig. 2 provides an overview of our proposed method. Real2Code consists of two main steps:
reconstruction of object parts’ geometry (Sec. 3.1) and joint estimation via LLM code generation
(Sec. 3.2). Between the two steps, the oriented bounding boxes (OBBs) of the object parts serve as an
abstraction layer, enabling the LLM to reason about 3D spatial information and predict accurate joint
parameters. We introduce the two main steps in the following two sections.

3.1 Part Reconstruction

To reconstruct an object’s part-level shape geometry, we propose a 2D-to-3D approach that is category-
agnostic and able to address objects with arbitrary number of parts. First, we fine-tune a SAM model
that generates 2D segmentations from RGB images, and projects them to 3D point clouds. Next, we
train a shape completion model that extracts watertight meshes from the partially-observed point
clouds.

3.1.1 Kinematics-aware Part Segmentation

We leverage a pre-trained 2D segmentation model to first segment object parts based on their kinematic
structure. This design is motivated by the need to 1) generalize to real world data, and 2) scalably
segment arbitrary number of object parts. In contrast to prior works that train 3D segmentation
models with limited synthetic data [5, 9, 54], the SAM [52] model was pre-trained on a much larger
scale dataset and hence generalizes well to in-the-wild real world images. Further, in contrast to prior
works that infer articulation from multiple object states, we leverage SAM’s strong prior to identify
object parts without the need for multi-step interactions.

However, because SAM [52] is originally designed for iterative user prompting, its zero-shot predic-
tions display uncontrollable granularity on articulated objects, i.e.,segmenting unnecessary details
that require additional user input to refine. To address this, we propose to adapt the pre-trained SAM
using the PartNet-Mobility [9, 54] dataset: while keeping the model’s heavy-weight image encoder
frozen, we fine-tune the lightweight prompt-decoder layer of SAM to take an image and one sampled
2D point prompt as input, and predict the corresponding mask that matches the object’s kinematic
structure. More details on the fine-tuning process are reported in appendix A.2.

3.1.2 Test-time Prompting for View-consistent Segmentation.



The point-based segmentation de-
scribed above allows our fine-tuned
SAM to scale easily with the number
of the object parts. However, this for-
mulation also inherently lacks view
consistency, as SAM is unaware of
the object part correspondences across
different camera views. To address Sampled 3D Points
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masks into a view-consistent 3D seg- Figure 3: View-consistent segmentation. Illustration of our
mentation. We discuss two different method for test-time prompting the fine-tuned SAM model. We
input settings based on the availability ﬁrst' sample 3D. points from the fpreground object point 'clouds,
of depth and camera data: 1) Multi- project ea}ch point onto 2D RGB images captured from different
view RGB-D and Camera Input: we camera views, which are used to prompt the model to generate

first coarsely sample 2D points on view-consistent segmentations.

each RGB image and run the SAM

model to obtain the background masks. This allows us to segment the foreground object in the
different views and sample 3D points uniformly on the point cloud. Next, we project each such 3D
point back onto each image, and obtain view-consistent 2D points for SAM prompting. Further,
we rank the model predicted masks based on the confidence and stability scores proposed in [52],
and filter them using non-maximum suppression (NMS) to produce the final 3D segmentation. 2)
Multi-view Unstructured RGB Input. To handle real world settings which often lack high-quality
depth and camera information, we adopt a multi-view stereo reconstruction model to achieve part
segmentation from unstructured, pose-free RGB images. We use the recently proposed DUSt3R[§]
model, which is pre-trained to predict dense 3D point-maps from RGB input images. We then sample
2D points from one RGB image and find each point’s corresponding point in every other RGB images
via nearest-neighbor. More details are described in appendix A.3. This overall procedure of projecting
between 3D to 2D prompting is similar to SA3D [55], which samples on a NeRF[56] field and uses
inverse rendering to effectively prompt SAM in 3D.

Aggregated
Part Point Cloud

3.1.3 Part-level Shape Completion.

Due to frequent self-occlusion in articulated objects, e.g. the inside of a drawer is often not visible,
RGB-D input does not provide full observation of each object part, and subsequently a segmented
point cloud does not recover complete shape geometries. This motivates learning a shape completion
model to obtain watertight meshes. Because part-segmentation is already handled in the previous
step, we here tackle shape completion on the object part level. We build on top of Convolutional
Occupancy Nets [57]: the model architecture consists of a PointNet++[58] point-cloud encoder,
followed by a 3D Unet [59] encoder and a linear MLP decoder that predicts logits for occupancy.
We use the ground-truth part meshes from PartNet-Mobility[9] to generate a dataset of partial point
cloud inputs and occupancy labels. We normalize the occupancy grid using partial OBBs extracted
from the input point cloud to avoid under-fitting the smaller-sized meshes. Marching Cubes [60] is
used to extract the completed part meshes from predicted occupancy. See appendix A.2 for more
details on our shape completion dataset and model training.

3.2 Articulation Prediction via Code Generation

Given a set of segmented object parts, the next step is to predict the articulation structure that connects
the parts. Our approach of using LLM code generation offers several advantages: first, code is a
compact representation for articulation, and when combined with LLM’s ability to predict arbitrary-
length outputs, it scales elegantly with the complexity of an object’s kinematic structure; second,
pre-trained LLMs are equipped with strong priors for both common-sense objects and for generating
syntactically correct code, making them easily adaptable to our task; lastly, the LLM-generated
code can be directly executed in simulation, removing the need for manual cleanup of predicted
joint parameters, which is required by prior work [5]. The following sub-sections first introduce our
formulation of joint parameters w.r.t. OBBs, then discuss our proposed fine-tuning procedure that
adapts a pre-trained LLM to our articulation prediction task.



bboxes={

0:{'center':[-0.28,-0.04,-0.18],'R':[[1.0,0.0,0.0],[0.0,1.0,0.0],(0.0,0.0,1.01], 'extents':[0.91,1.24,0.091},
1:{'center':[-0.13,-0.0,0.19],'R':[[0.7,0.0,0.7],[0.0,1.0,0.0],[0.7,0.0,-0.7]], 'extents':[0.09,1.23,0.87]},
}

model = mjcf.RootElement(model="object')

model.asset.add('mesh', name='link_0', file='link_6.0bj')

model.asset.add('mesh', name='link_1', file='link_1.0bj')

EXtraCt OBBS bodv_root = model.worldbodv.add('bodv'. name='root"')
CodeLlama

root_geom = 0
child_joints = [
dict(box=1,idx=1,type="hinge',edge=[1,1],sign=1),

Select OBB axis & edge body_root.add('geom', type='mesh', name='root_geom', mesh=f'link_{root_geom}')

def add_body_and_joint (parent_body, mesh_id, obb, obb_axis_idx, obb_edge, obb_sign, joint_type
obb_edge = np.insert(np.array(obb_edge), obb_axis_idx, 0)
joint_pos = obb['center'] + obb['R'] @ (obb_edge * obb['extents'] / 2)
obb_axis = obb['R'][:, obb_axis_idx]
joint_axis = np.array(obb_axis) * obb_sign
link_body = parent_body.add('body', name=f'link_{mesh_id}")
link_body.add('geom', type='mesh', name=f'link_{mesh_id}_geom', mesh=f'link_{mesh_id}")
link_body.add('joint', name=f'joint_{mesh_id}', pos=joint_pos, axis=joint_axis, type=joint_type, range=[0, 1])
return link body

; Helper Function,

for joint in child_joints:
. box_id = joint['box']
Compute Joints add_body_and_joint (body_root, box_id, bboxes[box_id], joint['idx'l, joint['edge'l, joint['sign'l, joint['type'l)

Figure 4: Articulation Prediction as Code. We fine-tune a Codellama model that takes in oriented
bounding boxes (OBBs) for segmented parts as input, and generates joint predictions via selecting
OBB rotation axes and edges (model generation is highlighted in green). A helper function is used to
compute the absolute joint axis and position that assembles the object parts in simulation

3.2.1 Oriented Bounding Box as Input Abstraction.

Articulation prediction requires numerical precision at joint parameters (i.e., position and rotation)
and reasoning from raw sensory input, but an LLM pre-trained on text is not naturally adept at these
challenges. We address this by representing the sensory input (object point clouds) as a set of oriented
bounding boxes (OBBs), each representing a segmented and completed object part. Compared to
alternative object representations such as 3D point clouds or 2D images, OBBs strike a balance
between compactness (i.e., do not require an extra feature encoder) and preciseness (i.e., provide
numerical 3D pose information). Further, OBBs provide a reference for joint information. Recall
that the pose of an object part is determined by its 1-DoF joint at a non-zero state — we can hence
recover joint parameters from the observed displacement of object parts. Given an OBB of a part
connected to its parent, the joint axis will be parallel to one of the three axes of the OBB’s rotation
matrix regardless of its joint type. We also observe many common articulated objects consist of
cuboid-like parts (e.g. doors or laptops), hence the position of their corresponding revolute joints
will lie close to one of the OBB edges. Combining these observations, we can re-formulate the joint
axis prediction problem by selecting an OBB rotation axis as the joint axis and, for revolute joints,
choosing an OBB edge parallel to the axis as the joint position. See Fig. 4 for an illustration.

3.2.2 Fine-tuning a Code Generation LLM.

‘We now have an input formulation that effectively converts a regression task (i.e., predicting contin-
uous values) to an easier classification task (i.e., selecting axes and edges) for LLMs. We use the
7B-CodeLlama [53] model for its open-source-availability and built-in priors for code generation.
We construct a fine-tuning dataset using PartNet [9] objects (the same asset used to generate our seg-
mentation and shape completion data above), where the native URDF files are converted into MJCF
code [61] that 1) is in the more compact Python syntax, 2) can be executed in MuJoCo [23] physics
simulation, and 3) has each object’s joints assigned with respect to the corresponding part’s OBB
information. The LLM takes a list of part-OBB information (i.e., center, rotation, and half-lengths) as
input, and outputs joint predictions as a list, where each line contains indices into the axes and edges
of an OBB. More details on LLM fine-tuning can be found in appendix A.2

4 Experiments

We evaluate Real2Code and compare to baseline methods to validate the effectiveness of our approach.
Sec. 4.2 describes experiments on our kinematics-aware 2D image segmentation and 3D shape
completion models. Sec. 4.3 evaluates our fine-tuned code-generation model on articulation prediction.



Category Laptop Box Fridge Furniture Furniture
Number of Parts 2 2 2-3 2-4 5-15
Metric whole part whole part whole part whole part whole part
Real2Code+gtseg | 0.57  2.33 1.54  7.65 051 2.04 146 133 584 168
Ditto 254 2.04 1.73 8282 2.80 46225 225 110586 2.21  4608.08
PARIS 84.29 20631 1535 15873  20.63 129727 6.02 54464  11.44 816386
Real2Code-SegOnly .74 7.19 1146 1052 090 2344 1743 20649 NA N/A
Real2Code (Ours) 044 3.02 131 5.94 0.60 1.28 347 6579 19.70 11858

Table 1: We evaluate surface reconstruction quality by measuring Chamfer-Distance (CD) between
predicted and ground-truth meshes. Results are reported separately for each object category, where
we take average CD of objects’ entire surface reconstruction (‘whole’ column) and of all part wholes
(‘part’ column). Objects from Storage-Furniture and Table are reported under Furniture and divided
based on the number of parts.

Sec. 4.5 contains ablation studies that provide additional insights into our method. In Sec. 4.6, we
test our trained models on real world object data and qualitatively demonstrate the generalization
ability of Real2Code.

4.1 Experiment Setup

Datasets. We use assets from five categories in PartNet-Mobility[9] dataset: Laptop, Box, Refrigera-
tor, Storage-Furniture and Table. The same split of 467 train and 35 test objects are used to construct
our image segmentation, shape completion, and code datasets. We use Blender [62, 63] to render
RGB-D and ground-truth segmentation masks for each object. The RGB-D images and masks are
then used to generate part-level point clouds as partial observations. For code data, we extract OBBs
from part meshes and process each object’s raw URDF file into Python MJCF[61] code, where the
rotation and position of each joint are relative to the OBB of the child part that this joint connects to
the parent part. Refer to appendix A.1 for more details on our dataset construction.

Baselines. We compare Real2Code to the following baseline methods:

e PARIS [6] is the prior state-of-the-art for articulated object reconstruction. It takes multi-view
RGB observations of a two-part articulated object at two different joint states, then optimizes per-part
NeRF-based reconstructions and joint parameters based on motion cues from the two observed states.
We render our test objects at two random joint states, run their proposed optimization procedure with
5 random initialization seeds, and report the average performance. To handle more complex objects,
we modify their method to optimize for more than two parts at once. However, we observe that their
design of optimizing one neural field for each part runs out of memory when the number of joints
exceeds 4.

e Ditto [5] is an end-to-end learning method that takes in a pair of before- and after-interaction
point cloud inputs and predicts implicit part shape reconstructions and joint parameters. Notably,
Ditto assumes only one object part is moved at a time, which requires step-by-step interactions and
observations, making evaluation less efficient. For an object with NV joints, we move one part at a
time, render the corresponding N pairs of point cloud observations, and run their pre-trained model
N times to obtain joint parameter predictions and reconstructions of moved parts.

e GPT-4 [16] is representative of recent state-of-the-art LLMs with strong reasoning and code-
generation capability. We use it as a reference for zero-shot LLM performance on our desired task
without fine-tuning. We prompt it with the same code header used in our LLM fine-tuning dataset,
plus additional instructions on how to format the output, which our fine-tuned LLM does not need.

4.2 Part Segmentation and Reconstruction Experiments

3D Part-level Shape Completion.

Following the prompting procedure described in Sec. 3.1, we first run our fine-tuned SAM on images
from the test set of 35 unseen objects and obtain segmented part point clouds. We observe that,
because we rank and filter the mask predictions (i.e., prioritize high predicted confidence score and
stability score), the low-quality masks have less impact on the final segmented point-cloud after



2 Parts (15) 3 Parts (9) 4-5 Parts (6) 6-15 Parts (7)
rot] pos| typef| rot] pos| typef| rot] pos| typef| rot] pos| typet

Real2Code+gBB | 0.0  0.07 093 | 0.0 0.04 1.00| 00 004 1.00]| 11.6 0.03 094

Ditto 40.04 4.04 0.57 | 3557 247 0.70 | 49.77 320 043 | 63.06 4.16 0.30
PARIS 48.44 2.67 051 | 3235 3.63 0.84 | 5597 2.14 043 | NNA N/A N/A
GPT4 573 026 0.73 | 10.0 0.08 0.61 | 450 0.21 051 300 0.05 0.71

Real2Code (Ours) | 7.5 0.08 0.80 | 0.0 0.04 0.89 | 0.63 0.07 097 | 302 0.05 0.89

Table 2: Joint prediction results from Real2Code and baseline methods, grouped by the number
of moving parts in each object. We remark that Real2Code consistently outperforms baseline
methods across objects with different kinematic structures; on objects with 4 or more moving parts,
Real2Code predicts joints accurately whereas baseline methods fail.

the projection step. Next, we use the segmented part point clouds as input to evaluate our learned
shape completion model, and use Marching Cubes [60] on the occupancy predictions to extract
meshes. Following prior work [48, 5, 6], we uniformly sample 10, 000 points on the extracted mesh
surface and report the average Chamfer Distance between the extracted and ground-truth part meshes
in Tab. 1. Because the predictions are semantics-agnostic, we generate permutations of the set of
predicted meshes and take the permutation that results in lowest error; the same logic is used for joint
prediction results.

We remark on the performance difference between Real2Code and baseline methods: the joint
optimization of shapes and joints in PARIS [6] suffers from a complex loss landscape and produces
unsatisfactory reconstructions, especially when the number of parts increases. Ditto [S] performs well
on training categories (i.e., Laptop) but does not generalize well to unseen categories. In contrast,
we factorize the problem into segmentation and shape completion, aggregate 2D segmentation from
fine-tuned SAM and perform shape completion in a per-part fashion leads to better results.

Due to the partial observation and noise in the segmentation masks, simply extracting meshes from
the grouped point clouds also results in subpar reconstruction results (see column ‘Real2Code-
SegOnly’, where ‘N/A’ indicates the mesh extractions are too noisy to match with GT mesh). This
further validates the need for our shape completion model. Overall, Real2Code achieves the best
reconstruction quality and elegantly scales to a larger number of parts.

Kinematics-aware 2D Image Segmentation.

To demonstrate the effectiveness of SAM fine-tuning, we evaluate the fine-tuned model on unseen
object images by uniformly sampling a grid of 32 x 32 query points and compare the predicted
segmentation with ground-truth masks. We use NMS filtering on the predicted masks, then by sorting
with the model’s predicted confidence score to take the top-K masks that fill the image to more
than 95% total pixels. We observe a significant improvement over zero-shot SAM: object parts are
segmented much more closely following their kinematics structure, obtaining a 92% mean IoU score
on the final used masks and 84% match rate to ground-truth masks.

4.3 Articulation Prediction Experiments

After completing part-level reconstruction on the test objects, we extract OBBs for each object
part and compose a text-prompt for our fine-tuned CodeL.lama model. We parse the model’s code
generation and append it with code header lines (e.g. import packages) such that the post-processed
code can be directly executed to produce object simulation. We then evaluate the accuracy of
articulation prediction by measuring the error of joint type, joint axis, and (for revolute joints only)
joint position predictions.

As shown in Tab. 2, we outperform all baseline methods by a large margin. The effectiveness of
our OBB abstraction is further accentuated by Real2Code+gtBB, where we feed oracle OBB to the
code generation module and achieve highly accurate predictions even on unseen objects with a large
number of parts.

4.4 Qualitative Results

For qualitative results, we select objects with a range of varying kinematic complexities, from a two-
part laptop to a ten-part multi-drawer table. We visualize the final reconstructed objects from ours and
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Figure 5: Qualitative results that compare Real2Code to baseline methods. We show results from
objects with a range of varying kinematic complexities, from a two-part laptop to a ten-part multi-
drawer table. Whereas all methods can handle the simpler laptop articulation, baseline methods
struggle as the number of object parts increases, and Real2Code performs reconstruction much more
accurately. PARIS runs out of memory and fails to run on the ten-part table (‘N/A’).

baselines methods in Fig. 5. Whereas all methods can handle the simpler laptop articulation, baseline
methods struggle as the number of object part increases, and Real2Code performs reconstruction
much more accurately.

4.5 Ablation Studies

To further validate our formulation of using OBB as reference for articulation prediction, we provide
additional ablation experiments that use alternative input and output representation:

o Regression on Joint Parameters. Instead of selecting OBB rotation axis and edge, we fine-tune
two more Codel.lama models to take the same input but outputs continuous numerical values for
joint parameters: the first model directly predicts 3 values for each joint axis and 3 for every joint
position (Sec. 4.5 row ‘OBB Abs.’); the second model predicts joint axis the same way as Real2Code,
but predicts joint position as a relative position to the OBB’s center (Sec. 4.5 column ‘OBB Rel.").

e Provide LLM with Visual Inputs. To verify whether OBBs provide sufficient spatial information,
we fine-tuned another model with both RGB and OBB inputs. We adopt the OpenFlamingo [64, 65]
approach for interleaving image embeddings with the CodeLLlama model weights, and uses the same
pre-trained ViT [66] weights for image encoder.



2 Parts (15) 3 Parts (9) 4-5 Parts (6) 6-15 Parts (6)

Inp. Out | rot] pos| typet| rotl pos] typef| rot] pos| typel| rotl pos| typet
OBB Abs. | 7.5 0.06 092 | 0.0 0.03 1.0 00 06 083 |00 07 0.73
OBB Rot. | 0.0 0.18 0.73 | 0.3 0.23 1.00 | 0.9 0.19 0.83 | 59 0.06 0.59
+RGB CIs. | 0.0 006 080 | 50 0.03 1.0 0.0 003 089 | 0.0 0.02 0.67

OBB Cls. | 0.0 0.07 093 | 0.0 004 1.0 |00 004 1.00 | 116 0.03 0.94

Table 3: Joint prediction results from ablation experiments on Real2Code. Using the ‘Regress’ output
formulation, the LLM is still able to output reasonable values for two or three part objects, but
generates much less accurate joint positions when the number of articulated parts increase. Adding
additional RGB image input yields no clear improvements from the model, which suggests the OBB
input alone can provide sufficient information for articulation.

Results from the ablation experiments are reported in Tab. 3. We make the following remarks:

Regression formulation predicts less accurate joint positions. Both predicting absolute joint
positions (column ‘OBB Abs.”) and predicting relative position from OBB center (column ‘OBB
Rot.”) yield a higher prediction error than selecting OBB edges as joint position. In contrary, the
rotation error is still on a reasonable scale: we found this is due to the model has learned to copy
the correct axis column from the OBB rotation matrices contained in the input prompt. This further
validates the effectiveness of using OBB as spatial representation.

RGB input does not yield significant improvement. We draw this conclusion from comparing
row ‘+RGB Rel.” and ‘OBB Rel.’. This suggests the OBB input provides sufficient information for
articulation prediction task.

4.6 Experiments on Real World Objects

To validate the generalization ability
of Real2Code, we gather a set of in-  prompt with OBB Input

bboxes={

the—Wl]d artiCu]ated ObjeCtS and CO]— 0:{'center':[-0.28,-0.04,-0.18], 'R': [[1.0,0.0,0.0],(0.6,1.0,0.0],[0.0,0.0,1.0]], 'extents':[0.91,1.24,0.09]},

1:{'center':[-0.13,-0.0,0.19],'R':[[0.7,0.0,0.7],(0.0,1.0,0.0],[0.7,0.0,-0.7]], 'extents':[0.09,1.23,0.87]},

leCt multi_VieW RGB data as inputs. n)vo«ex = mjcf.RootElement (model="'object ')

We run Real2Code with DUS®R([8]. oot e s el

Due to the aChieVe reconstruction b'ody,mo\: = m(?del.woxmbodyvand('Douy', name="'root')

.. . Different Joint Output Types

from multi-view pose-free RGB im-  zoot_seon - o ,
. child_joints = [ Absolute Pos. + Axis

ages. Due to the lack of quantita- [aict(box=1, type="hinge",pos=[0.2, 0.0,-0.14],axis=[0.9,1.0,0.0]), |

tive metrics, we show qualitative re-  [sic(ons, o, type- ninge’ caze-(0.28, 0,371 sisn1) | o) p”

sults in Flg 7 that Real2Code gener- dict(box=1,idx=1, type='hinge',edge=[1,-1],sign=1),

alizes well to in-the-wild objects and '

produces good quality reconstructions

from RGB-only inputs. However, al-

though the learned DUSt3R[8] model

Additional RGB Input

Figure 6: Qualitative comparison of the code output format in our
ablation experiments. Each prediction format occupies one line. In
performs well on overall shape and ‘Absolute Pos. + Axis’, the LLM outputs continuous position and
. . axis values; in ‘Relative Pos. + OBB Axis’, the LLM outputs one
?Xterlor surface areas of the? objects, index into the OBB’s rotation axis, and a 2D joint position relative
it predicts less accurate point maps  the selected axis; Real2Code uses ‘OBB Edge + Axis*, where
at areas inside the drawers, which is LM outputs index to rotation axes in an OBB, and two values
likely due to the lack of similar data to indicate the OBB edge. Bottom right of the figure shows one
in their training dataset. As a result, example of additional RGB image input to the LLM.
the segmented part point clouds dis-
play noises (second row in Fig. 7), which leads too lower quality mesh extraction from the shape
completion model. See appendix A.3 for more details on our evaluation setup.

5 Limitations

In its current form, Real2Code still has a few limitations that point to interesting directions for future
work: 1) Real2Code only considers single object with many parts, extending it to multiple object
scenes would require additional object detection and preprocessing. 2) Real2Code only predicts joint
parameters in terms of their type, position, and axis. To infer other joint parameters, such as joint
range and friction world require additional multi-step interactions and observations. 3) We found that
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Figure 7: We evaluate Real2Code on real world objects using RGB data. For each object, we use
10 pose-free RGB images captured in-the-wild and run Real2Code with DUSt3R[8]. We show one
example RGB input (1st row), segmented point clouds (2nd row) and full reconstruction (3rd row)
for each object.

the articulation prediction accuracy is sensitive to failures in the first 2D image segmentation module,
i.e., OBBs from wrong segmentations directly obstruct the LLM reasoning of object structures; this
can be improved by providing human corrective feedback as proposed in [52], i.e., a user provides
additional points and prompt the model to adjust its mask predictions.

6 Conclusion

We present Real2Code, a novel method for reconstructing articulated objects that leverages code
generation capability in pre-trained LLMs. We empirically show that Real2Code achieves a new state-
of-the-art in both geometry reconstruction and articulation prediction and can successfully reconstruct
objects with complex kinematic structures with an arbitrary number of parts, whereas prior methods
fail. By reliably translating visual observation to simulatable models, we hope Real2Code unlocks
new opportunities in robotics and mixed reality applications.
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A Appendix

A.1 Dataset Preparation Details

Base: PartNet-Mobility Object Assets. We use the same set of 468 training and 41 testing objects
from 4 categories in PartNet-Mobility [9]. The raw dataset contains a rich collection of object meshes,
textures, and URDF files that contain articulation information. We further process the data as follows:

RGB-D Image Rendering We render each object individually using Blender [62, 63] for 5 loops.
For each rendering loop, the object is centered at the scene origin and the rendering camera poses are
randomly sampled; we render 12 RGB-D images and all the segmentation masks corresponding to
the all the object parts. During rendering, we also randomly sample joint states in the object such that
all its doors or drawers are partially open — we make the assumption that all the parts our train and
test objects are partially open to remove ambiguity and provide more observation view into object
insides.

Mesh Pre-processing. The original PartNet-Mobility assets contain highly fine-grained meshes,
i.e.,one drawer part is comprised of more than ten panel or bar-shaped meshes. To prepare data for
part-level shape completion, we group these fine-grained meshes such that meshes from the same
object part are merged into one single mesh. Mesh textures are ignored during grouping, resulting
in grouped texture-less part-level meshes. The RGB-D images and masks are then used to generate
part-level point clouds as partial observations. We use Kaolin [67] to sample label occupancy values
from object part meshes.

Code-Generation Data. To prepare data for fine-tuning code-generation LLMs, we first use the
rendered RGB-D images and segmentation masks to obtain ground-truth part-level point-clouds,
which are used to extract oriented-bounding boxes (OBBs) for each part. Next, we take the raw object
URDF files and generate a shorter copy with our grouped part meshes. Because the raw URDF/ XML
syntax contain long unnecessary details, we manually translate them into Python-like MJCF [61]
code, which are a lot more compact and familiar to the pre-trained LLMs. Finally, for each of the 5
rendering loops per object, we re-write the object code again to replace the absolute joint information
with the relative position and rotation of each joint with respect to the extracted OBBs. We further
augment the data by randomly rotating the OBBs along the z-axis, 5 times per object. This results in
468 x 5 x 5 = 11700 training samples for LLM fine-tuning.

A.2 Model Training Details

SAM Fine-tuning. The fine-tuning data consists of 28,020 RGB images, and each image corresponds
to a set of binary segmentation masks, one per each object part plus a background mask. We fine-tune
only the decoder layers of pre-trained SAM[52] on this custom dataset while keeping the rest of the
model weights frozen. Each fine-tuning batch contains 24 RGB images; for every RGB image in
the batch, we sample 16 prompt points uniformly across each image’s ground-truth masks, i.e.,only
sample points from the positive mask area. Hence each training batch of size B = 24 contains 24
images and 24 x 16 pairs of prompt point and ground-truth masks. Following the original paper [52],
we update the model with a weighted average of Focal Loss [68], Dice Loss [69] and MSE IoU
prediction loss.

Inputimage  Zero-shot SAM  Fine-tuned SAM Fine-tuning Dataset

Figure 8: Kinematics-aware SAM Fine-tuning. Given an RGB input image, the pre-trained zero-
shot SAM[52] produces unnecessarily detailed segmentation masks (column Zero-shot SAM’. We
construct a dataset of objects’” RGB images and kinematics-aligned ground-truth masks (column
‘Fine-tuning Dataset’). The model is fine-tuned to take one image and one sampled 2D query point
and predict the corresponding part mask. We compare the output of the model after fine-tuning on
the same image (column ‘Fine-tuned SAM’).
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Globally Aligned Dense Point-maps from DUSt3R View-consistent Prompt Points

Figure 9: 3D part segmentation from Pose-free RGB images. Illustration of how DUSt3R[8] is
used to achieve 3D part segmentation from unstructured RGB images. For each object, we take
around 10 pose-free RGB images as input to the pre-trained DUSt3R[8] model, which outputs a set
of globally-aligned 2D-to-3D dense point-maps, i.e.,every 2D pixel on each image is matched to a
point in 3D. This correspondence enables cross-view pixel matching via finding nearest-neighbor in
3D space. We can therefore sample view-consistent 2D points for prompting our fine-tuned SAM
model, and the resulting segmented masks are grouped into 3D part segmentation.

Training Shape Completion Model. We use 6,260 pairs of partial point clouds and size 963
occupancy grids and train our PointNet++ [58] based occupancy prediction model from scratch. For a
training batch of size B, we sample B point clouds of size 2048, and sample B x 12, 000 query points
on the label occupancy grids. Notably, because object parts are of different scales, we normalize
the occupancy grid using partial OBBs extracted from the input point cloud to avoid under-fitting
the smaller-sized meshes. When sampling training query points, we found sampling 25% occupied
works the best for balancing between occupied areas and empty space, and we add a random shifting
step on the occupied grids to improve model accuracy on the near-surface areas. At test time, we
query on a 962 grid and use Marching Cubes [60] to extract the completed part meshes.

Fine-tuning Code Generation LLM. We use the pre-trained Codellama[53]-7B model on our code
dataset, which contains code samples generated from PartNet[9] objects as described above. We
use LoRA [70], a low-rank weight fine-tuning technique, to fine-tune the model with the next-token
prediction loss. For training efficiency, we compress the training sequences by removing unnecessary
empty character spaces and overhead code lines (such as package import statements). The resulting
training set contains under 800 tokens per sequence for objects with up to 7 parts (i.e., 6 articulated
joints). Despite the short training data, we found the model to be able to extrapolate to unseen test set
objects with up to 15 parts.

A.3 Details on Real World Evaluations

Data Collection. We collect data from a set of common furniture objects, including cabinets, laptops,
night stands, dressers, ranging from 1 to 3 moving parts. Each object is scanned using a LiDAR-
equipped iPhone camera and 3dScanner App [71] to capture a set of RGB images from the front 180°
view. We then select 10 RGB images per object, and crop and resize them into 512 x 512 images
used by SAM [52] and DUSt3R[8].

Part Segmentation from Unstructured RGB images. Fig. 9 visualizes the DUSt3R model output
on an example object in: notably, the model predicts dense point-maps on the object’s surface area
that can be globally-aligned into a object point cloud; but the 3D points are less accurate on the
partially occluded areas, such as the inside of the drawer. This is likely due to these areas are less
common in the model’s pre-training dataset. Also notice that, because we sample each 2D point from
one RGB image first and uses nearest neighbor in the predicted 3D point-map to find its matching 2D
point in another image, it might find a wrong match if the point is occluded and not visible in the
other image. We address this by manually setting a distance threshold, and decide a match cannot be
found if its 3D point’s distance to the nearest neighbor is above set threshold.
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Gameboy

Figure 10: We demonstrate that Real2Code can be used for labeling and animating real world objects.
We evaluate Real2Code on scanned real objects from Polycam[72] and export the resulting mesh and
joints in MuJoCo [23]. Blue arrows indicate the simulated joint axis and position; mesh corresponding
to the moving part is colored in green.

B Additional Results on Animating Scanned Real World Objects

In addition to object reconstruction from raw RGB images, we show Real2Code can also be used
to animate scanned objects. We use real world scanned object meshes uploaded by users of the
Polycam [72] App, and use our Blender rendering pipeline to render RGB-D images. We evaluate our
image segmentation, shape completion, and code generation models on these images, and demonstrate
only the qualitative results due to the lack of ground-truth data. We execute the final model output
code to show the objects can be simulated in MuJoCo[23]. See Fig. 10 for visualizations. These
real world objects feature complex visual appearance — outside our SAM fine-tuning distribution —,
but Real2Code is still able to successfully segment parts and predict reasonable joint positions and
rotations.
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