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Abstract

In this paper, we introduce a novel analysis of neural networks based on geometric (Cli!ord)
algebra and convex optimization. We show that optimal weights of deep ReLU neural
networks are given by the wedge product of training samples when trained with standard
regularized loss. Furthermore, the training problem reduces to convex optimization over
wedge product features, which encode the geometric structure of the training dataset. This
structure is given in terms of signed volumes of triangles and parallelotopes generated by
data vectors. The convex problem finds a small subset of samples via ω1 regularization to
discover only relevant wedge product features. Our analysis provides a novel perspective on
the inner workings of deep neural networks and sheds light on the role of the hidden layers.

1 Introduction

While there has been a lot of progress in developing deep neural networks (DNNs) to solve practical machine
learning problems (Krizhevsky et al., 2012; LeCun et al., 2015; OpenAI, 2023), the inner workings of neural
networks is not well understood. A foundational theory for understanding how neural networks work is still
lacking despite extensive research over several decades. In this paper, we provide a novel analysis of neural
networks based on geometric algebra and convex optimization. We show that weights of deep ReLU neural
networks learn the wedge product of a subset of training samples when trained by minimizing standard
regularized loss functions. Furthermore, the training problem for two-layer and three-layer networks reduces
to convex optimization over wedge product features, which encode the geometric structure of the training
dataset. This structure is given in terms of signed volumes of triangles and parallelotopes generated by data
vectors. By the addition of an additional ReLU layer, the wedge products are iterated to yield a richer
discrete dictionary of wedge features. Our analysis provides a novel perspective on the inner workings of
deep neural networks and sheds light on the role of the hidden layers.

1.1 Prior work

The quest to understand the internal workings of neural networks (NNs) has led to numerous theoretical and
empirical studies over the years. A striking discovery is the phenomenon of "neural collapse," observed when
the representations of individual classes in the penultimate layer of a deep neural network tend to a point
of near-indistinguishability (Papyan et al., 2020). Despite this insightful finding, the underlying mechanism
that enables this collapse is yet to be fully understood. Linearizations and infinite-width approximations
have been proposed to explain the inner workings of neural networks (Jacot et al., 2018; Chizat et al.,
2019; Radhakrishnan et al., 2023). However, these approaches often simplify the rich non-linear interactions
inherent in deep networks, potentially missing out on the full spectrum of dynamics and behaviors exhibited
during training and inference.

Infinite dimensional convex neural networks were introduced in Bengio et al. (2005), o!ering insights into
their structure. Following work analyzed optimization and approximation properties of infinite convex neural
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Figure 1: An illustration of the geometric interpretation of optimal ReLU neurons. The break-
lines/breakpoints pass through a subset of special training samples.

networks (Bach, 2017). Although these works advanced the understanding of convexity in infinite dimensional
NNs, they also highlight the computational challenges inherent in training infinite dimensional models,
including solving a finite dimensional non-convex problems to add a single neuron (Bach, 2017). On the
other hand, it has been noted that the activation patterns of deep ReLU networks exhibit a structured yet
poorly understood simplicity. The work Hanin and Rolnick (2019) highlighted that the actual number of
activation regions a ReLU network learns in practice is significantly smaller than the theoretical maximum.

Previous studies (Fisher and Jerome, 1975; Mammen and Van De Geer, 1997) have investigated splines in
relation to ω1 extremal problems, demonstrating the adaptability of spline models to local data characteristics.
More recent work (Balestriero et al., 2018) connected deep networks to spline theory, showing that many deep
learning architectures could be interpreted as max-a"ne spline operators. Approximation properties of ReLU
and squared ReLU networks with regularization were studied in Klusowski and Barron (2018). The authors
in Savarese et al. (2019) considered infinitely wide univariate ReLU networks and showed that the minimum
squared ω2 norm fit is given by a linear spline interpolation. Another line of work (Parhi and Nowak, 2021;
2022) developed a variational framework to analyze functions learned by deep ReLU networks, revealing
that these functions belong to a space similar to classical bounded variation-type spaces. In a similar spirit,
connections to kernel Banach spaces via representer theorems were developed in Bartolucci et al. (2023).
The work Unser (2019) introduced a general representer theorem that connects deep learning with splines
and sparsity. In contrast, our results provide an independent and novel perspective on the optimal weights
of a deep neural networks through geometric algebra, and may shed light into the spline theory of deep
networks. In particular, the relation between linear splines and one-dimensional ReLU networks discovered
in Savarese et al. (2019) is generalized to arbitrary dimension and depth in our work. The key ingredient in
our analysis is the use of wedge products, which are not present in any work analyzing neural networks to
the best of our knowledge.

The relationship between neural networks and geometric structures has been another area of research focus.
Convex optimization and convex geometry viewpoint of neural networks has been extensively studied in
recent work (Pilanci and Ergen, 2020; Ergen and Pilanci, 2021a; Bartan and Pilanci, 2021a; Ergen and
Pilanci, 2021b;c; Wang and Pilanci, 2022; Wang et al., 2021; Ergen et al., 2022a; Lacotte and Pilanci, 2020;
Bartan and Pilanci, 2021b). However, previous works have focused mostly on computational aspects of
convex reformulations. This work provides an entirely new set of convex reformulations, which are di!erent
from the ones in the literature. Two main advantages of our approach are that our results hold for arbitrary
depth and dimension, and that they provide a geometric interpretation and novel closed-form formulas,
which can be used to polish any existing deep neural network.

1.2 Summary of results

The work in this paper diverges from other approaches by using Cli!ord’s geometric algebra and convex
analysis to characterize the structure of optimal neural network weights. We show that the optimal weights
for deep ReLU neural networks can be found via the closed-form formula, xj1 ↑. . .↑xjk , known as a k-blade in
geometric algebra, with ↑ signifying the wedge product. For each individual neuron, this expression involves
a special subset of training samples indexed by (j1, . . . , jk), which may vary across neurons. Surprisingly,
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the entire network training procedure can be reinterpreted as a purely discrete problem that identifies this
unique subset for every neuron. Moreover, we show that this problem can be cast as a Lasso variable selection
procedure over wedge product features, algebraically encoding the geometric structure of the training dataset.

The Unexpected Neuron Functionality

The conventional belief suggests that artificial neurons optimize their response by aligning with the relevant
input samples (Carter et al., 2019), a notion inspired by the direction-sensitive neurons observed within the
visual cortex (Hubel and Wiesel, 1968). However, this interpretation hits a dead end in large DNNs, with
numerous neurons responding to unrelated features, making it nearly impossible to understand the specific
role of individual neurons (O’Mahony et al., 2023). Contrary to this conventional wisdom, our findings reveal
that ReLU neurons are, in fact, orthogonal to a specific set of data points, due to the properties of the wedge
product. As a consequence, these neurons yield a null output for this distinct subset of training samples,
diverging completely from the anticipated alignment. This outcome underscores a nuanced understanding;
rather than merely aligning with input samples, the neurons assess the oriented distance relative to the
a"ne hull encapsulated by the special subset of training samples. This concept is visually explained in
Figure 1 (a-b), where ReLU activation in 1D and 2D is interpreted as an oriented distance function. The
optimal breaklines of the ReLU neurons, i.e., {x : wTx + b = 0}, intersect with a select group of special
training samples, expressed using a simple equation involving wedge products, leading to a zero output
from the neurons for these instances, as illustrated in Figure 1(c). This result challenges the traditional
interpretations of the role of hidden layers in DNNs, and provides a fresh perspective on the inner workings
of deep neural networks. We show for the first time that geometric algebra provides the right set of concepts
and tools to work with such oriented distances, enabling the transformation of the problem into a simple
convex formulation.

Decoding DNNs with Geometric Algebra

Our results show that within a deep neural network, when an input sample x is multiplied with a trained
neuron, it yields the product xT ε (xj1 ↑ . . . ↑ xjk). Leveraging geometric algebra, this product can be
shown to be equal to the signed distance between x and the linear span of the point set xj1 , . . . , xjk , scaled
by the length of the neuron. This allows the neurons to measure the oriented distance between the input
sample and the a"ne hull of the special subset of samples (see Figure 1 for an illustration). Rectified
Linear Unit (ReLU) activations transform negative distances, representing inverse orientations, to zero.
When this operation is extended across a collection of neurons within a layer, the layer’s output e!ectively
translates the input sample into a coordinate system defined by the a"ne hulls of a special subset of training
samples. Consequently, each layer is fundamentally tied solely to a specific subset of the training data. This
subset can be identified by examining the weights of a trained network. Furthermore, with access to these
training samples, the entirety of the network weights can be reconstructed using the wedge product formula.
Moreover, when this operation is repeated through additional ReLU layers, our analysis reveals a geometric
regularity within the space partitioning of the network, highlighting a consistent pattern of translations and
interactions with dual vectors (see Figure 7). This geometric elucidation sheds fresh light on the mysterious
roles played by the hidden layers in DNNs.

1.3 Notation

We use lower-case letters for vectors and upper-case letters for matrices. The notation [n] represents integers
from 1 to n. We use a multi-index notation to simplify indexing matrices and tensors. Specifically, j =
(j1, ..., jk) is a multi-index and

∑
j denotes the summation operator over all indices included in the multi-

index j, i.e.,
∑

j1
· · ·

∑
jk
. Given a matrix K ↓ Rn→p, an ordinary index i ↓ [n], and a multi-index j =

(j1, ..., jk) where ji ↓ [di] ↔i ↓ [k], the notation Kij denotes the (i, v(j1, ..., jk))-th entry of this matrix,
where v represents the function that maps indices (j1, ..., jk) to a one-dimensional index according to a
column-major ordering. Formally, we can define v(j1, ..., fd) := (j1 → 1) + (j2 → 1)d1 + (j3 → 1)d1d2 + ... +
(jn → 1)d1d2...dk↑1. We allow the use of multi-index and ordinary indices together, e.g.,

∑
j ajvj1 · · · vjd =∑

j1,···jd a(j1,··· ,jd)vj1 · · · vjd . The notation Ki· denotes the i-th row of K. The notation K·j denotes the j-th
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column of K. The p-norm of a d-dimensional vector w for some p ↓ (0,↗) is represented by ↘w↘p, and it is
defined as ↘w↘p ↭ (

∑d
i=1 |wi|p)1/p. In addition, we use the notation ↘w↘0 to denote the number of non-zero

entries of w and ↘w↘↓ to denote the maximum absolute value of the entries of w. We use the notation Bd
p for

the unit p-norm ball in Rd given by {w ↓ Rd : ↘w↘p ≃ 1}. The notation dist(x,Y) is used for the minimum
Euclidean distance between a vector x ↓ Rd and a subset Y ⇐ Rd. Vol(C) denotes d-volume of a subset
C ⇐ Rd. The notation (·)+ is used the positive part of a real number. When applied to a scalar multiple of
a pseudoscalar in a geometric algebra Gd such as ϑI ↓ Gd, where I2 = ±1, the notation (ϑI)+ = (ϑ)+ ↓ R
represents the positive part of the scalar component of I. We use the notation Vol+(·) = (Vol(·))+ to
denote the positive part of signed volumes. We extend this notation to other functions, e.g., det+(·) denotes
the positive part of the determinant, and dist+(·, ·) denotes the positive part of the Euclidean distance.
diam(S) denotes the Euclidean diameter of a subset S ⇐ Rd. Span(S) and A!(S) denote the linear span
and a"ne hull of a set of vectors S respectively. We overload scalar functions to apply to vectors and
matrices element-wise. For instance (Xw)+ denotes the ReLU activation applied to each entry of Xw. We
use ↫ to denote the inequality up to a constant factor.

2 Setting and Methodology

2.1 Preliminaries

Consider a deep neural network

f(x) = ϖ(W (L) · · ·ϖ(W (1)x+ b(1)) · · ·+ b(L)), (1)

where ϖ : R ⇒ R is a non-linear activation function, W (1), . . . ,W (L) are trainable weight matrices,
b(1), ..., b(L) are trainable bias vectors and x ↓ Rd is the input. The activation function ϖ(·) operates on
each element individually.

Training two-layer ReLU networks

We will begin by examining the regularized training objective for a two-layer neural network with ReLU
activation function and m hidden neurons.

p↔ ↭ min
W (1),W (2), b(1), b(2)

ω
( m∑

j=1
ϖ(XW (1)

j + 1nb(1)j )W (2)
j + b(1), y

)
+ ϱ

m∑

j=1
↘W (1)

j ↘2p + ↘W (2)
j ↘2p, (2)

where X ↓ Rn→d is the training data matrix, W (1) ↓ Rd→m, W (2) ↓ Rm→c and b(1) ↓ Rm, b(2) ↓ R are
trainable weights, ω(·, y) is a convex loss function, y ↓ Rn is a vector containing the training labels, and
ϱ > 0 is the regularization parameter. Here we use the p-norm in the regularization of the weights. Initially,
we will assume an output dimension of c = 1, and we will extend this to arbitrary values of c. Typical
loss functions used in practice include squared loss, logistic loss, cross-entropy loss and hinge loss, which are
convex functions.

When p = 2, the objective (2) reduces to the standard weight decay regularized NN problem

p↔ = min
ω, b

ω
(
fω,b(X), y

)
+ ϱ↘ς↘22. (3)

Here, ς is a vector containing the weights W1 and W2 in vectorized form and

fω, b(X) ↭
m∑

j=1
ϖ(XW (1)

j + 1nb(1)j )W (2)
j + 1nb(2), (4)

where 1n is a vector of ones of length n. When b is set to zero, we refer to the neurons in the first layer
as the bias-free neurons. When b is not set to zero, we refer to the neurons in the first layer as the biased
neurons. Note that the bias terms are excluded from the regularization.
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Figure 2: Wedge product of two-dimensional vectors.

Training deep ReLU networks

We will extend our analysis by also considering the objective in (3) using the deeper network model show
in (1). It will be shown by a simple induction that the structural results for two-layer networks applies to
blocks of layers in arbitrarily deep ReLU networks.

Augmented data matrix

In order to simplify our expressions for the case of p = 1, we augment the set of n training data vectors of
dimension d by including d additional vectors from the standard basis of Rd and let ñ = n+ d. Specifically,
we define the augmented data samples as {xi}n+d

i=1 = {xi}ni=1 ⇑{ei}di=1, where xi ↓ Rd represents the original
training data points for 1 ≃ i ≃ n and ei is the i-th standard basis vector in Rd for i ⇓ n. We define
X̃ = [x1, · · · , xn+d]T .

2.2 Geometric Algebra

Cli!ord’s Geometric Algebra (GA) is a mathematical framework that extends the classical vector and linear
algebra and provides a unified language for expressing geometric constructions and ideas (Artin, 2016). GA
has found applications in classical and relativistic physics, quantum mechanics, electromagnetics, computer
graphics, robotics and numerous other fields (Doran and Lasenby, 2003; Dorst et al., 2012). GA enables
encoding geometric transformations in a form that is highly intuitive and convenient. More importantly, GA
unifies several mathematical concepts, including complex numbers, quaternions, and tensors and provides a
powerful toolset.

We consider GA over a d-dimensional Euclidean space, denoted as Gd. The fundamental object in Gd is the
multivector, M = ⇔M↖0 + ⇔M↖1 + . . .+ ⇔M↖d, which is a sum of vectors, bivectors, trivectors, and so forth.
Here, ⇔M↖k denotes the k-vector part of M . For instance, in the two-dimensional space G2, a multivector
can be written as M = a + v + B, where a is a scalar, v is a vector, and B is a bivector. In this case, the
basis elements are not just the canonical vectors e1, e2 but also the grade-2 element e1e2.

A key operation in GA is the geometric product, denoted by juxtaposition of operands: ab. For vectors a
and b, the geometric product can be expressed as ab = a · b+ a ↑ b, where · denotes the dot product and ↑
denotes the wedge (or outer) product.

The dot product a · b is a scalar representing the projection of a onto b. The wedge product a ↑ b is a
bivector representing the oriented area spanned by a and b. In the geometric algebra Gd, higher-grade
entities (trivectors, 4-vectors, etc.) can be constructed by taking the wedge product of a vector with a
bivector, a trivector, and so on. A k-blade is a k-vector that can be expressed as the wedge product of k
vectors. For example, the bivector a ↑ b is a 2-blade.

Figure 2 shows two important properties of the wedge product in R2:

1. Wedge product of two vectors represents the signed area of the paralleogram spanned by the two vectors.
In the left figure, a↑ b is represented by the blue parallelogram. When a, b are two-dimensional vectors, the
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Figure 3: Wedge product representation of optimal neural networks in R3.

magnitude of a ↑ b is equal to this area and is given by
∣∣∣ det

[
a1 b1
a2 b2

] ∣∣∣ = |a1b2 → b1a2|. The sign of the area

is determined by the orientation of the vectors: the area is positive when a can be rotated counter-clockwise
to b and negative otherwise.

2. The wedge product is anti-commutative: In the right figure, b↑a is represented by the red parallelogram.
It has the same area as a↑ b = →b↑ a, but an opposite orientation. As a result, we have a↑ a = →a↑ a = 0.

By considering the half of the parallelogram, the area of the triangle in R2 formed by 0, a and b shown by
the dashed line in Figure 2 is given by the magnitude of 1

2a ↑ b. The signed area of a generic triangle in R2

formed by three arbitrary vectors a, b and c is given by

1
2(a → c) ↑ (b → c) = 1

2
(
a ↑ b → a ↑ c → c ↑ b+ c ↑ c

)
= 1

2
(
a ↑ b+ b ↑ c+ c ↑ a

)
,

which is a consequence of the distributive property of the wedge product. Therefore, the signed area of
the triangle is half the sum of the wedge products for each adjacent pair in the counter-clockwise sequence
a ⇒ b ⇒ c ⇒ a encircling the triangle. In higher dimensions, the scalar part of the wedge product represents
signed the volume of a parallelotope spanned by the vectors (see Figure 3).

The metric signature in Gd over the Euclidean space is characterized by all positive signs, indicating that
all unit basis vectors are mutually orthogonal and have unit Euclidean norm. Let us call the standard
(Kronecker) basis in d-dimensional Euclidean space e1, . . . , ed, which satisfies e2i = 1↔i and eiej = →ejei ↔i ↙=
j. The wedge product I ↭ e1 ↑ · · · ↑ ed = e1 . . . ed represents the highest grade element and is defined to be
the unit pseudoscalar. The inverse of I is defined as I↑1 = ed . . . e1, and satisfies I↑1I = 1. Squaring I, we
obtain I2 = (e1e2)2 = e1e2e1e2 = →1, analogous to the unit imaginary scalar in complex numbers, which is
a subalgebra of G2.

The ω2 norm of a multivector is defined as the square root of the sum of the squares of the scalar coe"cients
of its basis k-vectors. For a multivector M it holds that ↘M↘22 = ⇔M†M↖0, where M† is the reversion
of M . M† is analogous to complex conjugation and is defined by three properties: (i) (MN)† = N†M†,
(ii) (M + N)† = M† + N†, (iii) M† = M when M is a vector. For instance, (e1e2e3e4)† = e4e3e2e1 and
(e1 + e2e3)† = e1 + e3e2. We define the ω1 norm of a multivector as the sum of the absolute values of
each component. The definition of inner and wedge products can be naturally extended to multivectors. In
particular, the inner-product between two k-vectors M = ϑ1 ↑ · · ·↑ ϑk and N = φ1 ↑ · · ·φk is defined by the
Gram determinant M ·N ↭ det(⇔ϑi,φj↖ki,j=1).

Hodge dual

A k-blade can be viewed as a k-dimensional oriented parallelogram. For each such paralleogram, we may
associate a (d → k)-dimensional orthogonal complement. This duality between k-vectors and (d → k)-vectors
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is established through the Hodge star operator ε. For every pair of k-vectors M,N ↓ Gd, there exists a
unique (d → k)-vector εM ↓ Gd with the property that

εM ↑ N = (M ·N) e1 ↑ · · · ↑ ed = (M ·N) I.

We may also express the Hodge dual of a k-vector M as εM = MI↑1, where I↑1 is the inverse of the unit
pseudoscalar. This linear transformation from d-vectors to d → k vectors defined by M ⇒ εM is the Hodge
star operator. An example in G3 is εe1 = e1I↑1 = e1e3e2e1 = e3e2.

Generalized cross product and wedge products

The usual cross product of two vectors is only defined in R3. However, the wedge product can be used
to define a generalized cross product in any dimension. The generalized cross product in higher dimensions
is an operation that takes in d → 1 vectors in an Rd and outputs a vector that is orthogonal to all of these
vectors. The generalized cross product of the vectors v1, v2, . . . , vn↑1 can be defined via the Hodge dual of
their wedge product as ∝(v1, v2, . . . , vn↑1) ↭ ε(v1 ↑v2 ↑ . . .↑vn↑1).. It holds that ∝(v1, v2, . . . , vn↑1) ·vi = 0
for all i = 1, . . . , n → 1. The signed distance of a vector x to the linear span of a collection of vectors
x1, ..., xd↑1 can be expressed via the generalized cross product and wedge products as

dist(x,Span(x1, . . . , xd↑1)) =
∝(x1, . . . , xd↑1)Tx

↘ ∝ (x1, . . . , xd↑1)↘2
= ε(x ↑ x1 ↑ · · · ↑ xd↑1)

↘x1 ↑ · · · ↑ xd↑1↘2
.

This formulation stems from an intuitive geometric principle: the ratio of the volume of a parallelotope
P(x, x1, . . . , xd↑1), which is spanned by the vectors x, x1, . . . , xd↑1, to the volume of its base P(x1, . . . , xd↑1),
the parallelotope formed by x1, . . . , xd↑1 alone. This ratio e!ectively captures the height of the parallelotope
relative to its base, which corresponds to the distance of x from the subspace spanned by x1, . . . , xd↑1. Note
that the Hodge dual ε transforms the d-vector in the numerator into a scalar. We provide a subset of other
important properties of the generalized cross product in Section 6.1 of the Appendix.

2.3 Convex duality

Convexity and duality plays a key role in the analysis of optimization problems (Boyd and Vandenberghe,
2004). Here, we show how the convex dual of a non-convex neural network training problem can be used to
analyze optimal weights.

Convex duals of neural network problems

The non-convex optimization problem (2) has a convex dual formulation derived in recent work (Pilanci and
Ergen, 2020; Ergen and Pilanci, 2021a) given by

p↔ ⇓ d↔ ↭ max
v↗Rn

→ω↔(v, y) s.t. |vTϖ(Xw)| ≃ ϱ, ↔w ↓ Bd
p , (5)

where we take the network to be bias-free (see Section 8.2 for biased neurons). Here, ω↔(·, y) is the convex
conjugate of the loss function ω(·, y) defined as ω↔(v, y) ↭ supq↗Rn vT q → ω(q, y) and Bd

p is the unit p-norm
ball in Rd. Moreover, it was shown in Pilanci and Ergen (2020) that when ϖ is the ReLU activation, strong
duality holds, i.e., p↔ = d↔, when the number of neurons m exceeds a critical threshold. The value of this
threshold can be determined from an optimal solution of the dual problem in (5). This result was extended
to deeper ReLU networks in Ergen and Pilanci (2021c) and to deep threshold activation networks in Ergen
et al. (2022b).

Our main strategy to analyze the optimal weights is based on analyzing the extreme points of the dual
constraint set in (5). In the following section, we present our main results.
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3 Theoretical Results

3.1 One-dimensional data

We start with the simplest case where the training data is one-dimensional, i.e., d = 1 and the number of
training points, n is arbitrary.
Theorem 1. For all values of the regularization norm p ↓ [1,↗), the two-layer neural network problem in
(2) can be recast as the following ω1-regularized convex optimization problem

min
z↗R2n

t↗R

ω
(
Kz + 1nt, y

)
+ ϱ↘z↘1 , (6)

where the entries of the matrix K are given by

Kij ↭
{
(xi → xj)+ 1 ≃ j ≃ n

(xj↑n → xi)+ n < j ≃ 2n,
(7)

and the number of neurons obey m ⇓ ↘z↔↘0. An optimal network can be constructed as

f(x) =
n∑

j=1
z↔
j (x → xj)+ +

n∑

j=1
z↔
j+n(xj → x)+ + t↔, (8)

where z↔ and t↔ are optimizers of (6).
Remark. It will be revealed in the following sections that the term (xi → xj)+, as present in (7), stands for

the wedge product
([

xi

1

]
↑

[
xj

1

])

+
, yielding the positive part of the signed length of the interval [xi, xj ].

Appending 1 to the vectors is due to the presence of bias in the neurons. This quantity can also be seen as a
directional distance we denote as dist+(xi, xj), which will be generalized to higher dimensions in the sequel.
As we delve into higher dimensional NN problems, the above wedge product expression will be substituted by
the positive part of the signed volume of higher dimensional simplices such as triangles and parallelograms.
Remark. This result is a refinement of the linear spline characterization of one-dimensional infinitely wide
ReLU NNs (Savarese et al., 2019; Parhi and Nowak, 2020). The linear spline dictionary is given by the
collection of ramp functions {(x → xj)+, (xj → x)+}nj=1, which is well-known in adaptive regression splines
(Friedman, 1991). Our work is the first to recognize this dictionary via wedge products, characterize it as
a finite dimensional Lasso problem, and associate it to volume forms. This enables us to generalize the
result to higher dimensions and arbitrarily deep ReLU networks. It is important to note that unlike the
existing literature on infinite neural networks (Bach, 2017; Bengio et al., 2005), our characterization of the
dictionaries is discrete rather than continuous, enabling standard convex programming.

An important feature of the optimal network in (8) is that the break points are located only at the training
data points. In other words, the prediction f(x) is a piecewise linear function whose slope only may change
at the training points with at most n breakpoints. However, since the optimal z↔ is sparse, the number of
pieces is at most ↘z↔↘0, and can be smaller than n.

We note that convex programs for deep networks trained for one-dimensional data were considered in Ergen
et al. (2022b); Zeger et al. (2024). In Ergen and Pilanci (2021a), it was shown that the optimal solution
to (3) may not be unique and may contain break points at locations other than the training data points.
However, Theorem 1 reveals that at least one optimal solution is in the form of (8). In addition, it is shown
that the solution is unique when the bias terms are regularized (Boursier and Flammarion, 2023) and a skip
connection is included. We discuss uniqueness in Section 5.

3.2 Two-dimensional data

We now consider the case d = 2 and use the two-dimensional geometric algebra G2. Interestingly, we will
observe that the volume of the interval [xi, xj ] appearing above generalizes to the volume of a triangle. We

8
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e1

e2

1
2xi ↑ xj

0

xi

xj

e1

e2

1
2 (xi → xj1) ↑ (xj2 → xj1)

xj1

xi

xj2

Figure 4: Illustration of the matrix K for neural networks without bias (left) and with bias (right) via the
triangular area defined in the convex program from Theorem 2 in R2.

will observe that the ω1 and ω2-regularized problems exhibit certain di!erences from one another. We start
with the ω1-regularized problem p = 1, since the form of the convex program is simpler to state due to the
polyhedral nature of the ω1 norm. In the case of p = 2, we require a mild regularity condition on the dataset
to handle the curvature of the ω2 norm.

3.2.1 ω1 regularization - neurons without biases

Theorem 2. For p = 1 and d = 2, the two-layer neural network problem without biases can be recast as the
following convex ω1-regularized optimization problem

min
z↗Rñ

ω
(
Kz, y

)
+ ϱ↘z↘1. (9)

Here, the matrix K ↓ Rñ→ñ is defined as Kij = ↼(xi, xj) where

↼(x, x↘) := (x ↑ x↘)+
↘x↘↘1

= 2Vol+(′(0, x, x↘))
↘x↘↘1

, (10)

provided that the number of neurons satisfy m ⇓ ↘z↔↘0. Here, ′(0, xi, xj) denotes the triangle formed by
the path 0 ⇒ xi ⇒ xj, and Vol+(·) denotes the positive part of the signed area of this triangle.

An optimal network can be constructed as follows:

f(x) =
ñ∑

j=1
z↔
j ↼(x, xj),

where z↔ is an optimal solution to (9). The optimal first layer neurons are given by a scalar multiple of the
generalized cross product, ∝xj = εxj, with breaklines x ↑ xj = 0, corresponding to non-zero z↔

j for j ↓ [ñ].
Remark. The optimal hidden neurons given by the generalized cross products, ∝xj , are orthogonal to the
training data points xj for j = 1, ..., ñ. Therefore, the breaklines of each ReLU neuron pass through the
origin and some data point xj . Note that (x ↑ xj)+ = (x1xj2 → x2xj1)+ is a ReLU ridge function.

We provide an illustration the matrix K in Figure 4. The signed area of the triangle formed by the path
0 ⇒ xi ⇒ xj , denoted by the wedge product 1

2xi ↑ xj is positive when this path is ordered counterclockwise
and negative otherwise. In this figure, the positive part of this signed area given by Vol+(′(0, xi, xj)) =
1
2 (xi ↑xj)+ is non-zero only when xi is to the right of the line passing through the origin and xj . When bias
terms are added to the neurons, the matrix K changes as shown in the right panel of Figure 4 as shown in
Theorem 3 (see also Section 8.2 in the Supplementary Material).

3.2.2 ω2 regularization (weight decay) - neurons with biases

Now we show that similar results holds for the ω2 regularization (weight decay) for a near-optimal solution,
also demonstrate the case with biases. We first quantify near-optimality as follows:

9
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Definition 1 (Near-optimal solutions). We call a set of parameters that achieve the cost p̂ in the two-layer
NN objective (3) ↽-optimal if

p↔ ≃ p̂ ≃ (1 + ↽)p↔ , (11)

where p↔ is the global optimal value of (3) and ↽ > 0.
Definition 2 (Range dispersion in R2). We call that a two-dimensional dataset is ↽-dispersed for some
↽ ↓ (0, 1

2 ] if

|ςi+1 → ςi| (mod ⇀) ≃ ↽⇀ ↔i ↓ [n], (12)

where ςi are the angles of the vector xi with respect to the horizontal axis, i.e.,

xi = ↘xi↘2
[
cos(ςi) sin(ςi)

]T

sorted in increasing order. We call the dataset locally ↽-dispersed if the above condition holds for the set of
di!erences {xi → xj}ni=1 for all j ↓ [n].

Range dispersion measures the diversity of the normal planes corresponding to the training data. Local
dispersion holds when the data centered at any training sample is dispersed. In the left panel of Figure 5,
we illustrate the range dispersion condition for a two-dimensional dataset.
Theorem 3. Suppose that the training set {x1, . . . , xn} is locally ↽-dispersed. For p = 2 and d = 2, an
↽-optimal network can be found via the following convex optimization problem

min
z↗R(

ñ
2)

t↗R

ω
(
Kz + 1t, y

)
+ ϱ↘z↘1, (13)

when the number of neurons obey m ⇓ ↘z↔↘0. Here, the matrix K ↓ Rñ→(ñ2) is defined as Kij := ↼(xi, xj1 , xj2)
for j = (j1, j2), where

↼(x, x↘, x↘↘) =
(
x ↑ x↘ + x↘ ↑ x↘↘ + x↘↘ ↑ x

)
+

↘x↘ ↑ x↘↘↘2
= 2Vol+(′(x, x↘, x↘↘))

↘x↘ → x↘↘↘2
= dist+(x,A!(x↘, x↘↘)),

for j = (j1, j2). The ↽-optimal neural network can be constructed as

f(x) =
∑

j=(j1,j2)
z↔
j ↼(x, xj1 , xj2),

where z↔ is an optimal solution to (13). The optimal hidden neurons and biases are given by a scalar multiple
of ε(xj1 →xj2), and →ε(xj2 ↑(xj1 →xj2)) respectively, with breaklines (x→xj2)↑(xj1 →xj2) = 0 for j = (j1, j2)
corresponding to non-zero z↔

j .
Remark. We note that the form of the near-optimal NN for p = 2 is near identical to the p = 1 case, for
which the result is exact. This discrepancy is due to the polyhedral nature of the dual problem with ω1
regularization (see Figure 40 of Appendix II). In Section 4, we present numerical evidence that the decision
regions of optimal NNs with p = 1 and p = 2 are near identical for small values of ϱ.

3.3 Arbitrary dimensions

Now we consider the generic case where d and n are arbitrary and we use the d-dimensional geometric algebra
Gd. Suppose that X ↓ Rn→d is a training data matrix such that rank(X) = d without loss of generality.
Otherwise, we can reduce the dimension of the problem to rank(X) using Singular Value Decomposition
(see Lemma 23 in the Supplementary Material), hence d can be regarded as the rank of the data. Since
many datasets encountered in machine learning problems are close to low rank, this method can be used to
reduce the number of variables in the convex programs we will introduce in this section.

10
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3.3.1 ω1 regularization - neurons without biases

Theorem 4. The 2-layer neural network problem in (2) when p = 1 and biases set to zero is equivalent to
the following convex Lasso problem

min
z

ω
(
Kz, y

)
+ ϱ↘z↘1, (14)

provided that the number of neurons satisfy m ⇓ ↘z↔↘0. The matrix K is defined as Kij = ↼(xi, xj1 , ..., xjd→1)
for j = (j1, ..., jd↑1), where

↼(x, u1, ..., ud↑1) =
xT ∝ (xj1 , · · · , xjd→1)
↘ ∝ (xj1 , · · · , xjd→1)↘2

= Vol+(P(x, u1, ..., ud↑1))
↘ ε (u1 ↑ ... ↑ ud↑1)↘1

, (15)

the multi-index j = (j1, ..., jd↑1) indexes over all combinations of d→1 rows xj1 , ..., xjd→1 ↓ Rd of X̃ ↓ Rñ→d.
An optimal neural network can be constructed as follows:

f(x) =
∑

j=(j1,...,jd→1)
z↔
j ↼(x, xj1 , ..., xjd→1),

where z↔ is an optimal solution to (14). The optimal neurons are given by a scalar multiple of the generalized
cross-product ∝(xj1 , · · · , xjd→1) = ε(xj1 ↑ · · ·↑xjd→1), with breaklines x↑xj1 ↑ · · ·↑xjd→1 = 0, corresponding
to non-zero z↔

j for j = (j1, · · · , jd↑1).

We recall that P(x, u1, ..., ud↑1) denotes the parallelotope formed by the vectors x, u1, ..., ud↑1, and the
positive part of the signed volume of this parallelotope is given by Vol+(P(x, u1, ..., ud↑1)).
Remark. The optimal neurons are orthogonal to d → 1 data points, i.e., ∝(xj1 , · · · , xjd→1) · xi = 0 for all
i ↓ {j1, · · · , jd↑1}. Therefore, the hidden ReLU neuron is activated on a halfspace defined by the hyperplane
that passes through data points xj1 , · · · , xjd→1 .

The proof of this theorem can be found in Section 9.2 of the Supplementary Material.
Remark. We note that the combinations can be taken over d → 1 linearly independent rows of X since
otherwise the volume is zero and corresponding weights can be set to zero. Moreover, the permutations
of the indices xj1 , ..., xjd→1 may only change the sign of the volume Vol(P(xi, xj1 , ..., xjd→1)). Therefore,
it is su"cient to consider each subset that contain d → 1 linearly independent data points and compute
Vol+(±P(xi, xj1 , ..., xjd→1)) for each subset. The cost of enumerating over all size d subsets is O(

(n
d

)
).

3.3.2 ω2 regularization - neurons with biases

We begin by defining a parameter that sets an upper limit on the diameter of the chambers in the arrangement
generated by the rows of the training data matrix X.
Definition 3. We define the Maximum Chamber Diameter, denoted as D(X), using the following equation:

D(X) := max
w, v↗Rd, ≃w≃2=≃v≃2=1

sign(Xw)=sign(Xv)

↘w → v↘2. (16)

Here w and v are unit-norm vectors in Rd, such that the sign of the inner-product with the data rows are
the same.

We call a dataset ↽-dispersed if D(X) ≃ ↽, and locally ↽-dispersed when the dataset centered at any training
sample is ↽ dispersed, i.e., D(X → 1xT

j ) ≃ ↽ ↔j ↓ [n].
Remark. The quantity D(X) is a generalization of the 2D range dispersion in Definition 2 to arbitrary
dimensions, and captures the diversity of the ranges of the hyperplanes whose normals are training points
{xi}ni=1. We prove in Section 3.5 that when the data is randomly generated, e.g., i.i.d. from a Gaussian
distribution, the maximum chamber diameter D(X) is bounded by ( dn )

1/4 with probability that approaches
1 exponentially fast. In Lemma 8 of Section 3.5, we show that this implies Gaussian data is ↽-dispersed and
locally ↽-dispersed when as n ↫ ↽↑4d with high probability.
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ςi

ςi + ⇀

ςi+1

xi

xi+1

↽⇀ A

B

A↘

B↘

Figure 5: (left) An illustration of the angular dispersion condition. The angle between the span of two
consecutive vectors xi and xi+1 is bounded by ↽⇀. (right) The maximum chamber diameter of this line
arrangement is the Euclidean distance between A and B, i.e., D(X) = ↘A → B↘.

Theorem 5. Consider the following convex optimization problem

p̂ε := min
z

ω
(
Kz, y

)
+ ϱ↘z↘1 . (17)

The matrix K is defined as Kij = ↼(xi, xj1 , ..., xjd→1) for bias-free and Kij = ↼b(xi, xj1 , ..., xjd→1) for biased
neurons where

↼(x, u1, ..., ud↑1) =
(
x ↑ u1 ↑ · · · ↑ ud↑1

)
+

↘u1 ↑ ... ↑ ud↑1↘2
= dist+

(
x, Span(u1, ..., ud↑1)

)

↼b(x, u1, ..., ud) =
(
(x → ud) ↑ (u1 → ud) ↑ · · · ↑ (ud↑1 → ud)

)
+

↘(u1 → ud) ↑ ... ↑ (ud↑1 → ud)↘2
= dist+

(
x, A!(u1, ..., d)

)

and the multi-index j = (j1, ..., jd↑1) is indexing over all combinations of d → 1 rows xj1 , ..., xjd→1 ↓ Rd of
X ↓ Rn→d. When the maximum chamber diameter satisfies D(X) ≃ ↽ for bias-free neurons or D(X→1xT

j ) ≃
↽ ↔j ↓ [n] for biased neurons, for some ↽ ↓ (0, 1), we have the following approximation bounds

p↔ ≃ p̂ε ≃ 1
1 → ↽

p↔, (18)

p̂(1↑ϑ)ε ≃ p↔ ≃ p̂ε ≃ p↔ + ↽

1 → ↽
ϱR↔, (19)

Here, p↔ is the value of the optimal NN objective in (2) (with or without bias terms) and R↔ is the corre-
sponding weight decay regularization term of an optimal NN. Bias-free and biased networks that achieves the
cost p̂ε in (2) are

f(x) =
∑

j=(j1,...,jd→1)
z↔
j ↼(xj1 , ..., xjd→1) and f(x) =

∑

j=(j1,...,jd→1)
z↔
j ↼b(xj1 , ..., xjd→1) ,

respectively, where z↔ is an optimal solution to (17).
Remark. The above result shows that the convex optimization produces a near-optimal solution when the
chamber diameter is small, which is expected when the number of data points is large.

3.4 Illustrative Calculations in Geometric Algebra

Here we illustrate applications of the closed-form geometric algebra expressions in R2. Consider a dataset
with two training samples of dimension two given by

x1 =
[ 1
1

]
= e1 + e2 and x2 =

[ 0
2

]
= 2e2.

12
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xj1

xj2

x 1
2 (x → xj2) ↑ (xj1 → xj2)

(a) The area of triangle formed by the points x, xj1
and xj2 is given by a wedge product.

xj1

xj2

x

(x↑xj2 )⇐(xj1↑xj2 )
≃xj1↑xj2≃2

(b) Distance to a!ne hull is given by a wedge product

normalized by Euclidean distance.

Figure 6: Wedge product representation of distance to a"ne hull (a) and triangular area (b).

Theorem 4 for p = 1 implies that an optimal neuron corresponding to a sample x is given by the dual
εx := xI↑1. We recall that I = e1e2 . . . ed = e1e2 when d = 2, and I↑1 = e2e1. Hence, we have εx = xe2e1
in G2. Next, recall that for p = 1, we augment the training set with two standard basis vectors of R2 and
obtain {x̃i}4i=1 = {e1 → e2, 2e1, e1, e2}. For each training sample, we calculate these neurons as follows

w1 = εx̃1 = (e1 + e2)e2e1 = e1e2︸
↑e2e1

e1 + e2e2︸
1

e1 = →e2 e1e1︸
1

+e1 = →e2 + e1

and
w2 = εx̃2 = 2e2e2e1 = 2e1.

We find two additional neurons from the augmented training data points e1 and e2 as w3 = e2 and w4 = →e1
respectively using the same process. This yields m = 4 neurons, which are orthogonal to {x̃i}4i=1.

Theorem 2 provides the optimal ReLU network with no biases as

f(x) =
∑

j

(xTwj)+ϑj =
4∑

j=1

Vol(′(0, x, x̃j))+
↘x̃j↘1

ϑj ,

where {ϑj}mj=1 are determined via the Lasso problem argminϖ
∑n

i=1(f(xi)→yi)2+ϱ↘ϑ↘1 as described earlier
in (9).

Let us illustrate some variants of this network which has no bias terms and trained with p-regularization
where p = 1. For the optimal network with bias terms, we replace the volume terms with Vol(′(x, x̃j1 , x̃j2)).
This volume term has the loop based expansion

2Vol(′(x, x̃j1 , x̃j2)) = (x → x̃j2) ↑ (x̃j1 → x̃j2) = x ↑ x̃j1 → x ↑ x̃j2 → x̃j2 ↑ x̃j1 → x̃j2 ↑ x̃j2︸  
0

= x ↑ x̃j1 + x̃j1 ↑ x̃j2 + x̃j2 ↑ x.

In other words, the volume of the triangle formed by vertices x, x̃j1 , x̃j2 can be expanded as the wedge
product of consecutive pairs of vectors taken over the loop x ⇒ x̃j1 ⇒ x̃j2 ⇒ x. This is illustrated in Figure
6a. Let us now illustrate the role of regularization. For the p-regularized network with p = 2, Theorem 3
implies that we replace the volume terms with

dist(x,A!(xj1 , xj2)) =
(x → xj2) ↑ (xj1 → xj2))

↘xj1 → xj2↘2
= Vol(′(x, xj1 , xj2))

dist(xj1 , xj2)
.

This is illustrated in Figure 6b. The change from the volume to the distance to a"ne hull is a consequence
of the division by ↘xj1 →xj2↘2, which is the length of the base (the line segment A!(xj1 , xj2)) of the triangle
′(x, xj1 , xj2).
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3.5 Data isometry and chamber diameter

Results from high dimensional probability can be used to establish bounds on the chamber diameter of
a hyperplane arrangement generated by a random collection of training points. A similar analysis was
considered in Plan and Vershynin (2014) for the purpose of dimension reduction. We first show that the
chamber diameter is small when the training dataset satisfies an isometry condition.
Lemma 6 (Isometry implies small chamber diameter). Suppose that the following condition holds

(1 → ↽)↘w↘2 ≃ 1
ϑn

↘Xw↘1 ≃ (1 + ↽)↘w↘2, ↔w ↓ Rd, (20)

where ϑ ↓ R is fixed. Then, the chamber diameter D(X) defined in (16) is bounded by 4
∞

↽.

Next, we show that the isometry condition is satisfied when the training dataset is generated from a random
distribution. Consequently, we obtain a bound on the chamber diameter of the hyperplane arrangement
generated by the random dataset.
Lemma 7 (Random datasets have small chamber diameter). Suppose that x1, · · · , xn ∈ N (0, Id) are n
random vectors sampled from the standard d-dimensional multivariate normal distribution and let X =
[x1, · · · , xn]T . Then, the ω2 diameter D(X) satisfies

D(X) ≃ 9
( d

n

)1/4
, (21)

with probability at least 1 → 2e↑d/2.
Remark. We note that the constant 9 in the above lemma can be improved to 1 by using the more re-
fined analysis due to Gordon (Gordon, 1985). Moreover, the result can be extended to sub-Gaussian data
distributions. However, we use Lemma 6 since it is simpler and su"ces for our purposes.
Lemma 8 (Random datasets are dispersed and locally dispersed). Suppose that x1, · · · , xn ∈ N (0, Id)
are n random vectors sampled from the standard d-dimensional multivariate normal distribution and let
X = [x1, · · · , xn]T . Suppose that n ↫ ↽↑4d. Then, the dataset X is ↽-dispersed, i.e., D(X) ≃ ↽ and locally
↽-dispersed, i.e., D(X → 1xT

j ) ≃ ↽ ↔j ↓ [n] with high probability.

3.5.1 Dvoretzky’s Theorem

In this section, we present a connection to Dvoretzky’s theorem (Dvoretzky, 1959), a fundamental result in
functional analysis and high-dimensional convex geometry (Vershynin, 2011).
Theorem 9 (Dvoretzky’s Theorem). (Geometric version) Let C be a symmetric convex body in Rn. For
any ↽ > 0, there exists an intersection CS ↭ C ∋ S of C by a subspace S ⇐ Rn of dimension k(n, ↽) ⇒ ↗ as
n ⇒ ↗ such that

(1 → ↽)B2 ⇐ CS ⇐ (1 + ↽)B2

where B2 is the n-dimensional Euclidean unit ball.

The above shows that there exists a k-dimensional linear subspace such that the intersection of the convex
body C with this subspace is approximately spherical; that is, it is contained in a ball of radius 1 + ↽ and
contains a ball of radius 1 → ↽.

If we represent the linear subspace in Theorem 9 via the range of the matrix X and let C be the ω1 ball,
it is straightforward to show that Dvoretzky’s theorem reduces to the isometry condition (6) up to a scalar
normalization. Therefore, the isometry condition (6) can be interpreted as a condition to guarantee that the
ω1 ball is near-spherical when restricted to the range of the training data matrix.

3.6 Deep neural networks

Consider the deep neural network of L layers composed of sequential two-layer blocks considered in Section
(2.1) as follows

fω(x) = W (L)ϖ(W (L↑1) · · ·W (3)ϖ(W (2)ϖ(W (1)x) · · · )), ς ↭ (W (1), · · · ,W (L)) .
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Theorems 12 and 13 in this section extend Theorem 4 to three-layer ReLU networks and derive their corre-
sponding convex Lasso formulation over a larger discrete wedge product dictionary. We first illustrate that
our results apply to neural networks of arbitrary depth.

3.6.1 ωp regularization

Suppose that the number of layers, L, is even and consider the non-convex training problem

p↔ ↭ min
ω

ω(fω(X), y) + ϱ

L/2∑

ϱ=1

m∑

j=1
↘W (2ϱ↑1)

j· ↘2p + ↘W (2ϱ)
·j ↘2p , (22)

where X ↓ Rn→d is the training data matrix, y ↓ Rn is a vector containing the training labels, l and ϱ > 0
is the regularization parameter. Here, f(X) represents the output of the deep NN over the training data
matrix X given by fω(X) = [fω(x1) · · · fω(xn)]T . Note that the ωp norms in the regularization terms are
taken over the columns of odd layer weight matrices and rows of even weight matrices, which is consistent
with the two-layer network objective in (2). When p = 2, the regularization term is the squared Frobenius
norm of the weight matrices which reduces to the standard weight decay regularization term. We assume
that the number of neurons in each layer is su"ciently large to meet the conditions required for applying
Theorem 4 to two consecutive layers.
Theorem 10 (Structure of the optimal weights for ω1 regularization). The weights of an optimal solution
of (22) for p = 1 are given by

W (1)
j = ϑ(1)

j ε (x
j(1)1

↑ · · · ↑ x
j(1)
d→1

) , and

W (ϱ)
j = ϑ(ϱ)

j ε (x̃(ϱ)
j(ω)
1

↑ · · · ↑ x̃(ϱ)
j(ω)
d→1

) , for ω = 3, 5, ..., L → 1 , (23)

where ϑ(ϱ)
j are scalar weights and x̃(ϱ)

i ↭ ϖ(W (ϱ↑1) · · ·ϖ(W (1)xi) · · · )↔i. Here, W (ϱ) are optimal weights of
the ω-th layer for the problem (22), and j(ϱ)k ↓ [n] are certain indices.

3.6.2 ω2 regularization

Consider the training problem (22) with p = 2, which simplifies to

p↔ ↭ min
ω

ω(fω(X), y) + ϱ
L∑

ϱ=1
↘W (ϱ)↘2F . (24)

Theorem 11 (Structure of the optimal weights for ω2 regularization). Consider an approximation of the
optimal solution of (24) given by

W (1)
j = ϑ(1)

j ε (x
j(1)1

↑ · · · ↑ x
j(1)
d→1

) , and

W (ϱ)
j = ϑ(ϱ)

j ε (x̃(ϱ)
j(ω)
1

↑ · · · ↑ x̃(ϱ)
j(ω)
d→1

) , for ω = 2, 3, ..., L , (25)

where ϑ(ϱ)
j are scalar weights, x̃(ϱ)

i ↭ ϖ(W (ϱ↑1) · · ·ϖ(W (1)xi) · · · ) and j(ϱ)k ↓ [n] are certain indices. The
above weights provide the same loss as the optimal solution of (24). Moreover, the regularization term is
only a factor 2/(1→↽) larger than the optimal regularization term, where ↽ is an uppper-bound on the chamber
diameters D(Xϱ) for ω = 0, ..., L → 2. Here, Xϱ = ϖ(· · ·ϖ(XW (1)) · · ·W (ϱ↑1)) are the ω-th layer activations
of the network given by the weights (25).

3.6.3 Interpretation of the optimal weights

A fully transparent interpretation of how deep networks build representations can be given using our results.
We have shown that each optimal neuron followed by a ReLU activation measures the positive distance of an

15



Published in Transactions on Machine Learning Research (10/2024)

e1

e2

(a) Two-layer network with-

out biases

e1

e2

(b) Three-layer network

without biases

e1

e2

(c) Two-layer network with

biases

e1

e2

(d) Three-layer network

with biases

Figure 7: Optimal space partitioning of two-layer and three-layer ReLU networks predicted by Theorems 4
and 13 for p = 1. The blue lines represent the breaklines of optimal neurons. The red dots represent the
training data points. Theorem 13 is provided in Section 3.6.

input sample to the linear span (or a"ne hull, in the presence of bias terms) generated by a unique subset
of training points using the formula

(xT ε (xj1 ↑ . . . ↑ xjk))+ = dist+
(
x,Span(xj1 , ..., xjd→1)

)
.

The ReLU activation serves as a crucial orientation determinant in this context. By nullifying negative
signed distances, it e!ectively establishes a directionality in the space. Geometrically speaking, it delineates
the specific side of the a"ne hull relevant for a particular input sample. In intermediate layers, the formula
is applied to the activations of the previous layer, which are themselves signed distances to a"ne hulls of
subsets of training data.

Since each layer of the network consists of a number of neurons, the activations of the network transforms
the input data into a series of distances to these unique a"ne hulls as

[
dist+

(
x,Span(x

j(1)1
, ..., x

j(1)
k

)
)
, . . . , dist+

(
x,Span(x

j(m)
1

, ..., x
j(m)
k

)
)]
.

Moreover, the information encapsulated within the weights of the network can be succinctly represented
by the indices j(1)1 , . . . , j(1)k , . . . , j(m)

1 , . . . , j(m)
k . These indices highlight the pivotal training samples that

e!ectively determine the geometric orientation of each neuron. The formula essentially implies that the deep
neural network’s behavior and decisions are intrinsically tied to specific subsets of the training data, denoted
by these critical indices.

This interpretation not only o!ers a geometric perspective on neural networks but also explains the pivotal
role hidden layers play. Each hidden layer is a series of coordinate transformations, represented by the a"ne
hulls of various data point subsets. As the data progresses through the network, it gets transformed and
re-encoded, with every neuron contributing to this transformation based on its unique geometric connection
to the training dataset.

3.6.4 Three-layer networks with bias-free first layer

We first consider the case when the first layer neurons W (1)
j are size d∝ 1 ↔j ↓ [m] for some arbitrary d, and

the first layer neurons are bias-free, i.e., b(1)j = 0↔j ↓ [m]. We have the following theorem.

Theorem 12. The three-layer neural network problem when p = 1, W (1)
j ↓ Rd→1, b(1)j = 0↔j ↓ [m], set to

zero is equivalent to the following convex Lasso problem

min
z,b

ω
(
K(1)z1 +K(2)z2 + 1nb, y

)
+ ϱ↘z↘1. (26)
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The matrices K(1) and K(2) are given by

K(1)
ij :=

((
xi ↑ x̃j1 ↑ ... ↑ x̃jd→1

)
+ →

(
xj0 ↑ x̃j1 ↑ ... ↑ x̃jd→1

)
+

)

+
↘x̃j1 ↑ ... ↑ x̃jd→1↘1

(27)

=

(
Vol+

(
P(xi, x̃j1 , ..., x̃jd→1)) → Vol+(P(xj0 , x̃j1 , ..., x̃jd→1)

))

+
↘x̃j1 ↑ ... ↑ x̃jd→1↘1

(28)

and

K(2)
ij :=

(
Vol+

(
P(xj0 , x̃j1 , ..., x̃jd→1)) → Vol+(P(xi, x̃j1 , ..., x̃jd→1)

))

+
↘x̃j1 ↑ ... ↑ x̃jd→1↘1

(29)

where j = (j0, j1, ..., jd↑1). The multi-index (j1, ..., jd↑1) indexes all combinations of d → 1 vectors from the
set


{xi}ni=1, {xi → xj}ni=1,j=1, {ek}dk=1


and j0 ↓ [n]. Each optimal first layer neuron weight w ↓ Rd satisfy

equalities of the form

xT
i w = 0 (30)

(xi → xj)Tw = 0 (31)
eTkw = 0 , (32)

for a certain set of i, j ↓ [n], k ↓ [d]. An optimal network can be constructed as follows:

f(x) =
∑

j

z↔
1j

((
x ↑ x̃j1 ↑ ... ↑ x̃jd→1

)
+ →

(
xj0 ↑ x̃j1 ↑ ... ↑ x̃jd→1

)
+

)

+
↘x̃j1 ↑ ... ↑ x̃jd→1↘1

(33)

+
∑

j

z↔
2j

((
xj0 ↑ x̃j1 ↑ ... ↑ x̃jd→1

)
+ →

(
x ↑ x̃j1 ↑ ... ↑ x̃jd→1

)
+

)

+
↘x̃j1 ↑ ... ↑ x̃jd→1↘1

, (34)

where z↔ is an optimal solution to (26).
Remark. In addition to the optimal neurons for the two-layer case (Theorem 4), here we obtain additional
neurons orthogonal to a subset of the data points and their pairwise di!erences. See Figure 7(b) for an
illustration.

3.6.5 Three-layer networks with biased neurons

We now consider the case when the first layer neurons W (1)
j are size d ∝ 1 ↔j ↓ [m] for some arbitrary

dimension d, and the all the three layers contain trainable bias terms. We have the following theorem.
Theorem 13. Consider the three-layer neural network problem when p = 1 and W (1)

j ↓ Rd→1 ↔j ↓ [m].
Each optimal first layer neuron weight-bias pair (w, b) ↓ Rd ∝ R satisfy equalities of the form

(xi → xϱ)Tw = 0 (35)
(xi → xj)Tw = 0 (36)

eTkw = 0 (37)
xT

ϱ w + b = 0 , (38)

for a certain set of i, j, ω ↓ [n], k ↓ [d].
Remark. In addition to the optimal neurons for the two-layer case (Theorem 16), here we obtain additional
neurons whose breaklines are translations of the a"ne hull of a subset of the data points to certain other
data points. See Figure 7(d) for an illustration.
Remark. We note that the optimization problem and optimal networks take a similar form as in Theorem
12, except that the xi are replaced by xi → xϱ and the bias term b = →xT

ϱ w is added.
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3.7 Space partitioning of optimal deep networks

We now illustrate the optimal two-layer neurons predicted by Theorems 4 and compare them with optimal
three-layer neurons (see Theorems 13-12 in the Section 3.6) as regularization tends to zero for p = 1 unless
stated otherwise. Consider the two-dimensional training data {x1 = (1, 0), x2 = (0, 1), x3 = (→1, 0), x4 =
(0,→1)} shown in Figure 7.

In panel (a), we consider a two-layer ReLU network without biases. Two optimal neurons are (wT
1 x)+,

(wT
2 x)+, given by Theorem 2. Their breaklines, wT

1 x = 0 and wT
2 x = 0, are plotted as blue lines, and pass

through the origin and data points, since the optimal neurons are scalar multiples of the Hodge duals of
1-blades formed by data points.

In panel (b), we consider a three-layer ReLU network without biases, and we display all four optimal first
layer neurons given by Theorem 12. In addition to the neurons with breaklines wT

1 x = 0 and wT
2 x = 0, we

also have wT
3 x = 0 and wT

4 x = 0 which are translations of the a"ne hulls, A!(x1, x2) and A!(x2, x3), to
the origin.

In panel (c), we consider a two-layer ReLU network with biases regularized with p = 2, and we display all six
optimal neurons given by Theorem 3. Their breaklines pass between each pair of samples, since the optimal
neurons are scalar multiples of the Hodge duals of 1-blades formed by the di!erences of data points.

In panel (d), we consider a three-layer ReLU network with biases, and we display all 12 optimal first layer
neurons given by Theorem 13. In addition to the breaklines that pass between each pair of samples, we also
have translations of all possible a"ne combinations of size two, e.g., A!(x1, x2), A!(x1, x3),..., to every
data point.

3.8 Vector-output Neural Networks

Consider the vector-output neural network problem in (2) given by

p↔
v ↭ min

W (1),W (2),b
ω
( m∑

j=1
ϖ(XW (1)

j + 1bj)W (2)
j , Y

)
+ ϱ

m∑

j=1
↘W (1)

j ↘2p + ↘W (2)
j ↘2p. (39)

Here, the matrix Y ↓ Rn→c contains the c-dimensional training labels, and W (1) ↓ Rd→m, W (2) ↓ Rm→c, and
b ↓ Rm are trainable weights. We have the following extension of the convex progam (14) for vector-output
neural networks.

p̂v ↭ min
Z↗Rp↑c

ω
(
KZ, Y

)
+ ϱ

∑

j=1
↘Zj↘2, (40)

where Zj is the j-th column of the matrix Z.
Theorem 14. Define the matrix K as follows

Kij =
(
xi ↑ xj1 ↑ · · · ↑ xjd→1

)
+

↘xj1 ↑ ... ↑ xjd→1↘p
,

where the multi-index j = (j1, ..., jd↑1) is over all combinations of r rows and r = rank(X). It holds that

• when p = 1, the convex problem (40) is equivalent to the non-convex problem (39), i.e., p↔
v = p̂v.

• when p = 2, the convex problem (40) is a 1
1↑ϑ approximation of the non-convex problem (39), i.e.,

p↔
v ≃ p̂v ≃ 1

1↑ϑp
↔
v, where ↽ ↓ (0, 1) is an upper-bound on the maximum chamber diameter D(X).

An neural network achieving the above approximation bound can be constructed as follows:

f(x) =
∑

j

Z↔
j

(
xi ↑ xj1 ↑ · · · ↑ xjd→1

)
+

↘xj1 ↑ ... ↑ xjd→1↘p
, (41)

where Z↔ is an optimal solution to (40).
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4 Numerical Results

In this section, we introduce and examine a numerical procedure to take advantage of the closed-form
formulas in refining neural network parameters and producing a geometrically interpretable network.

4.1 Refining neural network weights via geometric algebra

We apply the characterization of Theorem 4, which states that the hidden neurons are scalar multiples
of ε(xj1 ↑ · · · ↑ xjd→1), Additionally, they are orthogonal to the r → 1 training data points specified by
xj1 , · · · , xjd→1 , where r represents the rank of the training data matrix.

The inherent challenge lies in identifying the specific subset of the r → 1 training points needed to form
each neuron. Fortunately, this subset can be estimated when we have access to approximate neuron weights,
typically acquired using standard non-convex heuristics such as stochastic gradient descent (SGD) or variants
such as Adam and AdamW (Kingma and Ba, 2014; Loshchilov and Hutter, 2018). After obtaining an
approximate weight vector for each neuron, we can gauge which subsets of training data are nearly orthogonal
to the neuron. This is achieved by evaluating the inner-products between the neuron weight and all training
vectors, subsequently selecting the r → 1 entries of the smallest magnitude. This refinement, which we term
the polishing process, is delineated as follows for each neuron w1, ..., wm:
For each j ↓ [m] (optional: Append 1 to the training samples to account for the neuron bias term)

1. Calculate the inner-product magnitudes: |xT
i wj | for each i ↓ [n].

2. Identify the r → 1 training vectors with the minimal inner-product magnitude, denoted as
xj1 , · · · , xjd→1 .

3. Update the neuron using: wj △ ε(xj1 ↑ · · · ↑ xjd→1) = ∝(xj1 , . . . , xjd→1). As a result, we have
wj ▽ xj1 , . . . , xjd→1 . This can be done by solving the linear system wT

j xji = 0 for i = 1, ..., r → 1, or
finding a minimal left singular vector of the matrix [xj1 , . . . , xjd→1 ], and normalizing wj such that
↘wj↘p = 1.

4. Optimize the weights of the following layer(s).

5. Optimize the scaling factors between consecutive layers (see Supplementary Material 9.13.1).

As a result, each neuron is assigned a closed-form symbolic expression, which only depends on a small subset
of training samples.

4.1.1 Computational complexity of polishing

For a dataset of n samples of dimension d, the cost of applying the polishing process to a layer of m neurons is
given by O(mnd)+O(mdς), where ⇁ is the matrix multiplication exponent, e.g., γ = 3 using classical solvers
(Gloub and Van Loan, 1996) and ⇁ ≃ 2.376 using fast matrix multiplication. We note that the latter class
of algorithms are not practical for realistic sizes. However, O(mdς) can be reduced to O(

∞
↼md2 log(1/↽))

for ↽-approximate solutions of the linear system, where ↼ is the condition number. The computational cost
is dominated by the calculation of inner products (O(mnd)) for large n and the d ∝ d linear system solve
(O(mdς)) for large d.

4.1.2 Toy spiral dataset

Figure 8 for the 2D spiral dataset and a two-layer neural network optimized with squared loss. In the initial
panel of this figure, the training curve of a two-layer ReLU neural network from (2) is depicted, considering
p = 2 and weight decay regularization set at φ = 10↑5. The dataset, divided into two classes represented
by blue and red crosses, is showcased in the second panel. By resorting to the dual formulation in (5), the
global optimum value is computed. Notably, while SGD is far from the global optimum, the polishing process
enhances the neurons, leading to a marked improvement in the objective value—evidenced by the solid line
in the left panel. A comparative visualization of the decision region pre and post-polishing is presented in
the subsequent panels, highlighting the enhanced data distribution fit due to the polishing.
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SGD
Global Optimum
Polished

Figure 8: Comparison of SGD and polishing via geometric algebra in the spiral dataset.

(a) 4-layer convolutional neural network (b) 2-layer autoregressive language model

Figure 9: Comparison of AdamW and polishing CIFAR image classification (a) character-level MLP trained
on a small subset of Wikipedia (b). Section 7.1 in the Supplementary Material contains additional numerical
results, including a comprehensive hyperparameter search.

4.1.3 Real datasets

To illustrate the polishing strategy, we present three examples in Figures 9 and Figure 10.

In Figure 9 (a), we investigate binary image classification on the CIFAR dataset (Krizhevsky and Hinton,
2009). A four-layer convolutional network composed of two convolutional layers with 3 ∝ 3 ∝ 32 filters
and two fully connected layers with 512 hidden neurons is trained to distinguish class 0 (airplane) from
class 2 (bird). We train it via AdamW optimizer using default hyperparameters and varying learning rate
using 20 epochs and a batch size of 2048. After training, we implement the proposed polishing process
on the first layer weights. Next, we re-train the second-layer weights while first layer weights are fixed via
convex optimization. The resulting average train/validation accuracies are plotted over 5 independent trials
to account for the randomness in optimization. We observe that the polishing process improves both the
training and test accuracy. In Section 7.1.1, we provide additional results with di!erent hyperparameters.

In Figure 9 (b), repeat the same polishing strategy for a small character-based autoregressive language model.
We train a two-layer ReLU network to predict the next character in a sequence of characters from a small
subset of Wikipedia consisting of first 650000 characters from the article titled ’Neural network (machine
learning)’ and other articles linked from the same page. We use the AdamW optimizer with a learning rate
of 10↑4 and a batch size of 8192. The block size is set to 16 characters. We apply polishing to the first
layer weights. Next, we re-optimize the final layer weights while the first layer weights are fixed via convex
optimization. The resulting average train/validation accuracies, along with 1-standard deviation error bars,
are plotted over 8 independent trials to account for the randomness in optimization. We observe a significant
improvement in perplexity after polishing when the number of neurons is large enough. In Section 7.1.5, we
provide additional results with di!erent hyperparameters.
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(a) AdamW and polishing train/validation errors (b) Distribution of inner-product magnitudes

Figure 10: AdamW and polishing via geometric algebra in the Boston Housing dataset.

In Figure 10, we demonstrate the polishing strategy applied within a tabular learning context using the
Boston Housing dataset. This dataset consists of 506 samples, each with 13 features representing various
attributes of housing in Boston. We use a two-layer neural network with varying number of hidden neurons
in the first layer, trained to predict the median value of owner-occupied homes. The network is trained
using the AdamW optimizer with a learning rate of 10↑2 and a batch size of 16 over 100 epochs. After
training, we apply the proposed polishing process to the first layer, followed by re-optimizing the second-
layer weights. The resulting train and validation MSE as well as one standard devation error bars are plotted
over 100 independent trials to account for the randomness in optimization. As shown in Figure 10 (a), the
polishing process consistently results in improved performance when the number of neurons are su"ciently
large, similar to previous cases, demonstrating its robustness across di!erent types of datasets. In Figure
10 (b), we present the distribution of the magnitude of inner-products between the weight vectors of the
AdamW-trained first layer before polishing. This plot shows that many inner products are small, on the
order of 10↑2 to 10↑3, when the vectors are normalized to have a unit Euclidean norm. In Figure 39 in
Section 7.6 of the Appendix, we present additional plots for traditional methods, showing that they perform
worse compared to the polishing process. The work Adlam et al. (2020) reports the validation accuracy of
kernel ridge regression, NN ensembles and Bayesian NNs, which all underperform compared to our approach.
In the Supplementary Material (Section 7.1), we provide a detailed analysis of the e!ect of changing the
hyperparameters and optimizers, including the learning rate, momentum parameters (φ1 and φ2 in Adam and
AdamW), batch sizes, number of epochs, and also present additional results with fully connected networks
and other binary classification tasks. We observe that the polishing process consistently improves the quality
of the weights, leading to a significant improvement in the accuracy of the network while making the neurons
fully interpretable as oriented distance functions via geometric algebra.

4.2 Comparison of ω2 and ω1 regularized neural networks

In this section we compare the predictions of optimal neural networks with p-regularized neurons, specifically
focusing on p = 2 and p = 1. In Figure 11, we compare the optimal decision boundaries of ω1 and ω2
regularized NNs on the XOR dataset with n = 4 samples by solving the dual convex problem in (6). It
can be seen that both models yield the same decision region. Moreover, two distinct breaklines of 4 optimal
neurons are plotted. These can be identified as the a"ne hulls of a subset of training points.

In Figure 12, we compare ω1 and ω2 regularized neural networks on the spiral dataset across varying levels
of regularization strength ϱ by solving the convex Lasso formulations. It can be observed that the optimal
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(a) p = 1 (b) p = 2

Figure 11: Comparison of ω1 and ω2 regularized neural networks on the XOR dataset. The breaklines of the
optimal neurons are shown as dashed lines, representing the a"ne hulls A!

([
→1
→1

]
,
[

1
→1

])
and A!

([
→1
→1

]
,
[

→1
1

])

which pass through a subset of the training data points.

decision regions di!er for large values of ϱ, whereas they become nearly identical for small values of ϱ. This
is expected since with small ϱ, the network is forced to interpolate the data points regardless of the type of
the regularization norm.

5 Discussion

In this work, we have presented an analysis that uncovers a deep connection between Cli!ord’s geometric
algebra and optimal ReLU neural networks. By demonstrating that optimal weights of such networks are
intrinsically tied to the wedge product of training samples, our results enable an understanding of how neural
networks build representations as explicit functions of the training data points. Moreover, these closed-form
functions not only provide a theoretical lens to understand neural networks, but also has the potential to
guide new architectures and training algorithms that directly harness these geometric insights.

Computational complexity of global optimization

The computational complexity of the polishing process is dominated by step 3, which involves solving a
linear system or finding a minimal left singular vector. This can be done in O(n2r) time using the QR
decomposition or the SVD. This process is repeated for each neuron, resulting in a total complexity of
O(n2rm), where m is the number of neurons. In contrast, the complexity of training the neural network to
global optimal using the convex programs derived in Theorems 4 is O(

(n
r

)
n2), which is tractable for small

r. Note that for convolutional neural networks, the rank is bounded by the spatial size of the filter, which
is a small constant (Ergen and Pilanci, 2024). Another application where the data is inherently low rank
is Neural Radiance Fields (Mildenhall et al., 2021). The exponential complexity in r can not be improved
unless P = NP (Pilanci and Ergen, 2020; Wang and Pilanci, 2023). However, the convex programs can
be well-approximated by sampling the wedge products, in a similar manner to the randomized sampling
employed in convex formulations of NNs (Ergen and Pilanci, 2024; 2023; Mishkin et al., 2022). Recent work
showed that random sampling of polynomially many variables in the convex program (5) provides a strong
approximation with only logarithmic gap to the global optimum (Kim and Pilanci, 2024). Another work
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(a) p = 1 and ω = 10
→2

(a) p = 2 and ω = 10
→2

(a) p = 1 and ω = 10
→4

(a) p = 2 and ω = 10
→4

Figure 12: Comparison of ω1 and ω2 regularized neural networks on the spiral dataset. Note that the optimal
decision boundaries are di!erent for large values of ϱ but become very similar for small values of ϱ.

(Wang et al., 2024) introduced randomized algorithms for geometric algebra, which is a promising direction
to make progress in this area.

Interpretability

Our findings also contribute to the broader challenge of neural network interpretability. The polish-
ing process is expected to improve the quality of the weights, leading to a significant improvement in
the accuracy of the network while making the neurons fully interpretable as oriented distance functions
via geometric algebra. More precisely, after polishing each ReLU neuron precisely outputs (xT

i w)+ =
dist+

(
xi,Span(xj1 , ..., xjd→1)

)
. This representation is similar to that of Support Vector Machines, where

the model is defined by a weighted combination of training samples. By elucidating the roles hidden layers
play in encoding geometric information of training data points through signed volumes, we have taken a step
towards a more transparent and foundational theory of deep learning.
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Uniqueness

We note that the optimal weights of a ReLU neural network are not unique, and permutation, merging
and splitting operations on the neurons can lead to equivalent networks. However, all globally optimal
solutions can be recovered via the set of optimal solutions of the convex program (5) by considering these
three operations (Mishkin and Pilanci, 2023; Wang et al., 2021). Moreover, under certain assumptions, the
convex program for univariate data admits a unique solution (Boursier and Flammarion, 2023). In addition,
all stationary points of the non-convex training objective can be recovered via the convex program when
certain variables are constrained to be zero (Wang et al., 2021), up to permutation, merging and splitting.
An important open question is characterizig the entire optimal set of the convex programs via geometric
algebra, which we leave as future work.

Other architectures

Our findings can be extended to several other widely used network architectures. For instance, convolutional
neural networks can be transformed into fully connected networks by reshu#ing the data matrix, as shown
in Ergen and Pilanci (2021d). Some of our results can be directly applied by redefining the training data
vectors. This can be extended to deep CNNs with short receptive fields (Brendel and Bethge, 2019). For
other generic CNNs, the results can be extended by employing the same approach. Additionally, we believe
that our results can be extended to transformer architectures employing linear or ReLU attention, as convex
formulations of these networks have been analyzed in Sahiner et al. (2022). Further results for various other
neural network architectures are provided in Section 8 of the Appendix.

There are many other open questions for further research. Exploring how these insights apply to state-of-the-
art network architectures, or in the context of di!erent regularization techniques and variations of activation
functions, such as the ones in attention layers, could be of significant interest. While our techniques allow for
the interpretation of layer weights in popular pretrained network models, we leave this for further research.
Additionally, practical implications of our results, including potential improvements to the polishing process
remain to be fully explored. Our results also underlines the potential and utility of integrating geometric
algebra into the theory of deep learning.
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