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A Dynamic Model For Optimal Riemannian Metric Transport
MARTIN BAUER (FLORIDA STATE UNIVERSITY)

In this talk, we discuss ongoing work with Peter Michor and Francois-Xavier
Vialard which aims to introduce a dynamic version of unbalanced optimal trans-
port on the space of all Riemannian metrics. The starting point of our investiga-
tions is the Wasserstein-Fisher-Rao metric [1, 2] from unbalanced optimal trans-
port on the space of densities.

We start by very briefly recapping this framework: for (M, go) a Riemannian
manifold we consider the space of all smooth densities Dens(M). Given densities
00, p1 € Dens(M) we then introduce the Lagrangian

(1) Lag(g) = / /M (g0(u(t, ), v(t, ) + AF2) pdt

which we aim to minimize over all p : [0,1] — Dens(M) with p(0) = py and
p(1) = p; subject to the continuity equation

(2) p(t) = —Lywyp(t) + fp.

Here A € R is a balancing parameter between the cost on the transport field v
(given by the Otto metric of L?-optimal transport) and the cost on the source
term fp (given by the Fisher-Rao metric on the space of densities).

The goal of our present investigations is to extend the above Lagragian to
obtain a simialar framework on the space of Riemannian metrics Met(M). The
first step towards this goal is to generalize the corresponding continuity equation.
In analogy with equation (2) it is natural to consider the continuity equation

3) §(t) = —Lymyg + h.

where g : [0,1] — Met(M) is a path of Riemannian metrics and where h : [0,1] —
T4ty Met(M) is again a time dependent source term. Note, that h takes values in
a space of matrix valued functions, which is a significant complication as compared
to the situation of unbalanced optimal mass transport, where the source term is
a R-valued function. We will use the same cost function on the transport vector
field v and thus it only remains to specify a choice for the cost-function on source
term. Starting from the Wasserstein-Fisher-Rao metric there is also a natural
choice for this cost function on the space of Riemannian metrics, namely the Ebin
Riemannian metric, which is related to the Fisher-Rao metric by the fact that the
mapping g — vol(g) is a Riemannian submersion.

Starting from this definition we discuss several desirable properties, that this
optimal transport model on the space of Riemannian metrics possesses. In partic-
ular, we show that the mapping g — vol(g) is a Riemannian submersion from the
space of Riemannian metric to the space of densities, when the latter is equipped
with the Wasserstein-Fisher-Rao metric. Furthermore, we obtain an analogue of



4 Math in Maine 2024

Otto’s Riemannian submersion, where one has to substitute the group of diffeo-
morphisms with the larger space of all automorphisms of TM. Finally we discuss
several open questions and future research directions.

REFERENCES

[1] Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and Frangois-Xavier Vialard. An in-
terpolating distance between optimal transport and Fisher—Rao metrics. Foundations of
Computational Mathematics, 18 (2018): 1-44.

[2] Matthias Liero, Alexander Mielke, and Giuseppe Savaré. Optimal entropy-transport prob-
lems and a new Hellinger—-Kantorovich distance between positive measures. Inventiones
mathematicae, 211.3 (2018): 969-1117.
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K-means clustering in high-dimensional Riemannian manifolds
NicoLAs CHARON (UNIVERSITY OF HOUSTON)

In this talk, we discuss some ongoing work with Robert Azencott, Demetrio
Labate, Andreas Mang and Ji Shi which aims at understanding the properties
of the k-means clustering algorithm in certain classes of Riemannian manifolds
(e.g. Cartan-Hadamard) and explore some fast numerical approaches to perform
k-means clustering in manifolds of large dimension. K-means is among the most
basic and common clustering algorithm in machine learning. For a dataset of
points in an Euclidean space {z;}i=1,... v, with 2; € R™, and a given number k of
clusters, it consists in looking for a partition of the dataset into k£ distinct groups

S ={851,...,S;} that has minimal dispersion in the following sense:
k k
(1) argming Zdisp(Sj) = Z Z |z — ¢
j=1 j=1z€S;
where ¢; = ﬁ Zzesj x is the center (or mean) of the j-th cluster. Optimizing
J “ J

the above is known to be a NP-hard problem. However, some greedy iterative
methods have been proposed to find potential suboptimal solutions, among which
Lloyd’s algorithm that consists in iterating, until convergence, the following cluster
assignment and center update steps:

(i) Cluster assignment update: assign each point x; to the cluster S; which
center ¢; is closest to x;.
(ii) Cluster center update: compute the means of the new clusters.

One can note that the assignment rule in step (i) can be interpreted as separating
R™ into k regions corresponding to the Voronoi diagram of the centers c;. These
regions are specifically delimited by hyperplanes of R™ which are the mediatrices
Hjy = {z € R" : ||z —¢;|| = ||z — c]|} between the different centers. As this
algorithm is not guaranteed to converge to a global minimum of the dispersion
(1), it is customary to run it with multiple initializations of the cluster centers and
ultimately select the solution that yields the smallest dispersion.

Evaluation of the above dispersion and implementation of Lloyd’s algorithm es-
sentially requires two operations, namely the computation of distances and means.
For that reason, it can be extended quite naturally to the setting of Riemannian
manifolds provided distances and Fréchet means are well-defined. This is in par-
ticular the case of Cartan-Hadamard manifolds which are geodesically complete
and for which the Fréchet mean of any set of points exists and is unique. There
are however important differences with the Euclidean case when it comes to the
understanding of k-means in such manifolds and the derivation of effective corre-
sponding algorithms. We discuss a few of these in the following paragraphs as well
as some open questions, by focusing specifically on the manifold SDP(n) of sym-
metric positive definite matrices of size n (with typically ”large” n) equipped with
the affine-invariant metric. This metric is defined for P € SDP(n) and tangent
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vectors V, W € Symm(n) by:
(V,W)p = tr(PT1VPIW)

and its properties have been extensively studied (see [1]).

On a mathematical level, a first interesting distinction with the Euclidean sit-
uation appears when attempting to extend the concept of hyperplane to SDP(n).
Indeed, a first natural extension of hyperplanes are the sets H(P,V) = {expp(W) :
(V,W)p = 0} i.e. the set of points obtained by shooting geodesics from P in direc-
tions orthogonal to V. We call these Riemannian separators of SDP(n). Unlike in
R™, Riemannian separators are generally not totally geodesic except for particular
choices of P and V that can be characterized precisely. Aside from Riemannian
separators, one can also consider mediatrices in SDP(n) that we define, for two dis-
tinct matrices A, B € SDP(n), as I'(A, B) = {P € SDP(n) : d(A,P)=d(B,P)}
where d(, ) is the Riemannian distance corresponding to the affine-invariant met-
ric. One can naturally ask whether, as with Euclidean spaces, I'(A, B) coincides
with the Riemannian separator H (P 2, Vi /2) where Py /9, Vi /o denote respectively
the midpoint between A and B and the tangent vector to the geodesic at that
midpoint. This is however not the case in SPD(n). A side open question is to de-
termine more exactly what the intersection I'(A, B) N H(P, /2, Vi /2) is depending
on the matrices A, B; only partial results have been obtained so far.

From a computational point of view, the manifold case poses significant chal-
lenges for k-means clustering as each iteration of Lloyd’s algorithm involves the
computation of N Riemannian distances and k Fréchet means. In SPD(n), the
affine-invariant distance can be expressed in closed form but requires computing
matrix square roots and logarithm for a numerical complexity of O(n3). Fréchet
means, on the other hand, can only be approximated via optimization or itera-
tive schemes thus demanding many evaluations of distances and their gradients.
This can limit quite significantly the scope of application when considering SPD
matrices of large dimension, such as the covariance matrices of high dimensional
processes. In order to make k-means scale to these situations, we propose to inves-
tigate particular embeddings of SPD(n) into some Euclidean spaces via so-called
Fréchet maps, which can serve as an alternative to the log-Euclidean framework
introduced in [2]. The (squared) Fréchet map F': SPD(n) — R” is defined based
on a given set of p reference points Ay, ..., A, € SPD(n) by:

F(P) = (d(Ay, P)?,...,d(A,, P)?)

Some empirical evidence suggests that applying Euclidean k-means in R? to the
images of the data points by such Fréchet maps can lead, in certain cases, to
results comparable to the Riemannian k-means approach but at a significantly
lower computational cost. This, however, strongly depends on the choice of the
reference points Ay, ..., Ap. The central question we wish to address is to derive
some theoretical properties of the Fréchet map that could provide heuristics on
how to select reference points.

Among the properties we consider is the injectivity of the Fréchet map. It is
indeed easy to show that the Fréchet map with m+ 1 points where m = n(n+1)/2
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is the dimension of SPD(n) is injective as long as the m + 1 reference points do
not lie on a common mediatrix, and it is a immersion if the reference points do not
lie on a common Riemannian separator of SPD(n). Yet those conditions remain
implicit and it is not clear how to test them in practice. We also ask the question
of whether such configurations are generic, in the sense that for random choices

of m + 1 reference points, the corresponding Fréchet map is an embedding into
R™H,

REFERENCES

[1] X. Pennec. Manifold-valued image processing with SPD matrices, chap.3 of Riemannian Geo-
metric Statistics in Medical Image Analysis. Elsevier, 2020.

[2] V. Arsigny, P. Fillard, X. Pennec and N. Ayache. Log-Euclidean metrics for fast and simple
calculus on diffusion tensors. Magnetic Resonance in Medicine, vol. 56, 2006.
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Geodesic and stochastic completeness for landmark space
KAREN HABERMANN (UNIVERSITY OF WARWICK)

The manifold @ of n > 2 distinct landmarks in R?, for d > 1, given by
Q={(z1,...,2p) 1 T1,..., Ty e R? with z; # xj for i # j} c R™

can be endowed with a Riemannian metric that descends from a right-invariant
metric on a diffeomorphism group of R?. For a suitable positive definite kernel
K: R x R? — R4 that depends on the chosen right-invariant metric upstairs,
the above construction amounts to defining a metric g on the space @ through
specifying its inverse by, for i,5 € {1,...,n},
g (z1, ..., zn) = K(zi, xj).

Relevant questions which now arise naturally in the context of statistical shape
analysis concern the geodesic as well as stochastic completeness of the Riemannian
manifold that is the landmark configuration space (@, g).

For the subsequent discussion, we shall further assume that the kernel K is

both rotationally and translationally invariant, so that there exists a continuous
scalar function k: [0,00) — R such that

K(zi,z5) = k(||lzi — ;1)) La,

with || - || the Euclidean norm on R? and I, the d x d identity matrix. Under this
assumption, which covers most important examples, and for the case of exactly two
landmarks, the recent article [1] provides a sharp condition for the scalar function
k to deduce stochastic completeness or stochastic incompleteness, respectively, of
the landmark space (Q, g). Note that Brownian motion on (@, g) can fail to exist
for all times due to the collision of two landmarks or as a result of one landmark
running off to infinity in finite time with positive probability.

Ongoing joint work [2] with Stephen C. Preston and Stefan Sommer establishes
a sharp criterion for any number of landmarks and in terms of the function k which
guarantees geodesic completeness or geodesic incompleteness, respectively, of the
landmark configuration space (Q,g). As for stochastic completeness, geodesic
completeness is ensured by ruling out both collision of landmarks and landmarks
running off to infinity in finite time.

For a geodesically complete landmark space there is then further a potential
road towards proving stochastic completeness by suitably controlling the volume
growth of growing geodesic annuli.

REFERENCES

[1] Karen Habermann, Philipp Harms, and Stefan Sommer. Long-time existence of Brownian
motion on configurations of two landmarks. Bulletin of the London Mathematical Society,
56(5):1658-1679, 2024.

[2] Karen Habermann, Stephen C. Preston, Stefan Sommer. Characterization of geodesic com-
pleteness on landmark space. In preparation, 2024.
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Conic Gromov Wasserstein Distance for
Unbalanced Measure Networks

EMMANUEL HARTMAN (UNIVERSITY OF HOUSTON)

We review of the Gromov-Wasserstein (GW) distance for measure networks [1]
and introduce an extension to unbalanced measures. The GW distance between
two measure networks H = (X, wx, ux) and H' = (Y, wy, py ), where pux and py
are probability measures on X and Y respectively, is defined as:

GW(H,H')?* = inf / wx (@, 2") — wy (y,y)|* dy(z, y) dy(2', ).
YE(ux my) J (X x V)2

To address measure networks with unbalanced measures, we define the conic
Gromov-Wasserstein (CGW) distance, formulated as:

d’VO dvo dy dvi
CGW(H, H' / / L)+ Sy "y
( )= ux,uy) XxvY Jxxvy dW W gy dy =y) dry @Y dy @y)

— 28 (lwx (2,2) — wy (3, y’>|>\/ o) P ) 1w 9) o).
When wx and wy are distance functions, this formulation recovers the CGW met-
ric as defined in [2]. Additionally, we review the concept of weak isomorphism
between measure networks from [1]. Two measure networks H = (X,wx, ux)
and H' = (Y,wy, py) are weakly isomorphic (denoted H ~ H') if there exists a
measure space Z and two functions f: Z — X and ¢g: Z — Y such that:

9xHz = Py,
feiz = px,
[f*wx — g*wylec = 0.
We show that the CGW distance defines a valid metric on the space of measure
networks modulo weak isomorphism, analogous to the result of [1] with showed GW
forms a distance on the space of probability networks modulo weak isomorphism.

However, the structure and geometry of this metric space, such as whether it forms
a geodesic space, remain open areas of investigation.

REFERENCES

[1] Samir Chowdhury, Facundo Mémoli, The Gromov—Wasserstein distance between networks
and stable network invariants, Information and Inference: A Journal of the IMA, Volume 8,
Issue 4, December 2019, Pages 757—787, https://doi.org/10.1093 /imaiai/iaz026

[2] Séjourné, T., Vialard, F., and Peyré, G. (2020). The Unbalanced Gromov Wasserstein Dis-
tance: Conic Formulation and Relaxation. Neural Information Processing Systems.
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Helicity and domino tilings
Boris KHESIN (UNIVERSITY OF TORONTO)

Domino tilings of 3D regions traditionally have two invariants associated to
them, flux and twist. Flux is understood as the homology class associated with a
certain cycle constructed for the tiling. For a cubiculated region M (a topological
3-manifold with boundary) the flux Fluz(t) of a tiling ¢ is an element of the first
homology group of the region, defined up to an additive constant. The ambiguity
can be removed by considering the relative flur RFlux(t) € Hy(M,0M;R). For
tilings with zero relative flux there is an integer invariant, the twist, associated
with the tiling and measuring the "mutual linking of tiles” around each other.
It is invariant with respect to flips, local moves which consist of removing two
neighboring parallel dominoes and placing them back after a rotation. The twist
changes under another move, a trit, which replaces a frame-like triple of tiles to
the one pointing in the opposite way.

While there have been pointed out similarities of the twist invariant with the
Hopf invariant, the correspondence remained at either an intuitive level or in the
continuous limit for turning tiles into vector fields via a broadly understood tiling’s
refinement.

In this paper we present a construction of a smooth divergence-free vector field
associated to an arbitrary tiling (”5-pipe construction”) so that the twist invariant
becomes, up to a factor, the relative helicity of that vector field. Furthermore, we
extend the notion of relative helicity to divergence-free vector fields on arbitrary
three-manifolds and not necessarily tangent to their boundaries. This allows one
to compare relative helicity with twists of tilings in non-simply-connected regions.
The toolbox includes an introduction of "an isolating shell” for a cubiculated
region, the use of refinements and appropriate connectivity of the spaces of tilings.
Finally, we relate the flux invariant of a tiling to the rotation class of the associated
vector field. This is joint work with Nicolau Saldanha, see [1].

REFERENCES

[1] B. Khesin, and N. C. Saldanha. Relative Helicity and Tiling Twist. arXiv preprint
arXiv:2408.00522 (2024).
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RNA velocity fields
ELODIE MAIGNANT (ZUSE INSTITUTE BERLIN)

In this talk, we discuss a new trajectory inference problem arising from recent
advances in single-cell RNA sequencing. Single-cell sequencing is a technique for
simultaneously recovering RNA sequences from a large population of cells. The
data collected are available as a set of vectors x; € R™ where x; represents how
much each of n given genes is expressed in the RNA sequence of the i-th cell. The
trajectory inference problem is that of recovering from such transcriptomic data
the dynamic process (e.g. the differentiation process) that governs the evolution of
the cell population. More precisely, it consists in ordering the cells according their
stage of the process. Indeed, since single-cell sequencing is a destructive method,
the evolution stage ¢; at which each cell was observed is not known. However,
assuming that the changes undergone by the cells are governed by a common
process, one should be able to recover such stages from the set of all vectors z;.
Now, in addition to these expression vectors, we investigate what are known as
RNA velocities. These are other vectors v; € R™ quantifying the infinitesimal
change in expression of each gene in the RNA sequence of the i-th cell after stage
t;. Eventually, our data is given as a discrete vector field (x;,v;).

Our problem is thus to recover the dynamics of the cell population from such
a vector field. To the best of our knowledge, current methods incorporating RNA
velocities do not fully leverage the nature of the data, that is that of a coupling
between points and tangent vectors. In any case, such data present two main
challenges. The first one is their high dimension (the number of genes being
sometimes as large as the number of cells). The second is their underlying tree
structure, a natural hypothesis for modeling the process of cell differentiation.
Indeed, the combination of the two makes learning tasks as simple as interpolating
and integrating the discrete vector field (z;,v;) — a first approach mentioned in
this discussion — tricky. While the literature has addressed the first limitation by
applying dimension reduction methods, the tree structure questions in fact the
efficiency of such methods, a priori optimized for more uniformly distributed data
sets. In the absence of any assumption on the regularity of the vector field, we
identify the need to take full advantage of the tree structure. Finally, an additional
challenge typically encountered in data analysis is the noisy nature of the data.
To answer our problem, we conclude on several approaches covering tree inference,
stochastic processes and optimal transport. This is based on ongoing work with
Christoph von Tycowicz.
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The orbit of the diffeomorphism group through the Euclidean metric
on R4

PETER MICHOR

Theorem. The orbit of the pullback action of Diff 4(RY) through the Euclidean
metric in Met 4(R?) consists of all flat metrics in Met_4(R).

Here A € {S,H*,D} among other choices, where S denotes any space of
rapidly decreasing functions, H> = (|, .y H k¥ is the intersection of all Sobolev
spaces, and D denotes any space of functions with compact support. Moreover,
we put

Diff 4(RY) = {p =Id+f : f € AR? R?), det(df) > —1}
Met 4(R") = {g=g+h:he AR", L2, (R",R)),g positive}

sym

the Lie group of diffeomorphisms of R? which differ from the identity by an element
in A, and the smooth manifold of all Riemannian metrics which differ from the
Euclidean metric g by an element in A.

Proof. For the curvature we have R® 9 = p*R9 = »*0 = 0, so the orbit consists
of flat metrics. It remains to prove that each flat metric is in the orbit. So let
gE Meti{Lt (R™) be a flat metric. Considering g as a symmetric positive matrix, let
s := ,/g. We search for an orthogonal matrix valued function v € C*°(R", SO(n))
such that u.s = dy for a diffeomorphism ¢. For the following see [1, Section 25].

Let 0; := Zj sijdxj be the rows of s. Then for the metric we have g = Zl 0; @
o;, thus the column vector o = (o4,...,0,)" of 1-forms is a global orthonormal
coframe. We want u.o = dy, so the 2-form d(u.o) should vanish. But

0=d(uo)=duro+udo < 0=u"t.durho+do

This means that the o(n)-valued 1-form w := u~!.du is the connection 1-form
for the Levi-Civita connection of the metric g. Since g is flat, the curvature 2-
form Q@ = dw + w A w vanishes. We consider now the trivial principal bundle
pr; : R” x SO(n) — R™ and the principal connection form prjw on it which is
flat, so the horizontal distribution is integrable. Let L(ug) C R™ x SO(n) be the
horizontal leaf through the point (0,u) € R™ x SO(n), then the restriction pry :
L(up) — R™ is a covering map and thus a diffeomorphism whose inverse furnishes
us the required v € C*°(R", SO(n)) which is unique up to right multiplication by
ug € SO(n). The function u : R® — SO(n) is also called the Cartan development
fo w.

Thus u.o = dy for a column vector ¢ = (¢1,...,¢") of functions which defines
a smooth map ¢ : R — R". Since dy = u.o is everywhere invertible, ¢ is locally
a diffeomorphism. Since g falls to g = I, as a function in A, the same is true for o
and thus also for u.o since u is bounded. So d(p — Idgn) is asymptotically 0, thus
@ — Idgn~ is asymptotically a constant matrix A; here we need n > 2. Replacing
@ by ¢ — A we see that ¢ then falls asymptotically towards Idg~. Thus ¢ is a
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proper mapping and thus has closed image, which is also open since ¢ is still a
local diffeomorphism. Thus ¢ € Diff 4(R™).

Finally, dot.dp = (u.0)t.u.c = oct.ut.u.c = ot.c = g. Note that ¢ is unique in
Diff 4 (R™). This is also clear from the fact, that the fiber of Pull? over ¢*g consists
of all isometries of ¢*g which is the group ¢! o (R™ x O(n)) o C Diff(R™) whose
intersection with Diff 4(R™) is trivial. O

REFERENCES

[1] P. W. Michor. Topics in differential geometry, volume 93 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2008.
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A Zeitlin discretization for axisymmetric Euler on S§3
KrLAs MODIN (CHALMERS UNIVERSITY OF TECHNOLOGY)

The Hopf fibration 7: S2 — S? gives rise to “axisymmetry” for Euler’s in-
compressible equations on S3. Namely, a divergence free vector field u on S? is
axisymmetric if it is equivariant under the S* action on S3. The infinitesimal ver-
sion of this conditions is that v commutes with the Hopf field. Together with the
divergence free condition divu = 0, we can then describe u in terms of two func-
tions 1) and o on S2. The “2-D stream function” 1) corresponds to the vector field
on the base S2, whereas the “swirl function” o corresponds to the speed along
the fiber directions. Lichtenfelz, Misiotek, and Preston [1] showed that the ax-
isymmetric Euler equations on S3, expressed in these variables, have the beautiful
form )

AY 4+ {, A+ o} =0, o+ {y,o} =0.
This form of the equations immediately reveals how to discretize them via Zeitlin’s
approach: apply quantization on S? to the functions v and ¢, which yields corre-
sponding matrices P € su(n) and ¥ € u(n). The corresponding matrix hydrody-
namic version of the equations then reads
AP+ %[P,AnP—i— %] =0, >+ %[P,Z] =0,

where A,, is the Hoppe-Yau quantized Laplacian u(n) — su(n), [-,-] is the matrix
commutator, and i =1/4/n(n —1).

The great expectation is that these matrix equations shall provide a useful
numerical tool for guiding the analysis of finite time blow up. As a first step, in a
recent preprint together with Preston [2], we studied their underlying Euler-Arnold
structure and gave some results on sectional curvature.

REFERENCES

[1] L. Lichtenfelz, G. Misiolek, and S. C. Preston. Axisymmetric diffeomorphisms and ideal fluids
on Riemannian 3-manifolds. Int. Math. Res. Not., 2022(1):446-485, 2022.

[2] K. Modin and S. C. Preston. Zeitlin’s model for axisymmetric 3-D Euler equations.
arXiv:2408.11204, 2024.
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The Z-Gromov-Wasserstein Distance
ToM NEEDHAM (FLORIDA STATE UNIVERSITY)

The Gromov-Wasserstein (GW) distances, introduced by Mémoli in [4], com-
prise a family of metrics on the space of metric measure spaces (mm-spaces),
or triples of the form X = (X,dx,ux), where (X,dx) is a separable, complete
metric space and px is a probability measure on X. For p € [1,00), the Gromov-
Wasserstein p-distance between mm-spaces X and ) is

GW,, (X, V)P = inf 1 // ldx (z,2") — dy (y,9')|P7(dz x dy)w(dx’ x dy'),
T 2 (X xY)2

where the infimum is over couplings—probability measures m on X X Y whose
left and right marginals are pux and py, respectively. This defines a notion of
optimal transport between measures supported on different metric spaces, and has
applications in shape analysis and machine learning, where an optimal coupling
provides a soft registration between a priori incomparable spaces such as point
clouds or Riemannian manifolds. The formula for GW distance still provides a
meaningful pseudometric between more general structures of the form (X, wx, ux),
where wx : X x X — R is only assumed to be a measurable map, rather than
a metric [3]. For example, one can model a graph as a structure of this form
by taking X to be its node set, ux to be the uniform measure, and wx to be
some standard graph kernel, such as the graph’s (weighted) adjacency function
or Laplacian. In this setting, computing the GW distance amounts to solving a
relaxed graph matching problem.

In applications, a graph frequently comes with additional structure such as node
or edge features. For example, edges in a social network are typically attributed
with vectors in R™ encoding user interaction data. As another example, there
has been significant recent interest in shape graphs, a formalism for modeling
filamentary structures, such as arterial networks, as graphs with edges attributed
in a space of curves (endowed with some metric coming from the field of shape
analysis), encoding the ‘shape’ of each edge [1].

In recent work with Bauer, Mémoli and Nishino [2], we define a GW-like dis-
tance which is designed to handle edge-attributed graphs, as well as more general
structures. For a fixed separable metric space (Z,dz), we define a Z-network to
be a triple of the form X = (X, wx, ux), where X is a Polish space, pux is a Borel
probability measure, and wyx : X X X — Z is a measurable Z-valued kernel. The
Z-Gromov- Wasserstein p-distance between Z-networks X and ) is defined as

WYy =ity [ dafiox o)y .0)Pr(de  dy)r(ds’ x dy),
(XxY)?

where the infimum is once again over couplings of ;1 x and py. For graphs with edge

attributes valued in Z, this notion of distance gives a method of comparison whose

computation results in an attribute-aware soft registration (i.e., graph matching).

Taking Z to be R™ or a space of curves, respectively, recovers the concrete settings
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described in the previous paragraph. This construction is closely related to that
of the recent work [5]; please refer to our paper for a precise comparison.

We derive several results in [2] on the metric properties of the Z-GW distance,
summarized in the following theorem.

Theorem 1 ([2]). The Z-Gromov-Wasserstein p-distance defines a pseudometric
on the space of Z-networks. Pairs of Z-networks with distance zero have an explicit
geometric characterization. The induced metric space is complete if and only if Z
is complete, is always path connected, and is geodesic if Z is geodesic.

We additionally show that the Z-GW distance encompasses several variants of
GW distance which have appeared previously in the literature. There has been
a trend in the recent machine learning literature to introduce a variant of GW
distance for handling a particular data structure, and to then derive its properties
via proofs which follow a standard structure. A motivation for our work was to
provide a general framework for reasoning about metric properties of GW-like
metrics, in order to reduce such redundancies. Please refer to our paper for a
description of these connections.

This talk posed several open questions about the Z-GW distance:

o Is Gle always a geodesic space? This would mirror the situation for
Wasserstein distances on arbitrary metric spaces.
o Letp>1.1If GW? is geodesic, does this imply that Z is geodesic?

e QOur proof that geodesicity of Z implies geodesicity of GWf is construc-

tive. In this case, are all GWf geodesics of the form given by our con-

struction? An affirmative answer would allow us to derive Alexandrov
curvature bounds for GWg .

e Are there interesting precompact families of Z-networks (cf. Gromov’s
celebrated precompactness theorem)?
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Curvatures of Sobolev metrics on diffeomorphism groups
STEPHEN C. PRESTON (BROOKLYN COLLECE)

The original motivation for studying geometry of diffeomorphism groups was
to use curvature to understand the observed instability of fluid mechanics: an
ideal fluid with no external forces follows a geodesic trajectory in the group of
volume-preserving diffeomorphisms, under a right-invariant metric determined by
the kinetic energy. Hence negative curvature implies instability via exponential
divergence of nearby geodesics. However in the original paper of Arnold [1], it was
immediately discovered that although the sectional curvature is negative in many
sections, it can also sometimes be positive. Furthermore the sectional curvature
is not bounded, which is essentially due to the fact that the Riemannian metric is
too weak to generate the topology that makes the diffeomorphism group a smooth
manifold (L? topology for the metric vs. at least C! topology for the manifold
structure). Furthermore, the sectional curvature on a general Lie group with a left-
or right-invariant metric is given by a rather complicated formula, about which it
has been difficult to draw general conclusions.

In particular this makes it difficult to apply the most straightforward theorems
of Riemannian geometry, which are typically of the form that a uniform bound on
all sectional curvatures has topological implications for the manifold. In the case
of a strong metric, such as a Sobolev metric of order s on the manifold M, where
s> %dim(M )+1, the metric generates a topology where the diffeomorphism group
is a smooth manifold, and for this reason the curvature and all other geometric
quantities are uniformly bounded. Our question is when this works for weaker
metrics.

The simplest situation is the degenerate H' metric on Diff(S'), which descends
to a true Riemannian metric on the quotient space Diff(S!)/S! (modulo rotations).
Here the quotient space is isometric to a portion of the round infinite-dimensional
sphere [2], and so the curvature is a positive constant (and in particular it is
bounded). This is the only known situation where the curvature takes only one
sign, illustrating the difficulty of analyzing curvature for diffeomorphism groups.

The simplest case is the one-dimensional case, either Diff(S!) or Diff(R) with
some reasonable decay conditions in the latter case. Here the Sobolev metric
H® becomes a strong metric (and all boundedness results are automatic) when
s > % Meanwhile the geodesic equation is not well-posed unless s > %, so it is
unreasonable to expect any boundedness for s < % Our conjecture is the following:

Conjecture 1. On the diffeomorphism group Diff(S') with the right-invariant
Sobolev H® or degenerate H® metric, let K (u,v) be the sectional curvature of the
section spanned by vectors u,v € Tiq Diff(S1).

o Fors < %, the sectional curvature K (u,v) is unbounded as a function of
either u or v, even if one vector is held fized.

° FOT’% < s < 1 and for each fixed smooth u, the sectional curvature K(u,v)
s bounded as a function of v, but unbounded if both u and v can vary.
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e For s > 1, the sectional curvature K (u,v) is uniformly bounded in both u
and v.

Unboundedness is easy to prove: one simply constructs examples with explicit
formulas. Boundedness is substantially harder to prove. Known cases for bound-
edness include s = 1 for the H' metric mentioned above, along with the case s > %
I discussed a strategy that Alice Le Brigant, Martin Bauer, and I are pursuing to
prove boundedness in the H* case in general by considering the Sobolev metric
as a quotient of the group of horizontal planar diffeomorphisms. The Lie algebra
here is the space of vector fields u(z,y) % corresponding to diffeomorphisms that
fix each horizontal line, and the right-invariant metric is given by

(0, 4} :/ uag(ﬂmy)zJ;uy(ﬂs,y)2 iz dy.
R2 Y
It can be shown that if « = 25 — 1 for % < s < 1, the quotient map, obtained
by projecting a horizontal diffeomorphism to the restricted diffeomorphism of the
r-axis, is a Riemannian submersion. Hence one can compute the curvature in
the simpler a-metric and use the O’Neill formula for curvature of a Riemannian
submersion to hopefully prove both parts of this conjecture.
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Conditionally positive kernels and landmark shape spaces with
induced metrics

STEFAN SOMMER (UNIVERSITY OF COPENHAGEN)

Joint work with Peter Michor and Sarang Joshi.

We present a unification of the landmark shape spaces of Kendall, that re-
move translation, rotations, and scale from landmark configurations with initial
Fuclidean geometry, with landmark configuration spaces equiped with Riemann-
ian metrics descending from right-invariant Sobolev metrics on the diffeomorphism
group. This is possible when the metric is invariant to the adjoint action of the rigid
motion group and potentially rescaling, so that the Riemannian metric descends
first to a quotient of the diffeomorphism group, and subsequently to quotients of
the landmark space. We explore the resulting geometry that is intrinsically linked
to conditionally positive kernels and Beppo-Levi spaces. The construction will
allow the use of landmark configuration spaces with induced metrics in applica-
tions including evolutionary morphology and medical imaging while still keeping
the shape invariances that are a hallmark of Kendall’s shape spaces.
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Riemannian metrics on Quotient manifolds
ALICE BARBARA TUMPACH (INSTITUT CNRS PAULI, VIENNA)

The following is part of a joint work with S.C. Preston (see [2], [3]) and was
inspired by considerations in shape analysis (see [1]).

Consider a (possibly infinite-dimensional) Lie group G and K an immersed
Banach-Lie subgroup of G with Banach-Lie subalgebra £ C g. Suppose that the
quotient space G/K for the right action of K on G

G/K ={gK,g € G}

is a Hausdorff Banach manifold. This is for instance the case when K is a split
Banach-Lie subgroup (i.e the Lie algebra ¢ is closed in g and has a closed com-
plement), but we will consider the more general case. We will denote by 7 the
quotient map: w(g) = gK.

Definition 1. The normal bundle of G/K is the fiber bundle over G whose fiber
at g € G is given by

Norg = T,G/ ker Ty,
where T;m denotes the differential of the canonical projection 7 at g € G.

Proposition 1. ([1]) The tangent bundle T(G/K) of the homogeneous space G /K
is canonically isomorphic to the quotient Nor /K of the normal bundle Nor by the
right action of K. In particular, for any g € G and any X € T,G, the K-orbit of
[X] € T,G/ker Ty is identified with Tym(X) € Tr(y)G/K.

Proof. Note that ker T, m is the vector space generated by the infinitesimal action
of K on g € G. In particular, Ry kerTym = kerTg,m, where Rj denotes the
differential of the right translation by k € K. Hence the right action of K on TG
induces a right action of K on the normal bundle Nor. Since 7 is a submersion,
for any g € G such that w(g) = p, the quotient Banach space T,G/ker T,m is
isomorphic to T,,(G/K). Moreover w(g) = m(h) = p if and only if h = gk for some
k € K. Hence T(G/K) is isomorphic to the quotient Nor /K. O

Remark 1. For g € G, the dual space to the normal space Nory = T,G/ ker Tym
at g € G is canonically isomorphic to (ker Tgﬂ')O where

(keI‘Tgﬂ')O = {f € (TgG)* 7f\ ker Tym — 0} .

Notation 1. We will denote by (-, )xor /., (Nor)+/x the duality pairing between
Nor /K and its dual bundle (Nor)*/K.

Remark 2. A Riemannian metric on the quotient space G/K is a family of
positive-definite bilinear forms g : T, (G/K)xTi,(G/K) — R depending smoothly
on the foot point [g] € G/K and is therefore equivalent to a vector bundle map

A Nor /K — (Nor /K)* ~ (ker T)° /K,
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such that
Nor /K x Nor /K — R
(X7 Y) = (X7 AY)Nor /K, Nor* /K

is symmetric positive definite.

Proposition 2. If 7 : G — G/K admits a globally defined section s : G/K — G,

then A : Nor /K — (Nor /K)" can be lifted to a K-invariant vector bundle map

A : Nor — Nor* ~ (ker Tﬂ')o, by defining A on the range of the section s as
Asr(9) Xsm(9)) = Ar(e) Tom(Xs(x(9)))»

Jor Xg(n(g)) € Novs(r(g)) = Ts(n(g)) G/ ket Ty(r(g))T and extending it by K -invariance

to the whole fiber bundle Nor over G.

Definition 2. Gauge invariant metrics were introduced in [4] (see also [5]) and
consist of degenerate metrics g : TG x TG — R on a fiber bundle 7 : G — G/K,
whose kernel at g € G coincides with the vertical space ker T;m and which descend
to a Riemannian metric on G/K.

Theorem 2. Consider a quotient manifold G/K endowed with a Riemannian
metric g and suppose that 7 : G — G/K admits a globally defined smooth section
s:G/K — G. Denote by S the smooth manifold S = s(G/K) C G. Then

(1) the Riemannian metric g naturally induces a Riemannian metric g5 on S
defined by

S
8° (Xs(n(9)): Ysn()) = 8 (Tstr(o) T(Xs(m(g))s To(m(a) ™ (Ys((s)))

where Xs(x(g)): Ys(n(9)) € Ts(n(9))S-
(2) the Riemannian metric g naturally induces a gauge invariant metric g on
G defined by

g(Xg’ YQ) =8 (TS(ﬂ(g))W(P(Rk*IX!]))vTs(w(g))W(P(Rk*IYq)))

where g € G decomposes as g = s(m(g))k for a unique k € K, and X,,Y, €
TyG, and P : Ts(r(g)G — Ts(r(g))S 18 the projection on T (g))S relative
to the decomposition:

(m(g 7(9)

T(n(gnG = To(n(g))S @ ket T(n(g)) T
Note that ker T,m is exactly the kernel of § at g € G.
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Entropic regularization and specific relative entropy
FRANGOIS-XAVIER VIALARD

In this talk, I presented the joint work in [1]. The starting point of this work
was the following question:

How to use the well-known entropic regularization and alternate
optimization (i.e. the associated Sinkhorn-type algorithms) to
solve variational problems defined on diffusion processes?

As such, this question is fairly vague. However, a well-studied framework gives
sense to the entropic regularization of optimal transport in continuous time. This
is the problem of Schrédinger bridge which can be formulated as a convex optimiza-
tion problem on the path space Q = C([0, 1], R¢) (Ent(u, v) is the Kullback-Leibler
divergence, also called relative entropy),

(1) ﬂénplgz) Ent (7, ),

under the constraints that (recall that Tj(p) is the pushforward of the measure
w by T) [evoly(m) = p € P(RY) and [evq]y(m) = v € P(R?) where evy : Q —
R is the evaluation at time ¢. The reference measure my can be taken as the
standard Wiener measure. Note this implies that a minimizer has a finite entropy
with respect to this measure, which implies charging the same set of paths. In
particular, one cannot hope to optimize on the set of paths that is charged by
using straight Schrodinger bridges. Another formulation of Schrodinger bridges
consists in solving

a(t,z)

1
) inf /0 Epl|a?(t, X,)[2]dt

under the constraint that dX; = a(t, X;)dt + ddW where the initial distribution
of X; at time 0 is p and its distribution at time 1 is v. Here & is a volatility that
is fixed and it is not a parameter that is optimized, only the drift is.

A more general problem (written in 1d hereafter) consists of optimizing

1
(3) inf [ Ep[F(a(t, Xy)) + G(o(t, X¢)?)]dt ,
a(t,z) Jo

under the constraint that dX; = a(t, X;)dt+o(t, X;)dW under similar constraints,
where F, G are convex functions. Guo and Loeper and co-authors put forward such
a direction, see for instance [2]. The corresponding methods’ main computational
issue consists in optimizing a non-strongly convex functional using PDE solvers,
limited to low dimensions. To circumvent these two issues, entropic regularization
comes as a natural tool. However, due to the issues mentioned above, it is not
completely clear how to use it. Our method is based on the following important
observation:

Each marginal at time ¢ of a diffusion process has finite entropy

with respect to the Lebesgue measure. In particular, discretizing

the time and computing the relative entropy with a well-chosen
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reference measure is finite. Using a proper renormalization with
the number of timesteps leads to the notion of specific relative
entropy, as introduced by N. Gantert in [3].
Let us define the specific relative entropy, when it exists for a probability measure
P on the path space
S(P|P) := lim h Ent(P"|P"),
AN

where the P" is the time discretization of P with timestep A and similarly for the
reference measure P. When P and P is the probability measure of a diffusion
process in dimension d with smooth coefficients and with an elliptic condition on
the diffusion coefficients, one has

det(a)
deta

(4) S(P|P) = E[Tx(a""(a - a)) — log P

where a = oo |.

Our result is a Gamma-convergence type of result: The continuous time problem

5)
1
29(P) = B [ Pl (X0).af (X)) + S(al (X0[a)) ) +Dist(Fy, po) +Dist (1. )

where Dist is a divergence on the space of measures that is bounded by above by
the Wassertein distance squared, can be discretized by

(6)
N-—1

TP = 3 Epn (F(al (X]), al (X])))+h Ent(P"[P")+Dist(B}, po)+Dist(P}', p1)
i=0

where the coefficients are defined by

1

af(x;) = EEPh [(XP — @]
1

@i (2:) = T Bpn [(Xihy — ) (X — )]

We need to include strong constraints on the diffusion coefficients to obtain this

result to guarantee that the limit process is also a diffusion.

(7)
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