A Practical Data Repository for Causal Learning
with Big Data

Lu Cheng', Ruocheng Guo*!, Raha Moraffah*!, K. Selcuk Candan', Adrienne
Raglin?, and Huan Liu?

! Arizona State University, Tempe, AZ, USA
{1cheng35,rguol2,rmoraffa,candan,huanliu}@asu.edu
2 Army Research Laboratory, Adelphi, MD, USA
adrienne.raglin2.civ@mail.mil

Abstract. The recent success in machine learning (ML) has led to a
massive emergence of Al applications and the increases in expectations
for AI systems to achieve human-level intelligence. Nevertheless, these
expectations have met with multi-faceted obstacles. One major obsta-
cle is ML aims to predict future observations given real-world data de-
pendencies while human-level intelligence Al is often beyond prediction
and seeks the underlying causal mechanism. Another major obstacle is
that the availability of large-scale datasets has significantly influenced
causal study in various disciplines. It is crucial to leverage effective ML
techniques to advance causal learning with big data. Existing bench-
mark datasets for causal inference have limited use as they are too
“ideal”, i.e., small, clean, homogeneous, low-dimensional, to describe
real-world scenarios where data is often large, noisy, heterogeneous and
high-dimensional. It, therefore, severely hinders the successful marriage
of causal inference and ML. In this paper, we formally address this is-
sue by systematically investigating existing datasets for two fundamental
tasks in causal inference: causal discovery and causal effect estimation.
We also review the datasets for two ML tasks naturally connected to
causal inference. We then provide hindsight regarding the advantages,
disadvantages and the limitations of these datasets. Please refer to our
github repository® for all the discussed datasets in this work.

Keywords: Causal Learning - Treatment Effect Estimation - Causal
Discovery - Datasets - Big Data - Benchmarking.

1 Introduction

The goal of a myriad of scientific research is to understand the causal mecha-
nisms that reveal outcomes of interventions and counterfactuals [10]. Compared
to the extensive literature on causal inference in statistics, econometrics, bio-
statistics and epidemiology, the interest in discovering causal relations and esti-
mating causal effects within computer science (data science especially) has been

* Equal contribution.
3 https://github.com/rguol2/awesome-causality-data
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rapidly growing recently. On one hand, as big data has significantly influenced
causal study in various disciplines, it is important to leverage machine learning
(ML) techniques to enhance our capability of modeling complex and large-scale
data; On the other hand, ML seeks correlations among data to predict future
observations. The discovered patterns have limited use when the goal is, instead,
to understand the the underlying causal mechanisms. One needs to go beyond
correlations to assay causal structures underlying statistical dependencies.

A major challenge of studying causal inference with big data is the lack of
benchmark datasets. Although growing computer power enables us to easily col-
lect massive amount of data, it is extremely challenging to obtain the groundtruth
from observational data. This is due to the fundamental question in causal in-
ference that we can not observe the counterfactuals. Most existing benchmark
datasets for learning causality are therefore, synthetic or semi-synthetic. They
are often clean, small-scale, homogeneous and low-dimensional while real-world
data is noisy, large-scale, heterogeneous and high-dimensional. Additionally, as
there is no unified principle to regulate the data simulation processes, it is hard
to evaluate the models and interpret the empirical results. To address these is-
sues, we first summarize existing datasets for the two fundamental tasks in causal
inference: causal discovery, problem of discovering the underlying causal struc-
ture of data; and causal effect estimation, problem of estimating causal effect of
a certain set of variable on others. We seek to answer two research questions:
i) What are the advantages and disadvantages of these datasets? ii) What are
the limitations in existing datasets? In addition, we investigate datasets for two
ML problems that are naturally connected to causal inference, i.e., off policy
evaluation and debiasing recommender system. The main contributions are:

— We formally address an urgent but almost untouched problem that hinders
the marriage of causal inference and ML. That is, the lack of benchmark
datasets for causal learning with big data.

— We investigate existing datasets for two fundamental causal inference tasks,
i.e., causal discovery and causal effect estimation, as well as two ML tasks
that have been recently studied from the causal inference perspective.

— We answer important research questions regarding the advantages, disadvan-
tages and limitations of these datasets. We aim to offer some crude remarks
that can draw attentions from researchers to together create and share new
benchmark datasets for causal learning with big data.

2 Causal Discovery

Causal discovery from empirical data is a fundamental problem in many scientific
domains. Causal discovery addresses the problem of learning the underlying
causal mechanisms and the causal relationships amongst variables in the data.
Datasets for this task are collected from either pure observational data or with
both observational data and experimental data in hand. Papers in this area can
be divided into three major categories:
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Learning causal direction (causal or anti causal relations) between two vari-
ables. Specifically, given the observations {(x;,y;)}"_; of random variables,
the goal is to infer the causal direction, i.e. whether x — y or y — .
Learning the trio-relationships (V-structures) and directions among three
variables.

Learning the underlying Causal Bayesian Network (CBN) of the data which
is used to show the relationships between all the variables in the data.

2.1 Datasets

Common datasets for learning causal direction between two variables are:

Tibingen Cause-Effect Pairs (TCEP) [27]: This dataset consists of real-
world cause-effect samples which are collected across various subject areas.
The groundtruths are true causal direction provided by human experts. This
dataset is expected to contain diverse functional dependencies due to the fact
that pairs are collected from diverse origins.

AntiCD3/CD28 [31]: A dataset with 853 observational data points corre-
sponding to general perturbations without specific interventions. This dataset
is used in protein network problem.

Note [26]: One innovative way of testing causal/anti-causal learning algo-
rithms is to test the model on causal time series datasets to infer the direc-
tion of the arrow. To achieve this, [26] used a dataset containing quarterly
growth rates of the real gross domestic product (GDP) of the UK, Canada
and USA from 1980 to 2011.

Pittsburgh Bridges [2]: There are 108 bridges in this dataset. The follow-
ing 4 cause-effect pairs are known as groundtruth in this dataset. They are
1) Erected (Crafts, Emerging, Mature, Modern) — Span (Long, Medium,
Short), 2) Material (Steel, Iron, Wood) — Span (Long, Medium, Short);
3) Material (Steel, Iron, Wood) — Lanes (1, 2, 4, 6); 4) Purpose (Walk,
Aqueduct, RR, Highway) — type (Wood, Suspen, Simple-T, Arch, Cantilev,
CONT-T).

Abalone [2]: This dataset contains 4,177 samples and each sample has 4
different properties. Sex, Length, Diameter and Height. The property sex
has three values, male, female and infant. The length, diameter, and height
are measured in mm and treated as discrete values, similar to [Peters et al.,
2010]. The groundtruth contains three cause-effect pairs.

In order to evaluate the performance of a model for distinguishing cause from
effect on the above-mentioned benchmark datasets, the accuracy of the model
on the datasets is calculated and reported. Next we introduce the datasets used
in learning the CBN. As real-world datasets are often not available, we describe
the benchmark synthetic datasets below:

Lung Cancer Simple Set (LUCAS) is a synthetic dataset which was made
publicly available through the causality workbench [12]. The true causal
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DAG cousists of 12 binary variables: 1) Smoking, 2) Yellow Fingers, 3) Anx-
iety, 4) Peer Pressure, 5) Genetics, 6) Attention Disorder, 7) Born on Even
Day, 8) Car Accident, 9) Fatigue, 10) Allergy, 11) Coughing and 12) Lung
Cancer. The true causal graph consists of causal edges between variables.

— A common approach to generate synthetic data in learning CBN is to use a
random generation of chordal graphs approach [18,36].

Moreover, there is a line of research which focuses on causal discovery prob-

lems from both observational and interventional data. In this task, we can as-
sume that an intervention on every node of the underlying Bayesian Network is
allowed. Below is the dataset designed and used in this task :
Gene perturbation data: Usually some yeast genes are selected from the data.
Some observations from this data are as follows: the gene YFL044C reaches 2
genes directly and has an indirect influence on all 11 remaining genes; finally,
the genes YMLO81W and YNRO63W are reached by almost all other genes.
One common way of evaluating Causal Bayesian Networks and in general struc-
tural learning problems on the above-mentioned datasets is to measure struc-
tural Hamming distance (SHD). The SHD is defined as the minimum number
of edge insertions, deletions, and changes required to transform one model into
another [40].

2.2 Advantages, Disadvantages, and Limitations

Advantages. There exists a number of real-world datasets for the task of learn-
ing the causal direction between two variables that can be used in future research.
These datasets are collected for real world scenarios and are annotated by the ex-
perts in corresponding fields, which make these desirable and useful for research
in this field.

Disadvantages. There exists no large-scale data for the task of finding the
underlying Bayesian Network of the data, which is one of the most important
tasks in causal inference. Moreover, no real-world data is available for the task
of learning V-stucture (i.e. trio-relationships among variables), which makes it
difficult to verify the proposed methods, and therefore, researchers often evalu-
ate their proposed methods on only the datasets available for causal direction
discovery and fail to show the effectiveness of them on finding the relationships
between three variables.

Limitations. Many machine learning algorithms require huge number of sam-
ples to be trained on. However, for the task of causal discovery, the only real-
world dataset available is LUCAS data which contains only 12 variables. There-
fore, it is hard for the researchers to leverage the available dataset in big data
scenarios and train a machine learning model on it. Moreover, collecting datasets
with groundtruth for underlying CBN of all variables available in the data is a
tremendously difficult task due to the lack of availability of human experts and
resources to annotate the data and come up with the groundthruth. Another
limitation is that there exists no real-world dataset for the problem of detect-
ing V-Structure from the data, which also requires human resources and can be
costly and time consuming.
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3 Causal Effect Estimation

The task of causal effect estimation is to investigate to what extent manipulating
the value of a potential cause would change the value of the outcome variable.
Following the literature [17,24,33,35] , the variable that we seek to manipulate
is the treatment and the corresponding variable that we observe from measuring
the effect of that manipulation is outcome. In this task, the treatment can be
a single variable taking binary values, discrete values or continuous values, or
multiple treatment variables that take various values. Potential Outcomes frame-
work is widely used in the literature of causal effect estimation [28,30]. Potential
outcomes are defined as:

Potential Outcome. Given an instance i and the treatment ¢, the potential
outcome of i under treatment ¢, denoted by y!, is the value that y would have
taken if the treatment of instance ¢ had been set to t.

With this definition, the individual treatment effect (ITE) is:

7 = Ely}] — Elyf], (1)

where y§ (y!) denotes the potential outcome of the i-th instance under control
(treatment). Intuitively, ITE is referred to as the expected difference between the
two potential outcomes. Average treatment effect, or ATE, is then the average
of ITE over the whole population. It is defined as: 7 = IE;[r;]. Based on these
definitions, we introduce two widely used evaluation metrics. Given the ground
truth of ATE (7) and the inferred ATE 7, the mean absolute error (MAE) on
ATE is widely adopted. It is defined as:

€EMAEATE = |T — 7. (2)

In addition, the inferred ITEs can be evaluated by the precision in estimation
of heterogeneous effect (PEHE). Formally, PEHE is defined as:

pmie = - (7~ 7(x0))% (3)

=1

where 7; denotes the ground truth ITE of the instance ¢ and 7(x;) signifies the
corresponding estimate.

3.1 Datasets with Binary Treatment

— Jobs. The dataset consists of two parts. The first part is from the randomized
trial study by LaLonde [19] (297 treated and 425 control). The second part
is the PSID comparison group (2,490 control) [37]. The features are the same
as those used in [6]. In addition, this dataset has groundtruth of ATT. One
common metric used for evaluation on this dataset is policy risk (PR) [35].

— IHDP. This is a dataset with simulated treatments and outcomes, which
is initially complied by [14]. The most widely used simulation setting is the
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setting “A” in the NPCI package?. This dataset comprises 747 instances (139
treated and 608 control). There are 25 features describing the children and
their mothers from the original IHDP data [8]. We can study the problem
of estimating ITE and ATE from observational data using this dataset.

— ACIC Benchmark. ACIC benchmark is from ACIC data analysis challenge
2017 [13]. The features of ACIC benchmark are also from the original ITHDP
data [8]. Various settings have been adopted to synthesize treatments and
outcomes. The ACIC dataset contains 58 features and 4,302 instances.

— Twins. The Twins dataset in [1] is used to study the individual treatment
effect of twins’ weights on their mortality in the first year of lives. In [24],
the authors focused on the twins with weights less than 2kg to get a more
balanced dataset in terms of the outcome. This results in a dataset consisting
of 11,984 such twins. Each twin-pair is represented by 46 features relating
to the parents, the pregnancy and birth. As both potential outcomes are
considered as available in the dataset, to simulate an observational study,
one of the two treatments need to be sampled for each twin-pair. To generate
confounding bias, Louizos et al. [24] sampled treatments from the inferred
propensity scores.

— News. The News dataset is introduced in [17]. In this dataset, each instance
is a news item. The features are originally word counts. The treatment is
defined as whether the news is consumed on a mobile device or on desktop.
The outcome is the readers’ experience. In addition, we need to assume that
users prefer to read some news items on mobile devices. To model this, a
topic model is trained on a large set of documents and two centroids are
defined in topic space. Then, the treatment is simulated as a function of
the similarity between the topic distribution of the news item and the two
centroids. Finally, the potential outcomes of a news item are defined as a
function of (1) the similarity between the topic distribution of the news item
and the two centroids (2) and the treatment. The dataset consists of 5,000
new items and the topic model is a LDA model with 50 topics trained from
the NY Times corpus®.

3.2 Datasets with Binary Treatment and Network Information

— BlogCatalog is an online social network service where users can post blogs.
Each instance is a blogger. Each edge signifies the friendship between two
bloggers. This dataset comes with 5,196 instances, 173,468 edges and 8,189
observed features. Guo et al. [11] extended the original BlogCatalog dataset [21]
for the task of causal effect estimation. In particular, treatments and out-
comes are synthesized based on the observed features, the social network
structure and the Homophily phenomenon [34].

— Amazon [29] is an extension of the original dataset [25]. The goal is to es-
timate the causal effect of positive (or negative) reviews on the sales of

4 https://github.com/vdorie/npci
® Downloaded from the UCT repository [7]
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products. Each instance is a product. Each edge represents the co-purchase
relationship. The observed features are bag-of-word representation of the
product description. Two datasets are created, one for positive and one for
negative reviews. For the positive (negative) case, we say a product is under
treatment iff (1) receives more than three reviews and (2) is rated higher
(lower) than three stars. The counterfactual outcome is set as the observed
sales of the most similar product with an opposite treatment status. The pos-
itive (negative) dataset contains 50,000 positive (20,000 negative) instances,
10,000 (5,000) controlled instances and 96,132 (28,136) edges.

3.3 Datasets with Multiple Treatments

— Twins-Mult. Yoon et al. [42] extended the Twins dataset to 4 treatments
by considering the combination of the original treatment and the sex of the
infant. The method to sample treatments are adapted accordingly.

— News-Mult. Schwab et al. [33] adapted the News dataset to multiple treat-
ments. Instead of using two centroids, k£ 4+ 1 centroids are randomly picked
in the topic space where k is the number of treatments and the rest rep-
resents the control group. Then the treatment is sampled from a Bernoulli
distribution t|z ~ Bern(softmax(xy;)) where x € {10,7} and the unscaled
outcome is calculated as g; = g; * [D(2(X), z;) + D(2(X), 20)]. 2(X) denotes
the topic distribution of the news item with bag-of-word features X, z; sig-
nifies the centroid of the instances receiving treatment j, z. represents the
centroid for the control, and §; ~ N (p;,0;) + € where p; ~ N (0.45,0.15),
o; ~N(0.1,0.05) and € ~ N (0,0.15). D is the Euclidean distance function.
Then the true outcome of the j-th treatment is y; = Cy;, where C' = 50.

— TCGA. In [33], the authors introduced the TCGA dataset which is a col-
lection of gene expression data from types of cancers in 9,659 individu-
als [41]. There are four possible clinical treatments: medication, chemother-
apy, surgery or both surgery and chemotherapy. The outcome is the risk of
recurrence of cancer. Similar to the News dataset, k+ 1 points in the original
feature space (gene expression features) are selected as centroids. Treatments
and outcomes are simulated accordingly.

3.4 Datasets with Continuous Treatment

The treatment can also take continuous values. Here, we introduce a dataset for
the study of causal effect estimation with continuous variable.

NMES. The National Medical Expenditures Survey (NMES) dataset is complied
by [9]. We study the problem of estimating the treatment effect of the amount
of smoking on the medical expenditure. Both the treatment and the outcome
variables are continuous. The dataset consists of 10 features describing each of
the 9,708 individuals.
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3.5 Advantages, Disadvantages, and Limitations

Advantages. Most of the existing datasets are collected to solve treatment ef-
fect estimation problems. For example, the Jobs dataset is collected to answer
the causal question: Does job training help people to get employed? Moreover,
studying these datasets can provide insights for decision making in real-world
scenarios. For example, an employer can decide whether it is necessary to par-
ticipate the job training program based on the individual treatment effect.
Disadvantages. It is often impossible to collect data with ground truth for
counterfactual outcomes — outcomes could have been observed iff another treat-
ment had been assigned. Instead, researchers mainly rely on semi-synthetic
datasets, where treatments and outcomes are synthesized based on certain data-
generating process. Therefore, developing high-quality data simulation models
can be a time-consuming and labor-intensive task.

Limitations. Existing benchmark datasets are not suitable in estimating causal
effects in many real-world applications due to the unavailability of counterfactual
outcomes. For example, it is convenient to collect climate data from Google earth
engine and user behavior data from Twitter in order to develop ML models to
predict user behavior from climate statistics. Nevertheless, to understand how
climate changes influence user behavior, we need to collect data from the same
user under exactly the same conditions with different climate. This is often
impossible in real-world scenarios.

In terms of estimating average treatment effects, the challenges arise from
how to design cheap, easy-to-implement, reliable and ethical experiments. In ad-
dition, the importance of reducing the sample size and time in need for a statis-
tically significant randomized trial is still underestimated in the data mining and
machine learning community. Another limitation of current datasets for causal
effect estimation is the missing of the underlying structure between instances.
The potential types of structure include (but are not limited to) networks and
temporal dependencies.

4 Causal Inference in ML

4.1 Off-policy Evaluation

Given that an existing policy hg selects actions based on item features and ob-
serves corresponding rewards (e.g., online Q&A communities [22], recommender
systems [32]). This process generates log data with the form (z,y,d,p) where
x € X is the context (feature vector), y € Y is the selected action. X and ) are
the input space and the output space respectively. p is the probability of y being
selected given x and §(z,y) : X x Y — R denotes the feedback /reward received.
The goal of off-policy evaluation is to exam the performance of a new policy h
on future observations using the log data generated from hg.

First, we give a formal problem definition. Given the input features € X', the
output prediction of selected action y € ) and a hypothesis space H of stochastic
policies [38], which is calculated from the observed data. Additionally, the inputs
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are assumed drawn from a fixed but unknown distribution Pr(X),z o8 Pr(X).
A hypothesis h(Y|z) € H makes predictions by sampling y ~ h(Y|z). In an in-
teractive learning system, we can only observe the feedback §(z, y) for y sampled
from h(Y|z). For instance, in a recommender system, X are the attributes of the
items, Y is set of items recommended by the system, and J denotes the user
feedback, e.g., whether a user clicks on the item or not. In precision medicine,
X denotes the patients’ attributes, ) is the set of received treatments. We then
collect the outcomes ¢ from patients. A large ¢ indicates high user’s satisfaction
with y for z. The expected rewards of a hypothesis R(h) is defined as [38]

R(h) = E$~P7’(X)EyNh(y"E) [5($7y)] (4)

Then, the goal is to maximize the reward with policy h(Y|z) given data D =
{(z1,y1,01), (X2,Y2,02), ..o, (T, Yn, On)} collected from the system using policy
ho(Y|z), i.e., y; ~ ho(Y|x),0; = d(x;,y;). Evaluation of the proposed policy is
extremely hard due to sample selection bias and partial information.

Dataset from Real World.

Music Streaming Sessions Dataset (MSSD). This dataset from Spotify® con-
sists of over 160 million listening sessions with user interaction information. It
has metadata for approximately 3.7 million unique tracks referred to in the logs,
making it the largest collection of such track data currently available to the pub-
lic [5]. In particular, it consists of music streaming sessions with corresponding
user interactions, audio features and metadata describing the tracks streamed
during the sessions, and snapshots of the playlists listened to during the ses-
sions [5]. The log data contains rich information such as session id, timestamp,
contextual information about the stream, and the timing and type of user in-
teractions within the stream. A subset of MSSD is crawled and labelled by a
uniformly random shuffle to satisfy the conditions of RCT.

Semi-simulated Datasets.

Bandit Data Generation. Despite log data is ubiquitous in the real world, it
is often hard to gather for researchers in academia. In search of alternatives,
synthetic or semi-synthetic data is often used for off-policy evaluation. Here,
we present a widely used bandit data generating approach proposed in [3].
This approach converts the training partition of a full-information multi-class
classification dataset D* = {[z;,y}]}i=1... » with y7 € {0,1}* into a partial-
information bandit dataset for training off-policy learning methods while the
test dataset remains intact to evaluate the new policy. To this end, the opti-
mal policy is known because §(x;,y}) > 0(z;,— v;) where — y; is any of the
items/treatments other than y;. Therefore, given x;, the optimal policy selects
action y;. Then we simulate a bandit feedback dataset from a logging policy hg
by sampling y; ~ ho(Y|z;) and collecting feedback A(yF,y;), which is the loss
between groundtruth and the recommended item. hg can be logistic regression
and is often trained with a small portion (e.g. 5%) of the training set. A(y*,y)
is then the Hamming loss or Jaccard index between the label y* and the sam-
pled label y for input z. This completes the procedure of generating a bandit

5 https://www.spotify.com/
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dataset D = {[zs, yi, Ay, ¥i), ho(yil®i)l Yieqa,... ny- One thing to note is that the
propensity score function hg(y;|z;) is usually estimated from data directly, which
may introduce undesired biases. A large-scale real-world dataset” containing ac-
curately logged propensities is introduced in [20].

Limitations. While this data generating method has been adopted wildly in
off-policy evaluation in contextual bandits [16,38,39], it has several limitations:

— It might not be clear how it can be used in other applications of off-line
evaluations. Take the medical study for an example, mapping the concept of
binary multi-label € {0,1} to treatments indicates that several drugs may be
assigned to the same patient simultaneously. This might be detrimental to
the patients’ health due to the interactions between drugs. In addition, esti-
mation of propensity score function using a small portion of the supervised
training set is not appropriate in medical study as the underlying mechanism
of treatment selection is often not fully understood.

— The predefined hypothesis hg can largely affect the performance of the new
policy. By using the above mentioned method, we can obtain hg with nearly
100% accuracy, i.e., y = y* for all x in the training set. Nevertheless, it is
often impossible for a real-world system to have an optimal policy. Conse-
quently, how many training data should be used to estimate hy? What is
the desirable accuracy that hg should achieve? Answering these questions is
critical for the evaluation.

— The mismatch of synthetic data and the observed data from true environ-
ment is often unavoidable in practice, resulting in policies that do not gen-
eralize to the real environment [15].

4.2 Causal Inference for Recommendation

Causal inference is also particularly useful in learning de-biased recommender
policies. Consider a recommender system that takes as input a user u; € U from
the user population & and outputs the prediction of possible products p; € P.
The recommendation policy decides what products the recommender system
shows to its users. Most existing “de-biased” recommendation systems aim to
find the optimal treatment recommendation policy that maximizes the reward
with respect to the control recommendation policy for each user, i.e., individual
treatment effect. Traditional recommender systems are biased as they use the
click data (or ratings data) to infer the user preferences. These data encode
users’ selection bias, i.e., users do not consider each product independently.
The input data of learning a recommendation policy consists of products each
user decided to look at and those each user liked/clicked. The treatment is the
recommended products and the outcome is whether this user clicks this prod-
uct. Standard datasets for recommender systems are not applicable in the eval-
uation of the deconfounded recommender systems due to the lack of outcomes
for counterfactuals. Consequently, simulated or semi-simulated datasets are of-
ten the preferred alternatives. The core idea of generating an eligible dataset to

" http:/ /www.cs.cornell.edu/~adith /Criteo/
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evaluate a recommendation policy is to ensure the distributions of the training
and test set are different, that is, to exam if the deconfounded recommendation
policy is generalizable. A more generalizable policy indicates a less-biased rec-
ommender system. Next, we introduce several datasets that have been used in
recent publications [4,23,32]. Based on the different data collection/generation
mechanisms, we divide the data into three categories: data collected from RCT,
semi-simulated datasets and simulated datasets.

Randomized Control Trial (RCT).

Yahoo-R3. Music ratings collected from Yahoo! Music services. This dataset
contains ratings for 1,000 songs collected from 15,400 users with two different
sources. One of the sources consist of ratings for randomly selected songs col-
lected using an online survey conducted by Yahoo! Research. The other source
consists of ratings supplied by users during normal interaction with Yahoo! Mu-
sic services. The rating data includes at least ten ratings collected for each user
during the normal use of Yahoo! Music services and exactly ten ratings for ran-
domly selected songs for each of the first 5,400 users in the dataset. The dataset
includes approximately 300,000 user-supplied ratings, and exactly 54,000 ratings
for randomly selected songs®.

Semi-synthetic Datasets.

— MovieLens10M. User-movie ratings collected from a movie recommendation
service. It has 71,567 unique users and 10,677 unique products. The ratings
are on a 1-5 scale [4]. The treatment is binary indicating if a user has rated
an item, the outcome is if rating is greater or equal to 3.

— Netfliz. This dataset includes 480,189 unique users and 17,770 unique prod-
ucts. The treatment is if a user has rated an item, the outcome is if rating
is greater or equal to 3.

— ArXiw. User-paper clicks from the 2012 log-data of the arXiv pre-print server.
The data are binarized: multiple clicks by the same user on the same paper
are considered to be a single click. The treatment in this dataset is if a user
has viewed the abstract of a paper, outcome is if she downloaded the paper.

Now the question is how to generate new datasets from existing datasets to
evaluate de-biased recommender systems. One common approach is to ensure
the different distributions between the training/validation sets and the test set.
Previous work [4,23] has tried to create two test splits from the standard datasets
— regular and skewed. The regular split is generated by randomly selecting the
exposed items for each user into training/validation/test sets with proportions
70/20/10, i.e., the standard method that researchers use to evaluate recommen-
dation models. The skewed split re-balances the splits to better approximate
an intervention. In particular, it first samples a test set with roughly 20% of
the total exposures such that each item has uniform probability. Training and
validation sets are then sampled from the remaining data (as in a regular split)
with 70/10 proportions. The test set then has a different exposure distribution
from the training and validation sets. Experimental results have shown that

8 https://webscope.sandbox.yahoo.com /catalog.php?datatype=r
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causality-embedded recommender systems can largely improve the performance
on the skewed split while present similar performance compared to baseline mod-
els on the regular split.
Simulated Datasets.
Coat Shopping Dataset [32]. This is a synthetic dataset that simulates customers
shopping for a coat in an online store. The training data was generated by giving
Amazon Mechanical Turkers a simple web-shop interface with facets and pag-
ing. Users were asked to find the coat in the store that they wanted to buy the
most. Afterwards, they had to rate 24 of the coats they explored (self-selected)
and 16 randomly picked ones on a five-point scale. The dataset contains ratings
from 290 Turkers on an inventory of 300 items. The self-selected ratings are the
training set and the uniformly selected ratings are the test set.
Limitations. RCT for a recommender system is often not an option in real-
world applications. For example, a recommender system that randomly rec-
ommends songs to its users can largely degrade user experience. Leveraging
simulated /semi-simulated datasets to show the generalizability of a de-biased
recommender system is technically sound, but the mismatch of synthetic data
and the observed data from the true environment is often unavoidable.
Humans are biased in nature. A desired recommender systems should be able
to capture idiosyncratic user preferences in order to make personalized recom-
mendations. Therefore, debiasing recommender system may not necessarily make
better recommendations than a biased one. A more intriguing question to ask
may be what causes a recommendation system to make certain suggestions and
how to quantify their causal effects. Such systems are causally interpretable and
can help identify the underlying causal relations between users and items. As a
result, another limitation of current datasets is the lack of formal definitions of
elements for causal studies such as treatments that indicate user’s characteristics,
features of recommendable items, and the corresponding potential outcomes.

5 Conclusions and Future work

In this paper, we discuss the advantages, disadvantages and limitations of
existing benchmark datasets for the two fundamental tasks in causal inference.
We then present applications of causal inference in two standard ML tasks and
investigate how to leverage existing datasets to evaluate the causality-embedded
ML models. Our goal is to provide easier access to researchers who share similar
research interests in causal learning and more importantly, to draw attentions
and seek contributions from research communities to together create and share
new benchmark datasets for causal learning with big data.
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