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ABSTRACT
Probabilistic breadth-first traversals (BPTs) are used in many network
science and graph machine learning applications. In this paper, we
are motivated by the application of BPTs in stochastic diffusion-based
graph problems such as influence maximization. These applications
heavily rely on BPTs to implement a Monte-Carlo sampling step
for their approximations. Given the large sampling complexity,
stochasticity of the diffusion process, and the inherent irregularity
in real-world graph topologies, efficiently parallelizing these BPTs
remains significantly challenging. In this paper, we present a new
algorithm to fuse a massive number of concurrently executing
BPTs with random starts on the input graph. Our algorithm is
designed to fuse BPTs by combining separate probabilistic traversals
into a unified frontier. To show the general applicability of the
fused BPT technique, we have incorporated it into two state-of-
the-art influence maximization parallel implementations (gIM and
Ripples). Our experiments on up to 4K nodes of the OLCF Frontier
supercomputer (32, 768 GPUs and 196K CPU cores) show strong
scaling behavior, and that fused BPTs can improve the performance
of these implementations up to 182.13× (avg. 75.15×) and 359.86×
(avg. 135.17×) for gIM and Ripples, respectively.

CCS CONCEPTS
• Computing methodologies → Massively parallel algorithms;
Massively parallel and high-performance simulations; • Software
and its engineering → Massively parallel systems.
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1 INTRODUCTION
Given a graph 𝐺 (𝑉 , 𝐸), a diffusion model 𝑀 and an integer budget
𝑘 > 0, the objective of influence maximization is to compute a seed
set 𝑆 ⊆ 𝑉 of 𝑘 vertices which, when activated, is likely to lead to
the maximum number of activations in the graph under the diffusion
model 𝑀 [17]. An important class of approximation algorithms for
solving this NP-hard problem are based on sampling [8, 40, 41]
(detailed in §2). Here, each “sample” is a result of a single breadth-
first traversals (BPT) on𝐺 , and the number of samples (𝜃 ) determines
the approximation guarantee of the solution. In practice, 𝜃 as high
as 106 is necessary to approximate close to the theoretical optimal
[8, 28]. Consequently, a dominant fraction of the runtime (up to 90%
[29]) is spent performing probabilistic traversals on 𝐺 .

Graph traversals are a fundamental building block of graph al-
gorithms and graph analytics [2, 39]. In particular, breadth-first
searches (BFSs), probabilistic BFSs, and random walks are com-
monly employed in graph analytics, machine learning and deep
learning [5, 34, 35, 47]. For example, variants of BFS are essential
to compute matchings [36], network alignment [18], and maxi-
mum flow [16], among many other examples. Random walks and
probabilistic searches are now fundamental tools in graph repre-
sentation learning, including the emerging area of graph neural
networks [34, 47]. We are motivated by the application of probabilis-
tic breadth-first traversals (BPT) for stochastic diffusion-based graph
problems. Such applications arise in graph isomorphism tests [3]
and influence maximization [40]. The stochasticity of the diffusion
process is usually implemented through a Monte-Carlo sampling step
that leads to performing a large number of probabilistic traversals
of the graph. For instance, in influence maximization [9, 17], which
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Figure 1: Distributed heterogeneous strong scaling on OLCF
Frontier on the soc-LiveJournal1 graph for fused BPTs (this
work, 64 batch size) compared to hypothetical performance of an
unfused baseline extrapolated from smaller runs. The plot shows:
1) ∼ 10× speedup for fused traversals, and 2) strong scaling for
up to 32, 768 GPUs and 196K CPU cores.

has numerous applications in viral marketing and computational
epidemiology [9, 17, 24, 29], we are interested in observing a sto-
chastic diffusion process over an input graph in order to identify top
influential nodes on the network.

Modern supercomputers, such as Frontier at the Oak Ridge Lead-
ership Computing Facility (OLCF) – currently the #1 system on
the Top 500 list and #3 on Graph500 – leverages a large number of
GPUs to achieve high parallelism and high computational density.
OLCF Frontier consists of more than 8K nodes, where each node
has 8 AMD MI250X GPU dies, interconnected with HPE Slingshot
network interfaces in a Dragonfly topology (detailed in §6). Two
key challenges that limit scaling BPTs on such systems are: (𝑖) the
large number of BPT traversals; and (𝑖𝑖) irregular and skewed access
of memory (edges), due to probabilistic traversals and irregular
structure of graph topology.

We note that, in practical scenarios, thousands to hundreds of
thousands of BPTs are requested. Traditional parallelization tech-
niques process each BPT separately from one another. However, this
leads to redundant edge accesses, where the sets of edges traversed
by different BPTs overlap. In this work, we leverage this observation
to propose a more memory-efficient implementation that reduces
edge access redundancy by processing multiple BPTs together.
Contributions: Our work introduces FuseIM, which utilizes the
technique of fused breadth-first probabilistic traversals for hetero-
geneous distributed systems. FuseIM can be applied to any parallel
use-case that executes multiple BPTs [5, 34, 35, 40, 47]. We make
the following contributions.
• Algorithms: We present the fused BPT algorithm that fuses many

BPTs with the goal of reducing the net number of visits per edge,
thereby reducing time-to-solution (§3).

• Heuristics: We present several heuristics (vertex reordering,
workload balancing) to improve the performance of our parallel
implementation (§5).

• Implementations: We show the efficacy of fused BPT by incorpo-
rating it into two state-of-the-art parallel influence maximization
implementations, namely Ripples [28] and gIM [37].

• Results: Our experiments were conducted on 4K nodes of the
OLCF Frontier supercomputer. Our results on real-world inputs
show up to 359.86× and 182.13× speedup over Ripples and gIM
respectively, with an average speedup of 135.17× and 75.15×.
We demonstrate the effectiveness of fused BPTs to decrease the
number of edge accesses (§7).

To the best of our knowledge, this work represents the first use
of fused-BPT for influence maximization and implementation on
OLCF-Frontier (Fig. 1), the first exascale system. We believe that
this work will not only benefit the application and use of influence
maximization, but also motivate the use of fused traversals in other
scientific applications.

2 BACKGROUND ON INFLUENCE
MAXIMIZATION

The Influence Maximization Problem (Inf-Max) is the problem of
finding a small cohort of vertices that optimize the outcome of a
diffusion process in activating vertices over the input network (or
graph). More formally:

Definition 1 (Inf-Max). Let 𝐺 = (𝑉 , 𝐸) be a (di)graph where 𝑉 is
the set of vertices and 𝐸 is the set of edges, 𝑀 a diffusion process,
and 𝑘 a budget. The Influence Maximization Problem is to find a set
of vertices 𝑆 ⊆ 𝑉 , called seeds, such that

argmax
𝑆⊆𝑉

𝜎 (𝑆), s.t. |𝑆 | ≤ 𝑘 (1)

where 𝜎 (𝑆) is the expected influence function over 𝐺 when the
diffusion process 𝑀 starts from the seed set 𝑆 .

The problem is known to be NP-hard [17]. However, the expected
influence function 𝜎 (.) is a non-decreasing monotone submodular
[17]—i.e., for subsets 𝐴 ⊆ 𝐵 ⊆ 𝑉 and a vertex 𝑥 ∈ 𝑉 , 𝜎 (𝐴 ∪ {𝑥}) −
𝜎 (𝐴) ≥ 𝜎 (𝐵 ∪ {𝑥}) − 𝜎 (𝐵). This resulted in a greedy hill climbing
algorithm that provides 1−1/𝑒 approximation [10, 17]. An alternative
class of approximation algorithms was developed using the notion
of Reverse Inverse Sampling (RIS) [8]. The RIS algorithms use
the notion of reverse reachability to assess influential vertices. In
particular, RIS approaches build a collection of Random Reverse
Reachable sets (RRR sets) by simulating the diffusion process 𝑀
backward. The intuition is that if a vertex 𝑢 appears in an RRR set
that was generated by starting the diffusion process at vertex 𝑣 , then𝑢
also has a chance of activating 𝑣 during the diffusion process; and the
greater number of RRR sets that 𝑢 appears in, the more influential
it can be. Consequently, the problem of selecting the 𝑘 seeds in 𝑆

reduces to computing a maximum-k-cover over the collection of
RRR sets [8].

The current state-of-the-art algorithm based on RIS is the IMM
algorithm of Tang et al. [40]. Tang et al. have proved a lower bound
on the sample complexity (the number of RRR sets: 𝜃 ) that, given the
size of the input graph 𝐺 , the number of seeds 𝑘 , and a parameter 𝜀,
guarantees achieving a 1−1/𝑒−𝜀 approximation bound. In practice, 𝜃
ranges between 105-106 [28, 40]. The works by Minutoli et al. [27, 28]
and Shahrouz et al. [37] provide efficient parallel implementations
of this algorithm, which we use to validate our BPT fusing approach.

The network diffusion literature has generally used two simple but
expressive diffusion processes: the Linear Threshold Model (LT) and
the Independent Cascade Model (IC). Under LT, the probability of a
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Figure 2: Example of fused BPT. Four BPTs (each represented
by a color) originate from vertices 1, 3 and 5. The active vertices
and the edges activated in each traversal step are highlighted in
brown dashed lines. The illustration shows the frontier at the end
of each step.

node activation depends on a group threshold parameter; whereas
under IC, the probability of a node 𝑣 activating its neighbors 𝑢 is
a constant 𝑝 (𝑒 = (𝑣,𝑢)) that is independent from the history of
the diffusion process. More specifically, at each step 𝑡 , the newly
activated vertices at step 𝑡 − 1 will have a single attempt at activating
their 1-hop neighbors, and they will succeed with probability 𝑝 (𝑒).
Moreover, the process assumes permutation invariant, in that the
final result of activation (or not) is independent from the relative
ordering of the attempts made to activate a vertex. Minutoli et al. [27]
observed that the IC model is the more computationally challenging,
as it could lead to an irregular and often deeper propagation into the
graph, among multiple concurrently advancing probabilistic traversal
fronts. We now define RRR sets under the IC model.

Definition 2 (RRR set). Let 𝑣 denote a vertex in 𝐺 and 𝐺 denote a
subgraph obtained by removing each edge 𝑒 of 𝐺 with probability
1−𝑝 (𝑒). Then, the Random Reverse Reachable set for 𝑣 in𝐺 , denoted
by 𝑅𝑅𝐺̂ (𝑣), is given by:

𝑅𝑅𝐺̂ (𝑣) = {
𝑢 | a directed path from 𝑢 to 𝑣 in 𝐺

}
(2)

Definition 2 implies that RRR sets can be computed without
explicitly generating the subgraphs𝐺 . In fact, RRR sets can be equiv-
alently computed as the visited array of a Probabilistic Breadth-First
Traversal (BPT) that visit edges with probability 𝑝 (𝑒) as prescribed
by the IC diffusion process.

3 FUSEIM
To efficiently address the problem of performing a large number (e.g.,
𝜃 for Inf-Max) of BPTs concurrently, we present a new algorithm,
which we call FuseIM. The BPTs originate at vertices that are selected
uniformly at random from 𝑉 .
Illustrative example: Figure 2 illustrates the operation of the fused
BPT algorithm. The example assumes four probabilistic traversals
(each represented by a color) starting at vertices 1, 3 and 5. Each BPT
is associated to a traversal. Note that multiple traversals can originate
from the same vertex (vertex 1 in the example). For each traversal
step, the figure shows the frontier queue (i.e., the active vertices) at

1 /* frontier initialization */
2 for (bpt b)
3 frontier[random(0,|V|-1)].b = 1;
4
5 /* Fused random traversals */
6 for (vertex v in frontier){
7 mask fr_v = clear(frontier[v]);
8 visited[v] = visited[v] | fr_v;
9 for (edge e in v.edges){

10 vertex u = mate(e,v);
11 mask fr_u = fr_v & !visited[u];
12 for (bpt b in fr_u)
13 if (random(0,1) > e.prob) clear(fr_u, b);
14 frontier[u] = frontier[u] | fr_u; //fusing
15 }
16 }
17
18 /* RRR sets construction */
19 for (vertex v)
20 for (bpt b)
21 if (visited[v].b) RRRset(b).add(v);

Listing 1: Fused BPT algorithm

the end of that step. For each active vertex, the mask in the frontier
queue shows the BPTs that need to be propagated in the next step.
Due to their probabilistic nature, traversals will follow only a subset
of the edges outgoing from the active vertices. Accordingly, in each
traversal step only a subset of the BPTs is propagated. For example,
in step (b) only the blue BPT is propagated from vertex 1 to vertex
0, while the red traversal stops at vertex 1. The same vertex can be
traversed multiple times (as part of different traversals), leading it
to be added to the frontier in different traversal steps. For example,
vertex 3 is added to the frontier in steps (a) and (c); first time as part
of the green traversal, and second time as part of the blue one.

The key idea of fusing is as follows. When a vertex in the frontier
is associated with multiple BPTs (as indicated by its frontier’s mask),
the corresponding traversals are fused, enabling work savings. For
example, in step (b) vertex 4 is added to the frontier with two BPTs
(orange and green). This causes the orange and green traversals to be
fused, leading to a single traversal of vertices 6, 7 and 8. At the end of
the traversal process, the vertices with the same BPT are associated
to the same RRR set. For example, the RRR set of vertex 5 (where
the orange traversal originated) contains vertices {4, 5, 6, 7, 8}.
Pseudocode: Listing 1 shows the pseudocode of the fused BPT
algorithm. The frontier array is used to identify the set of active
vertices. Each element of that array is associated to a vertex and
contains a bitmask that identifies the BPTs that need to be propagated
from that vertex. If a vertex v is not active, frontier[v] does not
contain any set (i.e., bit 1) BPTs. The visited array indicates, for
each vertex v, the traversals (i.e., BPTs) passing through v (up to the
current traversal step). For the example in Fig. 2, the visited array
encodes the BPTs of the vertices, while the frontier array encodes
the frontier, which includes only the BPTs to be propagated the next
time an active vertex is processed.

During initialization (lines 1-3 of the pseudocode) a random
set of vertices is selected as starting points of different traversals;
accordingly, each of the selected vertices is associated to a different
BPT. The core of the traversal algorithm is encoded in lines 5-16.
The traversal continues as long as the frontier is not empty. For each
active vertex v, the corresponding frontier bitmask is read (in fr_v)
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Figure 3: Edge accesses of 10,000 BPTs compared to unfused (top) and average batch occupancy (bottom) for various vertex degrees,
batch sizes, and traversal probabilities.

and then cleared (line 7). The BPTs in the frontier of v are then added
to the corresponding visited array to update the list of traversals
passing through v (line 8). All the edges outgoing from v are then
traversed with random probability (lines 9-15). For each edge e from
vertex v to vertex u, e.prob indicates its traversal probability, while
bitmask fr_u indicates the set of BPTs that will be propagated from
v to u. BPTs already visited by u are excluded from the traversal
(line 11), and the other BPTs in fr_v are included with probability
e.prob (lines 11-13). The BPTs in fr_u are then added to the
frontier of u (line 14), effectively fusing the newly added traversals
with the ones already part of the frontier of u. Finally, the RRR sets
are updated according to the traversal outcome (lines 18-21).

3.1 Analysis on Synthetic Graphs
Since the upper bound of edge accesses is equivalent to performing
unfused BPTs, we perform experiments to assess the amount of work
saved, in terms of accessed edges, using synthetic graphs. To this
end, we generate several graph configurations of the LFR benchmark,
leading to graphs with vertex degrees and community sizes that
follow a power law distribution [19], mirroring characteristics found
in real-world networks. Using NetworkX [15], we generate graphs
with 10,000 vertices and degrees 4, 11, and 16. For each configuration,
we use three graph generation seeds. We then perform a BPT per
vertex using edge probabilities 0.01, 0.1, 0.2, 0.3, 0.4, and 0.5. These
traversals are repeated three times, each time using a different starting
seed. This results in around 1.6 million BPTs in total, traversed level-
synchronously (i.e., active vertices are processed level-by-level).

We perform runs varying the number of BPTs from 10 to 10,000.
Accordingly, BPTs are fused in batches, where the batch size is
equal to the number of BPTs used in that experiment. We then
calculate the work savings (in terms of edge accesses) for each batch
compared to the unfused version and average across the three runs.
Since we perform a level-synchronous traversal, fusing occurs only
if BPTs within the same batch visit a vertex in the same traversal step.
Figure 3 shows the resulting plots. The top plot shows that higher
activation probabilities and fused batch sizes result in better work
savings. This was expected, as higher activation probabilities result
in larger activation of the graph, increasing the chances that frontiers
will be shared amongst traversals.

The bottom plots show the batch occupancy, defined as the fraction
of BPTs (i.e., traversals) that any visited vertex is part of. The average
batch occupancy is the average over all the vertices and traversal steps.
Intuitively, this term measures how much sharing can be exploited
to fuse traversals. An ideal batch occupancy would be as close to
100% as possible, as this maximizes the potential for fusing. As can
be seen, although it is not feasible to fuse all BPTs within a batch,
the batch occupancy increases with the average vertex degree and
edge traversal probability. A higher batch occupancy is indicative of
better edge sharing in a fused batch of BPTs.

4 FUSED BPT IMPLEMENTATION
We incorporated fusing into two existing GPU implementations of
BPT: gIM [37] and Ripples [27]. Both codes perform many BPTs
as the first step of the RIS algorithm for Influence Maximization.
However, they differ in their parallelization approach. gIM performs
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Figure 4: Parallelization scheme for gIM. a) is unfused, while b)
is fused. e𝑖 𝑗 represents the 𝑗-th edge of node 𝑖. The BATCH_SIZE
is 4. For readability, the illustration assumes 6 threads per warp.

multiple level-asynchronous traversals within a single kernel. In
contrast, Ripples parallelizes a single, level-synchronous traversal
across the whole GPU and performs multiple kernel calls for each
BPT.

4.1 Incorporating Fused BPTs into gIM
The baseline implementation of gIM performs multiple BPTs within
a single CUDA kernel. The requested BPTs are distributed across
thread blocks and performed in parallel. Figure 4(a) illustrates gIM’s
parallelization. Each thread block consists of one warp (32 threads)
and during a BPT, it processes the vertices in the frontier sequentially.
For each active vertex, gIM performs edge-level parallelization
and distributes the outgoing edges to the threads within the thread
block. The frontier is implemented as a queue of identifiers for the
active vertices, while the “visited” mask is an array stored in global
memory—one bit per vertex. To avoid shared memory overflow,the
frontier is stored split between shared and global memory, and
sections are moved between the two memory units as needed. RRR
sets are implemented as a linked list of fixed-size buffers stored in
global memory.
Bugs and fixes: Before incorporating fusing in gIM, we fixed two
existing bugs. The first bug caused gIM to lose part of the frontier
queue after offloading it to global memory. The second was a
concurrency bug leading some RRR sets to be generated multiple
times, thus causing extra BPTs to be executed. In addition, we noticed
that the large global memory utilization prevented gIM from scaling
to larger graphs or inputs with larger edge traversal probabilities. To
address this issue, we changed the implementation to store the RRR
sets in CUDA managed memory (UVM), which enables automatic
offloading onto host memory, thus limiting global memory pressure.
When the RRR sets fit global memory, the use of UVM does not
lead to performance degradation because RRR sets are written only
once by the GPU kernel.
Modifications to fuse traversals: To support fusing, we expanded
the visited array to hold one BPT bitmask per vertex. For the

frontier, we kept gIM’s frontier queue and added an extra global
memory array to store the bitmasks associated to the active vertices
(similar to the frontier array in Listing 1). The parallelization of
the fused-gIM implementation is illustrated in Figure 4(b). Fusing
allows BATCH_SIZE traversals to be performed synchronously, with
BATCH_SIZE being the number of BPTs fused. Accordingly, in
the fused implementation, each thread block performs BATCH_SIZE
BPTs while processing a single frontier queue. To keep the relative use
of shared memory per BPT unmodified, we increased the thread block
size from one to BATCH_SIZE warps. With this increased block size,
however, edge-level parallelization over the whole thread block can
lead to warp underutilization, especially for low outdegree vertices.
To maintain the same utilization as in the original gIM, we assigned
to each warp a different active vertex, effectively parallelizing the
frontier’s processing. We note that edge-level parallelism can cause
warp underutilization for low outdegree vertices even with this
vertex-to-warp mapping. To this end, we used CUDA cooperative
groups [31] to implement finer-grained parallelization, where one
vertex is assigned to only 16 or 8 threads. In our experiments, however,
vertex assignment at a sub-warp granularity reported a (slight)
performance improvement only on the smallest graph considered.

We note that the use of bitwise operations and integer intrinsic
on 32 or 64 bit masks allows for efficient BPT processing. On the
other hand, further parallelizing the for-loop at line 12 of Listing 1 by
distributing BPTs across threads would cause warp underutilization
(when only few BPTs are set) and require extra synchronization on
the bitmasks’ updates, negatively affecting performance. In the RRR
sets construction step (lines 18-21 of Listing 1), each thread processes
an element of the visited array and updates the corresponding RRR
sets atomically, leading to some synchronization cost. Finally, we
observed that limiting the register utilization to 32 registers per thread
allows increasing the GPU occupancy by doubling the number of
resident thread blocks per Streaming Multiprocessor (SM), improving
performance despite some added register spilling.

4.2 Incorporating Fused BPTs into Ripples
The baseline implementation of Ripples distinguishes each CPU core
as a CPU worker or a GPU worker. A CPU worker is responsible
for performing its own BPT, while a GPU worker handles kernel
launches and memory movement between the host and GPU. Both
kinds of workers perform a single BPT at a time. To handle the
irregular workloads common in BPTs, an atomic variable denoting
the number of required BPTs is located in the host, with each CPU
and GPU worker performing an atomicAdd before performing a
BPT to determine if there is more work.

Compared to gIM’s threadblock granularity, Ripples utilizes the
whole GPU to perform a single level-synchronous BPT, returning to
the host between kernel calls. There are two main steps in the traversal:
(1) Generation of Frontiers: The host launches a device-wide kernel to
perform an XOR between the visited and frontier arrays to determine
which BPTs are in the frontier queue, and reduces these frontier
nodes to one of four bins, with each bin corresponding to a different
range of degrees. The frontier array is then written to the visited array.
(2) Edge Traversal: The host then launches four separate streams,
each with varying levels of thread block granularity, to scatter the
edges and perform randomized traversal. Nodes with smaller degrees
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Figure 5: Batch occupancy on a fused web-BerkStan traversal
with a batch size of 32 using RCM and Grappolo (§5).

have all their edges traversed by a single thread within the warp, and
nodes with larger degrees have all their edges traversed by a thread
block of size 32, 256, or 1024. This implementation is similar to
Merrill et al. [26]. Afterwards, the visited array is moved to the host,
and the host CPU traverses the array to push the visited vertices to
the appropriate vector.
Modifications to fuse traversals: To perform fusing on the baseline
implementation of Ripples, we turned the visited and frontier
arrays (lines 7-8 of Listing 1) into a blocked bitmask, with each block
containing N 32-bit values, where N contains a block of 32 BPTs,
one bit per BPT. This blocking ensures proper memory alignment
between warps. Each bit within the block corresponds to a different
BPT, or BPT, within the fused group. Increasing the number of
variables, however, resulted in threads handling BPTs across multiple
variables, which could lead to memory access inefficiencies. To
alleviate this, we assign N threads per blocked bitmask where, as
in fused gIM, each thread utilizes integer intrinsics to process their
BPT (line 12 of Listing 1). Because the number of BPTs for all edges
are the same, there is no workload imbalance in the warp/block-level
hierarchical queue. During frontier queue generation, where vertices
are filtered to a degree-based workload queue, we perform a localized
warp-level reduction to determine the queue offset. Then, the leading
thread broadcasts the proper offset to each thread to reduce the
number of global atomic operations.

5 PARALLEL HEURISTICS
Vertex Reordering Techniques:

A key factor that influences parallel performance of fused BPTs is
the number of common vertices that will visited during concurrent
execution of fused BPTs, in other words, the locality of fused
BPTs. For example, in Figure 2(b), the yellow and green BPTs from
vertices 5 and 3 respectively, need to converge on the shared vertex 4
around the same time in order to benefit from fusing. However, if
these vertices are stored in a non-local fashion in memory, then the
probability of temporal shared visits is reduced. It is important to
increase locality for better performance.

A classical technique to improve vertex locality is vertex reorder-
ing, which aims to obtain a locality-preserving permutation, and
consequently maximizes locality for fused BPTs in a given batch,
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Figure 6: Multi node scaling on soc-pokec-relationships.

and in the process increases vertex batch occupancy. Reordering
algorithms aim to either explicitly minimize the gap (e.g., mini-
mum linear arrangement algorithm) or use heuristics (e.g., reverse
Cuthill-McKee (RCM), degree-based sorting and partitioning-based
sorting) to accomplish similar goals in an efficient manner [6]. Using
average gap profile and average graph bandwidth as a metric, Barik
et al. [6] demonstrated that METIS, Grappolo and RabbitOrder
were the top three, and Slashburn and Gorder were the worst two,
reordering schemes among several methods for reordering. Since
Grappolo scales to large graphs, we use it as our reordering scheme.
For example, comparison for web-BerkStan at different traversal
levels is summarized in Fig. 5. We observe significantly larger batch
occupancy for RCM and Grappolo relative to a random vertex reorder
as the baseline. All three schemes consider the sorted variant, which
pre-generates and sorts the random start vertices. When workers
retrieve BPTs to fuse, they pull from this sorted list of source vertices
for better locality and, thus, more opportunities for fusing.
CPU-GPU Workload Balancing: Originally, the GPU and CPU
workers of Ripples would obtain a batch size—meaning a single node
would process up to 3,584 BPTs at a time, if the batch size is 64 (56
batches). When scaling to multiple nodes, the number of BPTs each
node needed to generate was scaled down proportionately. However,
we encountered an issue where the heterogeneous CPU-GPU setup
was lacking in performance compared to a GPU-only setup (Fig. 6).
Upon examination, we found that the CPU workers were causing
workload starvation, with a comparative test run on web-BerkStan
showing the CPU implementation to be up to 16× slower than the
GPU implementation.

To alleviate this issue, we designed a lightweight micro bench-
marking scheme where, at the beginning of each run, the host times
several batches to be run by each CPU and GPU worker. Then, the
host calculates the difference between the average CPU and GPU
worker times. This difference is split, increasing/decreasing the CPU
worker batch size, until the timings between CPU and GPU workers
are similar. This method worked for smaller graphs, but in larger
graphs, the micro benchmarking was setting the CPU batch size to 0,
i.e., the CPU would cause starvation even when retrieving a single
BPT. To enable the CPU workers to assist with BPT generation even
if a single core would cause starvation, we group CPU workers in
the same L3 cache region (6 CPU cores each) to collaborate on
one BPT group, resulting in 8 total CPU worker groups executing
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BPTs. The results of this workload balancing are shown Fig. 6 (see
Section 7.2.4).

6 EXPERIMENTAL SETUP

Table 1: SNAP Graphs

Graph # Nodes # Edges Avg. Degree

web-BerkStan (BS) 685,230 7,600,595 22.18
web-Google (Go) 875,713 5,105,039 11.66
soc-pokec-relationships (PR) 1,632,803 30,622,564 37.51
wiki-topcats (TC) 1,791,489 28,511,807 31.83
com-Orkut (Ok) 3,072,441 117,185,083 76.28
soc-LiveJournal1 (LJ) 4,847,571 68,993,773 28.47

Hardware: We study the performance and scalability of Ripples
on Crusher and Frontier Computing Systems hosted at Oak Ridge
Leadership Computing Facility. These systems have the same con-
figurations, where each compute node has a 64-core AMD EPYC
7A53 CPU, 512 GB DDR4 memory, and 4 AMD MI250X GPUs.
Each MI250X contains two Graphics Compute Dies (GCDs) that,
to the host runtime, appear and operate as two separate GPUs. For
this reason, we refer to a GPU as a single GCD. We perform scaling
experiments up to 4,096 compute nodes, utilizing HPE Cray MPICH
8.1.23 for multi-node setups. At the time of this writing, OLCF
Frontier is the #1 system on the Top500 list and #3 on the Graph500
list.

Our experiments are run with “Low-Noise mode” enabled to min-
imize operating system noise. This setting restricts system processes
to run on the first core of each L3 cache region (8 L3 regions in total).
However, using the low-noise mode implies that applications are
restricted to using only the remaining 56 CPU cores on each node.
This leaves 6 cores per L3 cache region as a CPU team with the
remaining core (for a total of 7 per L3 cache region) handling GPU
operations. The gIM framework supports only a single NVIDIA
GPU. For our experiments, we use a Tesla A30 GPU with 24 GB of
HBM2 memory.
Software: We have implemented the fused BPT approach in gIM
using CUDA 12.2 and GCC 11.4.0. For Ripples, we implemented
the fused BPT approach using AMD HIP for GPUs and OpenMP for
CPUs. The host code for scheduling work on GPUs and CPUs also
uses OpenMP. We compiled Ripples with hipcc (from AMD ROCM
5.1.0).

To facilitate direct comparison with published results ([27, 37]),
we use the same or similar input datasets as shown in Table 1. For
more detailed experiments, we show a subset of datasets that vary in
size.

Unless otherwise specified, we assigned edge weights from a
uniform distribution between 0 and 1. We performed the graph
generation process once, and consistently reused the same inputs.
For multi-node setups, workload balancing as discussed in Section 5
is performed as a pre-processing step.
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Figure 7: Speedup of fused over unfused gIM with different batch
sizes and traversal probabilities.

7 EXPERIMENTAL EVALUATION
7.1 gIM with Fused BPTs
Fig. 7 shows the effect of fusing BPTs on gIM’s performance for the
graphs in Table 1. Missing data points correspond to experiments
where our system ran out of memory to store RRR sets despite
allocating the maximum available UVM size. We recall that we
used UVM only for RRR sets, while we kept the original gIM
implementation for dynamically allocated data structures (such as
the frontier queue). In gIM, an increase in peak frontier sizes at
higher probabilities leads to extreme memory pressure. This impact
is higher in smaller batch sizes as there are fewer fusing opportunities
among BPTs. We conducted experiments with various edge traversal
probabilities and batch sizes. We make the following observations.

First, incorporating fusing of BPTs in gIM is beneficial in most
cases, and yields speedups up to 18×, 21×, and 130× on web-Berkstan,
web-Google, and wiki-topcats, respectively. The performance bene-
fits are mainly due to two advantages of the fused gIM implementation.
First, fusing decreases the number of vertices and edges traversed,
also reducing the number of accesses to global memory. Second,
since fused-gIM uses a single frontier queue for all BPTs in the
same group, fusing can reduce the probability of overflowing the

44



ICS ’24, June 04–07, 2024, Kyoto, Japan Neff, Zarch, Minutoli, Halappanavar, Tumeo, Kalyanaraman, and Becchi

Table 2: Impact of fusing BPTs on GPU resource utilization
across different probabilities.

Probability Mem. Utilization (MB) Achieved Occupancy

gIM Fused gIM gIM Fused gIM

0.05 0 0 3.77% 84.66%
0.1 0 0 4.45% 72.98%
0.2 0 10 4.56% 78.11%
0.3 12 38 4.58% 83.39%
0.4 67 71 4.57% 83.02%
0.5 173 104 4.59% 67.12%
1.0 879 88 4.64% 82.58%

shared memory allocated to the frontier queue, thus limiting the data
movements between the shared and global memory.

Second, in the absence of enough fusing opportunities, the over-
head of the extra code added to incorporate fusing (see §4.1) can
lead to performance degradation over the baseline gIM. For example,
when using only a batch size of 8 and traversal probabilities below 0.2,
web-Google incurs up to 62% performance degradation. However, as
the fusing opportunities increase (e.g., higher traversal probabilities),
fusing BPTs can considerably improve gIM’s performance.

Third, increasing the batch size from 8 to 32 results in a significant
performance improvement. We recall that the batch size determines
the size of each BPT group, i.e., each set of BPTs that can be poten-
tially fused. Larger groups allow more BPT sharing opportunities,
enabling fusing. For example, on web-Berkstan, fusing 32 BPTs
results in a speedup up to 18.3×, while fusing 8 BPTs results in a
maximum speedup of 5.1×.

Furthermore, lower traversal probabilities reduce the chance of
the same edge being traversed by multiple BPTs. This hinders the
performance gains from fusing. For example, when using a batch
size of 32 on wiki-topcats, increasing the traversal probability from
0.05 to 0.2 causes the speedup over the unfused gIM to increase from
2.6× to 25.2×.

7.1.1 Adaptive Mapping and Utilization Efficiency. Finally, we
explored the potential of implementing an adaptive mapping scheme
for task scheduling on the gIM implementation with fused BPTs.
This approach allows thread blocks that have completed their BPTs
to start processing work from other thread blocks. Such a strategy
aims to enhance the utilization of the GPUs multiprocessors and
limits the growth of the frontier queue in the GPU’s global memory.
For applications using fused BPTs to gain from adaptive mapping,
they must exhibit low GPU warp occupancy. According to the Nvidia
Nsight Compute profiler, GPU occupancy is defined as the ratio
of active warps per multiprocessor to the maximum number of
active warps. This information is crucial for understanding and
implementing efficient scheduling strategies [32]. Furthermore, it’s
important to note that implementing an adaptive mapping scheme
necessitates communication between thread blocks through global
memory. Therefore, only substantial performance improvements
justify the use of this approach.

To assess if an adaptive mapping could benefit the fused gIM, we
measured warp occupancy, and the size of dynamically allocated
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Figure 8: Roofline plot on a single GCD of the MI250x for each
input dataset for unfused vs fused (batch size = 64).

memory on GPU (for frontier queues) during traversal. We used the
web-BerkStan graph as our test case for this experiment. Table 2
exemplifies the impact of our algorithm on gIM resource utilization.
As seen in Table 2, the baseline gIM model exhibits notably low
GPU occupancy (averaging ∼4.5%), whereas our fused algorithm
boosts the occupancy substantially (to an average of ∼78.83%).
Furthermore, our study illustrates the improvement in dynamic
memory allocation on gIM achieved by fusing 32 BPTs in higher
probabilities. Our algorithm effectively mitigates memory constraints
that previously restricted running gIM on larger graphs with higher
traversal probabilities, thus broadening its applicability. For instance,
in the case of web-Berkstan input graph, fusing 32 BPTs at a time
leads to approximately ten times less dynamic memory allocation
when processing a graph with high traversal probabilities on edges.
Based on the metrics collected, our conclusion is that the fusing BPTs
on gIM already achieves high GPU utilization while maintaining low
GPU memory utilization, even at elevated probabilities. Consequently,
this scenario indicates that the incorporation of an adaptive mapping
scheme would not yield additional benefits in this application.

7.2 Ripples with Fused BPTs
The Ripples framework approaches the problem of BPT generation
from a device-wide perspective. We evaluate the impact of fusing on
Ripples, including its behavior on single- and multi-node scaling.

7.2.1 GPU Roofline. Figure 8 demonstrates the effectiveness of
fusing, where decreasing the edge accesses increases the arithmetic
intensity and, therefore, allow for higher performance.

7.2.2 Sensitivity Analysis. Applying the principle of fused BPTs
to Ripples provides two key improvements: (1) BPT Concurrency:
While fusing BPTs in gIM doubles the number of BPTs on the GPU
at any given time, applying the approach to Ripples increases the
number of BPTs on the GPU from 1 to the batch size. For example,
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Figure 9: Speedup of fused over unfused Ripples when varying
batch size and traversal probabilities. Probability is shown in the
top legend.

in the case where a batch contains 1024 BPTs, this can lead to
a 1024-fold increase in BPT concurrency on the GPU. (2) Edge
Sharing: Ripples benefits from edge sharing like gIM, as fusing
BPTs provides opportunities to reduce the amount of work; however,
a large batch size might reduce the GPU utilization per BPT, and
increase the overheads for processing empty BPTs (see Section 3.1).

Fig. 9 shows how Ripples scales with varying probabilities and
increasing batch size (i.e., BPTs). The speedup significantly increases
with batch size over the unfused (batch size of 1) approach. This is
due to increased concurrency. We also observe that traversals with
lower probabilities benefit more from fusing with respect to traversals
with higher probabilities for the majority of input graphs, even when
considering probability of 1. Traversals with lower edge-probabilities
reduce vertex activations, thus leading to smaller frontiers of the BPTs
and to lower GPU utilization. To better understand this behavior,
we profiled the sizes of the hierarchical frontier queues. Fig. 10
shows that with low probabilities and low batch size, there are
not enough wavefronts to keep an entire GCD fully utilized. A
wavefront is the equivalent of a CUDA warp, representing the
minimal scheduling unit in terms of parallel threads simultaneously
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Figure 11: Speedup of Grappolo vertex reordering over random
ordering (10k BPTs)

executed by a SIMD (single instruction, multiple threads) unit of
the GPU (either a GCU for AMD or a SM for NVIDIA). An AMD
wavefront corresponds to 64 threads, a CUDA warp has 32 threads.
For lower edge probabilities, increasing the batch size provides a
larger improvement in performance. GPU utilization increases from
the increase in concurrency of BPTs and edge sharing,

7.2.3 Vertex Reordering. Figure 11 shows the speedup of sampling
using Grappolo to perform vertex reordering compared to a random
ordering. For Ripples, using Grappolo results in around a 1.1-1.2×
speedup. This benefit comes from both increased sharing at higher
probabilities and a reduced average max traversal depth, where the
max traversal depth per batch is averaged over all batches. BPTs from
the same cluster have more similar traversal depths than those from
different clusters, especially at lower probabilities.

7.2.4 Scaling. We evaluate the scaling of Ripples with fused BPT
on multiple GPUs and multiple nodes.
Single-Node Multi-GPU: First, we evaluate strong scaling on a
single node at a batch size of 32 when progressively increasing the
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number of GPUs from 1 to 8. Fig. 12 shows that the performance
of Ripples scales almost linearly when employing fused BPTs. We
only report the results of two graphs, but all our benchmarks follow
the same trends. Beyond a greater potential for workload imbalances
due to increased workload granularity, fusing does not impact the
scaling behavior.
Heterogeneous Workload Balancing: We then evaluate the strong
scaling on multiple nodes. When increasing the number of nodes, the
number of BPTs that each node processes accordingly reduces. This
allowed us to identify a workload imbalance between CPU and GPU
workers on the same node. CPU workers are slower than GPU ones,
thus starving the GPU workers if not enough work units are available.
After implementing the load balancing mechanisms described in
§5, we achieved a better balance between CPU and GPU workers,
allowing CPUs to effectively help in the BPT generation and thus
providing a speed up with respect to a GPU-only setup.

From an energy-usage standpoint, a high level analysis suggests
adding CPUs for traversal is beneficial. Each MI250x has a TDP of
500W for 2000W per node, and the CPU’s TDP is 280W which is
14% of each node’s total power. In Figure 6, we see around a 50%
performance boost over “GPU only” when adding in the balanced
CPUs, which is greater than the 14% power increase.
Multi-Node Scaling: Finally, we evaluate Ripples with the fused
BPT approach when increasing the number of nodes from 4 to 4096
nodes. At 4096 nodes, Ripples uses a total of 196,608 CPU cores and
32,768 GPUs for RR set generation. Fig. 13 shows that our approach
keeps scaling as we increase the number of nodes, reaching at 4096
nodes a speedup of 128× over the 4 node version.

8 RELATED WORK
Breadth-First Search (BFS) is considered as one of the core primi-
tives of graph algorithms as well as a prototypical irregular kernel
used in benchmarking [1], and it has received extensive attention
in literature. BFS on GPU architectures has also been explored
extensively [38], with notable works such as: Merrill et al. [26] who
employed hierarchical queues for fine-grained task management to
scale traversals; efficient thread scheduling, degree-based sorting
and direction-switching in Enterprise [22]; a data-centric abstraction
using bulk synchronous model to enable programming productiv-
ity in Gunrock [43]; and a collection of techniques to address the
data-specific challenges that are dynamic in nature in XBFS [11].
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Multi-threaded [4, 33], distributed [46], and algebraic approaches
for BFS [44] have also been deeply studied.

Several efforts consider performing multiple concurrent determin-
istic graph traversals, which serve as inspiration for FuseIM. MS-BFS,
introduced by Then et al. [42], is a single-threaded CPU-only method
for running concurrent BFSs. MS-BFS employs a bitmask coloring
scheme, and introduces techniques to improve performance such as
aggregated neighbor processing, direction-optimized travel, neigh-
bor prefetching, and degree-based vertex reordering. Liu et al. [23]
proposed iBFS, an extension of Enterprise [22], to perform parallel
concurrent BFSs on GPUs. iBFS also utilizes a bitmask-based data
structure and introduces GroupBy rules for improved sharing along
with early termination for their bottom-up approach.

While both MultiLyra [25] and Glign [45] pioneered techniques
for fusing concurrent graph queries in distributed settings, their focus
lies primarily on deterministic, iterative queries traversing significant
portions of the graph. Notably, their optimizations, such as query
pausing for workload exposition, depend on this deterministic and
comprehensive exploration. Our work builds upon these foundational
ideas, expanding their applicability to a broader realm of graph
algorithms and analytics. Specifically, the challenge of merging
randomization and subgraph sampling increases stochasticity and
chances of not visiting the entire graph.
Influence Maximization: The seminal work of Kempe et al. [17] has
sparked fervent research around the Influence Maximization Problem.
At the time of this writing, the algorithms with the best theoretical
efficiency are those leveraging the Reverse Influence Sampling (RIS)
introduced by Borgs et al. [8]. The current state-of-the-art is the
IMM algorithm by Tang et al. [40] and it constitutes the starting
point of the parallel algorithms used in our work.

The body of work of Göktürk and Kaya [12, 13, 14] represents
the first steps in using the idea of fused simulations of the diffusion
process in Influence Maximization algorithms. The algorithms that
they propose are variations on the lazy-greedy approach of Leskovec
et al. [20] where, at each iteration, the algorithm needs to perform
many simulations of the diffusion process from a node in the graph to
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recompute its score. To speed up the computation, Göktürk and Kaya
[12, 13, 14] combine label propagation techniques, memoization,
vectorization, and sketches to expose more parallelism and reuse
work in their proposed approaches. However, their use of sketches
renders their heuristics and approach as unsuitable for Influence
Maximization algorithms based on RIS. This is due to the numerous
simulations inherent in this class of approaches, each having different
(randomly selected) starting points. Our work bridges these gaps and
brings the idea of fusing diffusion process simulations to RIS-based
methods while preserving their approximation guarantees.

9 CONCLUSION AND FUTURE WORK
In this work, we have proposed FuseIM, a fused BPT algorithm,
where we share frontiers between separate BPTs. We implemented
our algorithm on two frameworks, gIM and Ripples, that use two
different approaches for generating BPTs. Through our experiments,
we show the benefits of fusing over their unfused counterparts.
We also identify source binning, vertex reordering, and workload
balancing as key heuristics for improving the performance of fused
BPT on single-accelerator, heterogeneous, and distributed systems.
Additionally, we show strong scaling results of both single-node
multi-GPU and multi-node heterogeneous systems.

Future research directions include (but are not limited to): a) explo-
ration of adaptive techniques for improved performance in probabilis-
tic traversals—e.g., directional switching [7], hybrid scan vs. queue
frontier management methods [21, 30], and dynamic batch sizes;
b) potential ways to pause and resume workloads so that finished
BPTs can offload their RR sets early, and new start nodes can be
injected mid-traversal; and c) exploiting any higher order structural
information of a graph into fused BPTs.

ACKNOWLEDGMENTS
This work is supported by the U.S. Department of Energy through
the Exascale Computing Project (17-SC-20-SC) (ExaGraph) at the
Pacific Northwest National Laboratory; the Office of the Director
of National Intelligence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA), through the Advanced Graphic Intelli-
gence Logical Computing Environment (AGILE) research program,
contract number 77740; and by NSF award CNS-1812727 at North
Carolina State University.

REFERENCES
[1] 2023. Graph500 Kernel Description. http://www.graph500.org/
[2] Seher Acer, Ariful Azad, Erik G Boman, Aydın Buluç, Karen D. Devine, SM

Ferdous, Nitin Gawande, Sayan Ghosh, Mahantesh Halappanavar, Ananth Kalya-
naraman, Arif Khan, Marco Minutoli, Alex Pothen, Sivasankaran Rajamanickam,
Oguz Selvitopi, Nathan R Tallent, and Antonino Tumeo. 2021. EXAGRAPH:
Graph and combinatorial methods for enabling exascale applications. The In-
ternational Journal of High Performance Computing Applications 35, 6 (2021),
553–571. https://doi.org/10.1177/10943420211029299

[3] László Babai. 1979. Monte-Carlo algorithms in graph isomorphism testing.
Université tde Montréal Technical Report, DMS 79-10 (1979).

[4] David A. Bader and Kamesh Madduri. 2006. Designing Multithreaded Algo-
rithms for Breadth-First Search and st-connectivity on the Cray MTA-2. In
2006 International Conference on Parallel Processing (ICPP’06). 523–530.
https://doi.org/10.1109/ICPP.2006.34

[5] Aditya Ballal, Willow B. Kion-Crosby, and Alexandre V. Morozov. 2022. Network
community detection and clustering with random walks. Phys. Rev. Res. 4 (Nov
2022), 043117. Issue 4. https://doi.org/10.1103/PhysRevResearch.4.043117

[6] Reet Barik, Marco Minutoli, Mahantesh Halappanavar, Nathan R. Tallent, and
Ananth Kalyanaraman. 2020. Vertex Reordering for Real-World Graphs and

Applications: An Empirical Evaluation. In 2020 IEEE International Sympo-
sium on Workload Characterization (IISWC). 240–251. https://doi.org/10.1109/
IISWC50251.2020.00031

[7] Scott Beamer, Krste Asanović, and David A. Patterson. 2012. Direction-
optimizing Breadth-First Search. 2012 International Conference for High Per-
formance Computing, Networking, Storage and Analysis (2012), 1–10. https:
//api.semanticscholar.org/CorpusID:5242266

[8] Christian Borgs, Michael Brautbar, Jennifer T. Chayes, and Brendan Lucier. 2014.
Maximizing Social Influence in Nearly Optimal Time. In Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,
Portland, Oregon, USA, January 5-7, 2014. 946–957. https://doi.org/10.1137/1.
9781611973402.70

[9] Pedro Domingos and Matt Richardson. 2001. Mining the Network Value of
Customers. In Proceedings of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (San Francisco, California) (KDD
’01). Association for Computing Machinery, New York, NY, USA, 57–66. https:
//doi.org/10.1145/502512.502525

[10] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. 1978. An analysis of approxi-
mations for maximizing submodular set functions—II. Polyhedral Combinatorics
(1978), 73–87. https://doi.org/10.1007/bfb0121195

[11] Anil Gaihre, Zhenlin Wu, Fan Yao, and Hang Liu. 2019. XBFS: eXploring
Runtime Optimizations for Breadth-First Search on GPUs. In Proceedings of the
28th International Symposium on High-Performance Parallel and Distributed
Computing. ACM, Phoenix AZ USA, 121–131. https://doi.org/10.1145/3307681.
3326606

[12] Gökhan Göktürk and Kamer Kaya. 2021. Boosting Parallel Influence-Maximization
Kernels for Undirected Networks With Fusing and Vectorization. IEEE Trans.
Parallel Distributed Syst. 32, 5 (2021), 1001–1013. https://doi.org/10.1109/TPDS.
2020.3038376

[13] Gökhan Göktürk and Kamer Kaya. 2022. Fast and High-Quality Influence
Maximization on Multiple GPUs. In 2022 IEEE International Parallel and
Distributed Processing Symposium, IPDPS 2022, Lyon, France, May 30 - June 3,
2022. IEEE, 908–918. https://doi.org/10.1109/IPDPS53621.2022.00093

[14] Gökhan Göktürk and Kamer Kaya. 2024. Fast and error-adaptive influence
maximization based on Count-Distinct sketches. Inf. Sci. 655 (2024), 119875.
https://doi.org/10.1016/J.INS.2023.119875

[15] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring Network
Structure, Dynamics, and Function using NetworkX. In Proceedings of the 7th
Python in Science Conference, Gaël Varoquaux, Travis Vaught, and Jarrod Millman
(Eds.). Pasadena, CA USA, 11 – 15.

[16] Richard M. Karp, Rajeev Motwani, and Noam Nisan. 1993. Probabilistic Analysis
of Network Flow Algorithms. Mathematics of Operations Research 18, 1 (1993),
71–97. http://www.jstor.org/stable/3690154

[17] David Kempe, Jon M. Kleinberg, and Éva Tardos. 2003. Maximizing the spread
of influence through a social network. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Washington,
DC, USA, August 24 - 27, 2003. 137–146. https://doi.org/10.1145/956750.956769

[18] Arif M. Khan, David F. Gleich, Alex Pothen, and Mahantesh Halappanavar. 2012.
A multithreaded algorithm for network alignment via approximate matching. In SC
’12: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. 1–11. https://doi.org/10.1109/SC.2012.8

[19] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. 2008. Benchmark
graphs for testing community detection algorithms. Physical Review E 78, 4 (oct
2008). https://doi.org/10.1103/physreve.78.046110

[20] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne M.
VanBriesen, and Natalie S. Glance. 2007. Cost-effective outbreak detection in
networks. In Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Jose, California, USA, August 12-15,
2007, Pavel Berkhin, Rich Caruana, and Xindong Wu (Eds.). ACM, 420–429.
https://doi.org/10.1145/1281192.1281239

[21] Da Li and Michela Becchi. 2013. Deploying Graph Algorithms on GPUs: An
Adaptive Solution. In 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing. 1013–1024. https://doi.org/10.1109/IPDPS.2013.101

[22] Hang Liu and H. Howie Huang. 2015. Enterprise: breadth-first graph traversal
on GPUs. In SC ’15: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–12. https://doi.
org/10.1145/2807591.2807594

[23] Hang Liu, H Howie Huang, and Yang Hu. 2016. ibfs: Concurrent breadth-
first search on gpus. In Proceedings of the 2016 International Conference on
Management of Data. 403–416.

[24] Madhav Marathe and Anil Kumar S Vullikanti. 2013. Computational epidemiology.
Commun. ACM 56, 7 (2013), 88–96.

[25] Abbas Mazloumi, Xiaolin Jiang, and Rajiv Gupta. 2019. MultiLyra: Scalable
Distributed Evaluation of Batches of Iterative Graph Queries. In 2019 IEEE
International Conference on Big Data (Big Data). 349–358. https://doi.org/10.
1109/BigData47090.2019.9006359

48

http://www.graph500.org/
https://doi.org/10.1177/10943420211029299
https://doi.org/10.1109/ICPP.2006.34
https://doi.org/10.1103/PhysRevResearch.4.043117
https://doi.org/10.1109/IISWC50251.2020.00031
https://doi.org/10.1109/IISWC50251.2020.00031
https://api.semanticscholar.org/CorpusID:5242266
https://api.semanticscholar.org/CorpusID:5242266
https://doi.org/10.1137/1.9781611973402.70
https://doi.org/10.1137/1.9781611973402.70
https://doi.org/10.1145/502512.502525
https://doi.org/10.1145/502512.502525
https://doi.org/10.1007/bfb0121195
https://doi.org/10.1145/3307681.3326606
https://doi.org/10.1145/3307681.3326606
https://doi.org/10.1109/TPDS.2020.3038376
https://doi.org/10.1109/TPDS.2020.3038376
https://doi.org/10.1109/IPDPS53621.2022.00093
https://doi.org/10.1016/J.INS.2023.119875
http://www.jstor.org/stable/3690154
https://doi.org/10.1145/956750.956769
https://doi.org/10.1109/SC.2012.8
https://doi.org/10.1103/physreve.78.046110
https://doi.org/10.1145/1281192.1281239
https://doi.org/10.1109/IPDPS.2013.101
https://doi.org/10.1145/2807591.2807594
https://doi.org/10.1145/2807591.2807594
https://doi.org/10.1109/BigData47090.2019.9006359
https://doi.org/10.1109/BigData47090.2019.9006359


ICS ’24, June 04–07, 2024, Kyoto, Japan Neff, Zarch, Minutoli, Halappanavar, Tumeo, Kalyanaraman, and Becchi

[26] Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scalable GPU
graph traversal. ACM SIGPLAN Notices 47, 8 (Sep 2012), 117–128. https:
//doi.org/10.1145/2370036.2145832

[27] Marco Minutoli, Maurizio Drocco, Mahantesh Halappanavar, Antonino Tumeo,
and Ananth Kalyanaraman. 2020. cuRipples: Influence maximization on multi-
GPU systems. In Proceedings of the 34th ACM International Conference on
Supercomputing. 1–11.

[28] Marco Minutoli, Mahantesh Halappanavar, Ananth Kalyanaraman, Arun V. Satha-
nur, Ryan Mcclure, and Jason E. McDermott. 2019. Fast and Scalable Imple-
mentations of Influence Maximization Algorithms. In 2019 IEEE International
Conference on Cluster Computing, CLUSTER 2019, Albuquerque, NM, USA,
September 23-26, 2019. 1–12. https://doi.org/10.1109/CLUSTER.2019.8890991

[29] Marco Minutoli, Prathyush Sambaturu, Mahantesh Halappanavar, Antonino Tumeo,
Ananth Kalyanaraman, and Anil Vullikanti. 2020. Preempt: scalable epidemic in-
terventions using submodular optimization on multi-GPU systems. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2020, Virtual Event / Atlanta, Georgia, USA, November
9-19, 2020, Christine Cuicchi, Irene Qualters, and William T. Kramer (Eds.).
IEEE/ACM, 55. https://doi.org/10.1109/SC41405.2020.00059

[30] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Data-Driven Versus
Topology-driven Irregular Computations on GPUs. In 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing. 463–474. https://doi.org/10.
1109/IPDPS.2013.28

[31] Nvidia. 2017. Cooperative Groups: Flexible CUDA Thread Programming. https:
//developer.nvidia.com/blog/cooperative-groups/.

[32] Nvidia. 2023. Nsight Compute CLI. https://docs.nvidia.com/nsight-compute/
NsightComputeCli/index.html.

[33] Roger Pearce, Maya Gokhale, and Nancy M. Amato. 2010. Multithreaded
Asynchronous Graph Traversal for In-Memory and Semi-External Memory. In
SC ’10: Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–11. https://doi.org/
10.1109/SC.2010.34

[34] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online
Learning of Social Representations. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (New York,
New York, USA) (KDD ’14). Association for Computing Machinery, New York,
NY, USA, 701–710. https://doi.org/10.1145/2623330.2623732

[35] Martin Rosvall and Carl T. Bergstrom. 2008. Maps of random walks on complex
networks reveal community structure. Proceedings of the National Academy of
Sciences 105, 4 (2008), 1118–1123. https://doi.org/10.1073/pnas.0706851105

[36] Alexander Schrĳver et al. 2003. Combinatorial optimization: polyhedra and
efficiency. Vol. 24. Springer.

[37] Soheil Shahrouz, Saber Salehkaleybar, and Matin Hashemi. 2021. gim: Gpu
accelerated ris-based influence maximization algorithm. IEEE Transactions on
Parallel and Distributed Systems 32, 10 (2021), 2386–2399.

[38] Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin, Ligang He, Bo Liu, and
Qiang-Sheng Hua. 2018. Graph Processing on GPUs: A Survey. ACM Comput.
Surv. 50, 6, Article 81 (jan 2018), 35 pages. https://doi.org/10.1145/3128571

[39] Steven S. Skiena. 2008. The Algorithm Design Manual. Springer, London.
https://doi.org/10.1007/978-1-84800-070-4

[40] Youze Tang, Yanchen Shi, and Xiaokui Xiao. 2015. Influence Maximization in Near-
Linear Time: A Martingale Approach. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, Melbourne, Victoria, Australia,
May 31 - June 4, 2015. 1539–1554. https://doi.org/10.1145/2723372.2723734

[41] Youze Tang, Xiaokui Xiao, and Yanchen Shi. 2014. Influence Maximization:
Near-Optimal Time Complexity Meets Practical Efficiency. In Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data (Snowbird,
Utah, USA) (SIGMOD ’14). Association for Computing Machinery, New York,
NY, USA, 75–86. https://doi.org/10.1145/2588555.2593670

[42] Manuel Then, Moritz Kaufmann, Fernando Chirigati, Tuan-Anh Hoang-Vu, Kien
Pham, Alfons Kemper, Thomas Neumann, and Huy T. Vo. 2014. The More the
Merrier: Efficient Multi-Source Graph Traversal. Proc. VLDB Endow. 8, 4 (dec
2014), 449–460. https://doi.org/10.14778/2735496.2735507

[43] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel,
and John D. Owens. 2016. Gunrock: a high-performance graph processing
library on the GPU. ACM SIGPLAN Notices 51, 8 (Nov 2016), 1–12. https:
//doi.org/10.1145/3016078.2851145

[44] Carl Yang, Aydın Buluç, and John D. Owens. 2022. GraphBLAST: A High-
Performance Linear Algebra-Based Graph Framework on the GPU. ACM Trans.
Math. Softw. 48, 1, Article 1 (feb 2022), 51 pages. https://doi.org/10.1145/3466795

[45] Xizhe Yin, Zhĳia Zhao, and Rajiv Gupta. 2022. Glign: Taming Misaligned Graph
Traversals in Concurrent Graph Processing. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 1 (Vancouver, BC, Canada) (ASPLOS 2023).
Association for Computing Machinery, New York, NY, USA, 78–92. https:
//doi.org/10.1145/3567955.3567963

[46] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson, and U. Catalyurek.
2005. A Scalable Distributed Parallel Breadth-First Search Algorithm on Blue-
Gene/L. In SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercom-
puting. 25–25. https://doi.org/10.1109/SC.2005.4

[47] Jingya Zhou, Ling Liu, Wenqi Wei, and Jianxi Fan. 2022. Network Representation
Learning: From Preprocessing, Feature Extraction to Node Embedding. ACM
Comput. Surv. 55, 2, Article 38 (jan 2022), 35 pages. https://doi.org/10.1145/
3491206

49

https://doi.org/10.1145/2370036.2145832
https://doi.org/10.1145/2370036.2145832
https://doi.org/10.1109/CLUSTER.2019.8890991
https://doi.org/10.1109/SC41405.2020.00059
https://doi.org/10.1109/IPDPS.2013.28
https://doi.org/10.1109/IPDPS.2013.28
https://developer.nvidia.com/blog/cooperative-groups/
https://developer.nvidia.com/blog/cooperative-groups/
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
https://doi.org/10.1109/SC.2010.34
https://doi.org/10.1109/SC.2010.34
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1145/3128571
https://doi.org/10.1007/978-1-84800-070-4
https://doi.org/10.1145/2723372.2723734
https://doi.org/10.1145/2588555.2593670
https://doi.org/10.14778/2735496.2735507
https://doi.org/10.1145/3016078.2851145
https://doi.org/10.1145/3016078.2851145
https://doi.org/10.1145/3466795
https://doi.org/10.1145/3567955.3567963
https://doi.org/10.1145/3567955.3567963
https://doi.org/10.1109/SC.2005.4
https://doi.org/10.1145/3491206
https://doi.org/10.1145/3491206

	Abstract
	1 Introduction
	2 Background on Influence Maximization
	3 FuseIM
	3.1 Analysis on Synthetic Graphs

	4 Fused BPT Implementation
	4.1 Incorporating Fused BPTs into gIM
	4.2 Incorporating Fused BPTs into Ripples

	5 Parallel Heuristics
	6 Experimental Setup
	7 Experimental Evaluation
	7.1 gIM with Fused BPTs
	7.2 Ripples with Fused BPTs

	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References

