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A robust high-order compact ûnite difference framework is proposed for simulations of com-
pressible turbulent üows with high spectral resolution using a fully collocated variable storage 
paradigm. Both inviscid and viscous üuxes are assembled at the edge-staggered grid locations. 
Nonlinear robustness is attained as a consequence of the intrinsic reduction of aliasing errors in 
the inviscid üuxes due to the spectral behavior of the compact interpolation schemes. Additional 
robustness is provided by enhancing the spectral resolution of the viscous üux and its divergence 
at small scales using purely staggered numerical differentiation. Demonstrative simulations have 
shown numerical stability of the compact ûnite difference discretization without any type of so-
lution ûltering on both Cartesian and curvilinear meshes. For simulations on a curvilinear mesh, 
a general metric evaluation approach that satisûes the geometric conservation law is proposed. 
Additional approaches to combining the proposed scheme with approximate Riemann solvers 
and artiûcial diffusivities for shock-capturing are also discussed. Along with theoretical analysis, 
rigorous evaluation and validation of the methodology on canonical tests, including classic two-
dimensional simulations, direct numerical simulations, and large-eddy simulations, are used to 
conûrm robustness and accuracy.

1. Introduction

High-order numerical schemes are an economical strategy used in conducting high-resolution numerical simulations of turbulent 
üows. They are widely applied for their rapid grid convergence accompanied by an affordable increase in computational cost. In 
turbulent üows, the structure of turbulent eddies spans a wide range of length scales. Additionally, in compressible üows, the ther-
modynamic behavior of a üuid is strongly coupled with the üow. As a result, acoustic waves [1], shocks [2] and eddy shocklets [3], 
and üuctuations of transport properties [4,5] commonly exist as üow features. Such wave structures need to be resolved or captured 
while maintaining the spatio-temporal accuracy of turbulent vortical structures at various scales and enforcing numerical conserva-
tion. Meanwhile, due to the energy cascade in turbulent üows, the turbulent kinetic energy is transferred from large scales to smaller 
and smaller scales successively until it is dissipated by molecular viscosity at the Kolmogorov length scale, ÿ. The Kolmogorov length 
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scale is known as the smallest length scale of turbulent eddies [6]. For direct numerical simulations (DNS), the Kolmogorov length 
scale is fully resolved by the computational mesh. However, considering computational cost, the Kolmogorov length scale is often 
set close to the limit of the mesh resolution, ýmaxÿ ∼(1) [7,8], where ýmax is the maximum wavenumber supported by the compu-
tational mesh. For inhomogeneous turbulent üows, local mesh reûnement or mesh stretching may be required to adapt to the local 
Kolmogorov length scale and, for wall-bounded turbulence in particular, the viscous length scale imposed by the wall [9–11]. In large-
eddy simulations (LES), the mesh resolution is usually conûgured within the inertial subrange where the local turbulent motion shows 
statistically universal behavior and can be modeled. The solution of an LES is interpreted as a set of ûltered quantities that resolves 
the large turbulent eddies carrying most of the turbulent kinetic energy. The residual effects beyond the mesh-supported resolution 
are represented by a subgrid-scale (SGS) model. Due to the nature of turbulence, the SGS model imposes mesh-adaptive dissipation, 
and many popular SGS models are formulated as eddy viscosity models [12–15] based on the Boussinesq approximation [16]. Both 
viscous dissipation and SGS model dissipation are predominately associated with the most ûnely resolved üow structures.

Capturing or resolving features at small scales requires numerical schemes to have satisfactory spectral behavior in addition to 
high-order grid convergence. Spectral methods and pseudo-spectral methods are widely used in computational üuid dynamics [17]. 
For an inûnitely differentiable proûle, the spectral representation converges faster than any power of the grid size [18]. The numerical 
errors are mainly ascribed to the Gibbs phenomenon for an insufficiently smooth proûle and potential aliased interactions in nonlinear 
operations. Alternatively, compact ûnite difference methods [19] provide a more üexible approach to addressing complexities in 
boundary conditions and can be applied in combination with a variety of numerical schemes such as shock-capturing schemes. 
Compact numerical schemes are implicitly formulated to access more information across the entire domain. As a result, the leading-
order truncation error is much smaller than that of explicit schemes [19]. Compact ûnite difference methods have demonstrated 
remarkable successes in DNS and LES of incompressible and compressible turbulent üows [8,20–22], computational aeroacoustics [1,
23], and simulations of multiphysics üows and nonlinear wave propagation [24,25].

Preserving numerical stability while maintaining high-order accuracy and spectral resolution has become a major challenge in 
simulating compressible turbulent üows. One of the primary contributors to numerical instability is the aliasing error. The dynamics 
of compressible turbulence are highly nonlinear over a broad-band spectrum. Given a ûnite grid resolution, the nonlinear interactions 
associated with high-wavenumber modes will cause aliasing errors that are more signiûcant for higher-order numerical schemes [26]. 
Therefore, dealiasing treatments are required in üux assembly. A reformulation of the nonlinear advection terms, known as the skew-
symmetric form, has been proposed and demonstrated to effectively reduce aliasing errors [27,28]. Signiûcant efforts have been made 
to further establish numerical conservation with higher-order and non-dissipative schemes [29–31]. For simulations of high-speed 
üows, the skew-symmetric form has been successfully and widely used [32]. The aliasing error of a product term can be analytically 
quantiûed from Fourier analysis, and the exact solution to calculating a product in Fourier space involves conducting a dealiased 
convolution. Nevertheless, this is impractical for large-scale simulations due to the high computational cost. The product should be 
directly computed in physical space with the aliasing error reduced or removed. A phase-shift method has been attempted in simula-
tions of turbulent üows using the Fourier spectral method [33], where a shift in physical space of the multiplier ûelds is conducted 
to partially or completely cancel the aliasing error in quadratic term calculations. The zero-padding approach is equivalent to the 
dealiased convolution where the product is computed with sufficiently upsampled resolution, and the result is then downsampled 
back to the original resolution. As a consequence, all aliasing errors are projected to the extended high-wavenumber modes and 
eventually truncated after downsampling. However, the increase in the memory footprint of this approach makes it relatively in-
efficient in large-scale computations. An approach analogous to zero-padding involves ûltering the high-wavenumber components 
that cause aliasing interactions before calculating the product [34]. For spectral methods, this treatment is equivalent to applying 
zero-padding on a coarser resolution without ûnal downsampling. The aliasing error produced by multiplication can be completely 
removed, although some unaliased nonlinear interactions are also inevitably excluded by ûltering. This approach does not require 
changing the grid resolution and thus can be conducted at a relatively low cost. As an extra advantage, it preserves the conservation 
form of the nonlinear üuxes.

Another critical contributor to numerical instability is the numerical discretization of diffusive üuxes. This issue particularly exists 
in simulations of turbulent üows with collocated ûnite difference methods. Collocated central difference schemes for ûrst derivatives 
have a trivial response to the mode at the Nyquist wavenumber and have poor spectral behavior close to the Nyquist wavenumber. 
As a result, the dispersion error from the divergence of advective üuxes occurs as spurious high-wavenumber, including grid-to-grid, 
oscillations. These oscillations are supposed to be dissipated by the diffusion mechanism. However, due to the insufficient spectral 
resolution in the high-wavenumber regime of collocated central difference schemes, by applying the ûrst derivative scheme twice, 
these oscillations will pile up. Some improvements have been made by evenly appending more grid points to the stencil to optimize 
the dispersion relation in the high-wavenumber regime [35,36]. It can be proved, however, that the trivial Nyquist wavenumber 
response is unavoidable in collocated central difference schemes [19]. One treatment of the diffusion term is to reformulate the üux 
divergence using the differentiation product rule to recover the Laplacian term and inner product of the gradients of the diffusivity 
coefficients and üow variables such as velocity and temperature; this has a much improved spectral response in high-wavenumber 
regimes including at the Nyquist wavenumber. Nevertheless, the conservation form is broken. Numerical ûlters have also been utilized 
in LES and under-resolved simulations [22,37]. As an extra note, this type of ûltering is directly applied to the solution variables for 
the sake of robustness and should be distinguished from the dealiasing ûltering for the calculation of nonlinear terms [34], the explicit 
ûltering in grid-independent LES [38], or test ûlters in numerical models [13,39]. Based on the transfer function behavior, a practical 
ûltering operation can completely remove grid-to-grid oscillations and largely weaken near-Nyquist high-wavenumber features while 
preserving the low-wavenumber and moderate-wavenumber features. Serious evaluation of the impact of solution ûltering is required 
to establish the accuracy of the method [22,37,40].
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Fig. 1. Schematic of one-dimensional discretization with a uniform mesh.

Staggered grids, on the other hand, have considerably enhanced behavior in high-wavenumber feature capturing. The staggered 
ûrst derivative scheme used in the divergence operator has a non-trivial response to the Nyquist wavenumber mode due to phase 
shifting. The staggered grid approach was originally proposed for solving the pressure-velocity decoupling issue in incompressible üow 
simulations [41] and has been widely used as a standard approach [42]. An improvement in robustness has also been demonstrated 
in simulations of compressible turbulent üows using compact ûnite difference methods [43]. However, the storage of variables on 
a staggered grid can be complicated. Variables are stored at nodal points and edges along each direction to be consistent with üux 
assembly. Further variable transformations are needed in compressible üow simulations. Additionally, the üuxes have to be assembled 
at different locations for different governing equations in the system.

While ûnite difference methods are formulated on a structured mesh, problems involving complex geometries or local mesh 
reûnement can be actualized via an invertible mapping [44]. A uniform Cartesian grid, known as the computational domain or 
reference domain, is generated and mapped to a curvilinear mesh, known as the physical domain or actual domain. The mapping 
is deûned by a metric tensor and its inverse. The primitive variables are constructed using a basis in the physical domain, and the 
differential operations are conducted in the reference domain. Due to the metric tensor, extra nonlinear interactions are created. The 
analysis has shown that the calculation of the metric tensor must be consistent with the divergence operator to cancel the numerical 
error that causes numerical instability; this is also known as the geometric conservation law (GCL) [45]. Further works have shown 
GCL-consistent computations in conjunction with collocated compact ûnite difference methods and shock capturing schemes [46,47].

This work proposes an improved ûnite difference framework for simulations of compressible turbulent üows. The divergence 
operations are based on staggered schemes while all conservative variables are stored at collocated grid points. This framework is 
particularly favorable to high-order compact numerical schemes and reduces the aliasing error in nonlinear üux assembly and high-
wavenumber viscous dissipation. The formulations on both uniform Cartesian mesh and curvilinear mesh are constructed. The metric 
generation approach is constructed in accordance with the numerical schemes and is proved to be GCL-consistent. The elementary nu-
merical schemes are described in Sec. 2. The overall computational framework for the compressible Navier-Stokes system is described 
in Sec. 3. Lastly, some benchmark tests and demonstrative examples are provided in Sec. 4.

2. Numerical schemes

In this section, the elementary numerical schemes used in the proposed computational framework and their properties are de-
scribed. A uniform mesh is generated with grid spacing Δý as shown in Fig. 1. A smooth proûle, ÿ (ý), is discretized on the given 
computational mesh with ÿÿ = ÿ (ýÿ ) at the nodal grid points. Based on the derivations in Ref. [19] and Ref. [43], a family of tridi-
agonal collocated compact ûnite difference schemes for evaluation of the ûrst derivative can be written as

ÿÿ ′
ÿ−1

+ ÿ ′
ÿ + ÿÿ ′

ÿ+1
= ÿ

ÿÿ+1 − ÿÿ−1

2Δý
+ ÿ

ÿÿ+2 − ÿÿ−2

4Δý
(1)

where ÿ ′
ÿ
represents the numerically evaluated ûrst derivative of ÿ (ý) at ýÿ . This set of schemes is formally fourth-order accurate for 

a generic value of ÿ with the following constraints on the coefficients ÿ and ÿ.

ÿ =
2

3
(ÿ + 2) (2)

ÿ =
1

3
(4ÿ − 1) (3)

Additionally, as shown in Fig. 1, a set of edge grid points are located at a half grid-spacing offset and staggered from the nodal grid 
points. The smooth proûle ÿ (ý) evaluated at the edge-staggered grid points can be denoted as ÿÿ±1∕2 = ÿ (ýÿ ± Δý∕2). A family of 
tridiagonal staggered compact ûnite difference schemes for the ûrst derivative evaluation can be expressed as

ÿÿ ′
ÿ−1

+ ÿ ′
ÿ + ÿÿ ′

ÿ+1
= ÿ

ÿÿ+1∕2 − ÿÿ−1∕2

Δý
+ ÿ

ÿÿ+3∕2 − ÿÿ−3∕2

3Δý
(4)

where fourth-order accuracy is preserved for a generic value of ÿ with the following constraints on ÿ and ÿ.

ÿ =
3

8
(−2ÿ + 3) (5)

ÿ =
1

8
(22ÿ − 1) (6)

A family of tridiagonal compact staggered interpolation schemes can be written as
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Table 1
Coefficients of the 6th-order compact schemes.

Scheme Equation ÿ ÿ ÿ

collocated ûnite difference (1) 1∕3 14∕9 1∕9

staggered ûnite difference (4) 9∕62 63∕62 17∕62

midpoint interpolation (7) 3∕10 3∕2 1∕10

ÿÿ ý
ÿ−1

+ ÿ ý
ÿ + ÿÿ ý

ÿ+1
= ÿ

ÿÿ+1∕2 + ÿÿ−1∕2

2
+ ÿ

ÿÿ+3∕2 + ÿÿ−3∕2

2
(7)

where ÿ ý
ÿ
denotes the numerically interpolated values of ÿ (ý) at ýÿ . The family of compact interpolations is formally fourth-order 

accurate if the following constraints are satisûed.

ÿ =
1

8
(10ÿ + 9) (8)

ÿ =
1

8
(6ÿ − 1) (9)

Due to the symmetry of the expression, Eq. (4) and Eq. (7) can be used to calculate corresponding results both from collocated (nodal) 
to edge-staggered points and from edge-staggered to collocated points with a shift of ±1∕2 in the grid index. A scheme degenerates to 
an explicit method upon choosing ÿ = 0. For ÿ ≠ 0, a tridiagonal linear system needs to be solved. For a large-scale computation, an 
effective parallel direct solution method is described in Ref. [48]. The leading-order truncation error can vanish if a speciûc value of 
ÿ is set in each scheme, and sixth-order schemes will be formulated with the most compact stencil. The coefficients of the sixth-order 
compact schemes are listed in Table 1.

The spectral response can be investigated from Fourier analysis. Assume that a one-dimensional periodic domain deûned on 
ý ∈ [0, ÿ) is discretized on a uniform mesh with ý grid points. The grid spacing is Δý = ÿ∕ý , so that ýÿ = ÿΔý for ÿ ∈ {ÿ ∈ℕ | ÿ < ý}. 
The discrete Fourier representation of ÿÿ is given by

ÿÿ =

ý∕2−1∑
ÿ=−ý∕2

ÿ̂ÿÿ
2ÿÿÿÿ∕ý (10)

where ÿ̂ÿ ∈ ℂ is the discrete Fourier transform of ÿ (ý), and ÿ =
√
−1 is the imaginary unit. A wavenumber, ýÿ, is introduced as 

ýÿ = 2ÿÿ∕ÿ. For ÿ = ýΔý and ÿ ∈ [−ý∕2, ý∕2), it can be shown that ýÿΔý ∈ [−ÿ, ÿ). Additionally, the modes with respect to 
ý±ý∕2Δý = ±ÿ are equivalent, and such ý±ý∕2 is known as the Nyquist wavenumber. The exponent on the right-hand side of Eq. (10)
yields 2ÿÿÿÿ∕ý = ÿýÿýÿ .

The Fourier representation of the ûrst derivative can be analytically written as

ýÿ

ýý

||||ýÿ
=

ý∕2−1∑
ÿ=−ý∕2

ÿýÿÿ̂ÿÿ
ÿýÿýÿ (11)

and an identical expression can be formulated for the numerical calculation of the ûrst derivatives.

ÿ ′
ÿ =

ý∕2−1∑
ÿ=−ý∕2

ÿý′ÿÿ̂ÿÿ
ÿýÿýÿ (12)

where ý′ÿ is known as the modiûed wavenumber [49,19], and the spectral error is indicated by the discrepancy between ý
′
ÿ and ýÿ. 

For simplicity, the subscript ÿ is dropped while discussing the single-mode behavior, so that ý ∈ {ýÿ | ÿ ∈ ℤ ∧ ÿ∕ý ∈ [−1∕2, 1∕2)}
and ý′ ∈ {ý′ÿ | ÿ ∈ ℤ ∧ ÿ∕ý ∈ [−1∕2, 1∕2)}. Substituting the expression in Eq. (10) into the ûnite difference schemes in Eq. (1) and 
Eq. (4), the modiûed wavenumbers can be obtained as

ý′Δý =
ÿ sin(ýΔý) +

1

2
ÿ sin(2ýΔý)

1 + 2ÿ cos(ýΔý)
(13)

and

ý′Δý =
2ÿ sin

(
1

2
ýΔý

)
+

2

3
ÿ sin

(
3

2
ýΔý

)

1 + 2ÿ cos(ýΔý)
(14)

respectively. For central difference schemes, the modiûed wavenumbers are all real-valued, ý′ ∈ ℝ. As shown in Eq. (13), at the 
Nyquist wavenumber, ý′Δý = 0 holds for all collocated central difference schemes, while for staggered central difference schemes, 
ý′Δý =

7−10ÿ

3−6ÿ
at the Nyquist wavenumber. The modiûed wavenumbers of the collocated and staggered sixth-order compact ûnite 

difference schemes are plotted in Fig. 2. For reference, the modiûed wavenumber proûles for the second-order, fourth-order, and 
sixth-order explicit central difference schemes are also plotted. By comparison, the staggered schemes have signiûcantly improved 
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Fig. 2. Modiûed wavenumber proûles of some central difference schemes: (a) collocated schemes; (b) staggered schemes.

spectral behavior compared to the collocated schemes especially in the high-wavenumber regime. For both types of schemes shown 
in Fig. 2, the sixth-order compact difference schemes have the most accurate modiûed wavenumbers. The modiûed wavenumber 
of the collocated sixth-order compact scheme is relatively accurate for ýΔý < ÿ∕2, and ý′∕ý =

28

9ÿ
≈ 0.990 for ýΔý = ÿ∕2. Beyond 

ýΔý ≈ 2.267, ý′ starts to decrease with ý, and large discrepancies occur. The modiûed wavenumber of the staggered sixth-order 
compact scheme has a broader accurate wavenumber regime. ý′ monotonically increases with ý over the entire spectral domain. 

ý′∕ý =
206

√
2

93ÿ
≈ 0.997 for ýΔý = ÿ∕2, and ý′∕ý ≈ 0.83 at the Nyquist wavenumber.

Using the discrete Fourier representation in Eq. (10), the exact value at a staggered grid point is

ÿÿ+1∕2 =

ý∕2−1∑
ÿ=−ý∕2

ÿ̂ÿÿ
2ÿÿÿ(ÿ+1∕2)∕ý (15)

Analogously, substituting the Fourier representation in an interpolation scheme, an expression equivalent to the following form can 
be obtained.

ÿ ý
ÿ+1∕2

=

ý∕2−1∑
ÿ=−ý∕2

ÿ (ýÿΔý)ÿ̂ÿÿ
2ÿÿÿ(ÿ+1∕2)∕ý (16)

where ÿ (ýΔý) is known as the transfer function [19]. The subscript ÿ is dropped for simplicity in the discussion of the transfer 
function, consistent with what is deûned in the previous discussion so that ý is an instantiation of the set of discrete wavenumbers, 
ý ∈ {ýÿ | ÿ ∈ℤ ∧ÿ∕ý ∈ [−1∕2, 1∕2)}. This indicates that a numerical interpolation is equivalent to the exact interpolation of a ûltered 
proûle. For a central interpolation scheme, the transfer function is also real valued, ÿ (ýΔý) ∈ ℝ. The analytical expression of the 
transfer function for the interpolation scheme formulated in Eq. (7) is given as follows.

ÿ (ýΔý) =
ÿ cos

(
1

2
ýΔý

)
+ ÿ cos

(
3

2
ýΔý

)

1 + 2ÿ cos(ýΔý)
(17)

and its proûle is shown in Fig. 3 in comparison with the second-order, fourth-order, and sixth-order explicit central interpolation 
schemes. Comparing the three proûles for the transfer function, all interpolation schemes preserve the mean value, and the sixth-order 
compact interpolation shows the best spectral behavior in preserving the mode amplitude for ýΔý < ÿ∕2. At ýΔý = ÿ∕2, the values of 
the transfer functions for the second-order scheme, fourth-order explicit scheme, sixth-order explicit scheme, and sixth-order compact 
scheme are approximately 0.707, 0.884, 0.950 and 0.990, respectively. In the high-wavenumber regime, the transfer function proûle 
decreases and eventually reaches zero at the Nyquist wavenumber. These ûltering effects embedded in the numerical interpolation 
schemes favor üux dealiasing, which is fully discussed in Sec. 3.

The linear response of the numerical dispersion and dissipation is discussed using a model advection-diffusion equation, shown 
as follows:

ÿÿ

ÿý
+∇ ⋅ [ÿ(ÿ)ÿ] = ∇ ⋅ [ÿ∇ÿ] (18)

The model problem is deûned on a two-dimensional periodic domain for ý = (ý, ÿ) ∈ [0, ÿý) × [0, ÿÿ). ÿ(ý, ÿ, ý) is the dependent 
variable. ÿ(ÿ) = ý

(
ÿ̂ý cosÿ + ÿ̂ÿ sinÿ

)
is the advective velocity, where ý and ÿ are constant, and ÿ̂ý and ÿ̂ÿ form a constant orthogonal 
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Fig. 3. Transfer functions of several central interpolation schemes.

basis of a Cartesian coordinate system. ÿ is a constant diffusivity. Eq. (18) is expressed in conservation form, where ÿÿ is the linear 
advective üux, and ÿ∇ÿ is the linear diffusive üux. The computational domain is discretized with a uniform mesh containing ýý and 
ýÿ grid points in ý and ÿ dimensions respectively. A two-dimensional discrete Fourier transform can be denoted as

ÿ(ýýÿ , ý) =

ýý∕2−1∑
ÿ=−ýý∕2

ýÿ∕2−1∑
ÿ=−ýÿ∕2

ÿ̂ÿÿ(ý)ÿ
ÿýÿÿ⋅ýýÿ (19)

where ýýÿ = ýýÿ̂ý + ÿÿ ÿ̂ÿ represents two-dimensional coordinates, and ýÿÿ = ýýÿÿ̂ý + ýÿÿÿ̂ÿ is the wavenumber vector. The spa-
tial coordinates can be calculated as ýý = ÿýý∕ýý and ÿÿ = ÿÿÿ∕ýÿ respectively, and the two components of the wavenumber 
vector are deûned as ýýÿ = 2ÿÿ∕ÿý and ýÿÿ = 2ÿÿ∕ÿÿ respectively. In the following discussion of single-mode behavior, the 
subscripts ÿ and ÿ are dropped as in previous discussions, so that without a subscript, a quantity can be interpreted as an in-
stantiation of the set of all admissible values, ýý ∈ {ýýÿ | ÿ ∈ℤ ∧ÿ∕ýý ∈ [−1∕2,1∕2)}, ýÿ ∈ {ýÿÿ | ÿ ∈ℤ ∧ ÿ∕ýÿ ∈ [−1∕2,1∕2)}, 

ÿ̂ ∈ {ÿ̂ÿÿ | ÿ,ÿ ∈ℤ ∧ÿ∕ýý, ÿ∕ýÿ ∈ [−1∕2,1∕2)}, and ý = ýýÿ̂ý + ýÿÿ̂ÿ.
Considering the errors caused by the schemes, the numerical solution to a semi-discretized form of Eq. (18) is consistent with the 

following modiûed ordinary differential equation in Fourier space.

ýÿ̂

ýý
+ ÿý ⋅ ÿ′ÿ̂ = −ÿ′ý2ÿ̂ (20)

where ý2 = ý ⋅ ý, and ÿ′ and ÿ′ can be interpreted as the modiûed spectral advective velocity and modiûed spectral diffusivity 
respectively. According to the deûnition of the modiûed wavenumber in Eq. (12), ÿ′ and ÿ′ account for the effects of the modiûed 
wavenumber. Their expressions are given in the following equations.

ÿ′(ÿ,ý) = ý

(
ÿ̂ý

ý′′ý
ýý

cosÿ + ÿ̂ÿ

ý′′ÿ

ýÿ
sinÿ

)
(21)

ÿ′(ý) = ÿ

(
ý′ 2ý + ý′ 2ÿ

ý2

)
(22)

where ý′′ý and ý
′′
ÿ can be interpreted as the effective modiûed wavenumbers corresponding to the combination of all the discrete op-

erations, including interpolation and differentiation, along the ý- and ÿ-directions respectively and treated as functions of ýý and ýÿ
respectively, consistent with the one-dimensional analysis. For staggered differential operations, interpolation schemes are required 
to evaluate advective üuxes. Therefore, the effective modiûed wavenumbers should consider both the transfer function and the mod-
iûed wavenumber from the staggered differentiation, ý′′ýΔý = ÿ (ýýΔý)ý′ýΔý and ý′′ÿΔÿ = ÿ (ýÿΔÿ)ý′ÿΔÿ. For collocated differential 
operations, interpolation schemes are not needed. Accordingly, the effective modiûed wavenumbers of a collocated scheme are equal 
to its modiûed wavenumbers, ý′′ýΔý = ý′ýΔý and ý′′ÿΔÿ = ý′ÿΔÿ. Mapping to a polar coordinate system, the wavenumber vector can be 
written as ý = |ý| (ÿ̂ý cosÿ+ ÿ̂ÿ sinÿ

)
, where ÿ deûnes an angle of observation. Consistent with the scaling of the wavenumber compo-

nents in each dimension, the dimensionless wavenumber magnitude can be expressed as |ý| ÿ, where ÿ(ÿ) =
√

Δý2 cos2ÿ+Δÿ2 sin2ÿ. 
If Δý =Δÿ, then ÿ is independent of ÿ, and the wavenumber magnitude is scaled by the uniform grid spacing.

The two-dimensional spectral dispersion is characterized by the modiûed spectral advective velocity, ÿ′. For an exact differen-
tiation, ÿ′ = ÿ for all resolved Fourier modes. For a numerical solution, ÿ′ has non-constant spectral behavior with respect to the 
advective direction, ÿ, and the wave orientation, ÿ. If ÿ = ÿ = 0, the model problem becomes one-dimensional. The numerical disper-
sion in the linear advection is shown in Fig. 4. It can be seen that among the listed collocated schemes, the sixth-order compact ûnite 



Journal of Computational Physics 519 (2024) 113419

7

H. Song, A.S. Ghate, K.V. Matsuno et al.

Fig. 4. Proûles of the modiûed spectral advection velocities in one-dimensional computations: (a) collocated difference schemes; (b) staggered difference schemes 
combined with central interpolation schemes. As ýýΔý → 0, the plots show their asymptotic behaviors.

Fig. 5. Relative spectral advective speeds, 
(
ÿ′ ⋅ ÿ̂ý

)
∕ 
(
ÿ ⋅ ÿ̂ý

)
, shown in |ý|ÿ–ÿ polar coordinate system, where ÿ̂ý = ÿ̂ý cosÿ + ÿ̂ÿ sinÿ and ÿ = ÿ: (a) collocated second-

order difference; (b) collocated fourth-order explicit difference; (c) collocated sixth-order explicit difference; (d) collocated sixth-order compact difference; (e) staggered 
second-order difference with interpolation; (f) staggered fourth-order explicit difference with interpolation; (g) staggered sixth-order explicit difference with interpola-
tion; (h) staggered sixth-order compact difference with interpolation. The isocurves are generated based on a linear scale. As ý → 0, the contours show their asymptotic 
behaviors. (For interpretation of the colors in the ûgure(s), the reader is referred to the web version of this article.)

difference scheme best resolves the advection of the modes for ýýΔý < ÿ∕2. However, the advection of the Nyquist wavenumber 
mode cannot be resolved by the collocated central difference schemes, and the mode will become a standing wave. In comparison, 
for higher-order schemes, a staggered scheme has spectral behavior nearly identical to that of the collocated scheme of the same order 
even though the staggered numerical differential operations have signiûcantly improved modiûed wavenumbers. For the second-order 
discretizations, the spectral behavior of the staggered and collocated schemes is completely identical. This is because the interpola-
tion is also considered as a step of the staggered calculation that suppresses the overall high-wavenumber features. The leading-order 
truncation error for the model problem of each scheme is derived in Appendix A and listed in Table A.3 to quantify the response of 
numerical errors with respect to the local solution features in physical space. For a two-dimensional conûguration, the anisotropy 
is shown in Fig. 5 and Fig. 6. For the linear system, without loss of generality, let ÿ = ÿ and Δý = Δÿ. Accordingly, the contours in 
Fig. 5 are equivalent to ||ÿ′||∕ |ÿ|. Most of the contours in Fig. 5 present square-like shapes. This is because a Cartesian mesh only 
deûnes a rectangular domain and is not perfectly isotropic. As a result, the corresponding spectral domain is also rectangular. As 
a fair comparison, only |ý| ÿ ≤ ÿ is considered. Due to the spectral behavior of the collocated ûnite difference schemes and central 
interpolation schemes, ||ÿ′|| = 0 is unavoidable. This limits the isotropy of the evaluation in the high-wavenumber regime. Comparing 
the two-dimensional spectral behaviors, the collocated schemes and staggered schemes are still nearly identical. As the formal order 
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Fig. 6. Errors of the modiûed spectral advective velocity angles, ÿ′ − ÿ where ÿ′(ý) is the polar angle of the modiûed spectral advective velocity, ÿ′ , i.e., ÿ′ =
|ÿ′| (ÿ̂ý cosÿ′ + ÿ̂ÿ sinÿ

′
)
. The errors are shown in |ý|ÿ–ÿ polar coordinate system with ÿ = ÿ: (a) collocated second-order difference; (b) collocated fourth-order 

explicit difference; (c) collocated sixth-order explicit difference; (d) collocated sixth-order compact difference; (e) staggered second-order difference with interpolation; 
(f) staggered fourth-order explicit difference with interpolation; (g) staggered sixth-order explicit difference with interpolation; (h) staggered sixth-order compact 
difference with interpolation. The isocurves are generated based on a logarithmic scale. As |ÿ′| → 0, the contours show their asymptotic behaviors.

of accuracy increases, the isotropy successively improves, and the sixth-order compact schemes similarly show the best performance 
among all listed schemes. A consistent observation can also be obtained by comparing the error of the advective directions in Fig. 6. 
Along the ý- and ÿ-directions, the advection degenerates to a one-dimensional problem. The numerical schemes along the advection 
do not affect the advective direction, and the numerical schemes in the orthogonal direction make no contribution to the results. 
Along the domain-diagonal direction, the errors of the numerical schemes in the ý- and ÿ-directions are canceled. Therefore, for 
both cases, there is no error in resolving the advective direction. However, other than the axial and domain-diagonal directions, the 
numerical error in the advective velocity direction occurs as imbalanced errors in the evaluation of the projected advective speeds.

The spectral dissipation can be investigated from the modiûed spectral diffusivity, ÿ′ . For the one-dimensional advection, the 
relative values of ÿ′ are shown in Fig. 7. The exact differentiation should preserve ÿ for all resolved wavenumbers. Compared to 
Fig. 4, the effects of the modiûed wavenumber reduction are worse in the diffusion term, since two derivative operations are ap-
plied. The collocated schemes do not resolve the Nyquist wavenumber damping mechanism, which adversely affects the numerical 
stability in nonlinear problems. In contrast, the staggered schemes have a much enhanced high-wavenumber damping performance, 
which will make nonlinear systems more robust. This property is also supported by the amplitude of the leading-order truncation 
error which is derived in Appendix A and provided in Table A.3 for each of the schemes. By comparison, the staggered differential 
schemes signiûcantly improve the solution accuracy by reducing the amplitude of the leading-order truncation error in the calcula-
tion of the viscous term. The anisotropy is shown in Fig. 8. As ÿ varies, the collocated second-order scheme only shows isotropic 
behavior at low wavenumbers. The collocated sixth-order schemes have a much improved isotropy compared to the second-order 
schemes. Nevertheless, the most signiûcant improvement is observed by using staggered schemes. An alternative way to improve 
the performance of the diffusion term in damping high-wavenumber modes is to use second derivative operators [19,43]. However, 
this treatment is at the cost of sacriûcing the conservation form. The approach can be derived based on the product rule of calculus, 
∇ ⋅ [ÿ∇ÿ] = ∇ÿ ⋅∇ÿ + ÿ∇2ÿ, where the calculation of ∇2ÿ is based on second partial derivative operators.

3. Computational framework

In this section, the computational framework is fully described. The framework requires midpoint interpolation and collocated 
and staggered central schemes for the calculation of ûrst derivatives. It is compatible with schemes of an arbitrary order of accuracy. 
In particular, the proposed framework is favorable to applications of high-order compact schemes.

3.1. Governing equations

The compressible Navier-Stokes equations, including conservation of mass, momentum, and total energy, are formulated as

ÿÿ

ÿý
+

ÿ

ÿýÿ

(
ÿÿÿ

)
= 0 (23)
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Fig. 7. Proûles of the modiûed spectral diffusivities in one-dimensional computations: (a) collocated difference schemes; (b) staggered difference schemes. As ýýΔý → 0

the plots show their asymptotic behaviors.

Fig. 8. Relative modiûed spectral diffusivities ÿ′(ý)∕ÿ shown in |ý|ÿ–ÿ polar coordinate system: (a) collocated second-order difference; (b) collocated fourth-order 
explicit difference; (c) collocated sixth-order explicit difference; (d) collocated sixth-order compact difference; (e) staggered second-order difference; (f) staggered 
fourth-order explicit difference; (g) staggered sixth-order explicit difference; (h) staggered sixth-order compact difference. The isocurves are generated based on a 
linear scale. As ý → 0, the contours show their asymptotic behaviors.

ÿÿÿÿ
ÿý

+
ÿ

ÿýÿ

(
ÿÿÿÿÿ + ýÿÿÿ

)
=

ÿÿÿÿ

ÿýÿ
(24)

ÿÿÿ

ÿý
+

ÿ

ÿýÿ

(
ÿℎÿÿ

)
=

ÿ

ÿýÿ

(
ÿÿÿÿÿ − ÿÿ

)
(25)

where the expressions are given in index notation [50] with an independent spatial dimension denoted by each free index and a 
summation over all spatial dimensions implied by each pair of repeated indices. In the equations, ÿ is the density; ÿÿ is the velocity 
vector; ý is the pressure; ÿÿÿ is the Kronecker delta characterizing an identity tensor; ÿÿÿ is the viscous stress tensor; ÿ is the speciûc 
total energy; ℎ is the speciûc total enthalpy; and ÿÿ is the heat üux vector. The governing equations are given in conservation form. 
The üuxes on the left-hand side of each equation are known as the inviscid üuxes, and the üuxes on the right-hand side are the viscous 
üuxes. If all the viscous üuxes are dropped, the governing equations will degenerate to an Euler system. ÿÿÿ and ÿÿ are formulated 
based on the constitutive relations of the üuid. For a Newtonian üuid, the viscous stress tensor is calculated as

ÿÿÿ = 2ÿÿÿÿ +
(
ÿ −

2

3
ÿ
) ÿÿý
ÿýý

ÿÿÿ (26)
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Fig. 9. Uniform Cartesian mesh: (a) detailed view of the three-dimensional structure; (b) projected view on ý–ÿ plane. The blue circles indicate the collocated grid 
points, and yellow, red and cyan triangles mark the edge-staggered grid points in the ý-, ÿ- and ÿ-directions respectively.

where ÿ and ÿ are the dynamic shear viscosity and bulk viscosity respectively, and ÿÿÿ is the strain rate tensor, deûned as

ÿÿÿ =
1

2

(
ÿÿÿ
ÿýÿ

+
ÿÿÿ

ÿýÿ

)
(27)

The heat üux vector, ÿÿ , is modeled by the Fourier’s law of heat conduction:

ÿÿ = −ÿ
ÿÿ

ÿýÿ
(28)

where ÿ is the thermal conductivity, and ÿ is the temperature. The speciûc total energy, ÿ, is deûned as

ÿ = ÿth +
1

2
ÿÿÿÿ (29)

where ÿth is the speciûc internal energy. The speciûc total enthalpy, ℎ, is deûned as

ℎ = ÿ+ ý∕ÿ (30)

The internal energy, ÿth, and the pressure, ý, are calculated based on an equation of state (EOS). For a pure substance, they can be 
expressed as functions of ÿ and ÿ in general. For a calorically perfect gas, they can be calculated as

ý = ÿýÿ (31)

and

ÿth =
ýÿ

ÿ − 1
(32)

where ý is the speciûc gas constant, and ÿ is the ratio of speciûc heats. The system is ûnally closed by giving the expressions for 
all the transport properties, ÿ, ÿ, and ÿ. For LES or DNS with shock-capturing schemes active at a separated scale, these transport 
properties may also contain modeled components [12,14,15,37]. The detailed description of the LES formulation used in this work 
is provided in Appendix B.

3.2. Numerical discretization on uniform Cartesian mesh

Consider a uniform Cartesian mesh generated in three-dimensional space. The computational mesh contains collocated grid points 
and edge-staggered grid points as shown in Fig. 9. During time advancement, all conservative variables evolve only at the collocated 
grid points, and all üuxes are assembled at the corresponding edge-staggered grid points. The divergence operations are performed by 
staggered central difference methods using input values at the edge-staggered grid points and generating the results at the collocated 
grid points. The schematic of the time advancement step is shown in Fig. 10.

The inviscid üuxes are assembled using the primitive variables, ÿÿ , ÿ and ý, that are ûrst calculated from the conservative variables 
at the collocated grid points and then interpolated to the staggered grid points. The choice of the thermodynamic variables used for 
interpolation provides üexibility in numerically imposing the boundary conditions in a simulation. Using the interpolated ý and ÿ , 
all other required thermodynamic quantities are recalculated at the staggered grid points based on the EOS. According to the spectral 
behavior of the interpolation operator, shown in Fig. 3, all interpolated variables have damped high-wavenumber modes. As the 
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Fig. 10. Schematics of time advancement step.

Fig. 11. Quadratic interaction between two ûelds: (a) schematics; (b) ûelds are interpolated using the compact sixth-order central scheme. The regions beyond the 
dash-dotted lines characterize the aliased interactions; (c) ûelds are preprocessed by a spectrally sharp low-pass ûlter with cut-off wavenumber at 2ÿ∕3. The pseudo-
color in (b) and (c) are the joint transfer function for each interacted mode.

nonlinear üuxes are assembled, aliasing interactions among high-wavenumber modes in the operands are reduced. The quadratic 
nonlinear interaction, as an example, is investigated in the following context and shown in Fig. 11. Assuming ý(ý) = ÿ(ý)ÿ(ý) in 
one-dimensional space, the discrete Fourier representation of the direct numerical product can be written as

ý∕2−1∑
ÿ=−ý∕2

ý̂ÿÿ
ÿýýÿ =

∑
|ý+ÿ|≤ý∕2

ÿ̂ýÿ̂ÿÿ
ÿ(ÿ1+ÿ2)ýÿ +

∑
|ý+ÿ|>ý∕2

ÿ̂ýÿ̂ÿÿ
ÿ(ÿ1+ÿ2)ýÿ (33)

where ÿ1(ý) = 2ÿý∕ÿ and ÿ2(ÿ) = 2ÿÿ∕ÿ are the wavenumbers for ý, ÿ ∈ {ÿ ∈ℤ | −ý∕2 ≤ ÿ <ý∕2}. The ûrst term on the right-hand 
side of Eq. (33) represents the resolved interactions, and the second term on the right-hand side represents the aliased interactions. 
For the resolved interactions, ÿ = ý+ÿ and ý = ÿ1 + ÿ2, while for the aliased interactions, ÿ = ý+ÿ ±ý for the negative and positive 
wavenumber modes respectively, and correspondingly, ý = ÿ1 + ÿ2 ± 2ÿ. Combined with the schematic shown in Fig. 11a, each 
location in the two-dimensional plane represents a quadratic interaction between the modes corresponding to wavenumbers ÿ1 and 
ÿ2. Among all quadratic interactions within the dashed-line box, the regions of aliased interactions are marked in red. The aliased 
interactions will fold back to the resolved modes colored by yellow. Considering the transfer functions, the numerical product of the 
interpolated factors can be expressed as

ý∕2−1∑
ÿ=−ý∕2

ý̂ý
ÿ ÿ

ÿýýÿ =
∑

|ý+ÿ|≤ý∕2

ÿýÿÿ̂ýÿ̂ÿÿ
ÿ(ÿ1+ÿ2)ýÿ +

∑
|ý+ÿ|>ý∕2

ÿýÿÿ̂ýÿ̂ÿÿ
ÿ(ÿ1+ÿ2)ýÿ (34)

where ý̂ý
ÿ is the discrete Fourier transfer of the numerical product, and ÿýÿ = ÿ (ÿ1Δý)ÿ (ÿ2Δý) can be interpreted as the joint transfer 

function. Although the magnitude of the aliasing error depends on the factors, the amount of reduction can be quantiûed by the proûle 
of ÿýÿ. For the sixth-order compact interpolation, the proûle of the joint transfer function is shown in Fig. 11b. As a reference, the 
<2/3-rule,= which identiûes the necessary ûltered modes to eliminate the aliasing error in a quadratic interaction [34], is shown 
in Fig. 11c. With the interpolation of the primitive variables, although the aliasing error cannot be perfectly eliminated, the aliased 
interactions are largely reduced to improve the robustness. Additionally, in the compressible Navier-Stokes system, the inviscid üuxes 
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Fig. 12. Invertible mapping between a curvilinear mesh in the physical domain (left) and a uniform Cartesian mesh in a reference domain (right).

involve cubic and quartic (in the formulation for a curvilinear coordinate system) interactions. For products involving more than two 
factors, the schematics are similar but need to be shown using a hyperplane in a higher-dimensional space.

Besides the primitive variables, the velocity and temperature gradients are needed for the viscous üuxes. In order to maximize the 
performance of high-wavenumber dissipation, the gradient component aligned with the üux direction and the divergence operation 
are evaluated by the staggered difference schemes. For the Navier-Stokes equations, the diffusion term in Eq. (24) can be rearranged 
as

ÿÿÿÿ

ÿýÿ
=

ÿ

ÿýÿ

(
ÿ
ÿÿÿ
ÿýÿ

)
+

ÿ

ÿýÿ

[
ÿ
ÿÿÿ

ÿýÿ
+
(
ÿ −

2

3
ÿ
) ÿÿý
ÿýý

ÿÿÿ

]
(35)

where the numerical operator, ÿýÿ , uses the staggered central difference scheme, and ÿýÿ , for ÿ ≠ ÿ, is conducted via the collocated 
central difference scheme in a direction orthogonal to the üux component and interpolated to the staggered grid locations. Numer-
ically, for ÿ > 0, the ûrst term on the right-hand side of Eq. (35) imposes the dominant dissipation. Based on the analysis shown in 
Fig. 2b and Fig. 7b, the spectral dissipation can be well represented by the staggered central difference schemes especially in the 
high-wavenumber regime. The Nyquist wavenumber features caused by the dispersion error and aliased interaction can be effectively 
damped following the diffusion mechanism in the governing equations. Similarly, the viscous üux in Eq. (25) can be rearranged to

ÿ

ÿýÿ

[
ÿÿÿÿÿ − ÿÿ

]
=

ÿ

ÿýÿ

(
ÿÿÿ

ÿÿÿ
ÿýÿ

+ ÿ
ÿÿ

ÿýÿ

)
+

ÿ

ÿýÿ

[
ÿÿÿ

ÿÿÿ

ÿýÿ
+
(
ÿ −

2

3
ÿ
) ÿÿý
ÿýý

ÿÿ

]
(36)

where the term ÿÿÿÿÿ,ÿ can be interpreted as an alternative evaluation of ÿ(ÿÿÿÿ∕2),ÿ . The advantage of the staggered formulation can 
be observed from the ûrst term on the right-hand side of Eq. (36). Additionally, the remaining terms, particularly the ones associated 
with the bulk viscosity, ÿ, in Eq. (35) and Eq. (36) partially beneût from the high-wavenumber spectral behavior of the staggered 
central difference schemes.

3.3. Formulations on curvilinear meshes

The numerical differential operations on a curvilinear mesh are conducted based on an invertible mapping taking the coordinates 
on the curvilinear mesh to coordinates on a uniform Cartesian mesh. In this work, the mapping is assumed to be time-independent. 
The space where the curvilinear mesh is deûned is known as the physical domain or actual domain, while the space where the 
Cartesian mesh is established is known as the reference domain or computational domain. In a three-dimensional physical domain, 
the orthonormal basis is deûned using ÿ̂ý, ÿ̂ÿ and ÿ̂ÿ, and the coordinates can be expressed as ý = ýÿ̂ý+ÿÿ̂ÿ+ÿÿ̂ÿ. Correspondingly, in 
the reference domain, the orthonormal basis is deûned as ÿ̂ÿ , ÿ̂ÿ and ÿ̂ÿ , and the coordinates can be expressed as ÿ = ÿÿ̂ÿ + ÿÿ̂ÿ + ÿ ÿ̂ÿ . 
During the solution process, the governing equations formulated in the physical domain are ûrst mapped to the reference domain so 
that the numerical differential operations can be applied. Then, the evaluated results are mapped back to the physical domain. The 
mapping of the differential operations between the paired physical and reference domains are established by the metric tensors that 
are deûned as follows.

ýÿý =
ÿýÿ
ÿÿý

and ýýÿ =
ÿÿý
ÿýÿ

(37, 38)

where the uppercase subscript represents the dimension in the reference domain, and the lowercase subscript represents the dimension 
in the physical domain [51]. It can be seen from the deûnitions that both ýÿý and ýýÿ are <two-leg= tensors. ýýÿ maps the differential 
operation from the physical domain to the reference domain, ýÿý = ýýÿýýÿ, and ýÿý maps the differential operation from the reference 
to the physical domain, ýýÿ = ýÿýýÿý. A schematic is shown in Fig. 12. The Jacobian of the metrics, ý , is deûned as the determinant 
of the metric tensor ý .

ý = det (ý ) (39)

which characterizes the volume mapping from the reference domain to the physical domain, ýýýÿýÿ = ýýÿýÿýÿ . Since the mapping 
is invertible, the identity ý = ý−1 holds. In addition, for a valid computational mesh, the condition ý > 0 must be satisûed.
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Consider the following weak scalar conservation law formulated in the physical domain.

ÿÿ

ÿý
+

ÿÿÿ

ÿýÿ
= ÿ (40)

where ÿ is a scalar conservative variable; ÿÿ is the physical üux; and ÿ is the source / sink. The mapped üux divergence in the 
reference domain is

ý
ÿÿÿ

ÿýÿ
=

ÿÿÿý
∗
ÿý

ÿÿý
(41)

where ý ∗ = ýý −T is the cofactor tensor of ý . Therefore, an equivalent formulation of Eq. (40) in the reference domain is

ÿýÿ

ÿý
+

ÿÿ̂ý

ÿÿý
= ýÿ (42)

where ÿ̂ý is known as the contravariant üux, deûned as

ÿ̂ý =ÿÿ ý̃
T
ÿý

(43)

The notation (̃⋅) = ý (⋅) in Eq. (43) is introduced for shorthand such that ý̃T
ÿý

= ýýT
ÿý
. Also, in accordance with the deûnitions, the 

identity ý ∗ = ý̃
T holds. Analogously, the compressible Navier-Stokes equations, Eq. (23), Eq. (24) and Eq. (25), can be reformulated 

as follows.

ÿýÿ

ÿý
+

ÿ

ÿÿý

(
ÿý̂ý

)
= 0 (44)

ÿýÿÿÿ
ÿý

+
ÿ

ÿÿý

(
ÿÿÿý̂ý + ýý̃T

ÿý

)
=

ÿ

ÿÿý

(
ÿÿÿ ý̃

T
ÿý

)
(45)

ÿýÿÿ

ÿý
+

ÿ

ÿÿý

(
ÿℎý̂ý

)
=

ÿ

ÿÿý

[(
ÿÿÿÿÿ − ÿÿ

)
ý̃T
ÿý

]
(46)

where ý̂ý is known as the contravariant velocity deûned as

ý̂ý = ÿÿý̃
T
ÿý

(47)

The numerical evaluation of the contravariant üuxes follows an approach similar to that used for the uniform Cartesian mesh 
described in Sec. 3.2. The primitive variables, ÿÿ , ý and ÿ , are interpolated from the collocated grid points to the staggered grid 
points to assemble the inviscid contravariant üuxes that appear on the left-hand sides of Eq. (44), Eq. (45) and Eq. (46). The trans-
fer function of the interpolation schemes still contributes to the robustness by reducing high-wavenumber oscillations before any 
nonlinear interactions. The viscous contravariant üuxes that appear on the right-hand sides of Eq. (44), Eq. (45), and Eq. (46) are 
assembled based on the interpolated primitive variables and gradient ûelds with respect to the physical coordinate system that are 

evaluated using chain rule, ÿýÿ =
(
ÿÿý

)
ýýÿ or ÿýÿ = ýT

ÿý
ÿÿý . The divergence operations in the reference domain are conducted using 

the staggered difference schemes. The gradient components in the reference domain aligned with the contravariant üux direction are 
also evaluated using the staggered difference schemes. As a result, substituting the expressions of ÿÿÿ and ÿÿ , the viscous contravariant 
üuxes in Eq. (45) and Eq. (46) are evaluated as follows.

ÿ

ÿÿý

(
ÿÿÿ ý̃

T
ÿý

)
=

ÿ

ÿÿý

(
ÿ
ÿÿÿ
ÿÿý

ýýÿ ý̃
T
ÿý

)
+

ÿ

ÿÿý

[
ÿýT

ÿý

ÿÿÿ

ÿÿý
ý̃T
ÿý

+
(
ÿ −

2

3
ÿ
) ÿÿý
ÿÿý

ýýýý̃
T
ÿý

]
(48)

ÿ

ÿÿý

[(
ÿÿÿÿÿ − ÿÿ

)
ý̃T
ÿý

]
=

ÿ

ÿÿý

[(
ÿÿÿ

ÿÿÿ
ÿÿý

+ ÿ
ÿÿ

ÿÿý

)
ýýÿ ý̃

T
ÿý

]
+

ÿ

ÿÿý

[
ÿÿÿý

T
ÿý

ÿÿÿ

ÿÿý
ý̃T
ÿý

+
(
ÿ −

2

3
ÿ
) ÿÿý
ÿÿý

ýýýÿÿý̃
T
ÿý

]
(49)

For a valid mapping, ýýÿ ý̃
T
ÿý
is symmetric and positive-deûnite in the reference domain. Using the staggered central difference schemes 

for ÿÿý , the dissipation of high-wavenumber oscillations in the reference domain can still be effectively resolved. The differential 
operator, ÿÿý , for ý ≠ ý, is evaluated using the collocated central difference scheme and then interpolated to the staggered grid 
points.

3.4. Generation of metrics

The metric tensor used to assemble the contravariant üuxes is ̃ý. Analytically, it can be calculated by inverting ý .

ý̃T
ÿý

=
(
1

2
ÿÿÿýÿýýÿ

) ÿýÿ

ÿÿý

ÿýý
ÿÿÿ

(50)

where ÿÿÿý and ÿýýÿ are Levi-Civita permutation tensors in the physical and reference domains respectively. However, Eq. (50) cannot 
be directly used to generate metrics for a numerical solver as noted in Ref. [45]. Consider a homogeneous steady-state solution to 



Journal of Computational Physics 519 (2024) 113419

14

H. Song, A.S. Ghate, K.V. Matsuno et al.

Eq. (40), where ÿ = 0 and both ÿ and ÿÿ are constant in space and time. In the reference domain, Eq. (42), combined with Eq. (43), 
reduces to the following constraint.

ÿý̃T
ÿý

ÿÿý
= 0 (51)

Eq. (51) is known as the GCL for a stationary curvilinear mesh [45]. In this work, the GCL is further discussed from an alternative 
perspective.

On one hand, the GCL indicates a consistency between the numerical divergence operator and the generation of the discrete metric 
tensor as described in many works [45–47]. On the other hand, it also reveals numerical enforcement of a compatibility condition 
of the metrics. The metric tensor ý can be interpreted as a type of <deformation gradient= of the physical coordinates with respect 
to the reference coordinates, i.e., ý T = ∇ÿý

T, where the gradient operator with respect to the reference coordinates is deûned as 
∇ÿ = ÿÿý . As an identity, ý

T is <curl-free= on the reference domain, i.e., ∇ÿ × ý T = ÿ. This is known as compatibility of the metric 
tensor. Taking a divergence operation with respect to the reference coordinates on both sides of Eq. (50), the following equation can 
be obtained.

ÿý̃T
ÿý

ÿÿý
=

1

2
ÿÿÿý

[
ÿýý
ÿÿÿ

(
ÿýýÿ

ÿ

ÿÿý

ÿýÿ

ÿÿý

)
+

ÿýÿ

ÿÿý

(
ÿýýÿ

ÿ

ÿÿý

ÿýý
ÿÿÿ

)]
(52)

where the expression in the brackets on the right-hand side yields ý
(
∇ÿ × ý T

)
−
(
∇ÿ × ý T

)T
ý T. The right-hand side of Eq. (52) is 

identically zero due to the compatibility if all differential operations are exact. However, for numerically-approximated derivative 
operations, the left-hand side and right-hand side of Eq. (52) are not discretely equivalent. The <curl-free= condition of ý T is weakly 
imposed in ̃ýT, which relies on numerical consistency and is achieved by grid convergence. This is due to the nonlinearity in evaluating 
ý̃
T from ý . The product rule of calculus may not hold discretely to enforce a numerically equivalent form of the right-hand side in 
Eq. (52). As a result, a non-zero residual may be generated from the truncation errors of the numerical schemes. Such a residual 
is known as the GCL error and often contributes to numerical inaccuracy and instability in simulations of physical conservation 
laws [46,52].

For numerically-generated metrics, the commonly used approaches are equivalent to strongly imposing the compatibility condition 
in Eq. (50). In order to show this, append two terms that are analytically equal to zero, ýÿÿýýÿýýÿ,ý and ýýÿýýÿýÿý,ÿ , to the right-
hand side of Eq. (50), so that the expression of ý̃T

ÿý
becomes compatibility-aware.

ý̃T
ÿý

=
(
1

2
ÿÿÿýÿýýÿ

)[
ÿýÿ

ÿÿý

ÿýý
ÿÿÿ

+ýýÿ
ÿ

ÿÿý

ÿýý
ÿÿÿ

+ (1 −ý)ýý
ÿ

ÿÿÿ

ÿýÿ

ÿÿý

]
(53)

where ý is a weighting factor. Eq. (53) can be further analytically manipulated into the so-called conservation form [45].

ý̃T
ÿý

=
(
1

2
ÿÿÿýÿýýÿ

)[
ý

ÿ

ÿÿý

(
ýÿ

ÿýý
ÿÿÿ

)
+ (1 −ý)

ÿ

ÿÿÿ

(
ýý

ÿýÿ

ÿÿý

)]
(54)

The effect of the weighting factor ý is discussed in detail in Ref. [53]. For further discussion, rewrite Eq. (54) as

ý̃T
ÿý

=
(
1

2
ÿÿÿýÿýýÿ

)[
ý

ÿ

ÿÿý

(
ýÿýýÿ

)
− (1 −ý)

ÿ

ÿÿý

(
ýýýÿÿ

)]
(55)

Comparing Eq. (55) with Eq. (51), the GCL error can be expressed as

ÿý̃T
ÿý

ÿÿý
=
(
1

2
ÿÿÿýÿýýÿ

)[
ý

ÿ2

ÿÿýÿÿý

(
ýÿýýÿ

)
− (1 −ý)

ÿ2

ÿÿýÿÿý

(
ýýýÿÿ

)]
(56)

The GCL constraint, derived by imposing compatibility, is satisûed by fully relying on the commutativity of the differential operators 
used for divergence evaluation in the computational framework, ÿÿý , and in the numerical calculation of ̃ý

T from ý , ÿÿý . Accordingly, 

once ý⊗ ý is assembled, the GCL requires the remaining differential operations to calculate ý̃T to be consistent and commutable. 
However, the GCL constraint does not put any restriction on the calculation of ý . This implies that ý can be either numerically 
evaluated in different ways or analytically provided. Similarly, prior to calculations of ý ⊗ ý , there is no GCL constraint for the 
evaluation of ý either if its components are needed at an abstract location. In practice, as an example, ý⊗ý is evaluated at collocated 
grid points and then interpolated to the edge-staggered locations in Ref. [47], while in this work, ý and ý⊗ ý are evaluated from 
an interpolated ý using staggered derivative schemes. Both approaches have demonstrated numerically zero GCL errors. Therefore, 
the key step in enforcing the GCL described by Eq. (55) should be interpreted as a GCL-consistent inversion of the metric tensor ý .

In this work, the metric tensor is fully calculated by numerical differentiation for all cases following Eq. (54) with ý = 0.5. All 
numerical differential operations are conducted by the edge-to-node staggered ûnite difference methods. Assuming that the physical 
coordinates are initially provided at the collocated grid points during mesh generation, all coordinates are ûrst interpolated along all 
three directions to a fully staggered location. In the reference domain, the fully staggered location is at the geometric center of the 
cube constructed by the neighboring collocated points as shown in Fig. 13. Starting from the fully staggered locations, all components 
in the metric tensor ý are numerically evaluated at the corresponding face-staggered locations. Then, the corresponding components 
of ý⊗ý are assembled at the face-staggered locations. Eventually, after the second differential operation, the GCL-consistent metrics 
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Fig. 13. Schematics of GCL metrics generation: (a) detailed isometric view of the three-dimensional structure; (b) projected view on the ÿ − ÿ plane where fully 
staggered locations do not belong to the collocated and edge-staggered plane. The mesh is shown in the reference domain. The collocated, edge-staggered and fully 
staggered points are marked by circle, triangle and square (cube) symbols, respectively.

are obtained at each edge-staggered location for the assembly of contravariant inviscid üuxes. At these locations, other components 
of ý̃T that are not involved in the GCL constraint are calculated via interpolations. For a periodic domain, speciûc details of metric 
evaluations using staggered compact ûnite difference and midpoint interpolation schemes are given in Appendix C.

3.5. Shock-capturing methods

In simulations of üows where shock waves are present, the shock waves are often treated as under-resolved structures. For high-
resolution simulations, high-order shock-capturing schemes are commonly applied [37,54,55]. These shock-capturing schemes impose 
sufficient numerical dissipation at shock locations so that the shock proûles are artiûcially thickened and well-captured discretely by 
the computational framework without causing numerical instability or strong spurious oscillations. The computational framework 
described in previous sub-sections is compatible with a wide variety of shock-capturing techniques. In this work, two common methods 
– the localized artiûcial diffusivity (LAD) method and the weighted essentially non-oscillatory (WENO) interpolation scheme combined 
with a projected approximate Riemann solver – are investigated.

For weak and moderate eddy shocklets in compressible turbulent üows, the LAD approach performs decently. The LAD approach is 
known to be less dissipative for simulations of turbulent üows when used with numerical operators that have high-spectral-resolution 
properties. For shock-capturing, only artiûcial bulk viscosity and artiûcial thermal conductivity are needed. The LAD model detects 
a shock based on local high-order derivatives. The detailed formulation is described in Ref. [37]. LAD can be easily applied to a 
computational system combined with diffusive üuxes. It does not require characteristic decomposition or a Riemann solver. Instead, 
according to Ref. [37], a low-pass ûlter is required to maintain numerical stability. However, in this computational framework, due to 
the robustness resulting from dealiasing effects and high-wavenumber viscous dissipation enhancement, the solution ûltering, claimed 
to be necessary in previous applications of LAD models, can be avoided in capturing weak shocks. Furthermore, without solution 
ûltering, the numerical dissipation due to the spatial discretization, exerted in the computational system can be easily quantiûed.

WENO-based nonlinear interpolation schemes divide a full stencil into several candidate sub-stencils. Each candidate sub-stencil 
interpolates the input ûeld individually using a linear scheme whose order of convergence is supported by the width of the sub-
stencil. The ûnal interpolated results are determined via a convexly-weighted superposition of all results obtained from candidate 
sub-stencils. The weights are comprehensively determined by a set of smoothness indicators calculated on each candidate sub-stencil. 
In a smooth region, the weights tend to make the superposed coefficients converge to a high-order linear interpolation scheme. In 
a shock region, the weights impose the use of interpolations from locally smooth candidate sub-stencils only. Correspondingly, the 
formal order of convergence will be lower.

For better solution behavior, the nonlinear interpolation scheme is commonly applied in conjunction with an approximate Riemann 
solver [55]. A Riemann solver assumes a discontinuity at the üux assembly location and takes two states of conservative variables on 
both sides of the discontinuity to evaluate regularized üuxes as the Riemann problem develops in time. For a hyperbolic conservation 
system, Riemann üuxes can be calculated as Riemann(ýÿ, ýý), where Riemann is the set of numerical üuxes evaluated by the Riemann 
solver, ý is the set of conservative variables, and the subscripts <ÿ= and <ý= denote the <left= and <right= states respectively. In 
an actual simulation, each edge is assumed to formulate a projected local Riemann problem. ýÿ and ýý are obtained from the 
interpolated characteristic variables.

Even with nominally high-order methods, fully using nonlinear interpolation schemes may still result in overly dissipative solution 
proûles at small scales in simulations of turbulent üows; this phenomenon is shown in Sec. 4.4. Therefore, to conduct an LES or DNS at 
a comparable physical resolution, the computational mesh used for a simulation that fully relies on nonlinear interpolation schemes 
needs to be much ûner than the mesh used for a simulation based on non-dissipative numerical methods. Nevertheless, shock-
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Fig. 14. Initial pressure distributions: (a) Cartesian mesh; (b) curvilinear mesh. The contours represent the pressure distributions for ý ∈ [0.55,0.71].

capturing schemes must be active at shock locations. To address this issue, a hybrid approach can be applied [40]. Conceptually, the 
hybridization is controlled by a physics-based shock sensor. Ideally, the shock-capturing schemes are active and localized to the shock 
structures, and only non-dissipative schemes are used in shock-free regions. Accordingly, small-scale dynamics are fully governed by 
physical dissipation or physics-based SGS model dissipation, and this signiûcantly enhances the simulation resolution.

The computational framework introduced in this study supports a variety of blending strategies. Among all feasible strategies, 
binary blending of primitive variables (ÿ, ÿ, ÿ ) is used in this work. Based on the compatibility constraint for approximate Riemann 
solvers, if ýÿ =ýý, then the Riemann solver does not introduce extra numerical dissipation. As a result, when both ýÿ and ýý are 
set to be variables interpolated by central schemes, Riemann(ýÿ, ýý) is identical to directly assembled central üuxes. Details of the 
shock-capturing schemes are included in Appendix E.

4. Demonstrative numerical performance

In this section, demonstrative simulations are provided to investigate the numerical performance of the computational framework. 
The demonstrations are primarily selected to examine the capability of the framework to preserve large-scale üow structures, resolve 
turbulent structures at small scales, and support existing models for LES and shock capturing.

4.1. Advection of a homentropic swirl

A uniform background üow is prescribed along the ý-direction at a Mach number of 0.5 on a two-dimensional periodic domain, 
(ý, ÿ) ∈ [−6, 6)2. A swirling üow ûeld is superposed as a homentropic perturbation. The üow is inviscid and without thermal diffu-
sion. Assuming the perturbed region is sufficiently small relative to the overall physical domain, the swirl üow feature will advect 
following the freestream at a constant velocity. Considering the periodic boundaries, after a period, the initial üow proûle should be 
asymptotically recovered. The initial homentropic perturbation proûles, denoted with a <ÿ= in front of each variable, are given as

{
ÿÿ = ÿÿÿÿ(1−ÿ

2)ÿ̂ý(ÿ)

ÿÿ = −ÿ2
ÿ−1

4ÿÿ
ÿ2ÿ(1−ÿ

2)
(57)

where ÿ2 = ý2 + ÿ2; ÿ is the polar angle about (ý, ÿ) = (0, 0); ÿ̂ý is a clock-wise tangential unit vector, ÿ̂ý(ÿ) = ÿ̂ý sinÿ − ÿ̂ÿ cosÿ; ÿ = 0.3

characterizes the perturbation amplitude; and ÿ = 1.2 characterizes the spatial localization of the swirl üow. The value of ÿ used in 
this conûguration allows the Gaussian proûle to achieve spatial decay of (10−17) ∼(10−19) from the domain center to the closest 
<boundary= point. With these ranges of spatial decay, the perturbation near the domain <boundary= can be treated as numerically zero 
compared to the perturbation amplitude near the center of the computational domain. Consequently, the non-smoothness caused by 
the periodic extension of a Gaussian proûle can be neglected. The üuid is a calorically perfect gas. The ratio of speciûc heats is ÿ = 1.4, 
and the speciûc gas constant is ý = 1. The speed of sound and density in the freestream state are used for normalization. Therefore, 
the overall velocity ûeld is ÿ = 0.5ÿ̂ý + ÿÿ, and the overall temperature ûeld is ÿ = (ÿý)−1 + ÿÿ . The perturbation is homentropic, so 
ý∕ÿÿ remains constant over the entire domain [46,47,56].

The simulation is set up on both a Cartesian and a curvilinear mesh with size 32 × 32 as shown in Fig. 14. The curvilinear mesh 
is generated via a two-dimensional perturbation on the Cartesian mesh. The coordinate mapping is

{
ý =ÿ

[
ÿ∕ýÿ − 1∕2 −ý sin(4ÿÿ∕ýÿ)

]
ÿ =ÿ

[
ÿ∕ýÿ − 1∕2 +ý sin(4ÿÿ∕ýÿ )

] (58)
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Fig. 15. Pressure distributions on a Cartesian mesh after one advection period: (a) second-order schemes; (b) fourth-order schemes; (c) compact sixth-order schemes. 
The contours represent the pressure distributions for ý ∈ [0.55, 0.71].

Fig. 16. Centerline pressure proûles after one advection period using different sets of spatial discretization schemes, where ý∞ is the freestream pressure, and ÿý is 
the pressure perturbation. ý∞ , ÿý and the reference proûle are analytically calculated from the initial condition.

where ÿ = 12 is the unperturbed domain length, and ý = 0.07 characterizes the mesh waviness. The mesh spacing in the reference 
domain is unity in both directions. The interpolation and differentiation with respect to the coordinates that use compact schemes 
to calculate GCL-consistent metrics on a periodic domain are illustrated in Appendix C. Time advancement is carried out using the 
third-order strong-stability-preserving Runge-Kutta (SSP-RK3) method [57] with a constant Courant–Friedrichs–Lewy (CFL) number 
of 0.4. Spatial computations are conducted using the same framework as previously described with second-order explicit, fourth-order 
explicit, and sixth-order compact central schemes respectively. All three sets of numerical schemes are non-dissipative.

The simulation results using different spatial discretization schemes on the Cartesian mesh are shown in Fig. 15. The contours 
represent the pressure proûle for ý ∈ [0.55, 0.71]. For visualization purposes, the simulation results are upsampled using the cubic 
spline method during post-processing. Compared with the reference proûle given in Fig. 14a, after one advection period, the üow 
structures in the second-order simulation are completely distorted (Fig. 15a); signiûcant numerical errors can be observed in the 
fourth-order simulations, but the basic üow structures are preserved (Fig. 15b); and almost no error is visible from the contours of 
the simulation using the sixth-order compact schemes (Fig. 15c). The centerline pressure proûles for the three simulation cases are 
shown in Fig. 16. As seen from the mesh generation, Eq. (58) for ý = 0, the centerlines in both directions are aligned with a row 
or column of collocated grid points while using even ýÿ and ýÿ . Therefore, the data points in Fig. 16 represent the nodal values 
directly computed in the simulations. The reference proûle is analytically calculated from the initial conditions, and the proûle is 
normalized by the maximum pressure perturbation in the initial condition. According to the centerline proûles after one advection 
period, the sixth-order simulation best preserves the center location, proûle shape, and the peak value. As a further investigation of 
the performance of the sixth-order compact schemes, the simulation is continued up to 15 advection periods. Some visualizations at 
selected numbers of advection periods are shown in Fig. 17. As the simulation time progresses, the numerical error accumulates and 
behaves as nonlinear dispersion. With this simulation setup, the computational accuracy can be well-preserved up to 11 advection 
periods. Beyond that, the numerical error begins to spread out, and the üow structures are more contaminated.

The simulation results on the curvilinear mesh are shown in Fig. 18. The results are obtained after one advection period, and 
Fig. 14b should be used for comparison. As shown in Eq. (44) – Eq. (46), the mesh waviness creates extra nonlinearity in the 
computational system which makes the simulations more challenging. As shown in Fig. 18a, the second-order simulation completely 
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Fig. 17. Pressure distribution on Cartesian mesh using sixth-order compact schemes after (a) 5 advection periods; (b) 8 advection periods; (c) 11 advection periods; 
(d) 12 advection periods; (e) 14 advection periods; and (f) 15 advection periods.

Fig. 18. Pressure distributions on a curvilinear mesh after one advection period: (a) second-order schemes; (b) fourth-order schemes; (c) sixth-order compact schemes.

destroys the üow features, and the numerical error is especially localized where the mesh is largely skewed. The üow features in the 
fourth-order simulation (Fig. 18b) are also signiûcantly distorted, but a small number of the original features can still be identiûed 
from the resulting ûeld. The compact sixth-order simulation (Fig. 18c) preserves majority of the üow features and gives the best result 
among the three simulations although the numerical solution in the freestream region is highly contaminated.

The grid convergence for all sets of simulations shown in this section is measured. In order to reduce the numerical error caused 
by the time advancement scheme, the CFL number is set to 0.05. For all cases, the solution proûles at one advection period are used 
to evaluate the numerical error. The numerical error is quantiûed by the root-mean-square pressure difference between the ûnal state 
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Fig. 19. Grid convergence measurements of the homentropic swirl advection simulations using different sets of numerical schemes. ý represents the number of grid 
points in each dimension, and the numerical error is indicated by the root-mean-square pressure difference between the initial condition and one advection period 
and is normalized by the maximum initial pressure perturbation.

and initial condition that is analytically set. The numerical error is further scaled by the maximum perturbation pressure in the initial 
condition. The results are shown in Fig. 19 where ý is the number of grid points in each dimension. Compared to the reference curves 
in Fig. 19, all simulations achieve the expected formal orders of convergence on both a uniform Cartesian mesh and a curvilinear 
wavy mesh.

4.2. Forced isotropic turbulence

This problem is conûgured on a three-dimensional periodic domain, (ý, ÿ, ÿ) ∈ [0, 2ÿ)3, with a setup similar to the one described in 
Ref. [8]. An isotropic turbulent üow is energized by a low-wavenumber solenoidal term, ÿÿÿ , added to the right-hand side of Eq. (24). 
Eq. (25) remains unmodiûed, which implies the existence of an internal energy sink, Λ, that locally and instantaneously balances the 
forcing work, Λ + ÿÿÿÿÿ = 0. The forcing, ÿÿ, is updated via a solenoidally projected stochastic process [58] as expressed in Eq. (59),

ÿÿ =
∑

ýÿ≤ý≤ýÿ
⟂

ÿÿ ÿ̂ÿ (ýÿ, ý)ÿ
ÿýÿýÿ (59)

where ýÿ = 3 and ýÿ = 5 are the cut-off wavenumbers deûning a forcing band; ý =
√

ýÿýÿ is the magnitude of the wavenumber 
vector; ⟂

ÿÿ
= ÿÿÿ − ýÿýÿ∕ý

2 is a solenoidal projector; and ̂ÿÿ ∈ℂ
3 for each mode is updated using six independent Uhlenbeck-Ornstein 

random processes. The üuid is a calorically perfect gas with ÿ = 1.4. The dynamic viscosity is calculated based on a power law, 
ÿ = ÿref (ÿ ∕ÿref )

0.5, where the subscript <ref= represents a reference state. The thermal conductivity is calculated based on the Prandtl 
number, Pr = ýýÿ∕ÿ, where ýý = ÿý∕(ÿ −1) is the speciûc heat at a constant pressure. In this simulation, the Prandtl number remains 
constant at Pr = 0.72. The üuid is assumed to have no physical bulk viscosity.

The computational mesh size is 1024 × 1024 × 1024. The simulation is conducted using sixth-order compact schemes with the 
artiûcial bulk viscosity, ÿ∗, and artiûcial thermal conductivity, ÿ∗ , added to the physical bulk viscosity and thermal conductivity 
respectively for eddy shocklet capturing. The formulations of ÿ∗ and ÿ∗ are described in Ref. [37]. However, in this simulation, no 
solution ûltering is applied. The time advancement is calculated using the standard fourth-order Runge-Kutta (RK4) method with 
CFL = 0.5. The simulation data over a period of seven eddy turnover times is used in post-processing after the üow has reached a 
statistically stationary state.

The visualizations of the instantaneous üow ûelds are shown in Fig. 20. The stationary isotropic turbulence is resolved in the 
DNS regime with ýmaxÿ ≈ 3.2 where ýmax is the maximum wavenumber supported by the computational mesh, and ÿ is known as the 
Kolmogorov length scale. In this case, ÿ is calculated as ÿ = (ïÿð3 ïÿð−1 ïÿð−2)1∕4, where the angle bracket, ï(⋅)ð, denotes a volume 
average, and ÿ is the dissipation rate, ÿ = 2ÿÿÿÿÿÿÿ + (ÿ∗ −2ÿ∕3)ÿ2

ýý
. The velocity energy spectrum is provided in Fig. 21 where ýý is 

deûned as ýý = ÿ̂ÿ ÿ̂
∗
ÿ
∕2 in continuous Fourier space for an inûnite domain. Using the discrete Fourier transform on a ûnite periodic 

domain, ýý is evaluated as ýý = 4ÿý2
ï
ÿ̂ÿ ÿ̂

∗
ÿ
∕2

ð
ý
, where the operator, ï(⋅)ðý, indicates the average within a sampling bin centered 

at ý. The distributions of velocity dilatation, ÿ = ÿÿ,ÿ , and local Mach number, 
√

ÿÿÿÿ∕ý, are shown in Fig. 22 where the function 
<std(⋅)= returns the standard deviation. The two-point correlations of each velocity component are also provided in Fig. 23 to improve 
conûdence in the computational results, and the two-point correlations, ýÿÿ = ïÿÿ(ý)ÿÿ(ý+ ÿ)ð∕ ïÿÿ(ý)ÿÿ(ý)ð, are calculated using the 
discrete Fourier transform. Here, the subscript indices for ýÿÿ do not follow the summation convention.

According to the post-processing, the demonstrative simulation has Reÿ ≈ 162 and ýý ≈ 0.7, where Reÿ is the characteristic 
Reynolds number based on the Taylor micro-scale, ÿ, and ýý is known as the turbulent Mach number. For isotropic turbulence, Reÿ
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Fig. 20. Visualization of üow ûelds: (a) ÿ-velocity; (b) density; (c) pressure.

Fig. 21. Velocity energy spectrum.

Fig. 22. Normalized probability density functions of (a) velocity dilatation and (b) local Mach number.

and ýý are calculated as Reÿ = ÿrmsÿ∕ïÿð and ýý =

√ï
ÿÿÿÿ

ð
∕ïýð respectively, where ÿrms and ÿ are calculated as ÿrms =

√ï
ÿÿÿÿ

ð
∕3

and ÿ =

√ï
ÿ2

ð
∕
ï
(ÿÿ∕ÿý)2

ð
respectively.

The value of ýý measured from this simulation indicates that the turbulence is highly compressible [3]. Fig. 24 shows the 
visualization of the shocklet distribution and the relative proûles of ÿ∗ and ÿ∗. The shocklets are visualized using a modiûed Ducros 
sensor, deûned as −ÿ|ÿ|∕ [ÿ2 +ÿÿÿÿ + 10−32

]
, where ÿ = ÿÿ,ÿ is the velocity dilatation, and ÿÿ = ÿÿÿýÿý,ÿ is the vorticity. With this 

sensor, a shock is identiûed since the sensor value is close to +1. Compared with Fig. 24a, the instantaneous spatial distributions of 
ÿ∗ and ÿ∗ are highly localized at the eddy shocklet structures, as shown in Fig. 24c and Fig. 24b respectively, to provide sufficient 
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Fig. 23. Velocity two-point correlation.

Fig. 24. Visualization of eddy shocklets and artiûcial diffusivities: (a) eddy shocklets visualized by the modiûed Ducros sensor −ÿ|ÿ|∕ [ÿ2 +ÿÿÿÿ + 10−32
]
; (b) distri-

bution of ÿ∗Pr∕(ýýÿref ); (c) distribution of ÿ∗∕ÿref ; and (d) a zoomed-in view of ÿ∕ÿref corresponding to the boxed region in (a) and (c). In this simulation, ÿref ≈ ïÿ ð
and ÿref ≈ ïÿð.
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Fig. 25. Schematic of initial condition of the two-dimensional implosion problem.

numerical dissipation. With the present framework, the solution ûltering, which was deemed necessary by previous works, is no 
longer required.

4.3. Two-dimensional implosion problem

This test problem is used to demonstrate the compatibility of the computational framework with nonlinear shock-capturing 
schemes and approximate Riemann solvers. The problem is introduced in Ref. [59], and a modiûed version is used in this demonstra-
tion. The problem is conûgured on a two-dimensional periodic domain for (ý, ÿ) ∈ [−0.3, 0.3)2 and is computed on a uniform Cartesian 
mesh and a curvilinear wavy mesh respectively. Both simulations are conducted using a 512 × 512 mesh size. The curvilinear mesh 
generation follows the same analytical mapping used in Sec. 4.1 and is described in Eq. (58) with ÿ = 0.6 and ý = 0.05. The initial 
condition contains two homogeneous sub-regions as shown in Fig. 25. <Region 1= is the inner sub-region, and <region 2= is the outer 
sub-region. The border between the two sub-regions forms a diamond-shaped box with the four corners located at (±0.15, 0) and 
(0, ±0.15). The üow is initially at rest, and the inner sub-region has a lower density and pressure than the outer sub-region. The 
changes across the sub-region boundary are sharp. The mathematical expressions of the initial density and pressure are speciûed in 
Eq. (60):

[ÿ, ý] =

{
[0.125,0.140] |ý|+ |ÿ| < 0.15

[1.000,1.000] |ý|+ |ÿ| ≥ 0.15
(60)

The üuid is a calorically perfect gas with ÿ = 1.4. The simulation is conducted without including any physical viscosity and thermal 
conductivity, so the Euler system is solved. In this simulation, all primitive variables at the edge-staggered points are obtained by the 
eight-point adaptive targeted essentially non-oscillatory (TENO8-A) interpolation scheme, which is modiûed from the reconstruction 
scheme designed for the ûnite volume framework [60]. The Riemann üux is calculated using the Rusanov method [61]. The time 
advancement is conducted using SSP-RK3 method with CFL = 0.4.

The density proûles of the two simulations at the ûnal calculation time ý = 0.6 are shown in Fig. 26. Comparing the solution proûles 
on the uniform Cartesian mesh and the curvilinear wavy mesh in Fig. 26a and Fig. 26b respectively, the large-scale wave patterns 
are identical. There is no signiûcant numerical issue corresponding to the mesh deformation and periodic domain extension on the 
curvilinear mesh. The üow instability pattern in the central region is highly sensitive to the perturbations. In these two simulations, 
the difference in the numerical perturbations is primarily caused by capturing the oblique waves with different mesh deformations. 
This demonstration only shows a speciûc combination of the shock-capturing scheme and approximate Riemann solver. Different 
combinations of shock-capturing schemes and approximate Riemann solvers are also compatible with this computational framework.

4.4. LES of decaying isotropic turbulence

This test problem is designed to investigate the performance of the simulation framework used in LES or other eddy-resolving 
simulations of turbulent üows at very high Reynolds numbers. In an LES or other eddy-resolving simulation of turbulence, when 
the Kolmogorov length scale is signiûcantly smaller than the computational grid size, physical viscous dissipation may be negligible 
compared to the model dissipation or numerical dissipation. A high-resolution LES or high-quality eddy-resolving simulation of a 
turbulent üow should keep the artiûcial dissipation length scale sufficiently small and near the grid size in order to preserve the 
resolvable turbulent üow structures across a wide range of length scales. In this test problem, the üow is assumed to be inviscid 
(Reÿ →∞). This can be alternatively interpreted as the viscous dissipation occurs at a vanishingly small length scale (ýmaxÿ → 0). 
The deûnitions of ÿ and ÿ are consistent with those deûned in Sec. 4.2, and ýmax is the Nyquist wavenumber supported by the 
computational mesh. Therefore, no physical dissipation exists in the computational system. The simulations are conûgured as LES 
using different central schemes with an explicit SGS model and compared with eddy-resolving simulations using high-order shock-
capturing schemes in combination with an approximate Riemann solver without the explicit SGS model.

The initial velocity ûeld is solenoidal and randomly sampled in Fourier space based on the von Kármán spectrum [62]. The 
expression for the von Kármán velocity spectrum is given in Eq. (61).
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Fig. 26. Density distributions of the two-dimensional implosion problem at ý = 0.6 computed on a (a) uniform Cartesian mesh and (b) curvilinear wavy mesh.

Fig. 27. Visualizations of ÿ-velocity ûelds in an ý-ÿ plane with the initial conditions: (a) mesh resolution of 643 ; (b) mesh resolution of 1283 ; and (c) mesh resolution 
of 2563 . For the purpose of visualization, the coarse grid ûelds are upsampled to a ûne grid via zero-padding in Fourier space. The scale of the color maps are the 
same for the three different cases. The color map scale is symmetric about 0.

ýý =

(
ý∕ýý

)(
ý∕ýý

)4
[
1 +

(
ý∕ýý

)2]17∕6 (61)

where given the most energetic wavenumber, ýÿ, ýý is calculated as ýý = ýÿ
√
5∕12. In this conûguration, ýÿ = 3 is used. ý is an 

amplitude factor. The details of the velocity generation approach for isotropic turbulence with a given energy spectrum are illustrated 
in Ref. [40]. Following this approach, the velocity is ûrst generated on a 2563 mesh. Then, a three-dimensional spectrally-sharp 
low-pass ûlter is applied to only keep the non-trivial modes within a spherical region for ý < 128 in Fourier space. After ûltering, 
the ûeld of each velocity component is consistently re-scaled to numerically match 

ï
ÿÿÿÿ

ð
= 1. Using this velocity ûeld as the 

reference, the velocity ûelds are further ûltered using the three-dimensional spectrally-sharp low-pass ûlter to keep the non-trivial 
modes within smaller spherical regions for ý < 64 and ý < 32. These ûltered ûelds are eventually downsampled to a 1283 mesh and 
a 643 mesh respectively. As a consequence, three sets of initial velocity ûelds are obtained with three different grid resolutions. 
The cut-off wavenumbers of the low-pass ûlters are equal to the Nyquist wavenumbers in each dimension instead of the maximum 
wavenumber that can be resolved using the three-dimensional meshes. This use of spherical spectrally-sharp ûltering, as opposed to 
Cartesian spectrally-sharp ûltering, allows for maintaining good statistical isotropy in the initial condition at every coarser grid level. 
Additionally, since all the velocity ûelds are obtained via ûltering and downsampling from the same velocity ûeld generated on the 
2563 mesh, the discrete initial velocity ûelds used as the initial conditions represent the same asymptotically smooth velocity ûeld 
resolved at different levels of resolution. The initial ÿ-component velocity proûles are visualized in Fig. 27, and the initial velocity 
energy spectra are shown in Fig. 28. The calculation of the velocity energy spectra in this section follows the same method as described 
in Sec. 4.2. The initial dimensionless density ûeld is uniform and set to be unity as a reference. The initial dimensionless pressure is 
also uniform and equal to 3.5. This conûguration leads to an initial turbulent Mach number of ýý ≈ 0.45.

The LES are conducted using the 6th-order compact schemes, 4th-order explicit schemes, and 2nd-order explicit schemes respec-
tively with the Vreman SGS model [14] in the momentum equation and a constant turbulent Prandtl number, Prý, model in the 
energy equation. For a calorically perfect gas, Prý is deûned as Prý = ýýÿSGS∕ÿSGS, where ÿSGS and ÿSGS are the SGS eddy viscosity 
and thermal conductivity respectively. The Vreman SGS model requires a constant coefficient, ÿSGS , which is deûned in Appendix B. 
In this demonstrative problem, ÿSGS is 0.044, 0.05 and 0.07 for the simulations using the 6th-order compact schemes, 4th-order ex-
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Fig. 28. Initial velocity energy spectra of the simulations at different grid resolutions.

plicit schemes, and 2nd-order explicit schemes respectively and is calibrated to obtain the correct turbulent kinetic energy decay rate. 
The turbulent Prandtl number is 0.7 for all simulations in this sub-section. Additional eddy-resolving simulations are conducted re-
spectively using the TENO8-A and the ûve-point weighted essentially non-oscillatory (WENO5-JS) interpolation schemes [63] which 
are modiûed from their reconstruction forms designed for the ûnite volume framework. The simulations using the dissipative shock-
capturing schemes (TENO8-A and WENO5-JS) do not include any explicit SGS model. The time advancement for all simulations is 
conducted using the SSP-RK3 method with CFL = 0.4. The stop time for all simulations is ý = 10, which is when the turbulent kinetic 
energy decays by more than a factor of 15 compared to the initial condition. At the ûnal stage, the turbulent Mach number is ýý ≈ 0.1.

The velocity ûelds of all simulations are visualized in Fig. 29. The color map scales for all sub-ûgures in Fig. 29 are identical. The 
computational results are interpolated using the sinc modes [64] during post-processing for visualization purposes only. The velocity 
energy spectra for all the simulations are shown in Fig. 30. As shown by this comparison, the LES using central numerical schemes with 
the explicit SGS models show much higher spectral resolution than the two simulations conducted using dissipative schemes without 
SGS models. The SGS model dissipation starts to become dominant approximately beyond the wavenumber of ýmax∕2. In contrast, the 
selected high-order (corresponding to the optimal weights [63,60]) shock-capturing schemes impose numerical dissipation starting at 
a much lower wavenumber. As a result, from the üow visualizations shown in Fig. 29, small-scale üow features are not well resolved 
using shock-capturing schemes compared to the simulations using central schemes with the SGS model. In Fig. 30, the energy spectra 
of all simulations using central schemes with the explicit SGS models clearly show the inertial sub-range where the turbulent kinetic 
energy cascades follow the ý−5∕3 law. In contrast, the energy spectra of simulations using implicit numerical dissipation without SGS 
models do not show the power-law energy cascade. This indicates that the dissipation implicitly imposed by the numerical scheme 
is noticeably inconsistent with the scale similarity of the turbulent cascade compared to the dissipation imposed by an explicit SGS 
model.

The LES results based on the central schemes do not show an observable difference in the velocity ûelds. Compared to the simula-
tions using 6th-order compact schemes, the simulations using 4th-order and 2nd-order schemes do not show visible deterioration. As a 
further investigation of the small-scale-resolving quality of simulations obtained with the three central schemes, a three-dimensional 
bandpass ûlter is applied to only keep the modes within a spherical shell for ý ∈ [16, 32) in Fourier space. The bandpass-ûltered 
velocity ûelds of all the simulations on the 643 mesh are shown in Fig. 31 (from Fig. 31a to Fig. 31e), and the bandpass-ûltered 
velocity obtained from the LES on the 2563 mesh using the 6th-order compact schemes is also provided in Fig. 31f for reference. 
All sub-ûgures in Fig. 31 are shown with the same scale of the color map. The simulations based on the shock capturing schemes 
(Fig. 31d and Fig. 31e) have lower feature intensities in the visualized wavenumber regime, and the sizes of the visualized features are 
larger than those of the bandpass-ûltered LES results and the reference ûeld (Fig. 31f). However, the bandpass-ûltered LES solutions 
(Fig. 31a, Fig. 31b, and Fig. 31c) are equally optimal compared to the reference proûle in Fig. 31f. These observations are consistent 
with the results presented in Ref. [65].

A reasonable explanation of this observation is that the total error is not dominated by the dispersion error of the numerical 
schemes. As opposed to the problem of the homentropic swirl advection illustrated in Sec. 4.1, the isotropic turbulence solution shows 
highly nonlinear behavior although both solutions are obtained by solving fully nonlinear systems. The linear solution behavior in 
the swirl advection problem (cf. Sec. 4.1) indicates that the net contributions of all the nonlinear interactions in the system are purely 
canceled. In contrast, the nonlinear interactions in the isotropic turbulence produce higher-wavenumber features consistent with the 
turbulent energy cascade. In LES, the higher-wavenumber üow features are eventually dissipated by the SGS model near the grid-size 
scale. When a solution has a strong linear behavior, although obtained from a nonlinear system, the dispersion error will signiûcantly 
affect the computational quality in terms of the üow structure preservation. On the other hand, the evolution of the LES solution of 
the isotropic turbulence is dominated by the nonlinear interactions of the lower-wavenumber modes, and the higher-wavenumber 
modes can also intrinsically tolerate more randomness. Therefore, the solution quality evaluated from the velocity energy spectra 
shown in Fig. 30a and the üow visualizations of the LES solutions in Fig. 29 and Fig. 31 essentially illustrate the aliasing error 
produced by the nonlinear interactions among the low-wavenumber modes. Referring to the discussion in Sec. 2, the numerical error 
of the three sets of central schemes are not as signiûcant in the low-wavenumber regime as they are in the high-wavenumber regime. 
Additionally, the transfer functions of the interpolation schemes of the lower-order schemes are even more favorable to dealiasing in 
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Fig. 29. Visualizations of the ûnal (ý = 10) ÿ-component velocity ûelds in an ý-ÿ plane. The sub-ûgures in the ûrst row ((a), (b), (c), (d), and (e)) are obtained from 
a 643 mesh; the sub-ûgures in the second row ((f), (g), (h), (i), and (j)) are obtained from a 1283 mesh; and the sub-ûgures in the third row ((k), (l), (m), (n), and 
(o)) are obtained from a 2563 mesh. The sub-ûgures in the ûrst column ((a), (f), and (k)) are computed using the 6th-order compact schemes; the sub-ûgures in the 
second column ((b), (g), and (l)) are computed using the 4th-order explicit schemes; the sub-ûgures in the third column ((c), (h), and (m)) are computed using the 
2nd-order explicit schemes; the sub-ûgures in the fourth column ((d), (i), and (n)) are computed using the TENO8-A interpolation schemes in combination with the 
6th-order compact ûnite difference schemes as the divergence operator; and the sub-ûgures in the ûfth column ((e), (j), and (o)) are computed using the WENO5-JS 
interpolation schemes in combination with the staggered 6th-order compact ûnite difference schemes as the divergence operator. The data for visualization have been 
upsampled in Fourier space by zero-padding during post-processing. The scales of color maps are the same for all sub-ûgures, and the color scale is symmetric about 
0.

Fig. 30. Velocity energy spectra at the ûnal simulation step (ý = 10): (a) central schemes with Vreman SGS model; (b) nonlinear shock capturing schemes with an 
approximate Riemann solver where the divergence operation is computed by the staggered 6th-order compact ûnite difference schemes. The spectra obtained from 
the 643 mesh are plotted using solid curves, the spectra obtained from the 1283 mesh are plotted using dashed curves, and the spectra obtained from the 2563 mesh 
are plotted using dot-dashed curves.
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Fig. 31. Visualizations of bandpass-ûltered ÿ-component velocity ûelds on an ý-ÿ plane: (a) 6th-order compact schemes; (b) 4th-order explicit schemes; (c) 2nd-order 
explicit schemes; (d) TENO8-A interpolation schemes in combination with the staggered 6th-order compact ûnite difference schemes for the divergence operation; 
and (e) WENO5-JS interpolation schemes in combination with the staggered 6th-order compact ûnite difference schemes for the divergence operation. The sub-ûgures 
from (a) to (e) are computed from a 643 mesh. (f) is used for reference which is computed using the 6th-order compact schemes from a 2563 mesh. The velocity proûles 
shown in all the sub-ûgures are sampled within a spherical shell for ý ∈ [16, 32) in Fourier space. For visualization only, the data have been upsampled in Fourier 
space by zero-padding. The color map scale of all the sub-ûgures are identical and symmetric about 0.

the nonlinear üuxes assembly by more aggressively reducing high-wavenumber mode amplitudes. Consequently, for LES of decaying 
isotropic turbulence, the 2nd-order explicit schemes, 4th-order explicit schemes, and 6th-order compact schemes present equally 
high-quality solutions in the velocity ûelds.

Besides the velocity ûeld, the pressure ûeld is also investigated. The conûguration of the initial condition generates signiûcant 
transients in the üow, and they remain as acoustic waves in this inviscid (asymptotically high-Reynolds-number) turbulence as it 
decays in the range of resolved scales. At the ûnal stage (ý = 10), the visualizations of the pressure ûeld from all simulations are 
shown in Fig. 32 with the same color map scale. For each scheme, more detailed wave structures are resolved as the grid resolution 
increases. Comparing different schemes, higher-order schemes provide sharper and clearer coherent wave structures at the same grid 
resolution, and they show more rapid enhancement in resolving detailed wave features associated with grid reûnement. Unlike the 
velocity ûeld, the simulations with the TENO8-A scheme and without an explicit SGS model provide signiûcantly improved spectral 
performance in resolving transient pressure waves. To quantify the numerical performance, the pressure ûeld is decomposed as 
follows.

ý = ýsol + ýdil + ïýð (62)

where ýsol and ýdil are the solenoidal and dilatational components respectively, and ïýð is the mean component. In the low-Mach 
number regime, the solenoidal pressure is estimated by solving the Poisson equation [8].

−
ÿ2ýsol

ÿýÿÿýÿ
≈ ïÿð ÿÿ

sol
ÿ

ÿýÿ

ÿÿsol
ÿ

ÿýÿ
(63)

where ÿsol
ÿ
is the solenoidal component of the velocity ûeld. In this work, the solenoidal projection is conducted in Fourier space using 

ÿ̂ÿ(ýÿ), the three-dimensional discrete Fourier transform of ÿÿ with respect to each wavenumber vector ýÿ.

ÿsolÿ =
∑
ýÿ≠0

⟂

ÿÿ ÿ̂ÿ (ýÿ)ÿ
ÿýÿýÿ (64)

where ⟂

ÿÿ
is the solenoidal projector deûned in Sec. 4.2. With the solenoidal pressure solved, the dilatational pressure is calculated 

from Eq. (62). The energy spectra of the solenoidal and dilatational pressure from all simulations are shown in Fig. 33 and Fig. 34
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Fig. 32. Visualizations of the ûnal (ý = 10) pressure ûelds in the ý-ÿ plane. The color map scales are the same for all sub-ûgures. See caption in Fig. 29 for details of 
each sub-ûgure.

respectively. At a low turbulent Mach number, the solenoidal pressure is a reüection of the velocity ûeld. Similar trends are observed 
by comparing the energy spectra of the velocity in Fig. 30 and solenoidal pressure in Fig. 34. The solenoidal pressure spectra of all 
the simulations using central schemes with an explicit SGS model exhibit clear inertial sub-ranges up to near-Nyquist wavenumbers, 
and at the same grid resolution, no large differences are observed as shown in Fig. 33a. The spectra of solenoidal pressure obtained 
from shock-capturing-scheme-based simulations indicate overly dissipative velocity ûelds and do not clearly resolve the turbulent 
cascade features, as shown in Fig. 33b, due to the inconsistent numerical dissipation behavior between the nonlinear numerical 
dissipation and physically expected SGS dissipation. On the other hand, the dilatational pressure energy spectra, shown in Fig. 34, 
convey different evaluation perspectives compared to the velocity and solenoidal pressure spectra. Since the transient acoustic waves 
have relatively sharp wave fronts and are strongly coherent at large scales, the simulation results are sensitive to the dispersion error 
and the spectral resolution. Comparing the simulations conducted with central schemes, in Fig. 34a, the simulations using higher-
order schemes resolve more acoustic energy in the moderate wavenumber regime. In Fig. 34b, the simulations conducted with the 
TENO8-A scheme resolve even more transient acoustic energy in the moderate wavenumber regime compared to the simulations 
using the 6th-order compact schemes, as they primarily beneût from the higher-order convergence.

4.5. LES of flow over a cylinder

This set of problems is selected to demonstrate the numerical performance in applications of LES using curvilinear meshes. The 
problems are deûned in a three-dimensional domain where the ÿ-direction is periodic with length ÿÿ. The schematic of the problem 
conûguration in the ý-ÿ cross-section is shown in Fig. 35. The cylinder object with a diameter ÿ is placed at the origin, and the 
wall of the cylinder deûnes the inner boundary of the physical domain. The outer boundary of the domain is concentric with the 
cylinder object, and its diameter is ÿ0. The freestream in the far-ûeld is imposed and preserved by a numerical sponge layer [66]. 
The thickness of the sponge layer is denoted as ÿsp . For a quality setup, (ÿ0 − 2ÿsp)∕ÿ ≫ 1 must be satisûed. The freestream üow 
is aligned with the ý-direction and speciûed by the pressure (ý∞), temperature (ÿ∞), and Mach number (ý∞). ý∞ is deûned as 
the ratio of the üow speed to the speed of sound at the freestream condition. For a calorically perfect gas, expressed in terms of the 
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Fig. 33. Energy spectra of solenoidal pressure at ûnal step (ý = 10): (a) central schemes with Vreman SGS model and (b) nonlinear shock-capturing schemes with an 
approximate Riemann solver where the divergence operation is computed by the staggered 6th-order compact ûnite difference schemes. The line styles are the same 
as those used in Fig. 30.

Fig. 34. Energy spectra of dilatational pressure at the ûnal step (ý = 10): (a) central schemes with the Vreman SGS model and (b) nonlinear shock-capturing schemes 
with an approximated Riemann solver where the divergence operation is computed by the staggered 6th-order compact ûnite difference schemes. The line styles are 
the same as those used in Fig. 30.

Fig. 35. Schematic of conûguration of LES of üow over a cylinder. The conûguration is homogeneous in the ÿ-direction (not shown in the schematic).

speciûed quantities, the freestream speed is ÿ∞ =ý∞

√
ÿýÿ∞. The characteristic Reynolds number is deûned as Reÿ = ÿ∞ÿ∞ÿ∕ÿ∞, 

where ÿ∞ is the freestream density calculated by the EOS of a calorically perfect gas. In this set of problems, the speciûc gas constant 
and the ratio of speciûc heats are ý = 1 and ÿ = 1.4 respectively. The local dynamic viscosity is evaluated as ÿ̌ = ÿ∞

(
ÿ ∕ÿ∞

)0.76
. The 

Prandtl number is assumed to be constant at Pr = 0.7. The deûnition of Pr is the same as that in Sec. 4.2 which is used to determine 
the local physical thermal conductivity. The Vreman SGS model [14] is applied with ÿSGS = 0.06, and a constant turbulent Prandtl 
number, Prý = 1, is used for all the simulations in this sub-section, where the deûnition of Pr ý is the same as that in Sec. 4.4. The 
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Fig. 36. Curvilinear mesh mapping in ý-ÿ plane: (a) mapping of the radial coordinate; (b) mapping of the azimuthal coordinate. Symbols shown in the sub-ûgures are 
plotted every ten grid points.

Table 2
Speciûcations of simulations in Sec. 4.5: Cases I, II and III use central üuxes only; Cases IV, V, VI, and VII use 
central-Riemann hybrid üuxes, where a sharp switching, indicated by the threshold values of a turbulence-based 
shock sensor, ÿ∗

T
, and an acoustics-based shock sensor, ÿ∗

A
, is applied.

Label ý∞ Reÿ Mesh Size ÿÿ∕ÿ ÿ0∕ÿ ÿsp∕ÿ CFL ÿ∗
T

ÿ∗
A

Case I 0.25 3900 256 × 128 × 128 2ÿ 200 50 0.98 - -

Case II 0.25 3900 512 × 256 × 128 2ÿ 200 50 0.98 - -

Case III 0.25 3900 512 × 512 × 128 2ÿ 200 50 0.98 - -

Case IV 0.80 1.66 × 105 512 × 512 × 128 2ÿ 200 60 0.60 0.45 0.05

Case V 0.80 1.66 × 105 768 × 768 × 128 2ÿ 200 60 0.60 0.38 0.07

Case VI 0.80 1.66 × 105 1024 × 1024 × 384 2ÿ 200 60 0.60 0.35 0.05

Case VII 0.80 1.66 × 105 1024 × 1024 × 384 2ÿ 200 60 0.60 0.35 0

compact numerical schemes along the non-periodic dimension where physical boundary conditions are imposed are discussed in 
Appendix D, and the detailed SGS treatment is provided in Appendix B.

A nearly incompressible üow and a transonic üow are simulated as demonstrations. The freestream Mach numbers for the two 
üow conditions are ý∞ = 0.25 and ý∞ = 0.8 respectively. The Reynolds numbers are Reÿ = 3900 and Reÿ = 1.66 ×105 for the low-
Mach üow and transonic üow respectively. Both üow conditions have been investigated in prior studies [67–69]. For the low-Mach 
üow condition, the simulation only uses central üuxes, and for the transonic üow condition, the simulation uses hybrid central-
Riemann üuxes. The central üuxes are calculated using the sixth-order compact schemes, and the Riemann üuxes are assembled in 
Rusanov form [61] with the WENO5-JS interpolation scheme [63]. The hybridization is sharply switched, so the üuxes are either 
fully central or Riemann-typed. The switching is indicated by two shock sensors evaluated based on the turbulent and acoustic üow 
features respectively. The values of the turbulence-based shock sensor and the acoustics-based shock sensor are denoted as ÿT and 
ÿA respectively. In this work, the range of the sensor values are ÿT ∈ (−1, 1) and ÿA ∈ (−1, 1) where a higher value indicates a 
stronger local compression. The Riemann üux will be used if both sensor values are greater than their threshold values, ÿT > ÿ∗

T
and ÿA > ÿ∗

A
, where the superscript, <∗=, denotes the corresponding threshold value. The shock sensors are evaluated at each edge-

staggered location. The details of the central-Riemann üux hybridization are discussed in the following context in this section. Three 
simulations for the low-Mach üow condition (Cases I, II, and III) and three for the transonic üow condition (Cases IV, V, and VI) are 
conducted to assess grid sensitivity, and one additional simulation under the same transonic üow condition (Case VII) is conducted 
to further investigate the effects of shock sensors. The detailed setup for each simulation is listed in Table 2.

The computational mesh is an <O-= type mesh with orthogonality preserved in physical space. In order to keep the consistency of 
the right-handed coordinate system in both the reference domain and the physical domain, the mapping from the reference domain to 
the physical domain is of the form ÿ ↦ ÿ, ÿ ↦ ÿ, and ÿ ↦ ÿ, where ÿ and ÿ are the radial distance and the azimuthal angle respectively 
as marked in Fig. 35. The grid spacing is uniform in ÿ-direction. The detailed mapping for each case listed in Table 2 is plotted in 
Fig. 36. Along the radial direction, the mesh is reûned near the cylinder object to resolve the laminar boundary layer and coarsened 
in the far-ûeld region to save the grid resolution while maintaining a sufficiently large domain. In the azimuthal direction, more 
grid points are distributed on the wake side to enhance the mesh resolution in regions of interest. The computational mesh used for 
Case I is shown in Fig. 37 as an illustration. The near-wall mesh pattern shown in Fig. 37c implies that the acoustic CFL condition is 
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Fig. 37. Visualization of the computational mesh in ý-ÿ cross-section used for Case I: (a) full view; (b) detailed view in the wake region; (c) detailed view in the 
near-wall region. The mesh spacing in ÿ-direction is uniform.

Fig. 38. Streamwise velocity proûles along the centerline in the cylinder wake in the low-Mach üow: the experimental data are from Lourenco and Shih [70], Ong 
and Wallace [68], and Molochnikov et al. [71], measured using PIV, HWA, and SIV respectively.

limited by the wall-normal mesh reûnement, and the azimuthal grid reûnement does not cause a more restrictive constraint on the 
time advancement process.

The mean streamwise velocity proûle along the centerline in the cylinder wake region for each simulation is shown in Fig. 38, 
and the simulation results are compared with the experimental data [70,68,71]. The experimental data from Ref. [70] are collected 
using the method of particle image velocimetry (PIV), the data from Ref. [68] are measured using hot wire anemometry (HWA), 
and the data from Ref. [71] are obtained using the smoke image velocimetry (SIV) technique. The operator, ï(⋅)ð, in this section 
denotes the temporal averaging and spatial averaging in the ÿ-direction. Temporal averaging is performed at every time-step once a 
statistically stationary state devoid of any initial transients has been reached. With successive mesh reûnement from Case I to Case 
III, the streamwise velocity proûles asymptotically converge. In the near wake region, ý∕ÿ < 3, the converged proûle is closer to the 
experimental data from Molochnikov et al. [71].

The averaged streamwise velocity proûles along the transverse direction at different locations in the cylinder wake are shown 
in Fig. 39. In the near-wake region, as shown in Fig. 39a, the velocity proûles from all three cases well match the experimental 
measurements at ý∕ÿ = 0.58. However, at ý∕ÿ = 1.06 and ý∕ÿ = 1.54, the experimental data from Lourenco and Shih [70] and 
Molochnikov et al. [71] have obvious discrepancies. The LES results from the coarsest mesh (Case I) most closely match the measured 
proûles in Lourenco and Shih [70], and the results from the reûned meshes (Case II and III) converge to the measured proûles in 
Molochnikov et al. [71]. In the far-wake region, as shown in Fig. 39b, the discrepancy between the two experimental measurements 
reduces as ý∕ÿ increases, and the converged LES results agree well with the experimental data.

The proûles of velocity variance related to the streamwise and transverse velocity components along the transverse direction at 
different cylinder wake locations are shown in Fig. 40. The LES results are compared with the experimental measurements. Deûning 

the üuctuating component ÿ′
ÿ
= ÿÿ − ïÿÿð, the velocity variance is calculated as 

ï
ÿ′
ÿ
ÿ′
ÿ

ð
=
ï
ÿÿÿÿ

ð
− ïÿÿð

ï
ÿÿ
ð
assuming fully-converged 

statistics. For all three variances, ïÿ′ÿ′ð, ïÿ′ÿ′ð, and ïÿ′ÿ′ð, the converged simulation data qualitatively agree with the experimental 
data. For the autovariances, ïÿ′ÿ′ð and ïÿ′ÿ′ð, the simulation on the coarsest mesh gives an overestimation. The converged LES proûles 
still slightly overestimate the experimental data at ý∕ÿ = 4, but the proûles match well at other wake locations. For the covariance, 
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Fig. 39. Streamwise velocity proûles at different locations in the cylinder wake in the low-Mach üow: (a) velocity proûles at near-wake locations; (b) velocity proûles 
at far-wake locations. The symbols of the experimental data points are identical to those in Fig. 38.

Fig. 40. Velocity variance proûles at different cylinder wake locations in the low-Mach üow: (a) ïÿ′ÿ′ð proûles; (b) ïÿ′ÿ′ð proûles; (c) ïÿ′ÿ′ð proûles. The symbols of 
the experimental data points are identical to those in Fig. 38.

ïÿ′ÿ′ð, a slight discrepancy between the LES and experimental data can be observed at ý∕ÿ = 4, but all three LES proûles agree well 
with the experimental measurements at ý∕ÿ = 7 and ý∕ÿ = 10.

The simulations with the transonic freestream condition, used as a demonstration, involve comprehensive use of the capabilities 
developed in this framework including the curvilinear mesh with periodic and non-periodic boundary conditions, SGS models, and 
central-Riemann üux hybridization. Representative üow visualizations from Case VI are shown in Fig. 41. Fig. 41a shows numerical 
Schlieren imaging at a cross-section in ÿ-direction. The numerical Schlieren imaging primarily reveals the turbulent wake üow 
structures associated with vortex shedding, a spatially and temporally growing Kelvin-Helmholtz instability at the edge of the near-
wake region leading to transition to turbulence, and shock waves. The üow contains two strong normal shocks interacting with the 
edge of turbulent wake and two weak oblique shocks attached to the laminar boundary layer at the cylinder surface as observed from 
prior experimental and numerical studies [72,73]. In addition, the simulation also captures the eddy shocklets in the near wake region 
as well as the periodic formation of normal shocks between the neighboring shedding vortices caused by the counter-rotating üow 
motion. The ratio of the SGS viscosity to the physically computable viscosity is visualized in Fig. 41b. Using an SGS viscosity model, 
this ratio of the viscosities also indicates the ratio of the dissipation imposed by the SGS model to the resolved viscous dissipation 
in the LES. As shown in Fig. 41b, in comparison with the numerical Schlieren imaging, the SGS viscosity rapidly vanishes away 
from the turbulent üow structures. Near the cylinder wall, the SGS viscosity is nearly zero, and the near-wall üow is well-resolved. 
Farther away from the cylinder, SGS dissipation becomes dominant in resolving the turbulent structures mainly because of the mesh 
coarsening. For the shock-turbulence interactions, to avoid the overly dissipative numerical behavior due to the activation of the 
shock-capturing treatment as well as the SGS model [74], the SGS model is enforced to be zero locally where the shock-capturing 
scheme is active.

The pressure coefficient proûles at the cylinder surface for the simulations of the transonic freestream condition (Cases IV, V, VI, 
and VII) are shown in Fig. 42. The simulation results are compared with the experimental data [69] which are collected at the surface 
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Fig. 41. Visualizations of the LES of transonic üow over a cylinder (Case VI) at the same physical time: (a) numerical Schlieren imaging, |∇ÿ|; (b) ratio of the SGS 
viscosity to the physically computable viscosity, ÿSGS∕ÿ̌ (cf. Appendix B).

Fig. 42. Proûle of the pressure coefficient, ÿý =
(
ý− ý∞

)
∕ 
(
ÿý 2

∞
∕2

)
, on the cylinder surface in the transonic üow. The experimental data are from Murthy and 

Rose [69] and measured at the static surface pressure ports through a scanning valve device.

pressure ports placed near the midspan locations through a scanning valve device. All four LES proûles show quantitative agreement 
in the region where the angle from the forward stagnation point is less than 70◦. Additionally, the boundary layer separation points 
indicated by the pressure coefficient proûles consistently match among the LES and experimental data. Some discrepancies exist in 
the back pressure among the LES results and the experimental measurements, and the simulation results with mesh reûnement in 
the near-wake region (Cases V and VI) show a non-monotonic convergence in the back pressure calculation compared to that of the 
coarsest mesh (Case IV). The use of the acoustics-based shock sensor is insensitive to the calculation of the mean pressure coefficient 
for Cases VI and VII.

The hybridization of central and Riemann üuxes is jointly controlled by a turbulence-based shock sensor and an acoustics-based 
shock sensor. The Riemann üuxes will be selected only when both shock sensor values are greater than their corresponding threshold 
values as listed in Table 2. In this work, the modiûed Ducros sensor (cf. Sec. 4.2) is used as the turbulence-based shock sensor, ÿT.

ÿT =
−ÿ|ÿ|

ÿ2 +ÿÿÿÿ + ÿ2
(65)

where ÿ is the velocity dilatation, ÿÿ is the vorticity vector, and ÿ = 10−16 is applied for numerical regularization. The acoustics-based 
shock sensor is given as

ÿA = −tanh (2ÿΔ∕ý) (66)

where ý is the local speed of sound, and Δ is a characteristic length scale representing the local grid size. In this work, Δ = 3
√

ý is 
used where ý is the Jacobian of the metric tensor (cf. Sec. 3.3) deûned in Eq. (39). The modiûed Ducros sensor in Eq. (65) detects 
the shock based on the velocity dilatation strength relative to the enstrophy. This sensor is particularly sensitive to the turbulent 
üow structures and will deactivate the use of Riemann üuxes in the turbulent üow region. However, when the enstrophy is relatively 
low as in the laminar üow region or the edge of the turbulent üow region, the modiûed Ducros sensor is less sensitive due to the 
lack of reference enstrophy and may mis-identify weak compression waves as shocks. The acoustics-based sensor will then play a 
dominant role in such regions. In the deûnition of the acoustics-based sensor, in Eq. (66), the dimensionless quantity, ÿΔ∕ý, represents 
a <grid Mach number.= For a strong compression wave, including a shock wave, the grid Mach number quantiûes the difficulty in 
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Fig. 43. Visualizations of the LES of transonic üow over a cylinder (Case VII) at the same physical time: (a) numerical Schlieren imaging, |∇ÿ|; (b) ratio of the SGS 
viscosity to the physically computable viscosity, ÿSGS∕ÿ̌ (cf. Appendix B).

numerically resolving the wave with the resolution supported by the computational mesh. According to the acoustics-based sensor, if 
a compression wave is too strong to be well-resolved by the computational mesh, the shock-capturing method should be enabled. The 
combination of the turbulence-based and acoustics-based shock sensors will more effectively suppress the unnecessary utilization of 
the shock-capturing method to avoid overly dissipative simulation results.

The simulation results from Cases VI and VII are used to compare the effects of the üux hybridization. The simulation of Case VII 
uses a üow state computed with Case VI as its initial condition where all transients are üushed out of the domain of interest. The 
simulation results are visualized in Fig. 43 after approximately another 33 convective time units, i.e., ýý∞∕ÿ ≈ 33. The visualizations 
in Fig. 41, for Case VI, and Fig. 43, for Case VII, are at the same physical time for comparison. The large-scale üow structures in 
the two cases are identical. Setting the acoustics-based shock sensor threshold to ÿ∗

A
= 0 (Case VII) yields the strategy described in 

Ref. [37], where the activation of a shock-capturing method is fully controlled by the modiûed Ducros sensor in the compression 
region. In contrast, ÿ∗

A
> 0 (Case VI) additionally enforces the central üux to be applied if the compressive motion is relatively weak 

in both turbulent and laminar regions. Comparing the visualizations shown in Fig. 41 and Fig. 43, more small-scale wave structures 
in the laminar üow regions can be resolved in Case VI where ÿ∗

A
> 0. Furthermore, the relative SGS viscosity in the turbulent wake 

region is larger in Case VI compared to that in Case VII.
The behavior of the shock sensors and üux hybridization status for Cases VI and VII are visualized in Fig. 44. The turbulence-based 

shock sensor in both cases is capable of identifying the shock structures and can effectively suppress the use of Riemann üuxes in the 
turbulent wake region. However, near the forward stagnation point where the üow is laminar and shock-free, the turbulence-based 
shock sensor mis-identiûes the shock structure in both cases due to the small vorticity magnitude compared to the compressive motion 
characterized by negative dilatation. In addition, in the wake region at the edges of the turbulent shedding vortices and the region 
farther away, the acoustic waves are also mis-identiûed as shocks by the turbulence-based shock sensor. The acoustics-based sensor 
in both cases highlights the shock structures and successfully recognizes the weak compression near the forward stagnation point and 
the acoustic waves that can be well-resolved with the local mesh resolution. The simulation of Case VI beneûts from the acoustics-
based sensor while the simulation of Case VII only uses the acoustics-based sensor to distinguish compressive motions from expansive 
motions. In the comparison shown in Fig. 44e and Fig. 44f, the use of Riemann üuxes in Case VI is highly localized to the shock 
structures, and the shock-capturing method is effectively deactivated elsewhere. In contrast, in Case VII, the shock-capturing method 
is unnecessarily enabled in the non-turbulent üow region although it is successfully suppressed in the turbulent üow structures.

5. Conclusions

A high-order compact-ûnite-difference-based computational framework is proposed for simulations of compressible turbulent 
üows. This framework uses collocated and staggered ûrst derivative schemes as well as the compact midpoint interpolation scheme. 
During the solution process, all conservative variables are only stored at the collocated nodal points, and the üuxes are assembled at 
the edge-staggered locations using the interpolated primitive variables. Fourier analysis indicates that robustness is gained by reducing 
the aliased interactions during the assembly of the nonlinear advective üuxes at edge-staggered points. Additional robustness results 
from staggered evaluation of viscous üuxes that leads to enhanced accuracy in resolving the viscous-type dissipation at small scales 
especially near and at the Nyquist wavenumber. Eddy-resolving simulations, such as DNS and LES, can therefore maintain numerical 
stability without additional numerical ûltering of the solution. This attribute is particularly pertinent to computations on curvilinear 
meshes where spatial variations of the metric terms add to further aliasing. A GCL-consistent metric generation process is also 
developed as part of the framework. For üows containing shocks, the üux evaluation is compatible with the application of nonlinear 
shock-capturing schemes combined with an approximate Riemann solver via state variable blending. The staggered calculation of 
viscous üuxes is favored when other shock-regularization schemes, such as localized artiûcial bulk viscosity and thermal conductivity 
models, are used, especially in problems where small-scale eddy shocklets are present.
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Fig. 44. Visualizations of shock sensors and central-Riemann üux hybridization in LES of transonic üow over a cylinder in Cases VI and VII: (a) and (b) are visualizations 
of the turbulence-based shock sensor values; (c) and (d) are visualizations of the acoustics-based shock sensor values; and in (e) and (f), the Riemann üuxes are used 
in the dark regions, and the central üuxes are used in the bright regions. The sub-ûgures in the left column, (a), (c), and (e), are from Case VI, and the sub-ûgures in 
the right column, (b), (d), and (f), are from Case VII. The simulations of Cases VI and VII start from the same initial conditions, and the visualizations are at the same 
computational time.

Different aspects of the numerical performance of the scheme are investigated using several demonstrative computations of 2D 
and 3D canonical üow conûgurations. The results indicate that high-order compact numerical schemes have signiûcantly lower 
dispersion error and preserve coherent üow structures even on highly skewed curvilinear meshes. The LES of decaying isotropic 
turbulence shows that the framework is suitable for use with high-order compact schemes. The results relying on implicit numerical 
dissipation are overly dissipative compared to those simulated using explicit SGS models. Comprehensive use of the framework is 
demonstrated in the set of LES of üow over a cylinder. The robustness and accuracy are justiûed in both the low-Mach and transonic 
üow cases. For the transonic üow case, central-Riemann hybrid üuxes are used. The blending of primitive variables is self-controlled 
by two physics-based shock sensors. The simulation results show that the turbulent üow structures and acoustic wave structures are 
preserved by central üuxes with the SGS model only and are not affected by the numerical dissipation added from the shock-capturing 
scheme and the approximate Riemann solver.
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Appendix A. Truncation error estimation of the linear advection-diffusion system

Considering a one-dimensional linear advection-diffusion process, the modiûed equation, Eq. (20), can be written in the following 
form.

ýÿ̂

ýý
+
(
ÿýÿ′ + ý2ÿ′

)
ÿ̂ = 0 (A.1)

where, without loss of generality, ý, ÿ′ and ÿ′ can be interpreted as the ý-component of the wavenumber, modiûed spectral advective 
velocity, and modiûed spectral diffusivity respectively. The complete deûnitions and explanations of ÿ′ and ÿ′ are given in Sec. 2. 
Compared to the exact operations, the truncation error can be quantiûed in Fourier space.

ýÿ̂

ýý
+
(
ÿýý + ý2ÿ

)
ÿ̂ = ÿ̂adv + ÿ̂dif (A.2)

where ÿ̂adv and ÿ̂dif denote the spectral truncation error generated from the numerical advection operator and diffusion operator 
respectively.

ÿ̂adv = ÿýý
(
1 − ÿ′∕ý

)
ÿ̂ and ÿ̂dif = ý2ÿ

(
1 − ÿ′∕ÿ

)
ÿ̂ (A.3, A.4)

For ÿ′(ýΔý) and ÿ′(ýΔý), when evaluated using a Taylor series about ýΔý = 0, it can be easily shown that 1 − ÿ′(0)∕ý = 0 and 
1 − ÿ′(0)∕ÿ = 0 are satisûed for a consistent discretization. Therefore, the general forms for ÿ̂adv and ÿ̂dif can be denoted as

ÿ̂adv = −ÿýý ÿ̂

∞∑
ÿ=1

[
1

ÿ!

ýÿ(ÿ′∕ý )

ý(ýΔý)ÿ

||||ýΔý=0

(ýΔý)ÿ
]

(A.5)

ÿ̂dif = −ý2ÿÿ̂

∞∑
ÿ=1

[
1

ÿ!

ýÿ(ÿ′∕ÿ)

ý(ýΔý)ÿ

||||ýΔý=0

(ýΔý)ÿ
]

(A.6)

which enables calculation of the leading-order truncation error of speciûc schemes from their spectral behaviors.
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Table A.3
Leading-order truncation errors in calculations of the model one-dimensional linear advection-diffusion 
equation on a periodic domain.

Order ÿadv∕ý ÿdif∕ÿ

Collocated schemes Staggered schemes Collocated schemes Staggered schemes

2 −
1

6

[
ÿ3ÿ

ÿý3

]
Δý2 −

1

6

[
ÿ3ÿ

ÿý3

]
Δý2

1

3

[
ÿ4ÿ

ÿý4

]
Δý2

1

12

[
ÿ4ÿ

ÿý4

]
Δý2

4
1

30

[
ÿ5ÿ

ÿý5

]
Δý4

9

320

[
ÿ5ÿ

ÿý5

]
Δý4 −

1

15

[
ÿ6ÿ

ÿý6

]
Δý4 −

3

320

[
ÿ6ÿ

ÿý6

]
Δý4

6 −
1

2100

[
ÿ7ÿ

ÿý7

]
Δý6 −

59

89600

[
ÿ7ÿ

ÿý7

]
Δý6

1

1050

[
ÿ8ÿ

ÿý8

]
Δý6

61

179200

[
ÿ8ÿ

ÿý8

]
Δý6

For the collocated scheme speciûed in Eq. (1), ÿ′∕ý = (ý′Δý)∕(ýΔý) and ÿ′∕ÿ = (ý′Δý)2∕(ýΔý)2. The modiûed wavenumber is 
given in Eq. (13). Considering the constraints on the coefficients given in Eq. (2) and Eq. (3) for a formally fourth-order derivative 
approximation, the Taylor-expansion approximations are

ÿ̂adv = −ý ÿ̂

{
(ÿý)5

3ÿ − 1

30(2ÿ + 1)
Δý4 − (ÿý)7

18ÿ2 − 10ÿ + 1

252(2ÿ + 1)2
Δý6

}
+(

Δý8
)

(A.7)

and

ÿ̂dif = ÿÿ̂

{
(ÿý)6

3ÿ − 1

15(2ÿ + 1)
Δý4 − (ÿý)8

18ÿ2 − 10ÿ + 1

126(2ÿ + 1)2
Δý6

}
+(

Δý8
)

(A.8)

The results indicate that the truncation errors in physical space are

ÿadv = −ý

{
3ÿ − 1

30(2ÿ + 1)

[
ÿ5ÿ

ÿý5

]
Δý4 −

18ÿ2 − 10ÿ + 1

252(2ÿ + 1)2

[
ÿ7ÿ

ÿý7

]
Δý6

}
+(

Δý8
)

(A.9)

and

ÿdif = ÿ

{
3ÿ − 1

15(2ÿ + 1)

[
ÿ6ÿ

ÿý6

]
Δý4 −

18ÿ2 − 10ÿ + 1

126(2ÿ + 1)2

[
ÿ8ÿ

ÿý8

]
Δý6

}
+(

Δý8
)

(A.10)

For the staggered derivative and midpoint interpolation schemes speciûed in Eq. (4) and Eq. (7) respectively, ÿ′∕ý =

[ÿ (ýΔý)]
(
ý′Δý

)
∕(ýΔý) and ÿ′∕ÿ = (ý′Δý)2∕(ýΔý)2. The transfer function of the midpoint interpolation scheme, ÿ (ýΔý), is given 

in Eq. (17), and the modiûed wavenumber of the staggered derivative scheme is given in Eq. (14). For the formally fourth-order 
discretization, the truncated Taylor series of ÿ̂adv is

ÿ̂adv = −ý ÿ̂

{
(ÿý)5

212ÿÿÿý − 14ÿÿ + 66ÿý − 27

960
(
2ÿý + 1

)(
2ÿÿ + 1

) Δý4−

(ÿý)7
1376ÿ2

ÿ
ÿ2
ý
− 52ÿ2

ÿ
ÿý + 844ÿÿÿ

2
ý
+ 134ÿ2

ÿ
− 584ÿÿÿý + 246ÿ2

ý
+ ÿÿ − 111ÿý + 9

4032
(
2ÿÿ + 1

)2 (
2ÿý + 1

)2 Δý6

}
+(

Δý8
)

(A.11)

where the subscripts <ÿ= and <ý= are used for the coefficients of staggered derivative and midpoint interpolation schemes respectively. 
The truncated Taylor series of ÿ̂dif is

ÿ̂dif = ÿÿ̂

{
(ÿý)6

62ÿ − 9

960 (2ÿ + 1)
Δý4 − (ÿý)8

820ÿ2 − 244ÿ + 9

16128 (2ÿ + 1)2
Δý6

}
+(

Δý8
)

(A.12)

The results indicate that the truncation errors in physical space are

ÿadv = −ý

{
212ÿÿÿý − 14ÿÿ + 66ÿý − 27

960
(
2ÿý + 1

)(
2ÿÿ + 1

)
[
ÿ5ÿ

ÿý5

]
Δý4−

1376ÿ2
ÿ
ÿ2
ý
− 52ÿ2

ÿ
ÿý + 844ÿÿÿ

2
ý
+ 134ÿ2

ÿ
− 584ÿÿÿý + 246ÿ2

ý
+ ÿÿ − 111ÿý + 9

4032
(
2ÿÿ + 1

)2 (
2ÿý + 1

)2
[
ÿ7ÿ

ÿý7

]
Δý6

}
+(

Δý8
)

(A.13)

and

ÿdif = ÿ

{
62ÿ − 9

960 (2ÿ + 1)

[
ÿ6ÿ

ÿý6

]
Δý4 −

820ÿ2 − 244ÿ + 9

16128 (2ÿ + 1)2

[
ÿ8ÿ

ÿý8

]
Δý6

}
+(

Δý8
)

(A.14)

The same procedure can be applied in combining second-order schemes. The modiûed wavenumber proûles are ý′Δý = sin(ýΔý)

and ý′Δý = 2 sin( 1
2
ýΔý) for the collocated and staggered derivative schemes respectively, and the transfer function for the midpoint 

interpolation scheme is ÿ (ýΔý) = cos(
1

2
ýΔý). For fourth-order explicit schemes, ÿ for all schemes is set to 0, and the values of ÿ
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for sixth-order compact schemes are provided in Table 1. The leading-order truncation errors of the model equation computed using 
different combinations of central schemes are shown in Table A.3

Appendix B. Subgrid-scale models used in the demonstrative simulations

The large-eddy simulation (LES) system solved in this work is interpreted as the Favre-ûltered system with respect to the velocity 
and temperature ûelds [75,76]. No subgrid-scale (SGS) model is applied to mass conservation, Eq. (23), and the SGS models in 
momentum conservation, Eq. (24), and energy conservation, Eq. (25), are formulated as the turbulent viscosity and conductivity 
respectively according to the Boussinesq hypothesis [16]. Therefore, the overall dynamic viscosity, ÿ, and thermal conductivity, ÿ, 
used with the Navier-Stokes system are

ÿ = ÿ̌ + ÿSGS and ÿ = ÿ̌ + ÿSGS (B.1, B.2)

where ÿ̌ and ÿ̌ are the computable dynamic viscosity and thermal conductivity respectively, and ÿSGS and ÿSGS are the modeled 
turbulent viscosity and conductivity respectively.

In this work, ÿSGS is calculated using the Vreman SGS model [14]. The calculation method is summarized in the following 
equations.

ÿSGS = ÿÿSGSΔ
2
√

ý[ÿ]∕‖∇ÿ‖2
ý

(B.3)

where Δ is a length scale characterizing the grid spacing. On a uniform Cartesian mesh and curvilinear mesh, Δ are calculated as

Δ=
3
√
ΔýΔÿΔÿ and Δ=

3
√

ý

respectively, where Δý, Δÿ, and Δÿ are the grid spacings on the uniform Cartesian mesh along the ý-, ÿ-, and ÿ-directions respectively, 
and ý is the metric Jacobian assuming the grid spacing of the reference mesh is unity in all directions. For the applications shown 
in this work, the treatment in the calculation of Δ with respect to the grid anisotropy is ignored. The Frobenius norm of the resolved 
velocity gradient tensor is computed as

‖∇ÿ‖2ý = ÿÿ,ÿÿÿ,ÿ

ý[ÿ] is a functional that takes in a 3 × 3 symmetric semi-positive-deûnite tensor ÿ, deûned as

ý[ÿ] =
1

2
ÿÿÿÿÿýýÿÿýÿÿýýÿýÿ

Finally, the tensor ÿ is deûned as

ÿÿÿ = ÿÿ,ýÿÿ,ý

ÿSGS is calculated based on a constant turbulent Prandtl number, Prý

ÿSGS = ýýÿSGS∕Prý (B.4)

where ýý is the speciûc heat at a constant pressure.

Appendix C. Calculation of metrics using compact numerical schemes on a periodic domain

Given a pair of periodic <boundaries,= ÿÿ and ÿÿ, for ∀ýÿ ∈ ÿÿ, ∃ýÿ ∈ ÿÿ such that

ýÿ =ýýÿ + ý (C.1)

where ý is an orthogonal tensor denoting rigid rotation, and ý represents rigid translation. At the mapped locations in the pair 
of periodic boundaries, all physical quantities are equivalent. According to the mapping in Eq. (C.1), a scalar quantity ûeld, ÿ, at 
the pair of periodic boundaries satisûes ÿ(ýÿ) = ÿ(ýÿ), and a vector ûeld, ÿ, satisûes ÿ(ýÿ) =ýÿ(ýÿ). ý is an identity tensor for a 
translationally-periodic boundary.

ýÿ = ýÿ + ý (C.2)

As a result, each component in the vector ûeld can be mapped individually, and each component in a tensor ûeld can be smoothed 
over the entire domain including across the periodic boundary. In this work, only translationally-periodic boundaries are considered 
with the mapping formulated in Eq. (C.2).

Nevertheless, the physical coordinates may still be discontinuous across the periodic boundary unless ý = ÿ as in the demonstrative 
simulations in Sec. 4.5 in the azimuthal direction. Therefore, the compact schemes used for generation of the metric tensor, illustrated 
in Sec. 3.4, require the following modiûcations along the periodic dimension to avoid discontinuity or inconsistency. The modiûcations 
are illustrated using the sixth-order compact differential schemes and interpolation schemes used in this work, and the methods can 
be easily generalized for different compact schemes.
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For staggered differentiation of the coordinate along the periodic dimension, according to Eq. (4), the linear system can be 
formulated as

£¤¤¤¤¤¤¤¥

1 ÿ 0 ⋯ 0 0 ÿ

ÿ 1 ÿ ⋯ 0 0 0

0 ÿ 1 ⋯ 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 ⋯ 1 ÿ 0

0 0 0 ⋯ ÿ 1 ÿ

ÿ 0 0 ⋯ 0 ÿ 1

¦§§§§§§§̈

£¤¤¤¤¤¤¤¥

(ÿý)0
(ÿý)1
(ÿý)2
⋮

(ÿý)ý−3

(ÿý)ý−2

(ÿý)ý−1

¦§§§§§§§̈

= ÿ

£
¤¤¤¤¤¤¤¤¥

ý1∕2 − ý−1∕2
ý3∕2 − ý1∕2
ý5∕2 − ý3∕2

⋮

ýý−5∕2 − ýý−7∕2

ýý−3∕2 − ýý−5∕2

ýý−1∕2 − ýý−3∕2

¦
§§§§§§§§̈

+
ÿ

3

£
¤¤¤¤¤¤¤¤¥

ý3∕2 − ý−3∕2
ý5∕2 − ý−1∕2
ý7∕2 − ý1∕2

⋮

ýý−3∕2 − ýý−9∕2

ýý−1∕2 − ýý−7∕2

ýý+1∕2 − ýý−5∕2

¦
§§§§§§§§̈

(C.3)

where ý represents an arbitrary component of the coordinate system and ÿý denotes a metric component corresponding to ý. The 
mesh spacing in the reference domain is set to be unity. Assuming that there are ý grid points along the periodic dimension, the 
coordinate, with its subscript from 0 to ý − 1, is represented by the computational mesh. Based on the rigid translation, the out-of-
bounds coordinates in Eq. (C.3) are calculated as

ý−ÿ = ýý−ÿ − ý and ýý+ÿ = ýÿ + ý for 0 ≤ ÿ < ý (C.4, C.5)

where ý is the translational period in such a dimension.
For periodic coordinate interpolation, according to Eq. (7), at the ûrst and last grid points, the equations are

ÿý−1∕2 + ý1∕2 + ÿý3∕2 =
ÿ

2

(
ý0 + ý1

)
+

ÿ

2

(
ý−1 + ý2

)
(C.6)

ÿýý−3∕2 + ýý−1∕2 + ÿýý+1∕2 =
ÿ

2

(
ýý−1 + ýý

)
+

ÿ

2

(
ýý−2 + ýý+1

)
(C.7)

where the out-of-bounds coordinates on the right-hand sides of the equations can still be calculated using the relations given in 
Eq. (C.4) and Eq. (C.5). However, the out-of-bounds coordinates on the left-hand sides of the equations are extra unknowns that are 
not directly solvable from the linear system. To address this, Eq. (C.4) and Eq. (C.5) are imposed to modify Eq. (C.6) and Eq. (C.7) so 
that ý−1∕2 and ýý+1∕2 will be substituted with ýý−1∕2 and ý1∕2 respectively. As a result, the solvable linear system is formulated as

£¤¤¤¤¤¤¤¥

1 ÿ 0 ⋯ 0 0 ÿ

ÿ 1 ÿ ⋯ 0 0 0

0 ÿ 1 ⋯ 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 ⋯ 1 ÿ 0

0 0 0 ⋯ ÿ 1 ÿ

ÿ 0 0 ⋯ 0 ÿ 1

¦§§§§§§§̈
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¦§§§§§§§̈

+
ÿ

2

£¤¤¤¤¤¤¤¥

ý−1 + ý2
ý0 + ý3
ý1 + ý4

⋮
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+ ÿ

£¤¤¤¤¤¤¤¥

ý

0

0

⋮

0

0

−ý

¦§§§§§§§̈

(C.8)

where the last term on the right-hand side is caused by modifying the out-of-bounds coordinates on the left-hand side.

Appendix D. Boundary and near-boundary schemes

Along a non-periodic dimension, one-sided schemes are applied. The detailed derivations of one-sided schemes for collocated 
differentiation, staggered differentiation, and midpoint interpolation are discussed in Ref. [19] and Ref. [43] respectively. In this 
work, the physical boundary is placed at the ûrst (or last) edge-staggered point, which is a half-grid spacing from the ûrst (or last) 
nodal point on the interior side. The boundary scheme associated with the collocated sixth-order compact ûnite difference method 
shown in Eq. (1) is

ÿ ′
0
+ 3ÿ ′

1
=

1

Δÿ

(
−
17

6
ÿ0 +

3

2
ÿ1 +

3

2
ÿ2 −

1

6
ÿ3

)
(D.1)

This discretization makes the boundary scheme formally fourth-order accurate. At the ûrst near-boundary point, the most compact 
fourth-order central discretization is used.

1

4
ÿ ′
0
+ ÿ ′

1
+

1

4
ÿ ′
2
=

3

4

(
ÿ2 − ÿ0

)
∕Δÿ (D.2)

At the second near-boundary point, a fourth-order central scheme with a wider stencil is used.

163

508
ÿ ′
1
+ ÿ ′

2
+

163

508
ÿ ′
3
=

393

508

(
ÿ3 − ÿ1

)
∕Δÿ +

3

127

(
ÿ4 − ÿ0

)
∕Δÿ (D.3)

Starting from the third near-boundary point, the interior scheme is applied. The schematic of boundary and near-boundary stencils 
associated with the collocated sixth-order compact ûnite difference method scheme is shown in Fig. D.45.

The boundary scheme of the node-to-edge staggered differentiation scheme, shown in Eq. (4) by shifting the grid-point indices, 
that is used for the calculations of gradient components is
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Fig. D.45. Schematic of the collocated differentiation near a boundary.

Fig. D.46. Schematic of the one-dimensional node-to-edge differentiation and interpolation near a boundary.

ÿ ′
1∕2

=
1

Δÿ

(
−
23

24
ÿ0 +

7

8
ÿ1 +

1

8
ÿ2 −

1

24
ÿ3

)
(D.4)

This form is formally third-order accurate, and a Dirichlet boundary condition is imposed from the value set at the ghost point, 
ÿ0. Since the boundary scheme is an explicit scheme, it is one-way coupled with the linear system to determine the derivatives at 
the near-boundary and interior points at the edge-staggered locations. At the ûrst near-boundary point, the scheme is a compact 
fourth-order central scheme.

37

183
ÿ ′
1∕2

+ ÿ ′
3∕2

+
37

183
ÿ ′
5∕2

=
475

488

(
ÿ2 − ÿ1

)
∕Δÿ +

631

4392

(
ÿ3 − ÿ0

)
∕Δÿ (D.5)

Starting from the second near-boundary point, the interior scheme is applied. The stencils of the boundary and near-boundary schemes 
associated with the node-to-edge staggered derivative schemes are shown in Fig. D.46.

The boundary scheme of the node-to-edge interpolation associated with the compact interpolation scheme shown in Eq. (7) is

ÿ ý
1∕2

=
5

16
ÿ0 +

15

16
ÿ1 −

5

16
ÿ2 +

1

16
ÿ3 (D.6)

This form yields a fourth-order explicit interpolation, and the boundary scheme is one-way coupled with the linear system to determine 
the interpolated values at near-boundary and interior edge-staggered points, similar to the node-to-edge differentiation. At the ûrst 
near-boundary point, the scheme is set to be a fourth order scheme.

1

4
ÿ ý
1∕2

+ ÿ ý
3∕2

+
1

4
ÿ ý
5∕2

=
23

32

(
ÿ2 + ÿ1

)
+

1

32

(
ÿ3 + ÿ0

)
(D.7)

Starting from the second near-boundary point, the interior scheme is applied. The boundary and near-boundary stencils associated 
with the interpolation schemes are also shown in Fig. D.46.

The edge-to-node differentiation that is used for the divergence operator includes a ghost point beyond the physical boundary. 
The scheme at the ghost point is in an explicit sided form.

ÿ ′
0
=

1

Δÿ

(
−
71

24
ÿ1∕2 +

47

8
ÿ3∕2 −

31

8
ÿ5∕2 +

23

24
ÿ7∕2

)
(D.8)

The discretization is formally third-order accurate with dissipative leading order truncation error. Similar to the node-to-edge deriva-
tive and interpolation schemes, by setting the off-diagonal coefficient to zero, the boundary scheme is one-way coupled with the 
near boundary and interior schemes. The actual boundary scheme uses the most compact fourth-order central difference method as 
follows:

1

22
ÿ ′
0
+ ÿ ′

1
+

1

22
ÿ ′
2
=

12

11

(
ÿ3∕2 − ÿ1∕2

)
∕Δÿ (D.9)

The combination of Eq. (D.8) and Eq. (D.9) results in a compact one-sided scheme at the boundary stencil. The scheme at the ûrst 
near-boundary stencil is

9089

69564
ÿ ′
1
+ ÿ ′

2
+

9089

69564
ÿ ′
3
=

95257

92752

(
ÿ5∕2 − ÿ3∕2

)
∕Δÿ +

5927

75888

(
ÿ7∕2 − ÿ1∕2

)
∕Δÿ (D.10)

Starting from the second near-boundary stencil, the interior scheme is used. The boundary and near-boundary stencils associated 
with the staggered central difference schemes are shown in Fig. D.47.

With the physical boundary placed at the edge-staggered point, the boundary conditions are weakly imposed on the Navier-Stokes 
system via üuxes. This treatment enhances robustness and provides the üexibility to impose different types of boundary conditions. 
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Fig. D.47. Schematic of the one-dimensional edge-to-node differentiation near a boundary.

In this work, the boundary conditions for the simulations in Sec. 4.5 are imposed by setting the variables at the ghost nodal points 
prior to calculating the variables at the edge-staggered points (cf. Sec. 3.2 and Sec. 3.3).

Appendix E. Shock-capturing methods

The methods for shock capturing used in this work are documented in this section. The localized artiûcial diffusivity (LAD) model 
is described in Appendix E.1. The nonlinear interpolation schemes and the approximate Riemann solver are illustrated in Appendix 
E.2 and Appendix E.3 respectively. The LAD model and the nonlinear interpolation scheme combined with an approximate Riemann 
solver are two independent methods for shock capturing. In this work, these two approaches are not mixed in the same simulation. 
This work proposes that the latter method should be hybridized with central schemes in simulations of compressible turbulent üows. 
The details are illustrated in Sec. 3.5 and Sec. 4.5.

E.1. Localized artificial diffusivity model

The LAD model used in this work is primarily based on the formulation given in Ref. [56] and Ref. [37]. For shock capturing, only 
artiûcial bulk viscosity and thermal conductivity models are used. The artiûcial diffusivities are added to the overall bulk viscosity, 
ÿ, and thermal conductivity, ÿ, in the Navier-Stokes equations described in Sec. 3.1.

ÿ = ÿ̌ + ÿ∗ and ÿ = ÿ̌ + ÿ∗ (E.1, E.2)

where ÿ̌ and ÿ̌ are calculated using the physical bulk viscosity and thermal conductivity models respectively, and ÿ∗ and ÿ∗ are the 
artiûcial bulk viscosity and thermal conductivity respectively. On Cartesian meshes, the artiûcial diffusivities are formulated as

ÿ∗ = ÿÿó
{

ÿô
(

−ÿ |ÿ|
ÿ2 +ÿÿÿÿ + ÿ2

)|||||
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(
Δýÿ
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ÿýÿ

)2(
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ÿýý
+ ÿ2

)−1
}

(E.3)

ÿ∗ = ÿÿó
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ÿÿth
ÿýÿ
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ÿýý

ÿÿth
ÿýý

+ ÿ2
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«⎪¬⎪­
(E.4)

where ÿÿ and ÿÿ are the model constants for ÿ
∗ and ÿ∗ respectively, ó(⋅) denotes the truncated Gaussian ûlter [77], ô(⋅) denotes 

the Heaviside step function, ÿ is density, ý is the speed of sound, ÿ is temperature, ÿth is internal energy, ÿ = ÿý,ý is the velocity 
dilatation, ÿÿ is the vorticity vector, ÿ = 1 × 10−16 serves as numerical regulation, and Δýÿ is the grid spacing in the ÿ-th dimension. 
ÿýÿý is a fourth-order tensor operator. The early version proposed in Ref. [39] uses ÿýÿý = (ΔýΔÿΔÿ)4∕3 ÿÿýÿÿý . In Ref. [56] and 
Ref. [37], based on the consideration of the computational cost, especially for curvilinear meshes, the operation of ÿýÿý is reduced 
as ÿýÿý =Δý4ÿ if ÿ = ý = ÿ = ý, otherwise ÿýÿý = 0. This design makes the operation ÿýÿýÿýÿÿýýÿýÿ ÿýý the sum of undivided fourth 

derivatives in all dimensions. The terms 
√

(Δýÿÿ,ÿ )
2∕(ÿ,ýÿ,ý) and 

√
(Δýÿÿth,ÿ )

2∕(ÿth,ýÿth,ý) deûne the length scales considering both 
grid spacing in different directions and the obliqueness of shock waves indicated by the normalized density and internal energy 
gradient respectively. The fourth derivative is approximated using the following scheme [19].

ÿÿ ′′′′
ÿ−1

+ ÿ ′′′′
ÿ + ÿÿ ′′′′

ÿ+1
= ÿ

ÿÿ−2 − 4ÿÿ−1 + 6ÿÿ − 4ÿÿ+1 + ÿÿ+2

Δý4
+ ÿ

ÿÿ−3 − 9ÿÿ−1 + 16ÿÿ − 9ÿÿ+1 + ÿÿ+3

6Δý4
(E.5)

where ÿ ′′′′
ÿ

denotes the numerical evaluation of ÿ4ýÿ at ýÿ . For a formally fourth-order scheme, the coefficients satisfy the following 
constraints.

ÿ = 2(1 − ÿ) (E.6)

ÿ = 4ÿ − 1 (E.7)

If ÿ = 7∕26, the scheme in Eq. (E.5) becomes formally sixth-order, and ÿ = 19∕13 and ÿ = 1∕13. In this work, the sixth-order scheme 
is used. The truncated Gaussian ûlter used is given by the following.

[ó(ÿ )]ÿ = 3565

10368
ÿÿ +
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12960

(
ÿÿ+1 + ÿÿ−1

)
+
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(
ÿÿ+2 + ÿÿ−2

)
+
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(
ÿÿ+3 + ÿÿ−3

)
+
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(
ÿÿ+4 + ÿÿ−4

)
(E.8)
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Fig. E.48. Candidate sub-stencils of the WENO5-JS interpolation scheme using nodal-point values within the stencil to approximate the edge-staggered value at ÿ+1∕2.

E.2. Nonlinear interpolation schemes for shock-capturing

The concept of nonlinear interpolation schemes for shock-capturing referred to in this work is originally introduced in Ref. [63] and 
known as the weighted essentially non-oscillatory (WENO) method. The ûve-point-stencil scheme introduced in Ref. [63] is known as 
the WENO5-JS scheme. Consistent with the higher-order staggered ûnite difference schemes used for evaluating the üux divergence, 
the interpolation is used to preserve high-order convergence as opposed to the reconstruction scheme designed for the higher-order 
ûnite volume method or the ûnite difference method referred to in Ref. [54] where the üux difference operation is applied. Since 
many in literature have provided the discussions on the details of the WENO5-JS interpolation scheme and the schemes improved 
from it, only the key steps are documented.

The WENO5-JS interpolation scheme evaluates the value at ÿ + 1∕2 using three candidate sub-stencils, 0, 1 and 2, within a 
ûve-point nodal stencil from ÿ − 2 to ÿ + 2 as shown in Fig. E.48. Each candidate sub-stencil provides an independent evaluation of 
the interpolated value at ÿ + 1∕2 using Lagrange interpolation.
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where ÿ ý

ÿ+
1
2

[ý] denotes the numerically-interpolated value evaluated using the candidate sub-stencil ý . Optimally, a convex super-

position of the interpolated results from all three sub-stencils can form a ûfth-order upwind-biased Lagrange interpolation.
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(E.12)

where ý0 = 1∕16, ý1 = 5∕8, and ý2 = 5∕16 are known as the linear or optimal weights. In practice, the convex combination may not 
use the linear weights, especially when the interpolated function is not smooth within the stencil, so a set of nonlinear weights are 
used to determine the interpolated values.
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where the nonlinear weights, ÿ0, ÿ1, and ÿ2, are calculated as

ÿý =
ÿýýý

ÿ0ý0 + ÿ1ý1 + ÿ2ý2
for ý = 0,1,2 (E.14)

ÿý can be interpreted as a weighting score indicating the quality of the interpolated result from each candidate sub-stencil and is 
calculated as

ÿý =
(
ÿý + ÿ

)−ý
(E.15)

where ÿ and ý are model parameters. In the demonstrations, ÿ = 1 ×10−6 and ý = 2 are used. ÿý is known as the smoothness indicator 
measuring the non-smoothness of the discrete proûle within the candidate sub-stencil ý and is deûned as

ÿý =

2∑
ý=1

Δý2ý−1

ýÿ+
1
2
Δý

∫
ýÿ−

1
2
Δý

(
ÿýÿ [ý]

ÿýý

)2

ýý (E.16)

The smooth function ÿ
[ý

]
is the Lagrange polynomial constructed using all the nodal values within the candidate sub-stencil ý . 

For WENO5-JS interpolation, the smoothness indicator of each sub-stencil speciûed in Fig. E.48 is calculated as follows:
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Fig. E.49. Candidate sub-stencils of the TENO8-A interpolation scheme using nodal-point values within the stencil to approximate the edge-staggered value at ÿ +1∕2.
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The targeted essentially non-oscillatory (TENO) method is originally introduced in Ref. [78] and extended from classic WENO 
schemes. The method generalizes the design of candidate sub-stencils for higher-order methods and calculation of nonlinear weights. 
Additionally, the interpolation at optimal weights is consistent with central interpolation. These improvements successfully reduce 
undesirable dissipation and maintain robustness for strong shock capturing in higher-order simulations. Further improvements on the 
adaptive criterion while calculating nonlinear weights are provided in Ref. [60] for üux reconstruction in a high-order ûnite volume 
framework. The coefficients for interpolation are derived in the following context, and the evaluations of some model coefficients are 
slightly different from those described in Ref. [60].

In this work, the eighth-order adaptive TENO scheme is used and is referred to as the TENO8-A scheme. The scheme contains six 
candidate sub-stencils from 0 to 5 to interpolate the nodal values within an overall 8-point stencil to the edge-staggered point at 
ÿ + 1∕2 as shown in Fig. E.49. The individual Lagrange interpolation for each candidate sub-stencil is
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At optimal weights, the convex combination of the interpolated results from the sub-stencils equals the sixth-order central interpola-
tion.

5∑
ý=0

ýýÿ
ý

ÿ+
1
2

[ý] =
1225

2048

(
ÿÿ + ÿÿ+1

)
−

245

2048

(
ÿÿ−1 + ÿÿ+2

)
+

49

2048

(
ÿÿ−2 + ÿÿ+3

)
−

5

2048

(
ÿÿ−3 + ÿÿ+4

)
(E.26)

where the optimal weights are ý0 = 175∕384, ý1 = 105∕384, ý2 = 14∕384, ý3 = 63∕384, ý4 = 3∕384, and ý5 = 24∕384. The weighting 
score, ÿý, of each candidate sub-stencil ý is calculated in the same way as formulated in Eq. (E.15) with ÿ = 1 × 10−40 and ý = 6. 
Unlike the WENO method, TENO schemes further normalize ÿý to determine a binary pick-up mask function, ÿý, for each candidate 
sub-stencil.

ÿý =ô (
ÿý −ÿÿ

)
(E.27)
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where ô(⋅) denotes the Heaviside step function, ÿý = ÿý∕
(∑5

ý=0 ÿý

)
is a normalized weighting score, and ÿÿ is a cut-off threshold 

which is dynamically determined for the adaptive method. The nonlinear weights ÿý are determined as

ÿý =
ÿýýý∑5
ý=0 ÿýýý

(E.28)

and the nonlinear interpolated result is calculated as

ÿ ý

ÿ+
1
2

=

5∑
ý=0

ÿýÿ
ý

ÿ+
1
2

[ý] (E.29)

The smoothness indicator, ÿý , needed for calculation of ÿý for each candidate sub-stencil in the TENO8-A scheme is calculated as 
follows:

ÿ0 =
1

4
(ÿÿ+1 − ÿÿ−1)

2 +
13

12
(ÿÿ−1 − 2ÿÿ + ÿÿ+1)

2 (E.30)

ÿ1 =
1

4
(3ÿÿ − 4ÿÿ+1 + ÿÿ+2)

2 +
13

12
(ÿÿ − 2ÿÿ+1 + ÿÿ+2)

2 (E.31)

ÿ2 =
1

4
(3ÿÿ − 4ÿÿ−1 + ÿÿ−2)

2 +
13

12
(ÿÿ − 2ÿÿ−1 + ÿÿ−2)

2 (E.32)

ÿ3 =
1

64
(15ÿÿ − 25ÿÿ+1 + 13ÿÿ+2 − 3ÿÿ+3)

2 +
13

12
(2ÿÿ − 5ÿÿ+1 + 4ÿÿ+2 − ÿÿ+3)

2

+
61

720
(ÿÿ − 3ÿÿ+1 + 3ÿÿ+2 − ÿÿ+3)

2

(E.33)

ÿ4 =
1

64
(15ÿÿ − 25ÿÿ−1 + 13ÿÿ−2 − 3ÿÿ−3)

2 +
13

12
(2ÿÿ − 5ÿÿ−1 + 4ÿÿ−2 − ÿÿ−3)

2

+
61

720
(ÿÿ − 3ÿÿ−1 + 3ÿÿ−2 − ÿÿ−3)

2

(E.34)

ÿ5 =
1

256
(35ÿÿ − 70ÿÿ+1 + 56ÿÿ+2 − 26ÿÿ+3 + 5ÿÿ+4)

2

+
1

2246400
(4613ÿÿ − 13772ÿÿ+1 + 15198ÿÿ+2 − 7532ÿÿ+3 + 1493ÿÿ+4)

2

+
61

2880
(5ÿÿ − 18ÿÿ+1 + 24ÿÿ+2 − 14ÿÿ+3 + 3ÿÿ+4)

2 +
1861

1310400
(ÿÿ − 4ÿÿ+1 + 6ÿÿ+2 − 4ÿÿ+3 + ÿÿ+4)

2

(E.35)

The cut-off threshold, ÿÿ , in Eq. (E.27) is calculated based on the deûnition of the local nodal smoothness indicator, ÿÿ , which is 
deûned as

ÿÿ =
2
|||(ÿÿ+1 − ÿÿ )(ÿÿ − ÿÿ−1)

|||+ ÿÿ
(
ÿÿ+1 − ÿÿ

)2
+
(
ÿÿ − ÿÿ−1

)2
+ ÿÿ

(E.36)

where the numerical regularization factor, ÿÿ , is determined as

ÿÿ =
0.9ýÿ

1 − 0.9ýÿ
ÿÿ,0 (E.37)

ÿÿ is statically calculated with tunable model constants ýÿ and ÿÿ,0. As suggested in Ref. [60], ýÿ = 0.23 and ÿÿ,0 = 1 × 10−6 are used, 
which leads to ÿÿ = (207∕793) × 10−6. A complementary indicator, ÿ, is deûned using ÿÿ in a narrower stencil.

ÿ = 1 −min
{
1,min

{
ÿÿ−1, ÿÿ , ÿÿ+1, ÿÿ+2

}
∕ýÿ

}
(E.38)

Finally, the cut-off threshold, ÿÿ , is calculated as

ÿÿ = 10−+ý1−ý2(1−ý(ÿ)), (E.39)

where ý1 = 10.5 and ý2 = 3.5 are model constants suggested in Ref. [60], and ý(⋅) is a nonlinear mapping deûned as

ý(ÿ) = (1 − ÿ)4(1 + 4ÿ) (E.40)

E.3. Characteristic decomposition on curvilinear meshes and approximate Riemann solver

The use of nonlinear interpolation schemes is combined with the characteristic decomposition for a linearized decoupled system. 
Considering the inviscid üuxes only, the Navier-Stokes system reduces to an Euler system as follows.

ÿýÿ

ÿý
+

ÿý̂ ÿ

ÿÿ
+

ÿý̂ ÿ

ÿÿ
+

ÿý̂ ÿ

ÿÿ
= ÿ (E.41)
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where ÿ is the vector of conservative variables, and ý̂ ÿ , ý̂ ÿ , and ý̂ ÿ are the vectors of inviscid contravariant üuxes in ÿ, ÿ, and ÿ

directions respectively. The expressions for ÿ , ý̂ ÿ , ý̂ ÿ , and ý̂ ÿ are given as

ÿ =

»¼¼¼¼¼¼¼½

ÿ

ÿÿ

ÿÿ

ÿý

ÿÿ

¾¿¿¿¿¿¿¿À

ý̂ ÿ =

»¼¼¼¼¼¼¼½

ÿý̂ÿ

ÿÿý̂ÿ + ýý̃T
ýÿ

ÿÿý̂ÿ + ýý̃T
ÿÿ

ÿýý̂ÿ + ýý̃T
ÿÿ

ÿℎý̂ÿ

¾¿¿¿¿¿¿¿À

ý̂ ÿ =

»¼¼¼¼¼¼¼½

ÿý̂ÿ

ÿÿý̂ÿ + ýý̃Týÿ

ÿÿý̂ÿ + ýý̃Tÿÿ

ÿýý̂ÿ + ýý̃Tÿÿ

ÿℎý̂ÿ

¾¿¿¿¿¿¿¿À

ý̂ ÿ =

»¼¼¼¼¼¼¼½

ÿý̂ÿ

ÿÿý̂ÿ + ýý̃T
ýÿ

ÿÿý̂ÿ + ýý̃T
ÿÿ

ÿýý̂ÿ + ýý̃T
ÿÿ

ÿℎý̂ÿ

¾¿¿¿¿¿¿¿À
where the components in vector and tensor quantities are explicitly expressed as individual quantities, and the matrix-vector notation 
denotes the Euler equation system. ÿ, ÿ, and ý are the three-components of the velocity vector in physical space in the ý-, ÿ-, and 
ÿ-directions respectively. Other notation is consistent with that deûned in Sec. 3.1 and Sec. 3.3.

The characteristic decomposition of the contravariant üux Jacobian in the ÿ-dimension can be denoted as

ÿý̂ ÿ

ÿÿ
=ýÿÿÿÿ

T
ÿ

(E.42)

where ÿÿ is a diagonal matrix storing the eigenvalues, and the columns in ýÿ and ÿÿ are the right and left eigenvectors respectively 
associated with the eigenvalues stored in ÿÿ . A form of characteristic decomposition is provided as follows.

ýÿ =

»¼¼¼¼¼¼¼½

1 0 1 0 1

ÿ− ýý
T
ýÿ ýýÿ ÿ ÿýÿ ÿ+ ýý

T
ýÿ

ÿ− ýý
T
ÿÿ ýÿÿ ÿ ÿÿÿ ÿ+ ýý

T
ÿÿ

ý− ýý
T
ÿÿ ýÿÿ ý ÿÿÿ ý+ ýý

T
ÿÿ

ℎ− ýý ÿ ý ý(ÿ) ÿk ýÿ(ÿ) ℎ+ ýý ÿ

¾¿¿¿¿¿¿¿À

(E.43)

ÿÿ =

»¼¼¼¼¼¼¼¼½

ý̂ÿ − ýý̃T
ÿÿ

0 0 0 0

0 ý̂ÿ 0 0 0

0 0 ý̂ÿ 0 0

0 0 0 ý̂ÿ 0

0 0 0 0 ý̂ÿ + ýý̃T
ÿÿ

¾¿¿¿¿¿¿¿¿À

(E.44)

ÿT
ÿ
=

»¼¼¼¼¼¼¼¼¼½

ÿ−1

2ý2
ÿk +

ý ÿ

2ý
−

ýTýÿ

2ý
−

ÿ−1

2ý2
ÿ −

ýTÿÿ

2ý
−

ÿ−1

2ý2
ÿ −

ýTÿÿ

2ý
−

ÿ−1

2ý2
ý

ÿ−1

2ý2

−ý ý(ÿ) ýýÿ ýÿÿ ýÿÿ 0

1 −
ÿ−1

ý2
ÿk

ÿ−1

ý2
ÿ

ÿ−1

ý2
ÿ

ÿ−1

ý2
ý −

ÿ−1

ý2

−ýÿ(ÿ) ÿýÿ ÿÿÿ ÿÿÿ 0

ÿ−1

2ý2
ÿk −

ý ÿ

2ý

ýTýÿ

2ý
−

ÿ−1

2ý2
ÿ

ýTÿÿ

2ý
−

ÿ−1

2ý2
ÿ

ýTÿÿ

2ý
−

ÿ−1

2ý2
ý

ÿ−1

2ý2

¾¿¿¿¿¿¿¿¿¿À

(E.45)

where ý̃T
ÿÿ

=

√(
ý̃T
ýÿ

)2

+
(
ý̃T
ÿÿ

)2

+
(
ý̃T
ÿÿ

)2

is the magnitude of the metrics in ÿ dimension. ýTýÿ , ý
T
ÿÿ , and ý

T
ÿÿ are the normalized metric 

components deûned as ýTýÿ = ý̃T
ýÿ
∕ý̃T

ÿÿ
, ýTÿÿ = ý̃T

ÿÿ
∕ý̃T

ÿÿ
, and ýTÿÿ = ý̃T

ÿÿ
∕ý̃T

ÿÿ
. [ýýÿ , ýÿÿ , ýÿÿ]

T and [ÿýÿ ,ÿÿÿ ,ÿÿÿ]
T are two unit vectors that 

form a set of orthonormal basis vectors in three-dimensional physical space together with [ýTýÿ , ý
T
ÿÿ , ý

T
ÿÿ]

T. ÿk = (ÿ2 + ÿ2 +ý2)∕2 is 

the speciûc kinetic energy. ý ÿ , ý ý(ÿ), and ýÿ(ÿ) are deûned as ý ÿ = ÿý
T
ýÿ + ÿý

T
ÿÿ + ýý

T
ÿÿ , ý ý(ÿ) = ÿýýÿ + ÿýÿÿ + ýýÿÿ , and ýÿ(ÿ) =

ÿÿýÿ + ÿÿÿÿ +ýÿÿÿ respectively. Due to the symmetry of the contravariant üux formulations in different dimensions in the reference 
domain, the characteristic decompositions in ÿ- and ÿ -dimensions are not provided.

During the numerical solution process, the Euler system is locally linearized in each dimension so that the üux Jacobian is frozen 
within an interpolation stencil. Based on this assumption, the characteristic variables within a stencil can be calculated as

ýÿ =
ï
ÿT

ÿ

ð
ÿ (E.46)

where ýÿ is the vector of characteristic variables in the locally linearized Euler system in the ÿ-dimension, and the operator ï(⋅)ð
denotes that the quantity remains constant within a stencil. The nonlinear shock-capturing schemes will be applied to interpolate ý
to the edge-point using a stencil of nodal points. The nonlinear interpolation scheme is not statically symmetric about the stencil, 
providing upwind-biased numerical dissipation in the non-smooth region. For shock-capturing, the nonlinear interpolation needs to 
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be applied using both backward-biased and forward-biased stencils to obtain the characteristic variables that are potentially carried 
by the <right-= traveling waves, ý+

ÿ
, interpolated from the <left= side (which is commonly denoted by <L=) and the <left-= traveling 

waves, ý−
ÿ
, interpolated from the <right= side (which is commonly denoted by <R=) respectively. After interpolation, the characteristic 

variables obtained on the edge-point are converted back to the conservative variables using the right eigenvectors.

ÿ +
ÿ
=
ï
ýÿ

ð
ý+

ÿ
and ÿ −

ÿ
=
ï
ýÿ

ð
ý−

ÿ
(E.47, E.48)

where ÿ +
ÿ
and ÿ −

ÿ
are the volume weighted conservative variables converted from the interpolated characteristic variables, ý+

ÿ

and ý−
ÿ
. In this work, the elements in the locally averaged eigenvectors, 

ï
ÿT

ÿ

ð
and 

ï
ýÿ

ð
, are assembled by the Roe-Pike averaged 

quantities [79,80] which are calculated using the ûrst nodal values on both sides of each targeted edge-point location.
With ÿ +

ÿ
and ÿ −

ÿ
obtained, the approximate Riemann üux can be calculated. In this work, the Rusanov üux [61,55] is used.

ý̂
Riemann

ÿ =
1

2

(
ý̂

−

ÿ + ý̂
+

ÿ

)
−

1

2
ÿ
(
ÿ −

ÿ
−ÿ +

ÿ

)
(E.49)

where ý̂
Riemann

ÿ is the Rusanov type of approximate Riemann üux, ý̂
−

ÿ and ý̂
+

ÿ are the contravariant üuxes assembled by ÿ −
ÿ
and 

ÿ +
ÿ
respectively, and ÿ is an approximate wave speed calculated as

ÿ =max
{|||ý̂

+
ÿ

|||+ ý+
ÿ
ý̃T
ÿÿ
,
|||ý̂

−
ÿ
|||+ ý−

ÿ
ý̃T
ÿÿ

}
(E.50)

where ý+
ÿ
and ý−

ÿ
are the speeds of sound calculated using ÿ +

ÿ
and ÿ −

ÿ
respectively. For hybrid central-Riemann üux assembly, 

the hybridization is applied in constructing the primitive variables after the calculation of ÿ +
ÿ
and ÿ −

ÿ
, and the volume weighted 

conservative variables and contravariant üuxes are calculated using blended primitive variables. If only primitive variables that are 

interpolated using central compact schemes are used, ÿ +
ÿ
=ÿ −

ÿ
and ý̂

+

ÿ = ý̂
−

ÿ . In this scenario, ý̂
Riemann

ÿ is same as the central üux.
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