
Turbulent mixing in transcritical and supercritical

carbon-dioxide free-shear and boundary layer ŕows

Hang Song∗‖1, Anjini Chandra∗‰1, Steven Dai∗ğ1, Aditya S. Ghate¶2, and Sanjiva K. Lele‖1,2

1Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
2Department of Aeronautics & Astronautics, Stanford University, Stanford, CA 94305, USA

Supercritical ŕuids are used in numerous existing and developing energy technologies. The

accuracy of turbulence models used with supercritical ŕuids is not well established due to

a lack of knowledge of the coupling between the complex thermodynamics and turbulence

dynamics present in turbulent supercritical ŕows. This study aims to provide fundamental

characterization of turbulent momentum and heat transfer in supercritical ŕows through

two canonical ŕows: the free shear layer ŕow and the zero-pressure-gradient boundary layer.

Direct numerical simulations using high-order compact őnite difference methods are performed

with real-gas equation-of-state and transport models. The simulation results indicate that the

real-gas behavior inŕuences the turbulent ŕuctuations of thermodynamic quantities. Besides

the non-dimensional parameters used for characterizing the turbulent ŕow of an ideal gas,

an extra parameter is needed to identify the thermodynamic state of the ŕuid. The results

also indicate that the classic turbulent scalings observed in the velocity őelds exhibit behaviors

similar to those found in ideal-gas ŕows.

I. Introduction
Supercritical carbon dioxide (sCO2) plays an increasingly important role in the design of modern compact power

systems [1]. A pure ŕuid becomes supercritial when both its pressure and temperature are above the critical condition.

At the supercritical pressure, the ŕuid transitions between subcritical and supercritical states and undergoes a pseudo

phase change. During the pseudo phase change, a drastic change in density and large internal energy variation occur

within a relatively small change in temperature about the critical value. These thermodynamic phenomena are widely

utilized in the design of modern compact power systems to boost the efficiency of the systems while maintaining a

compact system size. For example, one major application of supercritical sCO2 is to power cycles, such as the sCO2

Brayton cycle, where sCO2 plays an important role in heat transfer [2, 3]. The sCO2 Brayton cycle is appealing due to

its higher thermal efficiency, compactness, and adaptability in operating with other heat sources, such as solar power,

nuclear reactors, and fossil fuels, compared to existing power cycles [4, 5].

Due to the complex thermodynamic behavior of a ŕuid near the critical condition, the ŕow dynamics and heat

transfer performance for supercritical ŕows differ signiőcantly from those for an ideal gas compressible ŕow or a ŕow in

the incompressible regime. In applications to power systems, such as the sCO2 Brayton cycle, the coupling between

complex thermodynamics and turbulence dynamics impacts the performance of the cycle and poses a challenge in

studying the physics associated with the ŕow structures within the cycle. Fundamental investigations of turbulent

canonical ŕows, including shear and boundary layers, near the critical condition will provide useful insights for the

development of Reynolds-Averaged-Navier-Stokes (RANS) and subgrid-scale (SGS) models used for low-cost predictive

simulations, reduced-order modeling for ŕow control, and system optimization.

Previous work in supercritical shear layer DNS simulations have indicated that modiőcations to existing SGS models

are necessary to accurately capture real gas effects [6]. Recent LES simulations of spatially developing shear layers

further emphasized the need to develop new models that account for the complex coupling between thermodynamics

and turbulence [7]. Many simulations conducted so far have required additional treatment [6, 8], such as őltering, to
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preserve numerical stability. In addition, experiments for supercritical jets and planar shear layer have been conducted,

but they provide limited insight into the physics associated with supercritical ŕows due to limitations on measurements

and the extreme physical conditions needed to maintain supercritical ŕows [9]. For boundary layer conőguration,

previous simulations relied on existing turbulence models or were limited to low-Mach regimes, far from the operating

conditions expected for many developing applications [10, 11].

This work utilizes a high-ődelity computational framework to study supercritical shear and boundary layers. The

computational framework extends a similar framework for ideal gases to include complex thermodynamic and transport

relations that capture the behavior of a ŕuid around the critical point. The framework also enables simulations of

supercritical ŕows without additional treatments to preserve numerical stability. A database for supercritical shear layer

and boundary layer ŕows will be established from which turbulent statistics and other quantities can be computed. These

quantities can then be compared to established results for canonical shear and boundary layer cases for ideal gases [12].

II. Simulation conőguration details

A. Physical formulation

All the simulations presented in this work numerically solve the compressible Navier-Stokes equations and enforce

conservation of mass, momentum and total energy. The governing system of equations is provided in index notation

form as follows:

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢 𝑗

𝜕𝑥 𝑗

= 0 (1)

𝜕𝜌𝑢𝑖

𝜕𝑡
+ 𝜕

𝜕𝑥 𝑗

(
𝜌𝑢𝑖𝑢 𝑗 + 𝑝𝛿𝑖 𝑗

)
=

𝜕𝜎𝑖 𝑗

𝜕𝑥 𝑗

(2)

𝜕𝜌𝑒tot

𝜕𝑡
+ 𝜕

𝜕𝑥 𝑗

[
(𝜌𝑒tot + 𝑝) 𝑢 𝑗

]
=

𝜕

𝜕𝑥 𝑗

(
𝑢𝑖𝜎𝑖 𝑗 − 𝑞 𝑗

)
(3)

where 𝜌 is the density őeld, 𝑢𝑖 is the velocity vector őeld, 𝑝 is the pressure őeld, 𝛿𝑖 𝑗 is the identity tensor, 𝜎𝑖 𝑗 is the

viscous stress tensor, 𝑒tot is the speciőc total energy, and 𝑞 𝑗 is the heat ŕux. The viscous stress tensor is calculated as

𝜎𝑖 𝑗 = 2𝜇𝑆𝑖 𝑗 −
2

3
𝜇𝑆𝑘𝑘𝛿𝑖 𝑗 (4)

where 𝜇 is the dynamic shear viscosity and 𝑆𝑖 𝑗 is the rate of strain tensor deőned as 𝑆𝑖 𝑗 =
(
𝑢𝑖, 𝑗 + 𝑢 𝑗 ,𝑖

)
/2. The

formulation neglects the bulk viscosity. The total speciőc energy consists two components:

𝑒tot = 𝑒 + 𝑢 𝑗𝑢 𝑗/2

where 𝑒 is the speciőc internal energy and 𝑢 𝑗𝑢 𝑗/2 is the speciőc kinetic energy. The heat ŕux 𝑞 𝑗 is calculated based on

Fourier’s law of thermal conduction as

𝑞 𝑗 = −𝜆 𝜕𝑇

𝜕𝑥 𝑗

(5)

where 𝜆 is the thermal conductivity and 𝑇 is the temperature őeld. The system is closed by giving the equations of state

(EOS) that formulate the pressure-speciőc-volume-temperature (𝑝-𝑣-𝑇) relation as well as the calculation of the internal

energy and the models of transport properties.

For a dense gas near the critical condition, the Peng-Robinson EOS [13] is used as the 𝑝-𝑣-𝑇 relation. The

dimensionless expression is given in the following equation:

𝑝𝑟 =
𝑇𝑟

𝑣∗ − 𝑏∗
− 𝑎∗𝛼(𝑇𝑟 )
𝑣∗2 + 2𝑣∗𝑏∗ − 𝑏∗2

(6)

where 𝑝𝑟 and 𝑇𝑟 are the reduced pressure and temperature respectively. Given the critical pressure 𝑝𝑐 and the critical

temperature 𝑇𝑐, 𝑝𝑟 and 𝑇𝑟 are deőned as 𝑝𝑟 = 𝑝/𝑝𝑐 and 𝑇𝑟 = 𝑇/𝑇𝑐. 𝑣∗ = 𝑝𝑐𝑣/(𝑅𝑇𝑐) is the nondimensional speciőc

volume where 𝑅 is the speciőc gas constant and 𝑣 = 1/𝜌 is the speciőc volume. Both 𝑎∗ and 𝑏∗ are constants, and 𝛼 is a

dimensionless function of 𝑇𝑟 :

𝑎∗ = 0.45723553 𝑏∗ = 0.07779607 𝛼(𝑇𝑟 ) =
[
1 + 𝜅

(
1 −

√︁
𝑇𝑟

)]2
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where 𝜅 is a function of the acentric factor of the gas molecule, 𝜔, and is given as:

𝜅 = 0.37464 + 1.54226𝜔 − 0.26992𝜔2

In this work, the targeted working ŕuid is CO2. The acentric factor is set to 𝜔 = 0.239. The 𝑝-𝑣-𝑇 behavior predicted

by Peng-Robinson EOS model is shown in Fig. 1, and the results are compared with open-source data from the National

Institute of Standards and Technology (NIST) WebBook [14] for validation.
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p/pc = 3.0, NIST Data

Fig. 1 𝒑-𝒗-𝑻 relation of CO2 near the critical condition. The curves are calculated from the Peng-Robinson

EOS model, and the symbols are extracted from the NIST database.

The internal energy is calculated by integrating along an isochoric path followed by an isothermal path as shown in

the following equation:

𝑒 = 𝑒ref +
∫ 𝑇

𝑇ref

𝑐𝑣 (𝑇, 𝑣ref)𝑑𝑇 +
∫ 𝑣

𝑣ref

[
𝑇

(
𝜕𝑝

𝜕𝑇

)

𝑣

− 𝑝

]
𝑑𝑣 (7)

where the subscript łrefž denotes the reference state and 𝑐𝑣 is the isochoric speciőc heat. In Eq. (7), the second integral

can be calculated based on the Peng-Robinson EOS 𝑝-𝑣-𝑇 relation, but the őrst integral requires a model for 𝑐𝑣 (𝑇, 𝑣).
For simplicity, the reference state is selected in the ideal gas limit by taking 𝑣ref → ∞ and 𝑇ref = 0 so that 𝑒ref can be set

to zero and 𝑐𝑣 only depends on 𝑇 . For CO2, 𝑐𝑣 (𝑇,∞) is calculated based on a power law őtting.

𝑐𝑣 (𝑇,∞) = 𝑐𝑣 (𝑇ref ,∞)
(
𝑇

𝑇ref

)𝑛
(8)

where the parameter 𝑛 is set to 𝑛 = 0.44 for the best őt within the regime of interest. The EOS models for internal

energy calculation are also validated using the NIST database [14], and the results are shown in Fig. 2.

The dynamic shear viscosity and thermal conductivity are calculated based on the Chung et al. model [15]. The

detailed implementation is provided in Ref [15] and Ref [16]. A consistent non-dimensionalization is proposed by

the authors in Ref [17]. Given the 𝑝-𝑣-𝑇 relation, the conceptual forms of the transport models can be equivalently

expressed as

𝜇 = 𝜇ref𝐺𝜇 (𝑇𝑟 , 𝑝𝑟 ) and 𝜆 = 𝑅𝜇ref𝐺𝜆 (𝑇𝑟 , 𝑝𝑟 ) (9, 10)

where 𝜇ref is a reference viscosity, and 𝐺𝜇 and 𝐺𝜆 are both dimensionless functions considering the thermodynamic

state and the gas molecular structure.

Consistent with the dense gas EOS models, 𝑝𝑐 and 𝑇𝑐 naturally impose the pressure and temperature scales for

non-dimensionalization. Correspondingly, the density scale can be deőned as 𝜌0 = 𝑝𝑐/(𝑅𝑇𝑐) according to dimensional

analysis. Additionally, a velocity scale can be introduced as 𝑈0 =
√
𝑅𝑇𝑐. As a result, the dimensionless pressure and

temperature are identical to the reduced pressure and temperature respectively, but 𝜌0 and 𝑈0, as obtained from the

dimension analysis, are not directly related to the quantities at the critical condition. 𝜇ref in the transport models can be

set to match the targeted Reynolds number in the simulation. For a certain gas, the behavior of the thermal conductivity

is paired with the dynamic shear viscosity as shown in Eq. (10) so that the Prandtl number is inherently determined by

the ŕuid’s thermodynamic state.
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Fig. 2 Validation of internal energy calculation for CO2 near the critical condition: (a) calculation of the

isochoric speciőc heat in the ideal gas limit, and (b) calculation of the speciőc internal energy. The curves

represents the calculation results using the proposed EOS models and the symbols are extracted from the NIST

database.

B. Numerical methods

The simulations in this work are calculated using sixth-order compact őnite difference methods [18, 19] arranged in

a collocated-variable-storage-staggered-ŕux-assembly framework [20] for high-order grid convergence and high spectral

resolution. For simulations of shock-free ŕows, no non-physics-based artiőcial properties or solution őltering are needed

to preserve numerical stability. For high-speed ŕows, when shocks are present, the őfth-order weighted essentially

non-oscillatory (WENO5-JS) interpolation scheme [21] is combined with the Rusanov type Riemann ŕux [22]. The

shock capturing scheme is locally activated by a modiőed Ducros shock sensor, 𝜙, which acts as an indicator to trigger

activation. The expression for 𝜙 is given in the following equation.

𝜙 =
−𝜃 |𝜃 | + 𝜀2

𝜃2 + 𝝎 · 𝝎 + 𝜀2
(11)

where 𝜃 = ∇ · 𝒖 is the velocity dilatation, 𝝎 = ∇ × 𝒖 is the vorticity vector, and 𝜀 is set to 1 × 10
−16 for numerical

regularization. A threshold sensor value is speciőed as 𝜙TH = 0.4. When 𝜙 > 𝜙TH, the shock capturing scheme is

activated, and only central-ŕuxes are used everywhere else.

1. Simulation conőguration of the planar shear layer

The simulation conőguration of the planar shear layer is shown in Fig. 3, where streamwise direction is in 𝑥 and the

transverse direction is in 𝑦. The computational domain is periodic in the 𝑥− and 𝑧− directions, and the computational

mesh is uniform along these two directions. The computational mesh is stretched along the 𝑦-direction with higher grid

resolution near the center plane to resolve the growth of the shear layer there. Numerical sponge layers are applied near

both boundaries in 𝑦-direction to impose the far-őeld free-stream conditions. The initial condition is prescribed at a

numerically regularized smooth thin shear layer proőle. The ŕow outside the initial thin shear proőle on each side is at

the free-stream condition.

The ŕow is characterized by the density ratio 𝜌+∞/𝜌−∞ and the turbulent Mach number 𝑀𝑐 deőned as

𝑀𝑐 =
|𝑈+∞ −𝑈−∞ |
𝑐+∞ + 𝑐−∞

(12)

where 𝑈+∞ and 𝑈−∞ are the streamwise velocity component in free-stream on each side respectively, and 𝑐+∞ and 𝑐−∞
are the free-stream speed of sound on each side respectively. In this work, 𝑈+∞ and 𝑈−∞ are conőgured such that

𝜌+∞𝑈+∞ + 𝜌−∞𝑈−∞ = 0 (13)

For simplicity, the deőnition Δ𝑈∞ = 𝑈∞ −𝑈−∞ is used in the analysis.
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Fig. 3 Simulation conőguration of compressible planar shear layer: (a) conőguration of computational domain;

(b) computational mesh. The computational domain is periodic in 𝒛-direction, and the computational mesh is

uniform in 𝒙 and 𝒛.

𝑥

𝑦

inlet buffer outlet buffertest region for boundary layer development

far-őeld buffer (free-stream condition)

no-slip & adiabatic no-slip & isothermal (𝑇𝑤) slip & adiabatic

blowing and suction region (imposed as B.C.)

Fig. 4 Simulation conőguration of turbulent boundary layer ŕow.

2. Simulation conőguration of the zero-pressure-gradient boundary layer

The simulation conőguration of the zero-pressure-gradient boundary layer is shown in Fig. 4. The computational

domain is divided into four regions. The measurements are taken in the test region where the computational mesh is

uniform in the 𝑥− and 𝑧− directions and clustered in the 𝑦− direction to resolve the full range of length scales within the

turbulent boundary layer. The computational mesh is highly coarsened along the streamwise direction in the inlet and

outlet buffer regions away from the test region. The ŕow in the inlet buffer is regularized using the numerical sponge.

The ŕow in the outlet buffer is regularized using the WENO5-JS interpolation combined with the Riemann ŕux as used

for shock capturing. The streamwise boundary condition on the outlet side uses őrst-order extrapolation. The ŕow in

the far-őeld buffer is regularized at the free-stream condition using the numerical sponge.

III. Planar shear layer
In this work, simulations of eight different cases are performed to investigate the effects of Mach number and

real-gas thermodynamics. All simulations used in this work have same free-stream pressure 𝑝𝑟 = 3 and density ratio,

𝜌+∞/𝜌−∞ = 2. Different combinations of free-stream temperatures are selected to satisfy the pressure and density

ratio constraints. Unlike the ideal gas, the thermodynamic behavior of a dense gas strongly depends on the absolute

temperature. Due to the temperature difference, heat transfer occurs associated with the development of the turbulent

shear layer. Recent works by Vadrot et.al [23, 24] examined compressible temporal shear layers with dense gas effects,

but in their simulations the thermodynamic conditions are identical for the upper and lower streams. The detailed

conőgurations of the simulations used in the analysis are listed in Table 1. The ŕow visualizations of the turbulent shear

layer at low and high convective Mach numbers using numerical Schlieren imaging are shown in Fig. 5. Associated

with the growth of the turbulent shear layer at a high 𝑀𝑐, the ŕow contains Mach waves and shock waves due to the

compressibility effects. The visualizations of density őelds are shown in Fig. 6. Consistent with the numerical Schlieren
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imaging, signiőcantly larger density ŕuctuation are observed in the high 𝑀𝑐 case (PSL00). The proőle of planar

averaged density is shown in Fig. 7a where the coordinate in the transverse direction (𝑦) is shifted to the momentum

center-plane 𝑦𝑐 where the planar mean momentum is zero. For reference, the planar-averaged density-weighted velocity

dilatation (𝜌∇ · 𝒖) is shown in Fig. 7b. Based on the Lagrangian form of the mass conservation

(
𝜕𝜌

𝜕𝑡
+ 𝑢 𝑗

𝜕𝜌

𝜕𝑥 𝑗

)
+ 𝜌

𝜕𝑢 𝑗

𝜕𝑥 𝑗

= 0

The proőle provides an insight into the thermodynamic variation of a ŕuid parcel. Comparing with the density proőle, it

shows that the heat transfer within the turbulent shear layer in cases PSL01, PSL03, and PSL07 primarily causes local

expansion of the denser ŕuid. As observed directly from the plots shown in Fig. 7, the peak expansion occurs slightly on

the lower-density side deőned by the zero-momentum center-plane. Moreover, the free-stream temperatures in PSL07

straddle the pseudo-critical temperature (Widom point) at the free-stream pressure which is deőned by the temperature

associated with the local maximum isobaric speciőc heat. Pseudo-phase change occurs within the mixing layer. For the

conőguration speciőed in PSL07, the pseudo-phase change suppresses the thermal expansion compared to the other two

cases (PSL01 and PSL03) shown in Fig. 7. Mean velocity proőle shown in Fig. 7c shows that established scaling for

velocity proőle of ideal gas mixing layers is applicable for dense gas mixing layers and no additional scaling is needed.

Case ID 𝑀𝑐 𝑝𝑟 𝑇−∞/𝑇𝑐 𝑇+∞/𝑇𝑐 𝜌+∞/𝜌−∞ line style

PSL00 1.0 3 1.40 2.16 2 red dotted

PSL01 1.0 3 1.60 2.73 2 red solid

PSL02 1.0 3 2.00 3.78 2 red dashed

PSL03 0.2 3 1.20 1.59 2 black dashdot

PSL04 0.2 3 1.40 2.16 2 black dotted

PSL05 0.2 3 1.60 2.73 2 black solid

PSL06 0.2 3 2.00 3.78 2 black dashed

PSL07 0.2 3 1.10 1.39 2 blue dashed

Table 1 Setups of planar shear layer simulations.
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Fig. 5 Numerical Schlieren imaging of (a) PSL01 and (b) PSL07.
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Fig. 6 Density visualization of (a) PSL01 and (b) PSL07.
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Fig. 7 Planar averaged proőles of (a) density, (b) dilatation and (c) streamwise velocity across the turbulent

shear layer: PSL01 (red), PSL03 (black), and PSL07 (blue).

The one-dimensional velocity energy spectra in the stream-wise (𝑥) and span-wise (𝑧) directions are shown in Fig. 8.

Comparing with the 𝑘−5/3 reference scaling, it can be seen that the turbulent velocity ŕuctuation along the homogeneous

directions follows the same scaling as used in incompressible and ideal-gas turbulence. Several selected Reynolds stress

components (normalized), �𝑢′′𝑢′′, �𝑣′′𝑣′′, �𝑤′′𝑤′′, and �𝑢′′𝑣′′ are also provided in Fig. 9 for reference, where the operators

ł(·)ž and ł(̃·)ž are deőned as planar Reynolds and Favre averaging respectively and the ŕuctuating components are

denoted as ł(·)′′ = (·) − (̃·)ž. The proőle shown in Fig. 9 are normalized using the free-stream velocity difference, Δ𝑈2
∞.

The proőles of the Reynolds stresses show consistent behaviors as observed in the simulations of ideal gas compressible

turbulent shear layer variable density mixing [25, 26].
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Fig. 8 1D velocity energy spectra in the turbulent planar shear layer ŕow of all cases listed in Table 1. The

velocity energy spectra is measured at the center plane, 𝒚𝒄 , where the mean momentum is zero.
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Fig. 9 Normalized Reynolds stresses across the shear layer: PSL01 (red), PSL03 (black), and PSL07 (blue).

The growth of the momentum thickness and ŕuctuations of the pressure and temperature őelds are shown in Fig. 10,
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where The operator ł⟨(·)⟩ž denotes the domain averaging deőned as

⟨(·)⟩ = 1

𝛿∗∗

∫ +∞

−∞
(·)𝑑𝑦

All data in the plots in Fig. 10 have the same free-stream density ratio and include only two Mach numbers. The growth

of the momentum thickness in Fig. 10a shows self-similar behaviors parametrized by the Mach number. The evolution

of density and temperature ŕuctuations plotted in Fig. 10b and Fig. 10c suggests the effects of Mach number. However,

the proőles do not agree well to show strong similarity behaviors. The absence of the similarity behavior in Fig. 10b and
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Fig. 10 Time evolution of statistics within planar shear layer: (a) momentum thickness, (b) density ŕuctuation,

and (c) temperature ŕuctuation.

Fig. 10c is due to the non-similar behavior of the real-gas EOS model. Unlike the ideal gas model, the real-gas EOS

model scales relative to a őxed thermodynamic state, such as the critical point. Therefore, extra parameter needs to be

introduced to the scaling. As an attempt, the compressibility factor 𝑍 = 𝑝/(𝜌𝑅𝑇) is used, where for ideal gases 𝑍 = 1.

Towards the small ŕuctuating limit, a linearized 𝑝-𝑣-𝑇 model for the ŕuctuating quantities can be written as

𝑝′ ≈ 𝑍𝑅
(
𝜌𝑇 ′′ + 𝜌′𝑇

)
(14)

Compared to that from the ideal gas case, the density and temperature ŕuctuation in response of the same pressure

ŕuctuation is off back a factor of 𝑍 . Inspired from this analysis, a simple and convenient scaling using the information

from free-stream conditions on both sides for density and temperature ŕuctuation can be designed as

𝜌𝑠 =
2𝑝∞

𝑅 (𝑍−∞𝑇−∞ + 𝑍+∞𝑇+∞)
and 𝑇𝑠 =

2Δ𝑇∞
𝑍−∞ + 𝑍+∞

(15)

where 𝜌𝑠 and 𝑇𝑠 are the density and temperature scales respectively. As shown in Fig. 11, the rescaled density ŕuctuation

and temperature ŕuctuation curves collapse much more tightly than the unscaled curves for all cases with freestream

temperature above the pseudo-critical point. The case with freestream temperatures straddling the pseudo-critical point

satisőes the scaling in the proőle of density ŕuctuations, but is unable to follow the similarity behavior after re-scaling.

IV. Turbulent boundary layer
In addition to simulations of compressible shear layers, simulations of zero-pressure-gradient, turbulent boundary

layers with different wall and freestream temperatures were run. The simulations include one case with wall and

freestream temperatures below the Widom line temperature corresponding to 𝑝𝑟 = 3, three cases with wall and

freestream temperatures straddling the Widom line, and one case with both temperatures above the Widom line. Table 3

summarizes all cases run.

Line plots of averaged transport, thermodynamic, and streamwise velocity proőles for all őve cases are shown in

Fig. 14. The proőles are plotted in the 𝑦-𝑧-plane and normalized by corresponding freestream quantities for each case.

The temperature, kinematic viscosity, and density proőles show that for each plot, the curves representing transcritical

temperature conditions exhibit similar trends with increasing normalized 𝑦-coordinate. These trends differ from trends

in the cases corresponding to subcritical and supercritical temperature conditions. In addition, the proőles corresponding
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Fig. 11 Re-normalized density and temperature ŕuctuation proőles.

Case ID 𝑀∞ 𝑝𝑟 𝑇𝑤 𝑇∞ line style

TBL00 0.3 3 0.75 1.05 navy solid

TBL01 0.3 3 0.75 1.50 blue dashed

TBL02 0.3 3 0.90 1.50 red dashdot

TBL03 0.3 3 0.95 1.50 gray solid

TBL04 0.3 3 1.20 1.50 maroon dashdot

Table 2 Parameters used in boundary layer simulations.
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x
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0.5

y

(a)

Fig. 12 Visualizations of density of the boundary layer ŕow in 𝑥-𝑦 plane for the condition 𝑝𝑟 = 3, 𝑇∞ = 1.5, and

𝑇𝑤 = 0.75

to transcritical conditions exhibit sharp gradients in transport properties near the wall. The proőles suggest that the

presence of the Widom line within the turbulent boundary layers, a phenomenon that occurs under transcritical wall and

freestream temperature conditions, alters transport proőles near the wall.

Fig. 15 shows the Reynolds-averaged shear stresses 𝜌𝑢′′𝑢′′, 𝜌𝑢′′𝑣′′, 𝜌𝑣′′𝑣′′, and 𝜌𝑤′′𝑤′′ in the 𝑦-𝑧-plane of the

boundary layer normalized by the wall shear stress 𝜏𝑤 , or semi-local scaling, as outlined by Trettel & Larsson [27].

Recent studies have used the semi-local normalization to scale the Reynolds shear stresses for turbulent ŕows under

transcritical conditions. For instance, Sciacovelli et al. [28] and Kim et al. [29] studied transcritical, turbulent channel

ŕows at supersonic and low-Mach conditions respectively. Kim et al. found a tight collapse of the Reynolds shear

stresses using semi-local scaling while Sciacovelli et al. showed a collapse that aligned the peak locations of the

Reynolds stress curves along 𝑦∗ [28, 29] but not the peak values. The expression for the semi-locally scaled wall

coordinate 𝑦∗ is given as

𝑦∗ =

√︁
𝜏𝑤/𝜌
𝜇/𝜌 𝑦 (16)

The semi-local normalization in Fig. 15 does appear to collapse the Reynolds shear stresses for the őve cases in this

paper; however, the collapse is not as tight as those from the literature [28, 29].

Fig. 16 shows the evolution of the collapse of mean velocity proőles for the őve cases using the classical wall, Van

9

D
o
w

n
lo

ad
ed

 b
y
 S

ta
n
fo

rd
 U

n
iv

er
si

ty
 o

n
 J

an
u
ar

y
 2

9
, 
2
0
2
5
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
4
-1

5
7
9
 



6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z

(a)

Fig. 13 Visualizations of density of the boundary layer ŕow in 𝑥-𝑧 plane for the condition 𝑝𝑟 = 3, 𝑇∞ = 1.5, and

𝑇𝑤 = 0.75
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Fig. 14 Plots of mean transport, thermodynamic, and streamwise velocity proőles in the boundary layers

averaged over time and the 𝑧-direction: (a) density, (b) temperature, (c) streamwise velocity, (d) kinematic

viscosity, (e) thermal conductivity, and (f) dynamic viscosity.

Driest, and Trettel & Larsson scalings [27]. The proőles collapse most tightly for the Trettel & Larsson scaling which

extends the Van Driest scaling by accounting for ŕows with strong wall heat ŕux [27]. However, as with the plots of

scaled Reynolds shear stresses, the collapse is not as tight as the one presented by Sciacovelli et al. [28]. Fig. 15 and 16

suggest that additional scaling may be necessary to fully collapse the Reynolds shear stress and streamwise velocity

proőles especially across cases where the Widom line is present within the boundary layer and where it is not.
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Fig. 15 Plots of normalized Favre shear stress in the boundary layers averaged over time and the 𝑧-direction.
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Fig. 16 Plots of scaled velocity proőles in boundary layers averaged over time and the 𝑧-direction for all őve

cases: (a) classical wall scaling, (b) Van Driest scaling, and (c) Trettel & Larsson scaling.

𝑇∞ 1.05 1.50 1.50 1.50 1.50

𝑇𝑤 0.75 0.75 0.90 0.95 1.20

𝐶 𝑓 (0.0078, 0.0070) (0.013, 0.012) (0.011, 0.009) (0.0096, 0.0086) (0.062, 0.056)

Table 3 Range of values for the coefficient of friction (𝐶 𝑓 ) for representative regions along the streamwise

direction of the boundary layers.
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V. Conclusions
A set of direct numerical simulations of planar shear layer and zero-pressure-gradient boundary layer ŕows are

performed to study the turbulent mixing of CO2 ŕows in transcritical and supercritical regimes. The Peng-Robinson

equation-of-state model [13] and the temperature-pressure-dependent transport models [15] are applied to characterize

dense-gas behaviors. The simulations are conducted using high-order compact őnite difference methods without

numerical őltering or other types of excessive numerical dissipation imposed in the simulation domain of interest that

suppress the growth of turbulent structures. For simulations at high Mach numbers, central-Riemann hybrid ŕuxes

with nonlinear shock-capturing schemes are applied, and the ŕux blending is controlled by a localized physics-based

shock sensor. The simulations of planar shear layer ŕows investigate turbulent mixing at two different convective Mach

numbers, 𝑀𝑐 = 0.2 and 𝑀𝑐 = 1.0. All effects occur at a őxed freestream density ratio of 2 and reduced pressure

𝑝𝑟 = 3. The simulation results indicate that the scaling of the mean velocity proőle, Reynolds stress tensor, and velocity

energy spectra are consistent with those of the variable density mixing in the turbulent shear layers of ideal gases. The

growth of the momentum thickness at same Mach shows a similarity behavior. However, the growth of density and

temperature ŕuctuations do not exhibit strong similarity behavior with classic scaling approaches. The compressibility

factor, 𝑍 , is introduced as a scaling factor to characterize the behavior of real-gas effects. The proposed scaling achieves

a signiőcantly improved similarity behavior in the growth of pressure and temperature ŕuctuations at the supercritical

regime. However, a The simulations of boundary layer ŕows investigate the effects of the presence of the Widom line

within the boundary layer on mean proőles of the transport properties, thermodynamic properties, and streamwise

velocity, Reynolds shear stresses, and different velocity scalings for varied wall and freestream temperatures. The

results demonstrate that the presence of the Widom line causes sharp gradients in transport proőles near the wall. In

addition, scalings proposed in the literature, including the classical, Van Driest, and Trettel & Larsson scalings, collapse

the Reynolds shear stresses and mean velocity proőles but not as tightly as cited in the literature. This suggests that

additional scaling may be necessary to account for the presence of the Widom line within the boundary layer.
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