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A wall-resolved large-eddy simulation of a Mach 0.735 transonic flow over the OALT25
supercritical airfoil is performed using high-order compact finite difference schemes blended
with a shock-capturing method to investigate the laminar shock buffet phenomenon. The airfoil
is placed with an angle of attack of 4 deg., and the chord-length-based Reynolds number is one
million. Data over a span of approximately 178 convective time units are used in the analysis. It
is observed that the flow on the suction side remains laminar up to the separation region, and
then transitions to turbulence. Large amplitude oscillation of the main shock occurs. Associated
with the main shock buffet, periodic movement of the flow separation locations, formation and
disappearance of a terminating shock, and turbulent vortex shedding are well captured in the
simulation. The measurement shows that the shock buffet Strouhal number is approximately
0.1. The second dominant Strouhal number in the flow system is approximately 0.55, which
is associated with turbulent vortex shedding. The variations of aerodynamic coefficients and
signals of several flow properties measured at different probe locations are studied. Spectral
proper orthogonal decomposition of different flow field variables is also conducted to further
identify the correlation between the shock buffet and different flow phenomena.

I. Introduction

The shock oscillations over airfoils or wings in transonic flow is a critical issue in aeronautics [1, 2]. Shock
unsteadiness, or shock buffet, can lead to strong structural vibrations and fluctuations of aerodynamic loads and

moments, thus reducing the envelope of safe flight of an aerial vehicle. While transonic buffet has been studied for
many decades, there is still a lack of full understanding of this shock instability phenomenon. Shock buffet in turbulent
boundary layers, called turbulent buffet, has been widely studied both numerically and experimentally for a long period
of time. Numerous experiments have been conducted using low-aspect ratio two-dimensional wings, or airfoils such
as OAT15A [3], NACA0012 [4], RA16SC1 [5]. The turbulent buffet phenomena was also studied through numerical
simulations such as Reynolds-averaged Navier–Stokes (RANS) simulations [6–8], hybrid RANS / large-eddy simulations
(LES) [9–11], and wall-modeled large-eddy simulations (WMLES) [12–14].

In recent years, supercritical airfoils, or wings designed to generate extended laminar flow, are becoming more
popular for the design of next-generation aircrafts [15], where low drag and high fuel efficiency are aimed for. Due to
the emerging popularity of these laminar lifting devices, the study of laminar buffet, which involves the interaction of a
laminar boundary layer with oscillating shocks, is becoming more critical. Unlike turbulent buffet that usually only
involves a single oscillating shock on the suction side of an airfoil or wing, there can be multiple shocks involved in
laminar buffet, and the shock structures can also be very complex [16]. To understand laminar transonic buffet, wind
tunnel tests on laminar supercritical airfoils such as OALT25 designed by ONERA and V2C designed by Dassault
Aviation were conducted under the BUTERFLI project [17] and the TFAST project [18, 19] respectively. In addition
to wind tunnel tests, these problems were also studied with numerical simulations. Laminar buffet on the OALT25
airfoil configurations has been investigated in [20, 21] using LES, whereas the V2C airfoil was studied numerically
with various simulation approaches [22–25]. For the OALT25 airfoil case, Dandois et al. [20] found higher frequency
oscillations of the shock foot at the Strouhal number, St ≈ 1.2, from their simulations, in contrast to the lower shock
buffet Strouhal number of St ≈ 0.07 observed in the experiments [17] at the same Reynolds number. Zauner et al. [21]
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conducted LES for transonic flows around the OALT25 airfoil at different Reynolds numbers and Mach numbers. They
found a shock oscillation mode at the Strouhal number similar to the intermediate-frequency mode reported by Dandois
et al. [20] but also another lower frequency mode. While this low-frequency mode has Strouhal number and mode
shape similar to some previous studies on turbulent shock buffet [3, 9, 14, 26], it occurs under the conditions that the
boundary layer upstream of the shock is laminar. These conditions are fundamentally different than the aforementioned
works where the mode is usually suggested to be associated with fully turbulent boundary layers. Laminar buffet is still
a newly discovered phenomenon and the underlying mechanism is relatively unexplored. The fact that the boundary
layer is laminar before interacting with the shock foot requires well resolved solutions at direct numerical simulation
(DNS) level near wall to reproduce the phenomenon in simulations. This is more challenging to study than turbulent
buffet, especially at high Reynolds numbers of over 1 million for a laminar airfoil, as turbulent buffet can be studied
using different turbulence approaches, such as RANS, hybrid RANS / LES, or WMLES, without the need to resolve the
inner eddies of the boundary layers.

This work focuses on understanding the physical mechanisms that cause transonic, laminar shock buffet on a laminar
supercritical airfoil. The study uses data generated from a wall-resolved LES of transonic flow over the OALT25
airfoil [17] at a Reynolds number of 1 million. The simulation details are provided in Sec. II. The simulation results and
data analysis are shown in Sec. III. Finally, the conclusion is given in Sec. IV.

II. Simulation setups

A. Physical formulation
The simulation solves the compressible Navier–Stokes equations using the wall-resolved LES approach, which

includes the conservation of mass, momentum, and total energy:

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢 𝑗

𝜕𝑥 𝑗

= 0, (1)

𝜕𝜌𝑢𝑖

𝜕𝑡
+ 𝜕

𝜕𝑥 𝑗

(
𝜌𝑢𝑖𝑢 𝑗 + 𝑝𝛿𝑖 𝑗

)
=

𝜕𝜎𝑖 𝑗

𝜕𝑥 𝑗

, (2)

𝜕𝜌𝑒

𝜕𝑡
+ 𝜕

𝜕𝑥 𝑗

[
(𝜌𝑒 + 𝑝) 𝑢 𝑗

]
=

𝜕

𝜕𝑥 𝑗

(
𝑢𝑖𝜎𝑖 𝑗 + 𝜅

𝜕𝑇

𝜕𝑥 𝑗

)
. (3)

The equations are written in index notation, where 𝑥𝑖 and 𝑡 are the spatial coordinate vector and time respectively. 𝜌 is
the density, 𝑢𝑖 is the velocity vector, 𝑝 is the pressure, 𝛿𝑖 𝑗 is the identity tensor, 𝜎𝑖 𝑗 is the viscous stress tensor, 𝑒 is the
specific total energy, 𝜅 is the total thermal conductivity, and 𝑇 is the temperature. The primitive variables, 𝜌, 𝑢𝑖 , and 𝑇

are interpreted as the filtered quantities supported by the computational grid resolution compared to the full range of
length scales of the turbulent structures. The subgrid-scale (SGS) models are absorbed into the transport properties
based on the Boussinesq hypothesis [27]. The fluid is assumed to be calorically perfect with the ideal gas equation of
state:

𝑝 = 𝜌𝑅𝑇, (4)

where 𝑅 is the specific gas constant. The total energy contains two components, 𝑒 = 𝑒th + 𝑢 𝑗𝑢 𝑗/2, where the internal
energy and kinetic energy are the first and second terms on the right hand side of the equation. For a calorically perfect
gas, the specific internal energy can be calculated as

𝑒th =
𝑅𝑇

𝛾 − 1
, (5)

where 𝛾 is the ratio of specific heats that remains as a constant. The viscous stress tensor is calculated as

𝜎𝑖 𝑗 = 2𝜇𝑆𝑖 𝑗 +
(
𝛽 − 2

3
𝜇

)
𝑆𝑘𝑘𝛿𝑖 𝑗 , (6)

where 𝜇 is the total dynamic shear viscosity, 𝛽 is the bulk viscosity, and 𝑆𝑖 𝑗 is the rate-of-strain tensor which is calculated
as

𝑆𝑖 𝑗 =
1
2

(
𝜕𝑢𝑖

𝜕𝑥 𝑗

+
𝜕𝑢 𝑗

𝜕𝑥𝑖

)
. (7)
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The total dynamic shear viscosity, 𝜇, includes two components, 𝜇 = 𝜇̌ + 𝜇SGS, where 𝜇̌ is computed using the power-law
relation as a physical model:

𝜇̌ = 𝜇ref (𝑇/𝑇ref)0.76 , (8)

and 𝜇SGS is calculated based on the Vreman’s SGS model [28]. The bulk viscosity only considers the physical component,
which is set to be directly proportional to the physical dynamic shear viscosity [29]:

𝛽 = 0.67𝜇̌. (9)

No SGS model is applied to the dynamic bulk viscosity in this simulation. The total thermal conductivity also contains
the computable physical and SGS components, 𝜅 = 𝜅 + 𝜅SGS. The computable physical component, 𝜅 is calculated
based on a constant Prandtl number, Pr:

𝜅 = 𝑐𝑝 𝜇̌/Pr, (10)

where 𝑐𝑝 is the specific heat at constant pressure. For a calorically perfect gas, 𝑐𝑝 is calculated as 𝑐𝑝 = 𝛾𝑅/(𝛾 − 1).
The SGS component is calculated based on a constant turbulent Prandtl number, Pr𝑡 , as follows.

𝜅SGS = 𝑐𝑝𝜇SGS/Pr𝑡 . (11)

In this simulation, the physical and turbulent Prandtl numbers are set to Pr = 0.7 and Pr𝑡 = 1 respectively.

𝑥

𝑦

c
𝛼

𝑀∞
𝑝∞
𝑇∞
𝜌∞
𝜇∞

Fig. 1 Schematics of problem configuration.

Transonic flow past the OALT25 supercritical airfoil is investigated in this work. The problem configuration is
shown in Fig. 1. The airfoil is placed with the chord aligned in the 𝑥-direction, and the chord length is denoted as 𝑐. The
uniform free-stream conditions are specified by the Mach number 𝑀∞ and angle of attack 𝛼. The Mach number is
defined as 𝑀∞ = 𝑈∞/𝑎∞, where 𝑈∞ and 𝑎∞ are the flow speed and the speed of sound in the free-stream respectively.
With the given thermodynamic values of 𝑇∞ and 𝑝∞, the speed of sound for a calorically perfect gas, can be calculated
as 𝑎∞ =

√
𝛾𝑅𝑇∞. The chord-based Reynolds number is defined as Re𝑐 = 𝜌∞𝑈∞𝑐/𝜇∞, where 𝜌∞ and 𝜇∞ are the density

and dynamic shear viscosity in the free-stream respectively. The free-stream is assumed to be laminar, so 𝜇SGS = 0 is
implied in the far-field.

B. Numerical methods
The schematic of the computational configuration is shown in Fig. 2. The computational domain is circular in the

𝑥-𝑦 plane. The domain has a radius of 𝑅dom = 70𝑐. The far-field flow region is regularized with the numerical sponge
using the free-stream conditions. The numerical sponge layer starts from 𝑅spg = 50𝑐. The simulation uses a hybrid
central-Riemann flux with the explicit SGS model in the regions within the radius of 𝑅LES, while a pure Riemann
flux, calculated using an upwind-biased shock-capturing scheme, is applied beyond the radius 𝑅LES. In this work,
𝑅LES = 1.55𝑐 is used based on the grid resolution as well as the domain of interest.

The simulation is conducted using sixth-order compact finite difference methods [30] arranged in a high-resolution
computational framework without numerical filtering [31]. Shock-capturing capability is coupled with the compact
finite difference method in the convective flux discretization through a physics-based extension of the weighted compact
nonlinear scheme (WCNS) approach [32–36]. The shock-capturing method is based on explicit fifth-order interpolation
using the nonlinear weights of the weighted essentially non-oscillatory scheme (WENO5-Z) [37] and the Rusanov-type
(local Lax–Friedrichs) Riemann flux [38] as a Riemann solver. To localize the numerical dissipation introduced by the
shock-capturing scheme, the Riemann flux is hybridized with the central flux controlled by the modified Ducros sensor
𝜙 defined as follows:

𝜙 =
−𝜃 |𝜃 | + 𝜀2

𝜃2 + 𝝎 · 𝝎 + 𝜀2 , (12)
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numerical sponge

airfoil object
𝑅spg

𝑅dom

upwind region

LES region

𝑅LES

(a)
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(b)

Fig. 2 Simulation configurations shown in 𝒙-𝒚 plane: (a) schematics of computational domain setup; and (b)
visualization of computational mesh (down-sampled for better visualization) near the airfoil in the 𝒙-𝒚 plane.
The computational domain is periodic and homogeneous in the 𝒛-dimension, with uniform computational grid
spacing.

where 𝜃 = ∇ · 𝒖 is the velocity dilatation, 𝝎 = ∇× 𝒖 is the vorticity vector, and 𝜀 is a small constant set to 𝜀 = 1× 10−16

to avoid division by zero. The simulation in this work uses binary flux blending with a specified threshold sensor value
𝜙TH = 0.4. When 𝜙 > 𝜙TH, the Riemann flux is used; otherwise, only the central flux is used. The time advancement is
conducted using the three-stage third-order strong-stability-preserving Runge–Kutta (SSPRK3) method [39] with an
adaptive time step controlled by the global Courant–Friedrichs–Lewy (CFL) condition [40]. A CFL number of 0.95 is
used for the simulation, and the time step size is mainly limited by the near-wall mesh spacing with the global CFL
condition.

The simulation is deployed on an O-typed computational mesh in the 𝑥-𝑦 plane generated by smooth orthogonal
hyperbolic extrusion from the airfoil geometry. To avoid spurious numerical oscillations caused by the interaction
between any non-smooth geometry components and the high-order numerical schemes on a curvilinear mesh, the
trailing edge starting from 𝑥 = 0.997𝑐 on each side of the airfoil is smoothed using a quadratic Bézier curve [41] while
maintaining the original chord length. The grid size is stretched along the airfoil wall-normal direction to resolve
the boundary layer flow. Since 𝛼 > 0 for the flow under investigation, the computational grid along the stream-wise
direction is highly refined on the suction side to capture the shock waves and resolve the Mach waves and turbulent
structures at fine scales. The computational domain is periodic in the spanwise 𝑧-direction with a span of 𝑊 = 0.25𝑐.
The computational grid spacing is uniform in the spanwise direction. The computational mesh size is 420 × 3072 × 512
in the radial, azimuthal, and span-wise directions respectively.

C. Justification of model and numerical dissipation
A brief justification of both the SGS and numerical dissipation for shock-capturing is provided by comparing the

instantaneous flow fields of the numerical Schlieren imaging, the relative SGS eddy viscosity, and the modified Ducros
sensor, as shown in Fig. 3. The relative SGS eddy viscosity is defined as 𝜇SGS/𝜇̌, and the modified Ducros sensor is
already stated in Eq. (12). Based on the comparison shown in Fig. 3, the SGS terms are only locally turned on in regions
containing the turbulent flow features. In the near-wall region, 𝜇SGS/𝜇̌ ∼ O(1), and in the wake region farther away
from the airfoil trailing edge, 𝜇SGS/𝜇̌ is close to but still lower than 10. The use of Riemann fluxes is highly localized at
shocks and strong compression waves, and the numerical dissipation from the shock-capturing scheme is essentially
not in effect in the turbulence regions. Additionally, comparing the plots of 𝜇SGS and 𝜙, it can be confirmed that the
activation of shock-capturing scheme simultaneously suppresses the SGS model locally to avoid imposing excessive
numerical dissipation, which can help capture the shock-turbulence interaction more accurately [42].

III. Results and discussions
The analysis illustrated in this section is based on the data of wall-resolved LES described in Sec. II. In this work, the

free-stream Mach number of the problem is set as 𝑀∞ = 0.735 and the Reynolds number is Re𝑐 = 1 × 106. The angle
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Fig. 3 Visualizations of relative model and numerical dissipation imposed in the simulation: (a) numerical
Schlieren imaging; (b) ratio of SGS eddy viscosity to the physical viscosity, 𝝁SGS/𝝁̌; and (c) modified Ducros
sensor, 𝝓, shown in Eq. (12), where shock-capturing scheme is used when 𝝓 > 0.4.

of attack is chosen to be 𝛼 = 4◦ for shock buffet to occur. The simulation time is normalized by the convective time
unit (CTU), which is defined as 1 × CTU = 𝑐/𝑈∞. After the initial transient stage, the simulation data are collected
at a fixed time interval, about 0.02174 CTUs. Data, including 8192 snapshots, are used for post-simulation analysis,
which is over a span of approximately 178 CTUs. In the following context, the visualization-based observation of shock
buffet and the related flow structures is described in Sec. III.A. Detailed analysis of signals at selected probe locations is
illustrated in Sec. III.B. Finally, the low-rank model analysis based on the spectral proper orthogonal decomposition
(SPOD) is discussed in Sec. III.C.

A. Visualizations of shock buffet and related flow structures

Fig. 4 Visualization of 3D instantaneous flow fields at around 137th CTU around the gray airfoil geometry,
where the cross-sectional view shows numerical Schlieren imaging and the iso-surfaces show 𝑸-criterion at the
value of around 2644.4. The iso-surface is colored by the value of local Mach number.

An instantaneous three-dimensional (3D) flow visualization is shown in Fig. 4. The visualization contains cross-
sectional numerical Schlieren imaging, indicated by |∇𝜌 | (𝑐/𝜌∞), and iso-surfaces of the normalized 𝑄-criterion at a
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value of around 2644.4. The definition of the normalized 𝑄-criterion used in this work is

𝑄 =
1
2

(
𝜃2 + 1

2
𝜔 𝑗𝜔 𝑗 − 𝑆𝑖 𝑗𝑆𝑖 𝑗

) (
𝑐

𝑈∞

)2
.

The iso-surfaces are colored by the local Mach number. The visualization indicates that the subsonic free-stream flow
accelerates to supersonic conditions through an expansion near the leading edge. The flow on the suction side is initially
laminar from the leading edge. Then, the boundary layer separates and transitions to turbulence. A strong compression
wave (weak oblique shock) / the front-branch of a 𝜆-shock forms in front of the laminar separation points and interacts
with the laminar boundary layer. The main shock forms slightly after the boundary layer transitions to turbulence. A
terminating shock behind the main shock is observed in the visualization at this time instant. This is similar to what
is shown in some of the simulation cases of the same airfoil at different Reynolds numbers [21]. The transitional
turbulent boundary layer generates strong acoustic waves which propagate into the slightly far-field regions. Turbulent
vortex shedding associated with the unsteadiness of the transitional separated boundary layer also occurs. The turbulent
structures, visualized by the 𝑄-criterion, suggest sufficient decorrelation in the span-wise periodic and homogeneous
computational domain of a quarter of a chord length.
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Fig. 5 Visualization of 2D instantaneous flow fields: (a)–(d) numerical Schlieren imaging; (e)–(h) velocity
dilatation; (i)–(l) local Mach number with sonic lines marked. The visualizations are given at 131.8th CTU for (a),
(e), and (i), 134.2th CTU for (b), (f), and (j), 136.6th CTU for (c), (g), and (k), and 139.0th CTU for (d), (h), and (l).

A set of two-dimensional (2D) visualizations is shown in Fig. 5 at four successive time instants with an approximately
fixed time interval between them. Combined with the 3D visualization, Fig. 5 shows that the up-travelling waves
originating from the turbulent boundary layer become steeper along their propagation direction into the slightly far-field
regions and form large-scale wave fronts. Some steepened waves merge and form short-lasting shocks. Across the
main shock, the flow changes from supersonic to subsonic. Near the back of the main shock foot region, an expansion
region periodically forms where the flow re-accelerates to supersonic state. The re-accelerated flow eventually switches
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back to subsonic again through a periodically formed terminating shock which is caused by the steepening of the
up-traveling strong acoustic waves in the re-accelerated supersonic flow. Based on the observation, after-shock expansion
and terminating shock mostly form behind a retreating shock that moves towards the trailing-edge direction. While
the main shock moves downstream, the expansion wave is strengthened. The terminating shock forms at the end of
expansion region and is being pushed farther downstream. When the main shock moves upstream, the expansion wave
becomes weaker. The terminating shock also moves forward and eventually merges into the advancing main shock. The
up-traveling acoustic waves originating from the turbulent wake also steepen while they are propagating upstream and
interact with the flow near the main shock region.

B. Analysis of aerodynamic coefficients and locally probed signals
The pressure coefficient, 𝐶𝑝 = 2(𝑝 − 𝑝∞)/(𝜌∞𝑈2

∞), and skin-friction coefficient, 𝐶 𝑓 = 2𝜏𝑤/(𝜌∞𝑈2
∞), are measured

at the airfoil surface, where 𝜏𝑤 is the local wall shear stress. The results are averaged in both span-wise direction and
time. The distribution of 𝐶𝑝 and 𝐶 𝑓 and their temporal fluctuation magnitude, indicated by the symmetric intervals of
their standard deviations of the span-wise averaged values, are shown in Fig. 6. Combined with the visualizations shown
in Sec. III.A, it is seen that in the region where the foot of 𝜆-compression wave / shock in front of the laminar separation
point (0.2 < 𝑥/𝑐 < 0.3) occurs, large fluctuations in 𝐶𝑝 and 𝐶 𝑓 are observed compared to the neighboring regions.
The laminar separation point mostly varies in the region of 0.30𝑐 – 0.42𝑐. After the flow transitions to turbulence,
significant fluctuations in both 𝐶𝑝 and 𝐶 𝑓 are observed due to the turbulent vortex shedding.
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0.020
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(b)

Fig. 6 Distributions of mean 𝑪𝒑 and 𝑪 𝒇 , their fluctuations indicated by the symmetric intervals of their
temporal standard deviations (marked by the blue shading). The plot of 𝑪 𝒇 only shows the distribution on the
suction side.

To further investigate the time history, the 𝑥-𝑡 diagram of 𝐶 𝑓 on the suction side and the power spectral density
(PSD) are provided in Fig. 7. The PSD is generated using the discrete Fourier transform in the time dimension. Welch’s
method [43] is applied to achieve a better convergence of statistics, and each windowed data segment contains 3072
snapshots and 87.5% overlap between each sequential segment. The Hann window is applied to each segment to prevent
spectral leakage. In addition, the PSDs are normalized using the 𝑈∞/𝑐 and the squared reference value for each quantity
(if the quantity is not normalized). For instance, 𝑝2

∞ is the squared reference value used for the pressure. Comparing
the 𝑥-𝑡 diagram of 𝐶 𝑓 shown in Fig. 7 with the flow visualizations in Fig. 5, the strong negative 𝐶 𝑓 near 𝑥/𝑐 = 0.5 is
caused by the flow separation and transition to turbulence in the separate flow. The oscillation, or periodic growing
and detaching, of the separation bubbles is strongly correlated with the vortex shedding. The propagation of shedding
vortices is characterized by the interleaved trajectories of the positive and negative contours of 𝐶 𝑓 in the 𝑥-𝑡 diagram in
the region where 𝑥/𝑐 > 0.6. The PSD of 𝐶 𝑓 in Fig. 7 indicates that such vortex shedding is at the non-dimensional
frequency St ≈ 0.55, where for a given dimensional frequency 𝑓 , the definition of the non-dimensional frequency, also
known as the Strouhal number, is defined as St = 𝑓 𝑐/𝑈∞. Along the 𝑥-dimension in the PSD contour, higher fluctuation
energy locates in the foot of 𝜆-compression wave / shock region (0.2 < 𝑥/𝑐 < 0.3) and turbulent flow region (𝑥/𝑐 > 0.6).
In contrast, relatively less fluctuation energy is measured by 𝐶 𝑓 near the laminar separation point (𝑥/𝑐 ≈ 0.3). Along
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the St-dimension, a peak at lower frequency, St ≈ 0.1 is detected beside the shedding frequency at St ≈ 0.55, which is
also observed in the 𝑥-𝑡 diagram in Fig. 7a. The corresponding location of the peak at the frequency of St ≈ 0.1 is near
0.5 < 𝑥/𝑐 < 0.7 where the main shock, expansion wave, and terminating shock appear.
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Fig. 7 Temporal variation of the span-wise averaged 𝑪 𝒇 on the suction side: (a) 𝒙-𝒕 diagram within a range of
160CTUs; (b) zoomed-in 𝒙-𝒕 diagram within a range of 20CTUs; (c) spatial distribution of PSD.
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Fig. 8 Time histories of (a) lift coefficient, 𝑪𝑳 , and (b) drag coefficient, 𝑪𝑫.
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Fig. 9 PSD plots of (a) lift coefficient, 𝑪𝑳 , and (b) drag coefficient, 𝑪𝑫.

The time series of lift coefficient, 𝐶𝐿 , and drag coefficient, 𝐶𝐷 are shown in Fig. 8, and their PSDs are shown in
Fig. 9. The lift and drag coefficients are calculated by integrating the pressure and shear stress over the whole airfoil.

𝐶𝐿,𝐷 =
1

𝐴airfoil

∮
airfoil

(
𝐶 𝑓 𝒕 − 𝐶𝑝 𝒏̂

)
· 𝒆𝐿,𝐷𝑑𝐴
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where 𝐴airfoil is the total area of the airfoil surface, 𝒕 is the unit tangential vector of the airfoil in the 𝑥-𝑦 plane, 𝒏̂ is the
unit outgoing normal vector of the airfoil geometry, and 𝒆𝐿,𝐷 is the unit reference vector. For the calculation of 𝐶𝐿 ,
𝒆𝐿 = −𝒆𝑥 sin𝛼 + 𝒆𝑦 cos𝛼, and for the calculation of 𝐶𝐷 , 𝒆𝐷 = 𝒆𝑥 cos𝛼 + 𝒆𝑦 sin𝛼, where 𝒆𝑥 and 𝒆𝑦 are the unit vectors
in the 𝑥 and 𝑦 directions respectively. The oscillations of 𝐶𝐿 and 𝐶𝐷 , as the integrated aerodynamic coefficients, also
contains the two dominant frequencies, same as the values measured in the 𝐶 𝑓 profile on the suction side, where the
oscillation at St ≈ 0.55 is identified as caused by the turbulent vortex shedding.
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Probe set 0: ∆yn/c = 0.01

Probe set 1: ∆yn/c = 0.20

Probe set 2: ∆yn/c = 0.90

Fig. 10 Schematic of probing locations relative to the airfoil.

In order to further investigate the Strouhal number at St ≈ 0.1, three line sets of numerical probes are placed at fixed
locations to sample the local signals in time. The locations are determined by normal extrusion of the airfoil surface
on the suction side from 𝑥/𝑐 = 0.05 to 𝑥/𝑐 = 0.95. The normal extrusion displacements, Δ𝑦𝑛, are set to 0.01𝑐, 0.2𝑐,
0.9𝑐. At each reference surface in the 𝑥-𝑦 plane, 512 numerical probes are created. The labeling nomenclature of the
numerical probes and their locations are shown in Fig. 10. The probe set 0 is used to diagnose the near-wall region, the
probe set 1 is used to measure the main shock buffet, and the probe set 2 is used to sense the flow outside the sonic line.
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Fig. 11 𝒙-𝒕 diagrams of data collected by the probe set 0: (a), (b) pressure (normalized by 𝒑∞); and (c), (d)
velocity dilatation (normalized by 𝑼∞/𝒄). (b) and (d) zoom in a shorter range of time compared to (a) and (c)
respectively.

The pressure and velocity dilatation collected by the line probe sets 0, 1, and 2 are shown in Fig. 11, Fig. 12, and
Fig. 13 respectively as 𝑥-𝑡 diagrams. Both the short-term (range of 20 CTUs) and long-term (range of 160 CTUs) are
plotted. At the probe set 0 location, both transition and vortex shedding are captured by the pressure and dilatation
signals. Moreover, the dilatation 𝑥-𝑡 diagram also captures the motion of the 𝜆-compression wave / shock in front of the
laminar separation point. Its unsteadiness highly correlates with vortex shedding. Additionally, the lower frequency can
be observed in the long-term 𝑥-𝑡 diagram. It can be also seen that strong fluctuating dilatational motion occurs in the
region where flow transitions to turbulence which creates strong acoustic radiation. The location of the probe set 2 is set
in the free-stream region across the main shock location. Both pressure and velocity dilatation signals clearly capture
the main shock buffet as shown in Fig. 13. It can be seen that the main shock buffet is primarily at the low-frequency,
but its buffet trajectory is also affected by the vortex shedding frequency. Specifically from the dilatation 𝑥-𝑡 diagram in
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Fig. 12 𝒙-𝒕 diagrams of data collected by the probe set 1: (a), (b) pressure (normalized by 𝒑∞); and (c), (d)
velocity dilatation (normalized by 𝑼∞/𝒄). (b) and (d) zoom in a shorter range of time compared to (a) and (c)
respectively.
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Fig. 13 𝒙-𝒕 diagrams of data collected by the probe set 2: (a), (b) pressure (normalized by 𝒑∞); and (c), (d)
velocity dilatation (normalized by 𝑼∞/𝒄). (b) and (d) zoom in a shorter range of time compared to (a) and (c)
respectively.

Fig. 12 the formation of strong compression waves behind the main shock which partially extended from the terminating
shock in the lower region can be observed, and these waves eventually merge into the main shock. In between, the 𝑥-𝑡
diagram also captures the periodic expansion waves after the main shock. The signals outside the sonic line collected by
the probe set 2 shown in Fig. 13 are dominated by the upstream-traveling waves, and the signal variations contain both
higher and lower frequencies as observed from the signals sensed by other sets of probes.
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Fig. 14 Normalized PSD contours of pressure signals at the locations of (a) probe set 0, (b) probe set 1, and (c)
probe set 2.

10

D
ow

nl
oa

de
d 

by
 S

ta
nf

or
d 

U
ni

ve
rs

ity
 o

n 
Ja

nu
ar

y 
29

, 2
02

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
4-

21
48

 



The PSD contours of the pressure signals sampled by all three line probe sets are shown in Fig. 14. By comparison,
it can be seen that the signal at all three locations have the same two dominant frequencies at St ≈ 0.1 and St ≈ 0.55
respectively. Additionally, in Fig. 14b the high spectral energy is mostly peaked in the region where 0.5 < 𝑥/𝑐 < 0.6
and St ≈ 0.1. This feature confirms that the low-frequency peak at St ≈ 0.1 is the shock buffet Strouhal number. With
this, revisiting the PSD of 𝐶 𝑓 shown in Fig. 7, besides the regular turbulent vortex shedding at St ≈ 0.55, the motion of
the compression wave / 𝜆-shock, laminar separation points, transition to turbulence, and variation vortex shedding at a
longer time range are all correlated with the shock buffet Strouhal number at St ≈ 0.1. It can be also seen that both
vortex shedding and shock buffet strongly affect the variations of the integrated aerodynamic coefficients, 𝐶𝐿 and 𝐶𝐷 .

C. Low-rank modal analysis
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Fig. 15 Spectra of the top 10 eigenvalues at each Strouhal number obtained by (a) pressure norm, 𝒑, (b) density
weighted dilatation norm, 𝝆𝜽 , and (c) enstrophy norm, 𝝆𝝎 𝒋𝝎 𝒋/2.

To further investigate the correlation between the shock buffet and other flow structures, a low-rank modal analysis
is conducted using SPOD [44, 45]. SPOD is a special form of the more popular “standard” proper orthogonal
decomposition (POD) method which was introduced as a data-driven approach to the study of fluid mechanics by Lumley
[46]. In this approach, POD modes are extracted using the two-point spatial correlation tensor based on the chosen
definition of energy norm or inner product. These POD modes are the most optimal modes in which a subset of the
modes can reconstruct a large portion of the energy defined by the inner product. The spectral POD, or SPOD, is
different from the “standard” POD as the former has a space-time decomposition under the assumption that the flow
data is statistically stationary while the latter only considers correlation in space and not the sequential ordering of
data in time. As a result, SPOD can extract modes that are coherent in both space and time while the “standard"
POD only gives spatially coherent modes [44]. While SPOD has been re-introduced recently [44, 45], much of the
original literature relating to it stems from the early works by Lumley [46, 47]. SPOD has been used for the analysis of
different turbulent flows, such as jet flows [48, 49], wakes behind a disk [50], channel flows [51], flows past aerodynamic
devices [14, 21, 52, 53], etc.

In this work, SPOD analysis is conducted with three different scalar energy norms including pressure, 𝑝, density
weighted dilatation, 𝜌𝜃, and enstrophy, 𝜌𝜔 𝑗𝜔 𝑗/2. The settings of the SPOD solver are similar to those used for PSD
calculations. The bin size is set to 3072 with 87.5% overlap between each neighboring bins. With 8192 total data
snapshots used in this study, a total of 14 bins can be obtained. The top 10 eigenvalues, 𝜆, at each frequency in the
descending order of the energy are plotted in Fig. 15. All three scalar energy norms can detect the shock buffet mode
at St ≈ 0.1 because of the presence of the peaks at the corresponding Strouhal number in the spectra. The pressure
and enstrophy norms are able to clearly capture the vortex shedding mode at a higher Strouhal number of St ≈ 0.55.
As expected, the dilatation norm is not sensitive to the vortex shedding mode since vortex shedding does not cause
dilatation as strong as shocks. At each peak of the first eigenvalue profile, clearly low-rank behavior is obtained since
the first mode is much more energetic than the other modes. Three representative energetic SPOD eigenmodes, at
St1 ≈ 0.105, St2 ≈ 0.554, and St3 ≈ 1.093 are selected for further investigation of their eigenvector behaviors. The
SPOD mode at St3 has been reported as the mode corresponding to the boundary layer separation and free-transition
due to the Kevin–Helmholtz instability in the prior studies [20, 21, 25]. The selected modes are marked in Fig. 16.

The eigenvectors calculated using all three scalar energy norms at the shock buffet Strouhal number (St1 ≈ 0.105)
are shown in Fig. 17. The eigenmodes are visualized at four different phase angles, 𝜑, within the range of 𝜑 ∈ [0, 𝜋),
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Fig. 16 Selected SPOD eigenmodes at St1 ≈ 0.105, St2 ≈ 0.554, and St3 ≈ 1.093, plotted with the SPOD
eigenvalue spectra of pressure.
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Fig. 17 The first SPOD mode at the shock buffet Strouhal number (St1 ≈ 0.105) obtained with the pressure norm
(first row), density-weighted dilatation norm (second row), and enstrophy norm (third row). The eigenmodes are
visualized at four phase angles, 𝝋, within the range of 𝝋 ∈ [0, 𝝅).

with the phase angle defined as 𝜑 = 2𝜋St𝜏 where St is the Strouhal number and 𝜏 = 𝑡𝑈∞/𝑐 is the non-dimensional
time. The eigenvector calculated by the pressure norm captures the low-frequency variation in the turbulent vortex
shedding, which is consistent with that calculated by the enstrophy norm. Near the trailing edge, this mode propagates
downstream. However, closely behind the main shock foot, the information travels upwards outside the sonic line and
propagates upstream. This behavior is captured by the SPOD modes calculated by both pressure and dilatation norms.
The observation is consistent with what is reported in the study of turbulent shock buffet using resolvent analysis [14].
Combined with the flow visualizations, this mode is highly correlated with the periodic formations of expansion waves
and terminating shocks. Furthermore, the pressure mode also reveals the upstream traveling waves originating from the
trailing edge on the pressure side of the airfoil. The eigenmode calculated from the enstrophy norm also reveals the
low-frequency movement of the laminar-to-turbulent transition point. This behavior shows synchronized response in
the separated region causing the low-frequency breathing in the separated turbulent region behind the main shock at a
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chord-length scale.
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Fig. 18 The first SPOD mode at the turbulent vortex shedding Strouhal number (St2 ≈ 0.554) obtained with
the pressure norm (first row) and enstrophy norm (second row). The eigenmodes are visualized at four phase
angles within the range of 𝝋 ∈ [0, 𝝅).

The eigenmodes calculated with the pressure and enstrophy norms at the turbulent vortex shedding Strouhal number
(St2 ≈ 0.554) are shown in Fig. 18. Near the trailing-edge, the pressure SPOD mode indicates the non-radiating
pseudo-sound behavior associated with the shedding vortex. The enstrophy SPOD mode indicates the evolution of the
separation bubble which contributes to the successive formation of the shedding vortices. Similar to the SPOD modes at
the buffet Strouhal number, St1, upstream-travelling waves above the sonic line are observed over the shock, which
creates possibility for a feedback control loop. These waves are from both the regions behind the main shock foot as
well as the vortex street. It is also observed from the pressure SPOD mode that the information originating in front of
the main shock foot propagates through the shock from the near-wall low speed region. The wave passing through the
shock foot contributes to both vortex shedding and upward propagation waves behind the shock to form the feedback
control loop. Additionally, a portion of the wave originating in front of the shock foot propagate upstream within the
boundary layer and enters the external flow. These waves continuously merge into the 𝜆-compression wave / shock.
Furthermore, upstream traveling waves on the pressure side are also observed.
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Fig. 19 The first SPOD mode at the laminar separation Strouhal number (St ≈ 1.093) obtained with different
energy norms. The eigenmodes are visualized within the range of phase angle 𝝋 ∈ [0, 𝝅).

The pressure and enstrophy mode shapes at the boundary layer separation / free-transition Strouhal number
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(St3 ≈ 1.093) are shown in Fig. 19. Unlike the simulation of the same airfoil at higher Reynolds number reported in
the prior study [20], neither pressure or enstrophy modes at this Strouhal number carries dominant energy as strong
as those of the modes at the shock buffet Strouhal number and vortex shedding Strouhal number. Nevertheless, the
pressure mode shape shows a wide range of spatial correlation, and the wave pattern is similar to that at the vortex
shedding Strouhal number (St2 ≈ 0.554). Compared to the vortex shedding mode, the separation mode includes finer
scale features. It is also noted that this laminar separation / free-transition Strouhal number is overlapped in the range of
potential harmonic mode of the vortex shedding Strouhal number.

IV. Conclusions
A high-resolution wall-resolved LES of a transonic flow over the OALT25 laminar supercritical airfoil was performed

at 𝑀∞ = 0.735, Re𝑐 = 1 × 106, and 𝛼 = 4◦. The simulation was conducted using high-order compact finite difference
methods with hybrid central-Riemann fluxes. The use of the shock-capturing scheme is controlled by a physics-based
shock sensor, and the numerical dissipation from the shock-capturing is not imposed in the turbulence region. Data
including 8192 snapshots over a span of approximately 178 CTUs were used in the analysis. The instantaneous flow and
wave structures were visualized and discussed. The flow conditions were locally sensed on the airfoil surface and at three
reference lines created via orthogonal extrusion of the airfoil wall boundary on the suction side during the simulations.
Clear shock buffet phenomenon was observed in both flow visualization and the 𝑥-𝑡 diagram of velocity dilatation
sensed in the free-stream above the suction side of the airfoil. Two dominant Strouhal numbers were detected from the
variations of the integrated aerodynamic coefficients, 𝐶𝐿 and 𝐶𝐷 . The lower Strouhal number is at St ≈ 0.1, which is
identified to be due to the shock buffet. The higher Strouhal number is at St ≈ 0.1, which is caused by the turbulent
vortex shedding. SPOD analysis was conducted using the scalar norms of pressure, density-weighted dilatation, and
enstrophy respectively. The shock buffet frequency are captured by all three norms. The eigenvalue spectra calculated
using the pressure norm and enstrophy norm also capture the vortex shedding frequency. The SPOD eigenmodes at three
selected Strouhal numbers, corresponding to the shock buffet (St1 ≈ 0.105), vortex shedding (St2 ≈ 0.554), and laminar
separation / free-transition which were identified in the related study [20, 21, 25], (St3 ≈ 1.093), were visualized. The
result implies that the flow fluctuation near the main shock foot associated with the evolution of separation bubble
movement of the point of laminar separation and transition to turbulence, periodic formation of the expansion waves and
terminating shocks, etc., plays an important role in affecting the shock buffet behavior. Upstream traveling waves above
the supersonic region on the suction side were observed from both SPOD analysis and probe signals, which form a
possible feedback loop mechanism.
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