
Analysis of Feedback Mechanism in Transonic Laminar Shock

Buffet on the OALT25 Airfoil

Jun Yamasaki∗1, and Sanjiva K. Lele†1,2

1Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA
2Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA

A further scrutiny of flow features present in transonic laminar shock buffet is conducted

towards an improved understanding of potential feedback mechanisms that have been proposed

and observed. The analysis is based on high-resolution data from a wall-resolved large-eddy

simulation conducted for the flow over the OALT25 laminar supercritical airfoil at a free-stream

Mach number of 0.735 and angle of attack of 4◦, with a Reynolds number of 106 based on the

chord length reported by Song et al. AIAA-2024-2141. Cross-correlation analysis of this data is

used to characterize the convection velocity of disturbances in different regions and their spatial

distribution. To further investigate the significance of various elements of potential feedback

cycles, spectral proper orthogonal decomposition is applied to a cyclic probe set that includes

the near-wall dynamics. A wavenumber decomposition of the SPOD eigenvectors corresponding

to the dominant dynamics is conducted, allowing for the eduction of the spatial distributions

of the energetics of upstream and downstream-directed waves. An analysis using geometrical

acoustics is also presented to analyze upstream signal propagation and facilitate interpretation

of the feedback cycle.

I. Introduction

T
he phenomenon of transonic buffet is characterized by self-sustaining shock oscillation, and is observed on airfoils

and wings for certain critical combinations of the Mach number ĉ∞ and angle of attack Ă [1, 2]. This unsteadiness

is associated with shock-boundary layer interaction, which gives rise to correspondingly oscillatory variations in

aerodynamic forces and moments due to the separated flow – hence a consequent response of the airframe, known

as buffeting, arises. One reason that this problem has attracted much engineering interest is that the low-frequencies

of the oscillation associated with shock buffet are sufficiently close to that of the structural modes, which raises

structural/fatigue concerns for aircraft operation in the transonic flight regime [3]. These then serve as limiters on the

safe flight envelope, or maneuver boundaries, for civilian and combat aircraft alike [4].

The long-standing interest in the prediction and mechanistic understanding of buffet for aeronautical applications has

spawned myriad experimental and numerical investigations. Examples of the former include wind tunnel experiments

over the symmetric NACA0012 [5], as well as the OAT15A [6] and RA15SC1 [7] supercritical profiles, towards the

verification of numerical codes. On the computational side, buffet has been investigated using CFD approaches of

varying fidelity. Given that the shock-induced flowfield oscillation is low-frequency, many studies [3, 8, 9] solve the

unsteady Reynolds-averaged Navier Stokes (URANS) equations with some success in matching experimental results,

although results seem to vary nontrivially with simulation choices, e.g. of the turbulence closure. Hybrid approaches

between RANS and the more costly, but scale-resolving large-eddy simulation (LES), have also been employed; for

example, with zonal detached-eddy simulation (DES) [10], delayed DES (DDES) [11], and improved DES (IDDES)

[12]. Studies using wall-modeled LES (WMLES), wherein the outer-layer turbulence in the boundary layer is resolved,

have also been conducted [13, 14], and show understandably better agreement with experimental results.

Until relatively recently, most investigations focused on the case of turbulent buffet, where the boundary layer

upstream of the shock is turbulent. However, as aircraft development trends [15] (e.g. for a truss-braced wing

configuration) seek extended laminar flow for skin friction drag reduction and fuel efficiency, the need for the elucidation

of laminar buffet dynamics has correspondingly emerged. A transonic wind tunnel experiment with the OALT25 was

conducted by ONERA, which found similarities with turbulent buffet, but with more confined and higher-frequency

shock oscillation [16]. This result is reproduced in an LES study under the same conditions, and separation bubble
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breathing at the foot of the main shock is also observed [17]. A direct numerical simulation (DNS) of laminar buffet on

the V2C airfoil has shown shock structures far more intricate than the single-shock motion observed in fully turbulent

buffet [18]. Under the TFAST project, laminar buffet on the supercritical laminar V2C profile has also been simulated

with DDES [19, 20], URANS [21], as well as implicit LES (ILES) [22]. Wind tunnel experiments of the same have also

been performed [23, 24].

A number of theories regarding the underlying mechanism of the self-sustaining shock unsteadiness have been

proposed, although the subject still eludes consensus [2]. One of the earlier, and much-debated explanations is that of

Lee, who proposed a feedback mechanism based on acoustic wave propagation [25]. The original version of Lee’s

model describes the downstream propagation of shock-induced pressure disturbances, which produce upstream-traveling

acoustic waves at the trailing edge and energetically interact with the shock; the associated timescales of each segment

of this process may then be used to compute a feedback loop time/frequency, and compared to results from spectral

analysis (e.g. signals of integrated force coefficients) – however, agreement has been found to be mixed [2]. The

existence and potential role of other paths for acoustic waves to impact the shock from the front – e.g. upstream-moving

acoustic waves, or those that first propagate along the lower side, and curve along the leading edge – has also been

noted [6]. The influence of the pressure-side acoustic propagation, however, has been debated; its removal with

artificial solution-freezing seemed to have minimal effect on reproducing buffet in the numerical simulation of [22],

calling into question its significance for establishing feedback. Experiments investigating the sensitivity of buffet to the

introduction of artificial upstream-moving acoustic waves at the trailing edge also corroborate their importance relative

to pressure-side propagation [26]. Relatively recently, transonic buffet has been characterized as a global instability of

the flow via global stability theory [27, 28]; shock buffet onset conditions are predicted to occur due to a supercritical

Hopf bifurcation, and the stability boundary is consistent with experiments. In the same study, pressure disturbances are

also observed to both travel upwards along the shock, as well as downstream, around the trailing edge, and upstream on

the lower side until their ultimate ingestion in the sonic zone.

Methods of modal analysis have also seen use in the further eduction of the various interplaying processes that

comprise the buffet flow. Dynamic mode decomposition (DMD) applied to DNS simulations for the V2C airfoil was

shown to yield a buffet-associated mode that, while exhibiting high fluctuations near the trailing edge, did not appear to

be coupled to be the same; i.e. instead of a coupling with the trailing-edge acoustics, it is the flow acceleration induced

by the buffet mode that causes shock motion [18]. Modal reconstruction using the low-frequency mode extracted with

spectral proper orthogonal decomposition (SPOD) has been conducted on LES data for the V2C, and demonstrated the

relationship of laminar buffet with boundary-layer separation and shock motion, but not separation bubble-breathing

[29]. SPOD has also been conducted for the OALT25, yielding similar mode shapes to the V2C case but exhibiting

airfoil geometry dependencies for frequency and amplitude [30].

Recently, Song et al. (AIAA-2024-2141) have conducted a wall-resolved LES (WRLES) calculation of transonic

laminar shock buffet over the OALT25 profile [31]. In that prior work, SPOD based on the full 3D flowfield revealed low-

rank behavior at three “peaks" in the eigenvalue spectrum: ďĪ1 ≈ 0.105, ďĪ2 ≈ 0.554, and ďĪ3 ≈ 1.093, corresponding

to the shock buffet, turbulent vortex shedding, and laminar separation Strouhal numbers respectively. Visualization of

the evolution of the SPOD modes revealed three possible feedback mechanisms. The first possibility is communication

from behind the main shock foot to the front of the shock via upstream-moving waves above the supersonic region. A

second is due to the information propagation through the boundary layer, and the third is the upstream traveling wave on

the lower side of the airfoil.

This work aims to further characterize the roles of the various components of the complex buffet flow towards an

improved understanding of the potential feedback mechanism. We begin in Sec. II by recalling some aspects of the

numerical simulation that was conducted to generate the high-resolution, unsteady 3D data that is analyzed in this work.

In Sec. III, statistical data analysis is conducted to characterize the propagation of disturbances whose roles in the buffet

cycle have been discussed. In Sec. IV, we present results for the modal decomposition of the flow state sensed along a

near-wall probe set, which allows a closer focus on the more “active" region of the potential feedback cycle. Low-rank

dynamics are extracted using SPOD, and a further wavenumber decomposition is conducted of these eigenmodes to

educe the spatial distribution of the energies of the differently-directed waves. Finally, in Sec. V, we introduce some

preliminary results regarding a geometrical acoustics approach to elucidating the interaction and possible coupling

between sound propagation and shock dynamics.
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II. Numerical Simulation Setup
In this investigation, we use the high resolution data of transonic flow past the OALT25 supercritical airfoil, the

details of which have been given in a previous work by Song et al. AIAA-2024-2141 [31] and are summarized as

follows. The chord ę of the OALT25 airfoil is aligned in the Į-direction, and the context is set to that of a freestream

Mach number of ĉ∞ = đ∞/ė∞ = 0.735, angle of attack of Ă = 4◦, and a Reynolds number based on the chord of

Ďěę = Ā∞đ∞ę/Ć∞ = 106. Here, đ∞ denotes the flow speed, ė∞ is the speed of sound, Ā∞ is the density, and Ć∞ is the

dynamic shear viscosity, all in the freestream. The numerical calculation is of the fully compressible Navier-Stokes

equations via the WRLES approach, and the primitive variables Ā, īğ , and Đ are the filtered density, velocity, and

temperature that are in the resolved scales. By the Boussinesq hypothesis [32], the subgrid-scale (SGS) model is

incorporated into the transport terms. Here the SGS eddy viscosity and thermal diffusivity are respectively computed

based on the Vreman model [33] and the constant Prandtl number model. The fluid is assumed to be calorically perfect,

and obeys the ideal gas equation of state, Ħ = ĀĎĐ ; the freestream speed of sound is then ė∞ =
√
ĀĎĐ∞, with Ď being

the specific gas constant, Ā as the ratio of specific heats, and Đ∞ denoting the freestream value of the temperature.

An O-type body-fitted curvilinear mesh is used, and the mesh size is 420 × 3072 × 512 in the radial, azimuthal, and

spanwise directions. The domain is periodic in the spanwise direction, with size 0.25ę. In the Įį-plane, the domain has a

radius of ĎĚĥģ = 70ę, with a sponge layer from a radius of ĎĩĦĝ = 50ę. The radius of the LES region is ĎĈāď = 1.55ę,

within which a hybrid central-Riemann flux with the explicit SGS model is used. Beyond ĎĈāď , a pure Riemann flux,

calculated using an upwind-based shock-capturing scheme, is applied. The simulation uses 6th-order compact finite

difference methods [34] with collocated-staggered discretization for high spectral resolution and numerical robustness

[35]. Localized central-Riemann fluxes with the weighted essentially non-oscillatory (WENO5-Z) interpolation scheme

[36] is applied for shock capturing. The activation of the shock-capturing scheme is controlled by the modified Ducros

sensor. The numerical dissipation imposed in the simulation, especially in the turbulent flow regime, is minimal

compared to the dissipation imposed by the SGS model [35].

III. Signal Processing
To investigate the dynamics and interactions that occur near the wall, we place numerical probes at every point along

a grid line that is of constant elevation away from the airfoil surface – in this case, with an airfoil-normal extrusion of

�įĤ/ę = 0.01 as is shown in Figure 1(a). The extracted pressure signal is displayed as an Į − Ī diagram in Figure 1(b),

and one may visually confirm the various flow features present. The frontal compression wave of the ą-shock structure

is present around the range 0.2 < Į/ę < 0.3. The flow transitions to turbulence at around Į/ę ≈ 0.5, and we observe the

turbulent flow region from Į/ę > 0.6. We also note that the region in 0.5 < Į/ę < 0.7 contains the main shock position

variation (which has a mean position of Į/ę ≈ 0.55), in addition to the supersonic pocket and terminating shock that

form due to the periodic expansion regions that accelerate the flow. These regions are consistent with the observations

by Song et al. [31], who described the dynamics in more detail. Note that in the plots, we have defined the Į-coordinate

such that it wraps around the airfoil in the clockwise direction.

Cross-correlations are calculated for the fluctuations of the pressure signal as

ĎĤģ (ă) =
ïĦ′Ĥ (Ī)Ħ′ģ (Ī + ă)ð
√

ïĦ′2
Ĥ (Ī)ðïĦ

′2
ģ (Ī)ð

(1)

where the subscript ģ refers to a location within a certain chosen range, the subscript Ĥ denotes the reference location

(in the middle of that spatial range) that it is cross-correlated with, and ï·ð denotes statistical average. The fluctuating

quantities are obtained via Reynolds decomposition of a flow variable (e.g. pressure) into its mean and fluctuating

parts, where the former is taken over the time range of the data as well as the spanwise direction. The resulting

cross-correlations are also normalized and spanwise-averaged. For ease of viewing, in Figure 2 we present a zoomed-in

view with the time axis being limited to delays of |ăđ∞/ę | ≲ 10, although the entire available pressure data (8192

snapshots after excluding∗ the data from Īđ∞/ę ≲ 39) was used for the actual calculation. After obtaining the pressure

correlations for each range of interest, the convection velocity is found via a line fit to the ridges of maximum correlation,

representing the optimal time delay for each spatial separation.

The cross-correlation analysis was conducted for 5 ranges. In Figure 2(a) we examine the range 0 f Įģ/ę f 0.16,

with ĮĤ/ę = 0.08, representing a point on the suction surface near the leading edge, and upstream of the frontal

∗In the early part of the data (Īđ∞/ę ≲ 39) some drift away from the bulk of the pressure signal was observed. Though this could be due to real

intermittent behavior, we would require much longer data to process it, hence its exclusion from this present analysis.
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(a) Probe Set “L1" Location (b) Pressure Į − Ī Diagram

Fig. 1 Location of Probe Set “L1" relative to the airfoil (dashed black curve) overlayed on instantaneous Mach

number at the İ = 0 slice, and associated pressure signal (normalized by Ħ∞) collected on the surface as an Į − Ī

diagram. The vertical dashed line in (b) indicates the location where the probe set wraps to the lower side of the

airfoil. Data from the horizontal dashed line and above (39 ≲ Īđ∞/ę ≲ 217) is used for the cross-correlation

calculation.

(a) 0 f Įģ/ę f 0.16 (b) 0.20 f Įģ/ę f 0.45 (c) 0.50 f Įģ/ę f 0.60

(d) 0.60 f Įģ/ę f 0.80 (e) 0.80 f Įģ/ę f 1 (f) At each reference ĮĤ/ę

Fig. 2 Pressure cross-correlations at 5 different ranges along the upper side of Probe Set “L1". Subplot (f)

represents a transverse “slice" of subplots (a)-(e) at each of the reference locations. The dashed lines in (a)-(e)

correspond to the linear fits.

branch of the ą-shock; a downstream-directed convection velocity of đę = 0.925đ∞ is observed. Figure 2(b) shows

the range 0.20 f Įģ/ę f 0.45 with ĮĤ/ę = 0.33, which is downstream of the front branch of the ą-shock, where

upstream-moving waves with a negative convection velocity of đę = −0.230đ∞ are observed. Figure 2(c) shows

correlations with ĮĤ/ę = 0.55, and 0.5 < Įģ/ę < 0.6, within the mean shock location variation but preceding the

turbulent flow region. We observe a convection velocity of đę = 0.429đ∞, attributable to shock-induced disturbances.
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The convection velocity of these downstream-moving disturbances measured here seems to accelerate, with the next set

of ranges (shown in Figure 2(d)-(e)) exhibiting convection velocities of đę = 0.435đ∞ and đę = 0.481đ∞, respectively.

We note that this acceleration has also been observed in experiments, near approximately 75% chord, in contrast to the

case of turbulent buffet on the same airfoil [16]. We also present in Figure 3(b) cross-correlation conducted within the

range spanning from the mean shock location to the trailing edge, yielding a time delay for downstream propagation of

�ăđ∞/ę ≈ 1.435. Additionally, from Figure 3(a) we may note the comparative strength of these disturbances detected

in the cross-correlation. Notably, the signal in region (a) of Figure 2 is considerably smaller (at least by an order of

magnitude), judging from its root-mean-square value.

(a) Root-mean-square pressure (b) 0.55 f Įģ/ę f 1

Fig. 3 Additional characterization of pressure fluctuation intensity along cross-correlation locations, and a

longer-range cross-correlation from the mean shock location to the trailing edge. The blue markers in 3(b) are

the identified optimal time delays for each spatial separation. Note that the plot is zoomed-in to |ăđ∞/ę | f 2.

In Figure 2(f), we present an isolated view of the correlations at each of the reference locations ĮĤ/ę corresponding

to the midpoint of the ranges in plots (a)-(e), as a function of the time delay. The overlayed correlation profiles

show signatures of modulated oscillations, and appear in some cases to contain multiple timescales. For instance,

towards the leading edge and upstream of the ą-shock, “bands" of strong correlation appear approximately every 10

convective time units (1 CTU = ę/đ∞). Proceeding downstream, we see in (b) that in addition to this lower frequency, a

higher-frequency oscillation emerges, which remains further downstream, e.g. after the main shock and into the turbulent

region. While cross-correlation analysis allows for the estimation of convection velocities of passing disturbance signals,

the multi-frequency content of these coherent motions calls for a deeper analysis of the amplitude and phase variations

of these disturbances, e.g. via modal decomposition.

IV. Modal Decomposition

A. Spectral Proper Orthogonal Decomposition

With basic statistical features near the wall considered, we now move to the application of SPOD to extract coherent

structures from the data measured on the probe array. We again remark that SPOD using the full data has been conducted

by Song et al. [31] with the pressure, weighted dilatation, and enstrophy norms. In contrast, in this work our objective is

not to find a representation of not the full flow, but instead of the dynamics in the near-wall region, where many of the

active elements of the complex interactions are expected to be captured in the probe signals.

The method of SPOD is a data-driven approach that seeks to find a space-time orthogonal basis that optimally

represents the data in the sense of a norm of choice [37, 38]. A key component of the method is the solution of the

spectral eigenvalue problem for the eigenvalue ą(ďĪ′) and eigenfunction 7(x, ďĪ′),
∭

¬

Y(x, x′, ďĪ′)] (x′)7(x′, ďĪ′)Ěx′ = ą(ďĪ′)7′ (x, ďĪ′) (2)

for each frequency, where ¬ is the flow domain (e.g. the probe set), Y is the cross-spectral density tensor, and x ∈ ¬

represents a point in the flow. The obtained eigenmodes 5(x, Ī) = 7(x, ďĪ′) exp(ğ2ÿďĪ′Īđ∞/ę) are then mutually

5

D
o
w

n
lo

ad
ed

 b
y
 S

ta
n
fo

rd
 U

n
iv

er
si

ty
 o

n
 J

an
u
ar

y
 2

9
, 
2
0
2
5
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
4
-4

5
2
4
 



orthogonal in the full space-time inner product

ïq1, q2ð =
∫

R

∭

¬

qĄ1 (x, Ī)] (x)q2 (x, Ī)ĚxĚĪ (3)

where q is a state vector containing the stacked primitive variables’ fluctuations (denoted by primes), i.e. q =

[Ā′, ī′, Ĭ′, ĭ′, Đ ′]Đ , where Ā is the density, īğ are the velocity components, and Đ is the temperature (note that with

this representation of the primitive state, the pressure disturbance Ħ′ may be recovered from the linearized equation of

state); Ą denotes the Hermitian conjugate. Here we are reminded that we must choose a norm to define the weight

function ]. Among the various norms that are used in practice in the definition of the inner product, we elect to use the

compressible energy norm of Chu [39], which incorporates the interrelationships between the different disturbance

variables and modes. Using the overline to denote the mean in the Reynolds decomposition, Chu’s disturbance energy

may be written as

ā =

∭

¬

[

1

2
Āī′ğī

′
ğ +

ĦĀ′2

2Ā2
+ ĀĎĐ ′2

2Đ (Ā − 1)

]

Ěx (4)

so that the weight (omitting the 1/2 factor) may be defined as

] (Į) =
∫

¬ĦĨĥĘěĩ

diag

(

Ħ

Ā2
, Ā, Ā, Ā,

ĀĎ

Đ (Ā − 1)

)

ĚĮ (5)

for the case of our probe set ¬ĦĨĥĘěĩ. Note that in the discrete formulation of the inner product, the weight function

definition encompasses both the energy and quadrature weights. In our current implementation, a simplification is made

in that each probe’s ”volume" is weighed equally, and we do not consider curvilinear mesh weighting for the above

integral. Another practical note is that for convergence of the spectral estimates of the cross-spectral density, SPOD

computations require the use of Welch’s periodogram method [40]. Here, we partition 6192 snapshots into bins of size

3072, with 87.5% overlap. We also gratefully acknowledge the SPOD implementation made publicly available by Oliver

Schmidt [41], which was employed in this work†.

Fig. 4 SPOD energy spectrum on probe set L1. The vertical dashed lines correspond to ďĪ1 ≈ 0.105, ďĪ2 ≈ 0.554,

and ďĪ3 ≈ 1.093. The color diminishes from the leading eigenvalue onwards.

Three peaks in the SPOD energy spectrum of Figure 4 are identified where low-rank behavior is observed. We

note that the Strouhal numbers corresponding to these peaks, i.e. ďĪ1 ≈ 0.105, ďĪ2 ≈ 0.554, and ďĪ3 ≈ 1.093, are

the same as those previously obtained in the SPOD calculation performed on the full, 3D data [31], where they were

associated with buffet, turbulent vortex shedding, and laminar separation. We may then take the leading SPOD mode

and investigate more closely the eigenfunctions 71,Ć (Į, ďĪġ), where the subscript 1 denotes the leading eigenvalue, Ć

denotes a flow variable of interest, and ġ indexes the three identified Strouhal numbers. The movement of the SPOD

modes may be visualized‡ by recalling the earlier expression for the eigenmodes, and displaying the real part, i.e.

ℜ{71,Ć (Į, ďĪġ) exp(ğ2ÿďĪġ Īđ∞/ę)} over a period defined by 1/ďĪġ , and a corresponding phase ą ∈ [0, 2ÿ).
Such visualizations of the SPOD modes exhibit both upstream and downstream-traveling disturbances, which

motivate a further decomposition of these low-rank representations of the dynamics in wavenumber space. Indeed, we

†As a clarification, we note that the aforementioned full SPOD in Song et al. AIAA-2024-2141 was conducted using a custom-developed code.
‡Animations of the spatiotemporal evolution may be accessed here.

6

D
o
w

n
lo

ad
ed

 b
y
 S

ta
n
fo

rd
 U

n
iv

er
si

ty
 o

n
 J

an
u
ar

y
 2

9
, 
2
0
2
5
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
4
-4

5
2
4
 



proceed with a filtering of the SPOD modes for each of the state variables into their positive (ġĮ > 0) and negative

wavenumber (ġĮ < 0) components – an analogous approach has been previously employed in studies of jet screech

feedback [42, 43]. Note that here, based on the “wrapping" of the Į-coordinate, the positive and negative wavenumber

components would correspond to clockwise and counterclockwise propagating waves on the cyclic probe array. An

inverse Fourier transform may then be applied to recast the direction-decomposed disturbance signals individually in

physical space. The addition of these, along with the DC term (ġĮ = 0) can be confirmed to reproduce the original

signal in physical space if windowing§ is not used. Additionally, the spatial distribution of the energy/variance ā±

associated with these components, as well as their phases ą± may also be investigated via this wavenumber filtering.

The described analysis is shown in the next three sections for each of the representative Strouhal numbers. Certain

regions in the following plots have been shaded to aid in interpretation of the results, and the abscissa is chosen to be

the arc length ĩ along the probe set for display. The blue region (0.2 f Į/ę f 0.3 or 0.23 f ĩ/ę f 0.33) represents

the approximate region where the front branch of the ą-shock is present; the orange region (0.5 f Į/ę f 0.7 or

0.53 f ĩ/ę f 0.73) encompasses the main shock foot, as well as the periodic formation of the expansion region and

terminating shock; the purple region (0.6 f Į/ę f 1.01 or 0.63 f ĩ/ę f 1.05, overlapping with the previous) is the

turbulent flow region. Beyond the final purple vertical line, the coordinate wraps to the lower surface.

B. Buffet Mode

(a) Pressure

(b) Streamwise Velocity (c) Transverse Velocity

Fig. 5 Visualization of SPOD mode decomposition (via real part), spatial distribution of decomposed energy ā±

and phase ą± for ďĪ1 ≈ 0.105.

The wavenumber decomposition of the leading SPOD mode at the shock buffet Strouhal number ďĪ1 ≈ 0.105 into

its clockwise¶ (+) and counter-clockwise (-) directed component is shown in Figure 5. For the pressure disturbance,

the energy of the original SPOD mode is concentrated in the region of the main shock, as are both upstream and

downstream-moving components; however, the associated energy for the downstream-directed wave is around double

of the former. For the streamwise velocity, the peak of the energies is found to be in the region between the laminar

separation and main shock foot location, with a higher upstream-moving component. The transverse velocity shows a

stronger peak for the downstream-directed wave in the main shock region. However, we note that the transverse and

§Windowing would be necessary for a probe set that is truncated, e.g. only spanning 5-95% chord, but here the probe set “L1" is cyclic in space.
¶Again, due to the cyclic coordinate, the + wave corresponds to downstream-moving on the upper side and upstream-moving on the lower side,

and vice versa for the - wave.
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spanwise velocities are an order of magnitude lower than that of the streamwise component, and that a similar analysis

using the full spanwise data on the probe sets to educe the İ-direction modes may be more illuminating. We also remark

that in all of the variables, there seems to be little energetic activity in the shock buffet-related mode on the lower side of

the airfoil compared to the upper side; this suggests the limited role, if any, of the pressure-side acoustic communication

in the low-frequency mode, at least in this near-wall region.

C. Turbulent Vortex Shedding Mode

(a) Pressure

(b) Streamwise Velocity (c) Transverse Velocity

Fig. 6 Visualization of SPOD mode decomposition (via real part), spatial distribution of decomposed energy ā±

and phase ą± for ďĪ2 ≈ 0.554.

Next, the leading eigenmode associated with turbulent vortex shedding, with ďĪ2 ≈ 0.554, is examined in Figure

6. For the pressure component, the energy is mostly captured in the downstream-directed mode, with a reduced but

non-negligible portion of it still persisting until approximately 30% chord measured from the trailing edge; in contrast,

the upstream-directed mode has a far diminished contribution to the overall dynamics of this ďĪ2 mode, although slight

energetic activity is identified near the main shock foot, and the preceding region up to the frontal ą-shock branch. An

interesting observation is that the streamwise velocity mode appears to be peaked in between the extent of the laminar

separation region and the main shock foot, for both upstream and downstream-moving components. As expected from

the signal processing in the previous section, the transverse velocity is mostly dominated by its downstream-moving

component, and is mostly energetic after the main shock, particularly in the fully turbulent shear layer.

D. Laminar Separation Mode

Similarly to the observations in the SPOD conducted on the full flowfield [31], we first remark that the separation

at ďĪ3 ≈ 1.093 to the next eigenvalue is less compared to the peaks at ďĪ1 and ďĪ2, as may be recalled in Figure 4. In

Figure 7, we see that the pressure component of this leading mode is peaked in the main shock region, within which

the decomposition reveals the clear dominance of the downstream-moving part. Interestingly, the streamwise velocity

component shows that the energy associated with upstream-directed disturbances is concentrated between the laminar

separation and the main shock region. On the other hand, downstream-traveling disturbances have a spatial energy

distribution that peaks after the start of the turbulent region; the switchover between these profiles occurs at around the

mean shock location.
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(a) Pressure

(b) Streamwise Velocity (c) Transverse Velocity

Fig. 7 Visualization of SPOD mode decomposition (via real part), spatial distribution of decomposed energy ā±

and phase ą± for ďĪ3 ≈ 1.093.

V. Geometrical Acoustics
Using the results of the signal processing conducted in Sec. III, we may discuss the corresponding acoustic

propagation time to verify the validity of the classic acoustic feedback explanation of Lee [25]. As an estimate for the

downstream convection time, we use the results of Figure 3(b), where we found the time delay corresponding to a

disturbance traveling from the mean shock location to the trailing edge to be �ăđ∞/ę ≈ 1.435. From previous analysis

of the power spectral density of the velocity dilatation signal, the shock oscillation Strouhal number was found to be

ďĪ ≈ 0.1 [31]. Therefore, if the acoustic feedback mechanism indeed holds, we expect the time delay corresponding to

acoustic propagation from the trailing edge to the shock to be approximately ăė ≈ 8.565ę/đ∞.

The implication of this result may be interrogated further via geometrical acoustics, an approach which has previously

been taken by Memmolo et al. in their numerical investigations for the V2C airfoil [22, 44]. To trace the ray trajectories,

we integrate the coupled system of ordinary differential equations [45],

Ěx

ĚĪ
=

ė2s

¬
+ v (6)

Ěs

ĚĪ
= −¬

ė
∇ė − s × (∇ × v) − (s · ∇)v (7)

where x is the ray position, s is a wave-slowness vector that is perpendicular to the wavefronts, v and ė are the local

fluid velocity and speed of sound, and the variable ¬ = 1 − v · s. As a first pass, the ray trajectories are computed on a

base flow created from the spanwise and time-mean field of the entire data. Thus, the shock structure is “smeared" over

its range of movement (0.5 ≲ Į/ę ≲ 0.6), with the flow transitioning to subsonic more smoothly over this “width" vs.

discontinuously in an instantaneous snapshot, where the actual shock structure is present. Also, with the high-frequency

assumption of geometrical acoustics, a problem that arises in the calculation of ray trajectories from the trailing edge is

the presence of the shear layer. Here, we again refer to the approach of Memmolo [44], and launch rays from an initial

wavefront that assumes propagation through a uniform flow with the freestream properties. The initial angular spacing

is �Ă = 1◦, and rays are launched in all 360◦, where the angle is measured from the +Į axis. Once regions with large

gradients are escaped, the ray-tracing equations are integrated using the values on the created wavefront as the initial

conditions.
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Fig. 8 Ray-tracing results displaying the trajectories that impact the shock region; the initial angular spacing is

�Ă = 1◦. The dashed black line represents the initial wavefront after which the local values are sampled. The

dashed green line represents the boundary of the supersonic region. The blue and orange circles mark the ray

locations at the acoustic time delay under the assumption of Lee’s theory, along the Ă = 155◦ and 156◦ rays,

respectively (which are in darker black). The base flow was spanwise and time-averaged across all available

snapshots.

The rays that impact the shock region (in the mean flow) are found to be those initialized with angles Ă ∈ [155◦, 168◦],
and are isolated in Figure 8. Rays that interact from the back side of the shock, as well as those that enter from above the

supersonic region and impact it from the front are observed. A key question is which of these rays corresponds to the

“expected" time delay under the assumption that the acoustic feedback mechanism holds. Correspondingly, we find that

the aforementioned “remaining" ăė ≈ 8.565ę/đ∞ of the feedback loop time is found to be within the propagation times

for the Ă = 155◦ and Ă = 156◦ rays, which are respectively the left and second-from-left of the bolded overarching rays.

While we have been able to observe the presence of rays that are consistent with the “expected" acoustic timescale,

the results are preliminary and we reiterate that this approach has been applied on the mean flow, which is of course

not what is “felt" by the propagating sound. For further clarification, it will be necessary to probe signals along these

potential feedback-associated ray paths, and confirm if the spatiotemporal correlation is consistent with propagating

acoustic waves. We also again note the inherent limitation of geometrical acoustics to slowly varying base states. In

the present problem at ďĪ ≈ 0.1, an order of magnitude estimate using the freestream value of the speed of sound

yields a corresponding wavelength-to-chord ratio of ą/ę ≈ 13.6, indicating slower acoustic variation compared to the

lengthscale of the medium. Even in cases where the high-frequency limit is not met, however, geometrical acoustics has

been shown to still yield useful insights, as evidenced in investigations of jet screech [46] – furthermore, it has been

shown that the solutions of the ray-tracing equations also describe wavefronts of sharp compression waves [47], calling

for further scrutiny of the trailing edge pressure signal in the present data. Additionally, we note that a calculation based

on the Blokhintzev invariant [45, 48] may shed quantitative insights on the amplification that we may qualitatively

observe in Figure 8, where certain regions along the shock experience ray focusing. Such analyses, particularly applied

to base flows corresponding to different time instants, or unsteady ray-tracing, may prove useful in illuminating the

effect of the acoustic waves’ interaction on the shock dynamics, as well as the potential temporal variation thereof –

implementation of these ideas constitute current ongoing work.
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VI. Conclusion
In this work, we have conducted further analysis on high-resolution data from a previous WRLES calculation

conducted for transonic laminar buffet over the OALT25 airfoil. Following the statistical characterization of information

propagation sensed in the near-wall region, we apply SPOD to decompose the dynamics into modes that optimally

represent the disturbance energy contained within the local data. A wavenumber filtering approach is taken to elucidate

the distribution of the energies associated with the upstream and downstream-convecting signals. Finally, we discuss the

consistency of the classical acoustic feedback mechanism with the buffet frequency obtained from spectral analysis.

For the downstream propagation segment the results of the signal processing are used, and the ray-tracing equations

are solved to illustrate routes of potential acoustic communication between the trailing edge and shock dynamics.

Finally, further potential extensions of geometrical acoustics in examining this coupling, e.g. analysis of acoustic signal

amplification via the Blokhintzev invariant, are mentioned as topics for future investigation.
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