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Abstract

Computational fluid dynamics plays a critical role in a wide variety of disciplines. In recent years,

high-performance computing (HPC) has undergone rapid developments and has enabled many large-

scale simulations conducted with high grid resolution or high-fidelity physical models. Meanwhile,

new challenges have also been introduced to the research community. From the perspective of

computational research in fluid mechanics, several questions need to be addressed: How can we

further improve the simulation quality? How can we efficiently utilize modern HPC resources?

What can we learn from higher-resolution simulations? In this dissertation, the answers to these

three questions will be provided based on the author’s research experience in compressible turbulent

flows.

First, a robust, high-resolution computational framework is established. The simulation frame-

work is based on compact finite difference methods. The aliasing error in the nonlinear inviscid flux

is effectively reduced, and the spectral resolution of the viscous flux is significantly enhanced espe-

cially in the high-wavenumber range. As a result, artificial solution filtering, which was previously

necessary for numerical stabilization, can now be avoided. The simulation framework is compati-

ble with various equation-of-state models, transport models, and shock-capturing methods. It also

supports simulations on both Cartesian and curvilinear meshes. Detailed analysis of the numerical

performance of the simulation framework is presented.

Additionally, a direct parallel linear solver algorithm for the linear systems arising from compact

numerical schemes is presented. The design of the parallel solution process considers both shared-

memory and distributed-memory hierarchies and is suitable for multi-GPU (graphics processing unit)

computation. The algorithm supports a cyclic banded system with variable grid partitioning and

has a much lower cost along with a smaller communication footprint compared to existing methods.

This algorithm has demonstrated scalability of up to 24576 GPUs in a fluid mechanics simulation.

Furthermore, two aspects of the physics of compressible turbulent flows are discussed. The com-

pressibility effects are investigated using direct numerical simulations of solenoidally forced com-

pressible isotropic turbulence. The Reynolds number based on the longitudinal Taylor-micro-scale

is approximately 170 for all simulations, and the turbulent Mach number ranges from 0.2 to 0.7.

Data over approximately 10 eddy-turnover times at a statistically stationary state is collected for
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each case for analysis. Various statistical quantities are measured, and the decomposed motions are

studied based on analytically derived budget equations. Finally, the transonic shock buffet on a

laminar supercritical airfoil is investigated using a wall-resolved large-eddy simulation. The airfoil

is configured at an angle-of-attack of 4 degrees in a freestream with a Mach number of 0.735. The

chord-length-based Reynolds number is 1 million. Data over approximately 267 convective time

units are collected for analysis. The dominant frequencies in the fluctuations of lift and drag coeffi-

cients are identified. The space-time correlations at the peak frequencies are studied using spectral

proper orthogonal decomposition.
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Chapter 1

Introduction

1.1 Background

Turbulence involves energy transfer over a wide range of time and length scales and is governed by

highly nonlinear dynamics [126]. Numerical simulations play a critical role in fundamental studies

of turbulence physics as well as in engineering applications involving turbulent flows. However,

conducting high-quality numerical simulations of turbulent flows is challenging.

In the past decades, Reynolds-averaged Navier-Stokes (RANS) has been widely used as a low-

cost solution to address engineering problems [174]. In practice, RANS simulations can be applied

to estimate turbulent flows at large Reynolds numbers with a relatively small number of grid points.

If the flow configuration contains a homogeneous direction, this direction can be reduced in a RANS

simulation. However, the solution from a RANS simulation only represents the mean flow, and all

effects of turbulence are modeled. Accordingly, the accuracy of a RANS solution largely depends on

the quality of the turbulence closure model. If the computational mesh can sufficiently resolve all the

mean flow and modeled turbulence quantities, the RANS solution becomes grid independent [174].

Therefore, the requirements of numerical methods for RANS simulations focus on robustness and

efficiency.

For a higher-quality solution, eddy-resolving simulations are considered. If turbulent motions at

all scales are well-resolved, a turbulence closure model is not needed, and the simulation is known as

a direct numerical simulation (DNS). In studies of the fundamental physics of turbulence, DNS have

and will continue to be extensively adopted as the most reliable simulation approach. However, DNS

has a stringent requirement on grid resolution. Its capability is strictly limited by the accessibility of

compute power. For many engineering problems, DNS is not an affordable solution approach. As a

compromise, a more efficient and practical simulation approach is to resolve the range of length scales

that carry the most energetic turbulent motions while modeling the effects of smaller scale motions.

Simulation approaches associated with this concept, such as large-eddy simulations (LES), have

1
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gained increasing interest in engineering applications. In these simulations, the turbulence closure

models are adaptive with respect to the computational grid size. The simulation results do not

show grid-independence until the mesh resolution reaches the DNS regime. Nevertheless, quantities

of interests, such as lift and drag coefficients, can achieve convergence within acceptable tolerance

for engineering applications. The solution of an eddy-resolving simulation contains both large-scale

coherent flow structures and turbulent flow structures over a wide range of length scales, with

the smallest resolved scale being supported by the computational mesh resolution. Consequently,

the solution of an eddy-resolving simulation is more sensitive to the quality of numerical methods

compared to a RANS simulation.

In compressible turbulent flows, the fluid’s thermodynamic behavior and conservation of energy

are fully coupled in the system of governing equations. The flow contains acoustic waves and

entropy waves. Associated with these, dilatational motion, density fluctuations, and extra pressure

fluctuations are generated. Under supersonic conditions, the flow can also develop shocks. All

these flow features interact with turbulent flow structures. In studies of compressible turbulence,

these interactions are commonly referred to as compressibility effects which are characterized by

the turbulent Mach number. From a physical viewpoint, compressibility effects enable bidirectional

energy transfer between turbulent kinetic energy and internal energy. Statistically, compressibility

effects cause intermittency in compressible turbulence and impact the energy cascade. From a

simulation point of view, some of the waves, especially at a high Mach number, are locally highly

anisotropic. The thicknesses of the strong compression waves and shock waves are under-resolved

at a subgrid scale, but along the wave tangential direction, the wave structure may create coherent

structures. To well resolve or capture these waves in a unified simulation framework is challenging.

On one hand, sufficient numerical dissipation is needed for shock-capturing. On the other hand,

the propagation of acoustic waves can be excessively damped by numerical dissipation. As a result,

robustness for simulations of compressible turbulent flows is necessary but is no longer the only

criterion to be achieved using dissipative methods. From this perspective, high-order numerical

frameworks with highly localized use of numerical dissipation for shock-capturing are considered as

promising solutions.

Compact finite difference methods, besides high-order convergence, have been demonstrated to

have significantly higher spectral resolution in the linear regime compared to corresponding explicit

schemes [89]. However, traditional applications in simulations of compressible turbulent flows using

compact finite difference methods have encountered serious numerical instability issues. This is

primarily due to the accumulation of aliasing errors in the calculations of nonlinear inviscid fluxes

as well as a lack of spectral resolution in the high-wavenumber regime in the assembly of viscous

fluxes in the compressible Navier-Stokes equations. As a brute-force solution, a low-pass numerical

filter is applied regularly as the simulation progresses to remove the spectral energy near the Nyquist

wavenumber. Previous practice has demonstrated that the solution filtering can effectively maintain
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simulation robustness, and it can be shown that filtering the solution can still preserve the formal

order of grid convergence. However, it is concerning that solution filtering does not stabilize the

simulation by essentially reducing the aliasing error in the assembly of nonlinear inviscid fluxes or

enhancing the spectral resolution in the assembly of viscous fluxes. The stabilization is achieved

by introducing an extra numerical damping mechanism at the small scales. For LES, the filtering

effects are dominant over the effects of the turbulence closure model near the Nyquist wavenumber.

For a large-scale simulation, the computational grid is decomposed and data are stored in dif-

ferent distributed memory partitions during the simulation runtime. For modern high-performance

computing, the use of graphics processing units (GPUs) has significantly accelerated the overall

computation speed and enabled the affordability of larger scale simulations. However, a prerequi-

site of efficiently utilizing GPU power is that the solution process can be largely parallelized. For

simulations on structured meshes using explicit numerical schemes, the dominant communication

cost for each partition is to exchange data with neighboring partitions for the numerical stencils.

In contrast, using compact finite difference methods requires solving a banded linear system across

the distributed memory partitions along the dimension to be solved. If the computational domain is

periodic, the linear system contains non-zero cyclic entries. For large-scale simulations using com-

pact numerical schemes, the dominant computational cost is in solving the linear system. Many

traditional linear solution algorithms have been designed for shared memory parallelism. For dis-

tributed computing, data transpose or re-partitioning based on all-to-all communication is required.

However, a simulation with this treatment will not achieve scalability when a large number of GPUs

are used. This issue has been the limiting factor for the efficient application of compact numerical

schemes to large-scale simulations on modern high-performance computing architectures.

1.2 Research highlights

This dissertation is motivated by three major challenges related to numerical studies of compressible

turbulent flows:

• Demands of advancing fundamental understanding of compressible turbulent flows

• Requirements of increasing simulation resolution while improving robustness in simulations

using high-order numerical schemes

• Difficulties in efficiently utilizing of modern high-performance computing resources

The simulation framework based on high-order compact finite difference methods is presented

in Ch. 2. The simulation framework advances the conservative variables at collocated grid points

and assembles fluxes at the edge-staggered grid points based on the interpolations of primitive vari-

ables and staggered derivative operations. As a result, the aliasing error in the nonlinear inviscid

fluxes of the compressible Navier-Stokes system is effectively reduced. Meanwhile, the assembly of
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viscous fluxes has significantly improved spectral resolution in the high-wavenumber regime and a

non-zero spectral response at the Nyquist wavenumber. All this improvement leads to a signifi-

cant benefit – solution filtering is no longer needed for the purpose of stabilizing simulations using

compact finite difference methods. Besides Cartesian meshes, the framework also supports simu-

lations on curvilinear meshes for local mesh refinement or simulations of flows involving complex

geometries. Furthermore, simulations of flows containing both shocks and turbulence are discussed.

The application of localized artificial diffusivity (LAD) models [75, 76] and approximate Riemann

solvers [157] with nonlinear upwind-biased interpolation schemes [141] are demonstrated. The com-

putational capability of the framework is also extended to simulations of real-gas flows. Compressible

turbulent flows of CO2 under transcritical conditions are discussed in Ch. 3. The pressure-volume-

temperature relation is calculated with the Peng-Robinson equation-of-state model [119], and the

viscosity and thermal conductivity are calculated based on a temperature and pressure dependent

transport model [25]. The demonstrative simulations for the framework involve flow with shocks in

high-speed turbulent mixing and heat transfer within wall-bounded turbulence.

A direct parallel linear solver algorithm to solve the cyclic banded linear systems arising from

compact numerical schemes is presented in Ch. 4. The algorithm is based on the cyclic reduction and

parallel cyclic reduction algorithms which serve as prototype elimination patterns. The design of

the algorithm considers hierarchical parallelism with both shared-memory and distributed-memory

access. This algorithm has demonstrated a significantly lower communication footprint during the

solution process compared to other linear solver approaches. The algorithm also supports flexible

grid partitioning and naturally solves the system with non-zero cyclic entries and arbitrary system

size. The parallel performance is demonstrated in a representative fluid mechanics simulation.

The parallel linear solver algorithm has achieved scalability of up to 24576 GPUs on the Summit

supercomputer.

Finally, numerical investigations of two fluid mechanics problems are conducted. The compress-

ibility effects are studied using DNS of solenoidally-forced compressible isotropic turbulence. The

details are presented in Ch. 5. The mesh size of all DNS is 1024 × 1024 × 1024. The Reynolds

number based on the longitudinal Taylor microscale is approximately 170 for all cases, and the

turbulent Mach number ranges from 0.2 to 0.7. The probability density functions of the quanti-

ties of interest and their variations as functions of the turbulent Mach number are investigated.

The decomposed flow motions corresponding to the analytically derived budget equations are also

studied. The shock buffet on a laminar supercritical airfoil (OALT25) in transonic flow is investi-

gated using a wall-resolved LES. This work is presented in Ch. 6. The freestream Mach number

is 0.735, and the chord-length-based Reynolds number is 1 million. The airfoil is configured with

an angle-of-attack of 4 degrees. The simulation resolves the laminar boundary layer separation and

flow naturally transitioning to turbulence near the leading edge. The oscillation of the main shock

is well-captured using hybrid central-Riemann fluxes and a nonlinear shock-capturing scheme. In



CHAPTER 1. INTRODUCTION 5

addition, the simulation resolves the turbulent vortex shedding and propagation of acoustic waves.

The simulation data over a range of approximately 267 convective time units are collected for anal-

ysis. Signal processing indicates that the fluctuations of the lift and drag coefficients contain two

dominant frequencies. Further analysis identifies that the dominant frequencies are due to the main

shock buffet and turbulent vortex shedding respectively. A modal analysis using spectral proper

orthogonal decomposition (SPOD) is conducted to investigate the space-time correlations during

shock buffet. The SPOD captures the low-rank behavior at the two dominant frequencies, and the

first SPOD mode shapes are shown. It is also observed from the evolution of the SPOD mode shapes

that several feedback paths exist in the shock buffet system.

1.3 Major accomplishments

• Developed a robust computational framework with low aliasing error and high spectral reso-

lution for simulations of compressible turbulent flows using compact finite difference methods

on both Cartesian and curvilinear meshes.

• Presented a strategy for using hybrid central-Riemann fluxes for simulations of compressible

turbulent flows containing shocks with the use of the approximate Riemann fluxes localized to

shock structures.

• Generalized the computational framework to simulations of real-gas flows.

• Designed a direct parallel linear solver algorithm to solve the cyclic banded linear systems

arising from compact numerical schemes for modern high-performance computing architectures

with heterogeneous memory access; and demonstrated the scalability of the proposed parallel

linear solver algorithm on state-of-the-art high-performance computing systems.

• Investigated and quantified compressibility effects in solenoidally-forced isotropic turbulence;

derived a system of velocity-variance budget equations to study the decomposed motions in

compressible isotropic turbulence; and established power-law scaling with the turbulent Mach

number for various turbulence statistical quantities.

• Conducted a wall-resolved LES for studies of transonic laminar shock buffet; measured and

identified the dominant frequencies in a transonic laminar shock buffet system; and observed

possible feedback mechanisms in the transonic laminar shock buffet system.



Chapter 2

Robust High-Resolution

Simulation Framework Without

Filtering

A robust high-order compact finite difference framework is proposed for simulations of compressible

turbulent flows with high spectral resolution using a fully collocated variable storage paradigm. Both

inviscid and viscous fluxes are assembled at the edge-staggered grid locations. Nonlinear robustness

is attained as a consequence of the intrinsic reduction of aliasing errors in the inviscid fluxes due to

the spectral behavior of the compact interpolation schemes. Additional robustness is provided by

enhancing the spectral resolution of the viscous flux and its divergence at small scales using purely

staggered numerical differentiation. Demonstrative simulations have shown numerical stability of

the compact finite difference discretization without any type of solution filtering on both Cartesian

and curvilinear meshes. For simulations on a curvilinear mesh, a general metric evaluation approach

that satisfies the geometric conservation law is proposed. Additional approaches to combining the

proposed scheme with approximate Riemann solvers and artificial diffusivities for shock-capturing

are also discussed. Along with theoretical analysis, rigorous evaluation and validation of the method-

ology on canonical tests, including classic two-dimensional simulations, direct numerical simulations,

and large-eddy simulations, are used to confirm robustness and accuracy.

The study illustrated in this chapter is partially published in Ref. [146], and the full content has

been submitted for journal publication.

6
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2.1 Introduction

High-order numerical schemes are an economical strategy used in conducting high-resolution nu-

merical simulations of turbulent flows. They are widely applied for their rapid grid convergence

accompanied by an affordable increase in computational cost. In turbulent flows, the structure of

turbulent eddies spans a wide range of length scales. Additionally, in compressible flows, the ther-

modynamic behavior of a fluid is strongly coupled with the flow. As a result, acoustic waves [10],

shocks [151] and eddy shocklets [88], and fluctuations of transport properties [47, 102] commonly

exist as flow features. Such wave structures need to be resolved or captured while maintaining the

spatio-temporal accuracy of turbulent vortical structures at various scales and enforcing numerical

conservation. Meanwhile, due to the energy cascade in turbulent flows, the turbulent kinetic energy

is transferred from large scales to smaller and smaller scales successively until it is dissipated by

molecular viscosity at the Kolmogorov length scale, ¸. The Kolmogorov length scale is the smallest

length scale of turbulent eddies [80]. For direct numerical simulations (DNS), the Kolmogorov length

scale is fully resolved by the computational mesh. However, considering computational cost, the Kol-

mogorov length scale is often set close to the limit of the mesh resolution, kmax¸ ∼ O(1) [177, 72],

where kmax is the maximum wavenumber supported by the computational mesh. For inhomoge-

neous turbulent flows, local mesh refinement or mesh stretching may be required to adapt to the

local Kolmogorov length scale and, for wall-bounded turbulence in particular, the viscous length

scale imposed by the wall [178, 122, 22]. In large-eddy simulations (LES), the mesh resolution is

usually configured within the inertial subrange where the local turbulent motion shows statistically

universal behavior and can be modeled. The solution of an LES is interpreted as a set of filtered

quantities that resolves the large turbulent eddies carrying most of the turbulent kinetic energy.

The residual effects beyond the mesh-supported resolution are represented by a subgrid-scale (SGS)

model. Due to the nature of turbulence, the SGS model imposes mesh-adaptive dissipation, and

many popular SGS models are formulated as eddy viscosity models [144, 104, 167, 109] based on the

Boussinesq approximation [13]. Both viscous dissipation and SGS model dissipation are predomi-

nately associated with the most finely resolved flow structures.

Capturing or resolving features at small scales requires numerical schemes to have satisfactory

spectral behavior in addition to high-order grid convergence. Spectral methods and pseudo-spectral

methods are widely used in computational fluid dynamics [68]. For an infinitely differentiable profile,

the spectral representation converges faster than any power of the grid size [116]. The numerical er-

rors are mainly ascribed to the Gibbs phenomenon for an insufficiently smooth profile and potential

aliased interactions in nonlinear operations. Alternatively, compact finite difference methods [89]

provide a more flexible approach to addressing complexities in boundary conditions and can be ap-

plied in combination with a variety of numerical schemes such as shock-capturing schemes. Compact

numerical schemes are implicitly formulated to access more information across the entire domain.

As a result, the leading-order truncation error is much smaller than that of explicit schemes [89].
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Compact finite difference methods have demonstrated remarkable successes in DNS and LES of in-

compressible and compressible turbulent flows [72, 85, 54, 129], computational aeroacoustics [10, 28],

and simulations of multiphysics flows and nonlinear wave propagation [53, 139].

Preserving numerical stability while maintaining high-order accuracy and spectral resolution has

become a major challenge in simulating compressible turbulent flows. One of the primary contrib-

utors to numerical instability is the aliasing error. The dynamics of compressible turbulence are

highly nonlinear over a broad-band spectrum. Given a finite grid resolution, the nonlinear inter-

actions associated with high-wavenumber modes will cause aliasing errors that are more significant

for higher-order numerical schemes [83]. Therefore, dealiasing treatments are required in flux as-

sembly. A reformulation of the nonlinear advection terms, known as the skew-symmetric form,

has been proposed and demonstrated to effectively reduce aliasing errors [9, 8]. Significant efforts

have been made to further establish numerical conservation with higher-order and non-dissipative

schemes [39, 121, 16]. For simulations of high-speed flows, the skew-symmetric form has been suc-

cessfully and widely used [120]. The aliasing error of a product term can be analytically quantified

from Fourier analysis, and the exact solution to calculating a product in Fourier space involves

conducting a dealiased convolution. Nevertheless, this is impractical for large-scale simulations due

to the high computational cost. The product should be directly computed in physical space with

the aliasing error reduced or removed. A phase-shift method has been attempted in simulations of

turbulence using the Fourier spectral method [118], where a shift in physical space of the multiplier

fields is conducted to partially or completely cancel the aliasing error in quadratic term calculations.

The zero-padding approach is equivalent to the dealiased convolution where the product is computed

with sufficiently upsampled resolution, and the result is then downsampled back to the original res-

olution. As a consequence, all aliasing errors are projected to the extended high-wavenumber modes

and eventually truncated after downsampling. However, the increase in the memory footprint of

this approach makes it relatively inefficient in large-scale computations. An approach analogous

to zero-padding involves filtering the high wavenumber components that cause aliasing interactions

before calculating the product [115]. For spectral methods, this treatment is equivalent to applying

zero-padding on a coarser resolution without final downsampling. The aliasing error produced by

multiplication can be completely removed, although some unaliased nonlinear interactions are also

inevitably excluded by filtering. This approach does not require changing the grid resolution and

thus can be conducted at a relatively low cost. As an extra advantage, it preserves the conservation

form of the nonlinear fluxes.

Another critical contributor to numerical instability is the numerical discretization of diffusive

fluxes. This issue particularly exists in simulations of turbulent flows with collocated finite dif-

ference methods. Collocated central difference schemes for first derivatives have a trivial response

to the mode at the Nyquist wavenumber and have poor spectral behavior close to the Nyquist

wavenumber. As a result, the dispersion error from the divergence of advection fluxes occurs as



CHAPTER 2. ROBUST HIGH-RESOLUTION SIMULATION FRAMEWORK 9

spurious high-wavenumber, including grid-to-grid, oscillations. These oscillations are supposed to

be dissipated by the diffusion mechanism. However, due to the insufficient spectral resolution in

the high-wavenumber regime of collocated central difference schemes, when computed by applying

the first derivative scheme twice, these oscillations will pile up. Some improvements have been

made by evenly appending more grid points to the stencil to optimize the dispersion relation in the

high-wavenumber regime [94, 35]. It can be proved, however, that the trivial Nyquist wavenumber

response is unavoidable in collocated central difference schemes [89]. One treatment of the diffu-

sion term is to reformulate the flux divergence using the differentiation product rule to recover the

Laplacian term and inner product of the gradients of the diffusivity coefficient and flow variable

such as velocity and temperature; this has a much improved spectral response in high-wavenumber

regimes including at the Nyquist wavenumber. Nevertheless, the conservation form is broken. Nu-

merical filters have also been utilized in LES and under-resolved simulations [129, 76]. As an extra

note, this type of filtering is directly applied to the solution variables for the sake of robustness and

should be distinguished from the dealiasing filtering for the calculation of nonlinear terms [115], the

explicit filtering in grid-independent LES [12], or test filters in numerical models [104, 29]. Based

on the transfer function behavior, a practical filtering operation can completely remove grid-to-

grid oscillations and largely weaken near-Nyquist high-wavenumber features while preserving the

low-wavenumber and moderate-wavenumber features. Serious evaluation of the impact of solution

filtering is required to establish the accuracy of the method [129, 76, 74].

Staggered grids, on the other hand, have considerably enhanced behavior in high-wavenumber

feature capturing. The staggered first derivative scheme used in the divergence operator has a

non-trivial response to the Nyquist wavenumber mode due to phase shifting. The staggered grid

approach was originally proposed for solving the pressure-velocity decoupling issue in incompressible

flow simulations [61] and has been widely used as a standard approach [117]. An improvement in

robustness has also been demonstrated in simulations of compressible turbulent flows using com-

pact finite difference methods [107]. However, the storage of variables on a staggered grid can be

complicated. Variables are stored at nodal points and edges along each direction to be consistent

with flux assembly. Further variable transformations are needed in compressible flow simulations.

Additionally, the fluxes have to be assembled at different locations for different governing equations

in the system.

While finite difference methods are formulated on a structured mesh, problems involving complex

geometries or local mesh refinement can be actualized via an invertible mapping [127]. A uniform

Cartesian grid, known as the computational domain or reference domain, is generated and mapped

to a curvilinear mesh, known as the physical domain or actual domain. The mapping is defined

by a metric tensor and its inverse. The primitive variables are constructed using a basis in the

physical domain, and the differential operations are conducted in the reference domain. Due to the

metric tensor, extra nonlinear interactions are created. The analysis has shown that the calculation
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of the metric tensor must be consistent with the divergence operator to cancel the numerical error

that causes numerical instability; this is also known as the geometric conservation law (GCL) [156].

Further works have shown the GCL-consistent computations in conjunction with collocated compact

finite difference methods and shock capturing schemes [165, 111].

This work proposes an improved finite difference framework for simulations of compressible turbu-

lent flows. The divergence operations are based on staggered schemes while all conservative variables

are stored at collocated grid points. This framework is particularly favorable to high-order compact

numerical schemes and reduces the aliasing error in nonlinear flux assembly and high-wavenumber

viscous dissipation. The formulations on both uniform Cartesian mesh and curvilinear mesh are con-

structed. The metric generation approach is constructed in accordance with the numerical schemes

and is proved to be GCL-consistent. The elementary numerical schemes are described in Sec. 2.2.

The overall computational framework for the compressible Navier-Stokes system is described in

Sec. 2.3. Lastly, some benchmark tests and demonstrative examples are provided in Sec. 2.4.

2.2 Numerical schemes

x
j j + 1j − 1 j + 2j − 2 j + 3j − 3

j + 1
2j − 1

2 j + 3
2j − 3

2 j + 5
2j − 5

2

∆x

∆x

Figure 2.1: Schematic of one-dimensional discretization with a uniform mesh.

In this section, the elementary numerical schemes used in the proposed computational framework

and their properties are described. A uniform mesh is generated with grid spacing ∆x as shown in

Fig. 2.1. A smooth profile, f(x), is discretized on the given computational mesh with fj = f(xj) at

the nodal grid points. Based on the derivations in Ref. [89] and Ref. [107], a family of tridiagonal

collocated compact finite difference schemes for evaluation of the first derivative can be written as

³f ′
j−1 + f ′

j + ³f ′
j+1 = a

fj+1 − fj−1

2∆x
+ b

fj+2 − fj−2

4∆x
(2.1)

where f ′
j represents the numerically evaluated first derivative of f(x) at xj . This set of schemes

is formally fourth-order accurate for a generic value of ³ with the following constraints on the

coefficients a and b.

a =
2

3
(³ + 2) (2.2)

b =
1

3
(4³− 1) (2.3)
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Additionally, as shown in Fig. 2.1, a set of edge grid points are located at a half grid-spacing offset

and staggered from the nodal grid points. The smooth profile f(x) evaluated at the edge-staggered

grid points can be denoted as fj±1/2 = f(xj ± ∆x/2). A family of tridiagonal staggered compact

finite difference schemes for the first derivative evaluation can be expressed as

³f ′
j−1 + f ′

j + ³f ′
j+1 = a

fj+1/2 − fj−1/2

∆x
+ b

fj+3/2 − fj−3/2

3∆x
(2.4)

where fourth-order accuracy is preserved for a generic value of ³ with the following constraints on

a and b.

a =
3

8
(−2³ + 3) (2.5)

b =
1

8
(22³− 1) (2.6)

A family of tridiagonal compact staggered interpolation schemes can be written as

³f I
j−1 + f I

j + ³f I
j+1 = a

fj+1/2 + fj−1/2

2
+ b

fj+3/2 + fj−3/2

2
(2.7)

where f I
j denotes the numerically interpolated values of f(x) at xj . The family of compact interpo-

lations is formally fourth-order accurate if the following constraints are satisfied.

a =
1

8
(10³ + 9) (2.8)

b =
1

8
(6³− 1) (2.9)

Due to the symmetry of the expression, Eq. (2.4) and Eq. (2.7) can be used to calculate corresponding

results both from collocated (nodal) to edge-staggered points and from edge-staggered to collocated

points with a shift of ±1/2 in the grid index. A scheme degenerates to an explicit method upon

choosing ³ = 0. For ³ ̸= 0, a tridiagonal linear system needs to be solved. For a large scale

computation, an effective parallel direct solution method is described in Ref. [147]. The leading-order

truncation error can vanish if a specific value of ³ is set in each scheme, and sixth-order schemes will

be formulated with the most compact stencil. The coefficients of the sixth-order compact schemes

are listed in Tab. 2.1.

Scheme Equation ³ a b
collocated finite difference (2.1) 1/3 14/9 1/9
staggered finite difference (2.4) 9/62 63/62 17/62

central interpolation (2.7) 3/10 3/2 1/10

Table 2.1: Coefficients of the 6th-order compact schemes.
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The spectral response can be investigated from Fourier analysis. Assume that a one-dimensional

periodic domain defined on x ∈ [0, L) is discretized on a uniform mesh with N grid points. The

grid spacing is ∆x = L/N , so that xj = j∆x for j ∈ {j ∈ N | j < N}. The discrete Fourier

representation of fj is given by

fj =

N/2−1∑

n=−N/2

f̂ne
2πinj/N (2.10)

where f̂n ∈ C is the discrete Fourier transform of f(x), and i =
√
−1 is the imaginary unit. A

wavenumber, kn, is introduced as kn = 2Ãn/L. For L = N∆x and n ∈ [−N/2, N/2), it can be

shown that kn∆x ∈ [−Ã, Ã). Additionally, the modes with respect to k±N/2∆x = ±Ã are equivalent,

and such k±N/2 is known as the Nyquist wavenumber. The exponent on the right-hand side of

Eq. (2.10) yields 2Ãinj/N = iknxj .

0 π/4 π/2 3π/4 π

k∆x

0

π/4

π/2

3π/4

π

k
′
∆

x
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4th-order explict

6th-order explict

6th-order compact

(a)

0 π/4 π/2 3π/4 π

k∆x
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π/4

π/2

3π/4

π

k
′
∆

x
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2nd-order

4th-order explict
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(b)

Figure 2.2: Modified wavenumber profiles of some central difference schemes: (a) collocated schemes;
(b) staggered schemes.

The Fourier representation of the first derivative can be analytically written as

df

dx

∣∣∣∣
xj

=

N/2−1∑

n=−N/2

iknf̂ne
iknxj (2.11)

and an identical expression can be formulated for the numerical calculation of the first derivatives.

f ′
j =

N/2−1∑

n=−N/2

ik′nf̂ne
iknxj (2.12)
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where k′n is known as the modified wavenumber [89, 98], and the spectral error is indicated by the

discrepancy between k′n and kn. For simplicity, the subscript n is dropped while discussing single-

mode behavior, so that k ∈ {kn | n ∈ Z ' n/N ∈ [−1/2, 1/2)} and k′ ∈ {k′n | n ∈ Z ' n/N ∈
[−1/2, 1/2)}. Substituting the expression in Eq. (2.10) into the finite difference schemes in Eq. (2.1)

and Eq. (2.4), the modified wavenumbers can be obtained as

k′∆x =
a sin(k∆x) + 1

2b sin(2k∆x)

1 + 2³ cos(k∆x)
(2.13)

and

k′∆x =
2a sin

(
1
2k∆x

)
+ 2

3b sin
(
3
2k∆x

)

1 + 2³ cos(k∆x)
(2.14)

respectively. For central difference schemes, the modified wavenumbers are all real-valued, k′ ∈ R.

As shown in Eq. (2.13), at the Nyquist wavenumber, k′∆x = 0 holds for all collocated central

difference schemes, while for staggered central difference schemes, k′∆x = 7−10α
3−6α at the Nyquist

wavenumber. The modified wavenumbers of the collocated and staggered sixth-order compact finite

difference schemes are plotted in Fig. 2.2. For reference, the modified wavenumber profiles for

the second-order central difference schemes and sixth-order explicit central difference schemes are

also plotted. By comparison, the staggered schemes have significantly improved spectral behavior

compared to the collocated schemes especially in the high-wavenumber regime. For both types

of schemes shown in Fig. 2.2, the sixth-order compact difference schemes have the most accurate

modified wavenumbers. The modified wavenumber of the collocated sixth-order compact scheme is

relatively accurate for k∆x < Ã/2, and k′/k = 28
9π ≈ 0.990 for k∆x = Ã/2. Beyond k∆x ≈ 2.267, k′

starts to decrease with k, and large discrepancies occur. The modified wavenumber of the staggered

sixth-order compact scheme has a broader accurate wavenumber regime. k′ monotonically increases

with k over the entire spectral domain. k′/k = 206
√
2

93π ≈ 0.997 for k∆x = Ã/2, and k′/k ≈ 0.83 at

the Nyquist wavenumber.

Using the discrete Fourier representation in Eq. (2.10), the exact value at a staggered grid point

is

fj+1/2 =

N/2−1∑

n=−N/2

f̂ne
2πin(j+1/2)/N (2.15)

Analogously, substituting the Fourier representation in an interpolation scheme, an expression equiv-

alent to the following form can be obtained.

f I
j+1/2 =

N/2−1∑

n=−N/2

T (kn∆x)f̂ne
2πin(j+1/2)/N (2.16)

where T (k∆x) is known as the transfer function [89]. The subscript n is dropped for simplicity in the

discussion of the transfer function consistently with what is defined in the previous discussion so that
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Figure 2.3: Transfer functions of several central interpolation schemes.

k is an instantiation of the set of discrete wavenumbers, k ∈ {kn | n ∈ Z'n/N ∈ [−1/2, 1/2)}. This

indicates that a numerical interpolation is equivalent to the exact interpolation of a filtered profile.

For a central interpolation scheme, the transfer function is also real valued, T (k∆x) ∈ R. The

analytical expression of the transfer function for the interpolation scheme formulated in Eq. (2.7) is

given as follows.

T (k∆x) =
a cos

(
1
2k∆x

)
+ b cos

(
3
2k∆x

)

1 + 2³ cos(k∆x)
(2.17)

and its profile is shown in Fig. 2.3 in comparison with the second-order and fourth-order explicit

central interpolation schemes. Comparing the three profiles for the transfer function, all interpolation

schemes preserve the mean value, and the sixth-order compact interpolation shows the best spectral

behavior in preserving the mode amplitude for k∆x < Ã/2. At k∆x = Ã/2, the values of the transfer

functions for the second-order scheme, explicit fourth-order scheme, explicit sixth-order scheme and

compact sixth-order scheme are approximately 0.707, 0.884, 0.950 and 0.990, respectively. In the

high wavenumber regime, the transfer function profile decreases and eventually reaches zero at the

Nyquist wavenumber. These filtering effects embedded in the numerical interpolation schemes favor

flux dealiasing, which is fully discussed in Sec. 2.3.

The linear response of the numerical dispersion and dissipation is discussed using a model

advection-diffusion equation, shown as follows:

∂ϕ

∂t
+ ∇ · [v(¹)ϕ] = ∇ · [¿∇ϕ] (2.18)

The model problem is defined on a two dimensional periodic domain for x = (x, y) ∈ [0, Lx)×[0, Ly).

ϕ(x, y, t) is the dependent variable. v(¹) = V (êx cos ¹ + êy sin ¹) is the advective velocity, where

V and ¹ are constant, and êx and êy form a constant orthogonal basis of a Cartesian coordinate
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Figure 2.4: Profiles of the modified spectral advection velocities in one-dimensional computations:
(a) collocated difference schemes; (b) staggered difference schemes combined with central interpola-
tion schemes. As kx∆x → 0, the plots show asymptotic behavior.
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Figure 2.5: Relative spectral advective speed, (v′ · êl) / (v · êl), shown in |k|¶–φ polar coordinate
system, where êl = êx cos ¹+êy sin ¹ and φ = ¹: (a) collocated second-order difference; (b) collocated
fourth-order explicit difference; (c) collocated sixth-order explicit difference; (d) collocated sixth-
order compact difference; (e) staggered second-order difference with interpolation; (f) staggered
fourth-order explicit difference with interpolation; (g) staggered sixth-order explicit difference with
interpolation; (h) staggered sixth-order compact difference with interpolation. The isocurves are
generated based on a linear scale. As k → 0, the contours show asymptotic behavior.
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system. ¿ is a constant diffusivity. Eq. (2.18) is expressed in conservation form, where vϕ is the

linear advective flux, and ¿∇ϕ is the linear diffusive flux. The computational domain is discretized

with a uniform mesh containing Nx and Ny grid points in x and y dimensions respectively. A

two-dimensional discrete Fourier transform can be denoted as

ϕ(xpq, t) =

Nx/2−1∑

m=−Nx/2

Ny/2−1∑

n=−Ny/2

ϕ̂mn(t)eikmn·xpq (2.19)

where xpq = xpêx + yqêy represents two-dimensional coordinates, and kmn = kxmêx + kynêy is the

wavenumber vector. The spatial coordinates can be calculated as xp = Lxp/Nx and yq = Lyq/Ny

respectively, and the two components of the wavenumber vector are defined as kxm = 2Ãm/Lx and

kyn = 2Ãn/Ly respectively. In the following discussion of single-mode behavior, the subscripts m and

n are dropped as in previous discussions, so that without a subscript, a quantity can be interpreted

as an instantiation of the set of all admissible values, kx ∈ {kxm | m ∈ Z 'm/Nx ∈ [−1/2, 1/2)},

ky ∈ {kyn | n ∈ Z ' n/Ny ∈ [−1/2, 1/2)}, ϕ̂ ∈ {ϕ̂mn | m,n ∈ Z 'm/Nx, n/Ny ∈ [−1/2, 1/2)}, and

k = kxêx + kyêy.

Considering the errors caused by the schemes, the numerical solution to a semi-discretized form

of Eq. (2.18) is consistent with the following modified ordinary differential equation in Fourier space.

dϕ̂

dt
+ ik · v′ϕ̂ = −¿′k2ϕ̂ (2.20)

where k2 = k · k, and v′ and ¿′ can be interpreted as the modified spectral advective velocity and

modified spectral diffusivity respectively. According to the definition of the modified wavenumber

in Eq. (2.12), v′ and ¿′ account for the effects of the modified wavenumber. Their expressions are

given in the following equations.

v′(¹,k) = V

(
êx

k′′x
kx

cos ¹ + êy
k′′y
ky

sin ¹

)
(2.21)

¿′(k) = ¿

(
k′2x + k′2y

k2

)
(2.22)

where k′′x and k′′y can be interpreted as the effective modified wavenumbers corresponding to the

combination of all the discrete operators, including interpolation and differentiation, along the x-

and y-directions respectively and treated as functions of kx and ky respectively consistently with

the one-dimensional analysis. For staggered differential operations, interpolation schemes are re-

quired to evaluate advective fluxes. Therefore, the effective modified wavenumbers should con-

sider both the transfer function and the modified wavenumber from the staggered differentiation,
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k′′x∆x = T (kx∆x)k′x∆x and k′′y∆y = T (ky∆y)k′y∆y. For collocated differential operations, in-

terpolation schemes are not needed. Accordingly, effective modified wavenumbers of a collocated

scheme are equal to its modified wavenumbers, k′′x∆x = k′x∆x and k′′y∆y = k′y∆y. Mapping to

a polar coordinate system, the wavenumber vector can be written as k = |k| (êx cosφ + êy sinφ),

where φ defines an angle of observation. Consistent with the scaling of the wavenumber compo-

nents in each dimension, the dimensionless wavenumber magnitude can be expressed as |k| ¶, where

¶(φ) =
√

∆x2 cos2 φ + ∆y2 sin2 φ. If ∆x = ∆y, then ¶ is independent of φ, and the wavenumber

magnitude is scaled by the uniform grid spacing.
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Figure 2.6: Errors of the modified spectral advective velocity angles, ¹′ − ¹ where ¹′(k) is the polar
angle of the modified spectral advective velocity, v′, i.e., v′ = |v′| (êx cos ¹′ + êy sin ¹′). The errors
are shown in |k|¶–φ polar coordinate system with φ = ¹: (a) collocated second-order difference; (b)
collocated fourth-order explicit difference; (c) collocated sixth-order explicit difference; (d) collocated
sixth-order compact difference; (e) staggered second-order difference with interpolation; (f) staggered
fourth-order explicit difference with interpolation; (g) staggered sixth-order explicit difference with
interpolation; (h) staggered sixth-order compact difference with interpolation. The isocurves are
generated based on a logarithmic scale. As |v′| → 0, the contours show asymptotic behavior.

The two-dimensional spectral dispersion is characterized by the modified spectral advective ve-

locity, v′. For an exact differentiation, v′ = v for all resolved Fourier modes. For a numerical

solution, v′ has non-constant spectral behavior with respect to the advective direction, ¹, and the

wave orientation, φ. If ¹ = φ = 0, the model problem becomes one-dimensional. The numeri-

cal dispersion in the linear advection is shown in Fig. 2.4. It can be seen that among the listed

collocated schemes, the sixth-order compact finite difference scheme best resolves the advection of

the modes for kx∆x < Ã/2. However, the advection of the Nyquist wavenumber mode cannot be
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resolved by the collocated central difference schemes, and the mode will become a standing wave.

In comparison, for higher-order schemes, a staggered scheme has spectral behavior nearly identical

to that of the collocated scheme of the same order even though the staggered numerical differential

operations have significantly improved modified wavenumbers. For the second-order discretizations,

the spectral behavior of the staggered and collocated schemes are completely identical. This be-

havior occurs because the interpolation is also considered as a step of the staggered calculation

that suppresses the overall high-wavenumber features. The leading-order truncation error for the

model problem of each scheme is derived in A.1 and listed in Tab. A.1 to quantify the response of

numerical errors with respect to the local solution features in physical space. For a two-dimensional

configuration, the anisotropy is shown in Fig. 2.5 and Fig. 2.6. For the linear system, without loss of

generality, let ¹ = φ and ∆x = ∆y. Accordingly, the contours in Fig. 2.5 are equivalent to |v′| / |v|.
Most of the contours in Fig. 2.5 present square-like shapes. This is because a Cartesian mesh only

defines a rectangular domain and is not perfectly isotropic. As a result, the corresponding spectral

domain is also rectangular. As a fair comparison, only |k| ¶ f Ã is considered. Due to the spectral

behavior of the collocated finite difference schemes and central interpolation schemes, |v′| = 0 is

unavoidable. This limits the isotropy of the evaluation in the high wavenumber regime. Compar-

ing the two-dimensional spectral behavior, the collocated schemes and staggered schemes are still

nearly identical. As the formal order of accuracy increases, the isotropy successively improves, and

the sixth-order compact schemes similarly show the best performance among all listed schemes. A

consistent observation can also be obtained by comparing the error of the advective directions in

Fig. 2.6. Along the x- and y-directions, the advection degenerates to a one-dimensional problem.

The numerical schemes along the advection do not affect the advective direction, and the numerical

schemes in the orthogonal direction make no contribution to the results. Along the domain-diagonal

direction, the errors of the numerical schemes in the x- and y-directions are canceled. Therefore,

for both cases, there is no error in resolving the advective direction. However, other than the axial

and domain-diagonal directions, the numerical error in the advective velocity direction occurs as

imbalanced errors in the evaluation of the projected advective speeds.

The spectral dissipation can be investigated from the modified spectral diffusivity, ¿′. For the

one-dimensional advection, the relative values of ¿′ are shown in Fig. 2.7. The exact differentiation

should preserve ¿ for all resolved wavenumbers. Compared to Fig. 2.4, the effects of the modified

wavenumber reduction are worse in the diffusion term, since two derivative operations are applied.

The collocated schemes do not resolve the Nyquist wavenumber damping mechanism, which ad-

versely affects the numerical stability in nonlinear problems. In contrast, the staggered schemes

have a much enhanced high-wavenumber damping performance, which will make nonlinear systems

more robust. This property is also supported by the amplitude of the leading-order truncation error

which is derived in A.1 and provided in Tab. A.1 for each of the schemes. By comparison, the

staggered differential schemes significantly improve the solution accuracy by reducing the amplitude
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Figure 2.7: Profiles of the modified spectral diffusivities in one-dimensional computations: (a) collo-
cated difference schemes; (b) staggered difference schemes. As kx∆x → 0, the plots show asymptotic
behavior.

0.0

0.2

0.4

0.6

0.8

1.0

(a)

0.0

0.2

0.4

0.6

0.8

1.0

(b)

0.0

0.2

0.4

0.6

0.8

1.0

(c)

0.0

0.2

0.4

0.6

0.8

1.0

(d)

0.0

0.2

0.4

0.6

0.8

1.0

(e)

0.0

0.2

0.4

0.6

0.8

1.0

(f)

0.0

0.2

0.4

0.6

0.8

1.0

(g)

0.0

0.2

0.4

0.6

0.8

1.0

(h)

Figure 2.8: Relative modified spectral diffusivities ¿′(k)/¿ shown in the |k|¶–φ polar coordinate
system: (a) collocated second-order difference; (b) collocated fourth-order explicit difference; (c)
collocated sixth-order explicit difference; (d) collocated sixth-order compact difference; (e) staggered
second-order difference; (f) staggered fourth-order explicit difference; (g) staggered sixth-order ex-
plicit difference; (h) staggered sixth-order compact difference. The isocurves are generated based on
a linear scale. As k → 0, the contours show asymptotic behavior.

of the leading-order truncation error in the calculation of the viscous term. The anisotropy is shown

in Fig. 2.8. As φ varies, the collocated second-order scheme only shows isotropic behavior at low
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wavenumbers. The collocated sixth-order schemes have a much improved isotropy compared to the

second-order schemes. Nevertheless, the most significant improvement is observed by using stag-

gered schemes. An alternative way to improve the performance of the diffusion term in damping

high-wavenumber modes is to use second derivative operators [89, 107]. However, this treatment is

at the cost of sacrificing the conservation form. The approach can be derived based on the product

rule of calculus, ∇· [¿∇ϕ] = ∇¿ ·∇ϕ+¿∇2ϕ, where the calculation of ∇2ϕ is based on second partial

derivative operators.

2.3 Computational framework

In this section, the computational framework is fully described. The framework requires midpoint

interpolation and collocated and staggered central schemes for the evaluation of first derivatives. It

is compatible with schemes of an arbitrary order of accuracy. In particular, the proposed framework

is favorable to applications of high-order compact schemes.

2.3.1 Governing equations

The compressible Navier-Stokes equations, including conservation of mass, momentum, and total

energy, are formulated as
∂Ä

∂t
+

∂

∂xj
(Äuj) = 0 (2.23)

∂Äui

∂t
+

∂

∂xj
(Äuiuj + p¶ij) =

∂Ãij

∂xj
(2.24)

∂Äe

∂t
+

∂

∂xj
(Ähuj) =

∂

∂xj
(uiÃij − qj) (2.25)

where the expressions are given in index notation [41] with an independent spatial dimension denoted

by each free index and a summation over all spatial dimensions implied by each pair of repeated

indices. In the equations, Ä is the density; ui is the velocity vector; p is the pressure; ¶ij is the

Kronecker delta characterizing an identity tensor; Ãij is the viscous stress tensor; e is the specific

total energy; h is the specific total enthalpy; and qj is the heat flux vector. The governing equations

are given in conservation form. The fluxes on the left-hand side of each equation are known as the

inviscid fluxes, and the fluxes on the right-hand side are the viscous fluxes. If all the viscous fluxes

are dropped, the governing equations will degenerate to an Euler system. Ãij and qj are formulated

based on the transport properties of the fluids. For a Newtonian fluid, the viscous stress tensor is

calculated as

Ãij = 2µSij +

(
´ − 2

3
µ

)
∂uk

∂xk
¶ij (2.26)
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where µ and ´ are the dynamic shear viscosity and bulk viscosity respectively, and Sij is the strain

rate tensor, defined as

Sij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(2.27)

The heat flux vector, qj , is modeled by the Fourier’s law of heat conduction:

qj = −»
∂T

∂xj
(2.28)

where » is the thermal conductivity, and T is the temperature. The specific total energy, e, is defined

as

e = eth +
1

2
ujuj (2.29)

where eth is the specific internal energy. The specific total enthalpy, h, is defined as

h = e + p/Ä (2.30)

The internal energy, eth, and the pressure, p, are calculated based on an equation of state (EOS).

For a pure substance, they can be expressed as functions of Ä and T in general. For a calorically

perfect gas, they can be calculated as

p = ÄRT (2.31)

and

eth =
RT

µ − 1
(2.32)

where R is the specific gas constant, and µ is the ratio of specific heats. The system is finally closed

by giving the expressions of all the transport properties, µ, ´, and ». For LES or DNS with shock-

capturing schemes active at a separated scale, these transport properties may also contain modeled

components [144, 167, 109, 76]. The detailed description of the LES formulation used in this work

is provided in A.2.

2.3.2 Numerical discretization on uniform Cartesian mesh

Consider a uniform Cartesian mesh generated in three-dimensional space. The computational mesh

contains collocated grid points and edge-staggered grid points as shown in Fig. 2.9. During time

advancement, all conservative variables evolve only at the collocated grid points, and all fluxes are

assembled at the corresponding edge-staggered grid points. The divergence operations are performed

by staggered central difference methods using input values at the edge-staggered grid points and

generating the results at the collocated grid points. The schematic of the time advancement step is

shown in Fig. 2.10.
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Figure 2.9: Uniform Cartesian mesh: (a) detailed view of the three-dimensional structure; (b)
projected view in the x–y plane. The blue circles indicate the collocated grid points, and yellow, red
and cyan triangles mark the edge-staggered grid points in the x-, y- and z-directions respectively.
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Figure 2.10: Schematics of time advancement step.

The inviscid fluxes are assembled using the primitive variables, ui, T and p, that are first cal-

culated from the conservative variables at the collocated grid points and then interpolated to the

staggered grid points. The choice of the thermodynamic variables used for interpolation provides

flexibility in numerically imposing the boundary conditions in a simulation. Using the interpo-

lated p and T , all other required thermodynamic quantities are recalculated at the staggered grid

points based on the EOS. According to the spectral behavior of the interpolation operator, shown in

Fig. 2.3, all interpolated variables have damped high-wavenumber modes. As the nonlinear fluxes are

assembled, aliasing interactions among high-wavenumber modes in the operands are reduced. The

quadratic nonlinear interaction, as an example, is investigated in the following context and shown in
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Fig. 2.11. Assuming Q(x) = u(x)v(x) in one-dimensional space, the discrete Fourier representation

of the direct numerical product can be written as

N/2−1∑

n=−N/2

Q̂ne
ikxj =

∑

|l+m|fN/2

ûlv̂mei(α1+α2)xj +
∑

|l+m|>N/2

ûlv̂mei(α1+α2)xj (2.33)

where ³1(l) = 2Ãl/L and ³2(m) = 2Ãm/L are the wavenumbers for l,m ∈ {n ∈ Z | −N/2 f n <

N/2}. The first term on the right-hand side of Eq. (2.33) represents the resolved interactions, and

the second term on the right-hand side represents the aliased interactions. For resolved interactions,

n = l + m and k = ³1 + ³2, while for the aliased interactions, n = l + m±N for the negative and

positive wavenumber modes respectively, and correspondingly, k = ³1+³2±2Ã. Combined with the

schematic shown in Fig. 2.11a, each location in the two-dimensional plane represents a quadratic

interaction between the modes corresponding to wavenumbers ³1 and ³2. Among all quadratic

interactions within the dashed-line box, the regions of aliased interactions are marked in red. The

aliased interactions will fold back to the resolved modes colored by yellow. Considering the transfer

functions, the numerical product of the interpolated factors can be expressed as

N/2−1∑

n=−N/2

Q̂F
n e

ikxj =
∑

|l+m|fN/2

Tlmûlv̂mei(α1+α2)xj +
∑

|l+m|>N/2

Tlmûlv̂mei(α1+α2)xj (2.34)

where Q̂F
n is the discrete Fourier transfer of the numerical product, and Tlm = T (³1∆x)T (³2∆x)

can be interpreted as the joint transfer function. Although the magnitude of the aliasing error

depends on the factors, the amount of reduction can be quantified by the profile of Tlm. For the

sixth-order compact interpolation, the profile of the joint transfer function is shown in Fig. 2.11b.

As a reference, the “2/3-rule,” which identifies the necessary filtered modes to eliminate the aliasing

error in a quadratic interaction [115], is shown in Fig. 2.11c. With the interpolation of the primitive

variables, although the aliasing error cannot be perfectly eliminated, the aliased interactions are

largely reduced to improve the robustness. Additionally, in the compressible Navier-Stokes system,

the inviscid fluxes involve cubic and quartic (in the formulation for a curvilinear coordinate system)

interactions. For products involving more than two factors, the schematics are similar but need to

be shown using a hyperplane in a higher-dimensional space.

Besides the primitive variables, the velocity and temperature gradients are needed for the vis-

cous fluxes. In order to maximize the performance of high wavenumber dissipation, the gradient

component aligned with the flux direction and the divergence operation are evaluated by the stag-

gered difference schemes. For the Navier-Stokes equations, the diffusion term in Eq. (2.24) can be

rearranged as
∂Ãij

∂xj
=

∂

∂xj

(
µ
∂ui

∂xj

)
+

∂

∂xj

[
µ
∂uj

∂xi
+

(
´ − 2

3
µ

)
∂uk

∂xk
¶ij

]
(2.35)
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Figure 2.11: Quadratic interaction between two fields: (a) schematics; (b) fields are interpolated
using the compact sixth-order central scheme. The regions beyond the dash-dotted lines characterize
the aliased interactions; (c) fields are preprocessed by a spectrally sharp low-pass filter with cut-off
wavenumber at 2Ã/3. The color maps in (b) and (c) represent the joint transfer functions for the
quadratic interactions.

where the numerical operator, ∂xj
, uses the staggered central difference scheme, and ∂xi

, for i ̸= j, is

conducted via the collocated central difference scheme in a direction orthogonal to the flux component

and interpolated to the staggered grid locations. Numerically, for µ > 0, the first term on the right-

hand side of Eq. (2.35) imposes the dominant dissipation. Based on the analysis shown in Fig. 2.2b

and Fig. 2.7b, the spectral dissipation can be well represented by the staggered central difference

schemes especially in the high-wavenumber regime. The Nyquist wavenumber features caused by

the dispersion error and aliased interactions can be effectively dampened following the diffusion

mechanism in the governing equations. Similarly, the viscous flux in Eq. (2.25) can be rearranged

as

∂

∂xj
[uiÃij − qj ] =

∂

∂xj

(
µui

∂ui

∂xj
+ »

∂T

∂xj

)
+

∂

∂xj

[
µui

∂uj

∂xi
+

(
´ − 2

3
µ

)
∂uk

∂xk
uj

]
(2.36)

where the term µuiui,j can be interpreted as an alternative evaluation of µ(uiui/2),j . The advan-

tage of the staggered formulation can be observed from the first term on the right-hand side of

Eq. (2.36). Additionally, the remaining terms, particularly the ones associated with the bulk viscos-

ity, ´, in Eq. (2.35) and Eq. (2.36) partially benefit from the high-wavenumber spectral behavior of

the staggered central difference schemes.

2.3.3 Formulations on curvilinear meshes

The numerical differential operations on a curvilinear mesh are conducted based on an invertible

mapping taking the coordinates on the curvilinear mesh to coordinates on a uniform Cartesian mesh.

In this work, the mapping is assumed to be time-independent. The space where the curvilinear

mesh is defined is known as the physical domain or actual domain, while the space where the
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Figure 2.12: Invertible mapping between a curvilinear mesh in the physical domain (left) and a
uniform Cartesian mesh in a reference domain (right).

Cartesian mesh is established is known as the reference domain or computational domain. In a

three-dimensional physical domain, the orthonormal basis is defined using êx, êy and êz, and the

coordinates can be expressed as x = xêx + yêy + zêz. Correspondingly, in the reference domain,

the orthonormal basis is defined as êξ, êη and êζ , and the coordinates can be expressed as ξ =

Àêξ + ¸êη + ·êζ . During the solution process, the governing equations formulated in the physical

domain are first mapped to the reference domain so that the numerical differential operations can

be applied. Then, the evaluated results are mapped back to the physical domain. The mapping

of the differential operations between the paired physical and reference domains are established by

metric tensors that are defined as follows.

FiA =
∂xi

∂ÀA
and gAi =

∂ÀA
∂xi

(2.37, 2.38)

where the uppercase subscript represents the dimension in the reference domain, and the lowercase

subscript represents the dimension in the physical domain [66]. It can be seen from the definitions

that both FiA and gAi are “two-leg” tensors. gAi maps the differential operation from the physical

domain to the reference domain, dÀA = gAidxi, and FiA maps the differential operation from the

reference to the physical domain, dxi = FiAdÀA. A schematic is shown in Fig. 2.12. The Jacobian

of the metrics, J , is defined as the determinant of the metric tensor F .

J = det (F ) (2.39)

which characterizes the volume mapping from the reference domain to the physical domain, dxdydz =

JdÀd¸d·. Since the mapping is invertible, the identity F = g−1 holds. In addition, for a valid

computational mesh, the condition J > 0 must be satisfied.

Consider the following weak scalar conservation law formulated in the physical domain.

∂ϕ

∂t
+

∂Gj

∂xj
= É (2.40)
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where ϕ is a scalar conservative variable; Gj is the physical flux; and É is the source / sink. The

mapped flux divergence in the reference domain is

J
∂Gj

∂xj
=

∂GjF
∗
jA

∂ÀA
(2.41)

where F ∗ = JF−T is the cofactor tensor of F . Therefore, an equivalent formulation of Eq. (2.40)

in the reference domain is

J
∂ϕ

∂t
+

∂ĜA

∂ÀA
= JÉ (2.42)

where ĜA is known as the contravariant flux, defined as

ĜA = Gj g̃
T
jA (2.43)

The notation (̃·) = J(·) in Eq. (2.43) is introduced for shorthand such that g̃TjA = JgTjA. Also,

in accordance with the definitions, the identity F ∗ = g̃T holds. Analogously, the compressible

Navier-Stokes equations, Eq. (2.23), Eq. (2.24) and Eq. (2.25), can be reformulated as follows.

J
∂Ä

∂t
+

∂

∂ÀA

(
ÄÛA

)
= 0 (2.44)

J
∂Äui

∂t
+

∂

∂ÀA

(
ÄuiÛA + pg̃TiA

)
=

∂

∂ÀA

(
Ãij g̃

T
jA

)
(2.45)

J
∂Äe

∂t
+

∂

∂ÀA

(
ÄhÛA

)
=

∂

∂ÀA

[
(uiÃij − qj) g̃

T
jA

]
(2.46)

where ÛA is known as the contravariant velocity defined as

ÛA = uig̃
T
iA (2.47)

The numerical evaluation of the contravariant fluxes follows an approach similar to that used

for the uniform Cartesian mesh described in Sec. 2.3.2. The primitive variables, ui, p and T , are

interpolated from the collocated grid points to the staggered grid points to assemble the inviscid

contravariant fluxes that appear on the left-hand sides of Eq. (2.44), Eq. (2.45) and Eq. (2.46). The

transfer function of the interpolation schemes still contributes to the robustness by reducing high-

wavenumber oscillations before any nonlinear interactions. The viscous contravariant fluxes that

appear on the right-hand sides of Eq. (2.44), Eq. (2.45), and Eq. (2.46) are assembled based on the

interpolated primitive variables and gradient fields with respect to the physical coordinate system

that are evaluated using chain rule, ∂xj
= (∂ξB ) gBj or ∂xj

= gTjB∂ξB . The divergence operations in

the reference domain are conducted using the staggered difference schemes. The gradient components

in the reference domain aligned with the contravariant flux direction are also evaluated using the
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staggered difference schemes. As a result, substituting the expressions of Ãij and qj , the viscous

contravariant fluxes in Eq. (2.45) and Eq. (2.46) are evaluated as follows.

∂

∂ÀA

(
Ãij g̃

T
jA

)
=

∂

∂ÀA

(
µ
∂ui

∂ÀB
gBj g̃

T
jA

)
+

∂

∂ÀA

[
µgTiB

∂uj

∂ÀB
g̃TjA +

(
´ − 2

3
µ

)
∂uk

∂ÀB
gBkg̃

T
iA

]
(2.48)

∂

∂ÀA

[
(uiÃij − qj) g̃

T
jA

]
(2.49)

=
∂

∂ÀA

[(
µui

∂ui

∂ÀB
+ »

∂T

∂ÀB

)
gBj g̃

T
jA

]
+

∂

∂ÀA

[
µuig

T
iB

∂uj

∂ÀB
g̃TjA +

(
´ − 2

3
µ

)
∂uk

∂ÀB
gBkuig̃

T
iA

]

For a valid mapping, gBj g̃
T
jA is symmetric and positive-definite in the reference domain. Using the

staggered central difference schemes for ∂ξA , the dissipation of high-wavenumber oscillations in the

reference domain can still be effectively resolved. The differential operator, ∂ξB , for B ̸= A, is

evaluated using the collocated central difference scheme and then interpolated to the staggered grid

points.

2.3.4 Generation of metrics

The metric tensor used to assemble the contravariant fluxes is g̃. Analytically, it can be calculated

by inverting F .

g̃TiA =

(
1

2
εijkεABC

)
∂xj

∂ÀB

∂xk

∂ÀC
(2.50)

where εijk and εABC are Levi-Civita permutation tensors in the physical and reference domains

respectively. However, Eq. (2.50) cannot be directly used to generate metrics for a numerical solver

as noted in [156]. Consider a homogeneous steady state solution to Eq. (2.40), where É = 0 and

both ϕ and Gj are constant in space and time. In the reference domain, Eq. (2.42), combined with

Eq. (2.41), reduces to the following constraint.

∂g̃TiA
∂ÀA

= 0 (2.51)

Eq. (2.51) is known as the GCL for a stationary curvilinear mesh [156]. In this work, the GCL is

further discussed from an alternative perspective.

On one hand, the GCL indicates a consistency between the numerical divergence operator and

the generation of the discrete metric tensor as described in many works [156, 165, 111]. On the other

hand, it also reveals numerical enforcement of a compatibility condition of the metrics. The metric

tensor F can be interpreted as a type of “deformation gradient” of the physical coordinates with

respect to the reference coordinates, i.e., FT = ∇ξx
T, where the gradient operator with respect to

the reference coordinates is defined as ∇ξ = ∂ξA . As an identity, FT is “curl-free” on the reference
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domain, i.e., ∇ξ×FT = 0. This is known as compatibility of the metric tensor. Taking a divergence

operation with respect to the reference coordinates on both sides of Eq. (2.50), the following equation

can be obtained.

∂g̃TiA
∂ÀA

=
1

2
εijk

[
∂xk

∂ÀC

(
εABC

∂

∂ÀA

∂xj

∂ÀB

)
+

∂xj

∂ÀB

(
εABC

∂

∂ÀA

∂xk

∂ÀC

)]
(2.52)

where the expression in the brackets on the right-hand side yields F
(
∇ξ × FT

)
−
(
∇ξ × FT

)T
FT.

The right-hand side of Eq. (2.52) is identically zero due to compatibility if all differential operations

are exact. However, for numerically-approximated derivative operations, the left-hand side and

right-hand side of Eq. (2.52) are not discretely equivalent. The “curl-free” condition of FT is weakly

imposed in g̃T, which relies on numerical consistency and is achieved by grid convergence. This

is due to the nonlinearity in evaluating g̃T from F . The product rule of calculus may not hold

discretely to enforce a numerically equivalent form of the right-hand side in Eq. (2.52). As a result,

a non-zero residual may be generated from the truncation errors of the numerical schemes. Such a

residual is known as the GCL error and often contributes to numerical inaccuracy and instability in

simulations of physical conservation laws [165, 164].

À

¸

·

(a)

À

¸

(b)

Figure 2.13: Schematics of generation of GCL metrics: (a) detailed isometric view of the three-
dimensional structure; (b) projected view on the À − ¸ plane where fully staggered locations do not
belong to the collocated and edge-staggered plane. The mesh is shown in the reference domain.
The collocated, edge-staggered and fully staggered points are marked by circle, triangle and square
(cube) symbols, respectively.

For numerically-generated metrics, the commonly used approaches are equivalent to strongly

imposing the compatibility condition in Eq. (2.50). In order to show this, append two terms that

are analytically equal to zero, xjεABCFkC,B and xkεABCFjB,C , to the right-hand side of Eq. (2.50),
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so that the expression of g̃TiA becomes compatibility-aware.

g̃TiA =

(
1

2
εijkεABC

)[
∂xj

∂ÀB

∂xk

∂ÀC
+ wxj

∂

∂ÀB

∂xk

∂ÀC
+ (1 − w)xk

∂

∂ÀC

∂xj

∂ÀB

]
(2.53)

where w is a weighting factor. Eq. (2.53) can be further analytically manipulated into the so-called

conservation form [156].

g̃TiA =

(
1

2
εijkεABC

)[
w

∂

∂ÀB

(
xj

∂xk

∂ÀC

)
+ (1 − w)

∂

∂ÀC

(
xk

∂xj

∂ÀB

)]
(2.54)

The effect of the weighting factor w is discussed in detail in Ref. [1]. For further discussion, rewrite

Eq. (2.54) as

g̃TiA =

(
1

2
εijkεABC

)[
w

∂

∂ÀB
(xjFkC) − (1 − w)

∂

∂ÀB
(xkFjC)

]
(2.55)

Comparing Eq. (2.55) with Eq. (2.51), the GCL error can be expressed as

∂g̃TiA
∂ÀA

=

(
1

2
εijkεABC

)[
w

∂2

∂ÀA∂ÀB
(xjFkC) − (1 − w)

∂2

∂ÀA∂ÀB
(xkFjC)

]
(2.56)

The GCL constraint, derived by imposing compatibility, is satisfied by fully relying on the commu-

tativity of the differential operator used for divergence evaluation in the computational framework,

∂ξA , and in the numerical calculation of g̃T from F , ∂ξB . Accordingly, once x¹F is assembled, the

GCL requires the remaining differential operations to calculate g̃T to be consistent and commutable.

However, the GCL constraint does not put any restriction on the calculation of F . This implies that

F can be either numerically evaluated in different ways or analytically provided. Similarly, prior to

calculations of x ¹ F , there is no GCL constraint for the evaluation of x either if its components

are needed at an abstract location. In practice, as an example, x¹F is evaluated at collocated grid

points and then interpolated to the edge-staggered locations in Ref. [111], while in this work, F and

x ¹ F are evaluated from an interpolated x using staggered derivative schemes. Both approaches

have demonstrated numerically zero GCL errors. Therefore, the key step in enforcing the GCL

described by Eq. (2.55) should be interpreted as a GCL-consistent inversion of the metric tensor F .

In this work, the metric tensor is fully calculated by numerical differentiation for all cases follow-

ing Eq. (2.54) with w = 0.5. All numerical differential operations are conducted by the edge-to-node

staggered finite difference methods. Assuming that the physical coordinates are initially provided

at the collocated grid points during mesh generation, all coordinates are first interpolated along all

three directions to a fully staggered location. In the reference domain, the fully staggered location

is at the geometric center of the cube constructed by the neighboring collocated points as shown

in Fig. 2.13. Starting from the fully staggered locations, all components in the metric tensor F

are numerically evaluated at the corresponding face-staggered location. Then, the corresponding

components of x ¹ F are assembled at the face-staggered locations. Eventually, after the second
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differential operation, the GCL-consistent metrics are obtained at each edge-staggered location for

the assembly of contravariant inviscid fluxes. At these locations, other components of g̃T that are

not involved in the GCL constraint are calculated via interpolations. For a periodic domain, specific

details of metric evaluations using staggered compact finite difference and midpoint interpolation

schemes are given in A.3.

2.3.5 Shock-capturing methods

In simulations of flows where shock waves are present, the shock waves are often treated as under-

resolved structures. For high-resolution simulations, high-order shock-capturing schemes are com-

monly applied [76, 141, 157]. These shock-capturing schemes impose sufficient numerical dissipation

at shock locations so that the shock profiles are artificially thickened and well-captured discretely by

the computational framework without causing numerical instability or strong spurious oscillations.

The computational framework described in previous sections is compatible with a wide variety of

shock-capturing techniques. In this work, two common methods – the localized artificial diffusivity

(LAD) method and the weighted essentially non-oscillatory (WENO) interpolation scheme combined

with a projected approximate Riemann solver – are investigated.

For weak and moderate eddy shocklets in compressible turbulent flows, the LAD approach shows

a decent performance. The LAD approach is known to be less dissipative for turbulent flow sim-

ulations when used with numerical operators that have high-spectral-resolution properties. For

shock-capturing, only artificial bulk viscosity and artificial thermal conductivity are needed. The

LAD model detects a shock based on local high-order derivatives. The detailed formulation is de-

scribed in Ref. [76]. LAD can be easily applied to a computational system combined with diffusion

fluxes. It does not require characteristic decomposition or a Riemann solver. Instead, according

to Ref. [76], a low-pass filter is required to maintain numerical stability. However, in this compu-

tational framework, due to the robustness resulting from dealiasing effects and high-wavenumber

viscous dissipation enhancement, the solution filtering, claimed to be necessary in previous appli-

cations of LAD models, can be avoided in capturing weak shocks. Furthermore, without solution

filtering, the numerical dissipation, due to the spatial discretization, exerted in the computational

system can be easily quantified.

WENO-based nonlinear interpolation schemes divide a full stencil into several candidate sub-

stencils. Each candidate sub-stencil interpolates the input field individually using a linear scheme

whose order of convergence is supported by the width of the sub-stencil. The final interpolated results

are determined via a convexly-weighted superposition of all results obtained from candidate sub-

stencils. The weights are comprehensively determined by a set of smoothness indicators calculated on

each candidate sub-stencil. In a smooth region, the weights tend to make the superposed coefficients

converge to a high-order linear interpolation scheme. In a shock region, the weights impose the use

of interpolations from locally smooth candidate sub-stencils only. Correspondingly, the formal order
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of convergence will be lower.

For better solution behavior, the nonlinear interpolation scheme is commonly applied in con-

junction with an approximate Riemann solver [157]. A Riemann solver assumes a discontinuity at

the flux assembly location and takes two states of conservative variables on both sides of the discon-

tinuity to evaluate regularized fluxes as the Riemann problem develops in time. For a hyperbolic

conservation system, Riemann fluxes can be calculated as FRiemann(UL,UR), where FRiemann is

the set of numerical fluxes evaluated by the Riemann solver, U is the set of conservative variables,

and the subscripts “L” and “R” denote the “left” and “right” states respectively. In an actual

simulation, each edge is assumed to formulate a projected local Riemann problem. UL and UR are

obtained from the interpolated characteristic variables.

Even with nominally high-order methods, fully using nonlinear interpolation schemes may still

result in overly dissipative solution profiles at small scales in simulations of turbulent flows; this

phenomenon is shown in Sec. 2.4.4. Therefore, to conduct an LES or DNS at a comparable physical

resolution, the computational mesh used for a simulation that fully relies on nonlinear interpola-

tion schemes needs to be much finer than the mesh used for a simulation based on non-dissipative

numerical methods. Nevertheless, shock-capturing schemes must be active at shock locations. To

address this issue, a hybrid approach can be applied [74]. Conceptually, the hybridization is con-

trolled by a physics-based shock sensor. Ideally, the shock-capturing schemes are active and localized

at the shock structures, and only non-dissipative schemes are used in shock-free regions. Accord-

ingly, small-scale dynamics are fully governed by physical dissipation or physics-based SGS model

dissipation, and this significantly enhances the simulation resolution.

The computational framework introduced in this study supports a variety of blending strategies.

Among all feasible strategies, binary blending of primitive variables (Ä, u, T ) is used in this work.

Based on the compatibility constraint for approximate Riemann solvers, if UL = UR, then the

Riemann solver does not introduce extra numerical dissipation. As a result, when both UL and UR

are set to be variables interpolated by central schemes, FRiemann(UL,UR) is identical to directly

assembled central fluxes. Details of the shock-capturing schemes are included in A.5.

2.4 Demonstrative numerical performance

In this section, demonstrative simulations are provided to investigate the numerical performance of

the computational framework. The demonstrations are primarily selected to examine the capability

of the framework to preserve large-scale flow structures, resolve turbulent structures at small scales,

and support existing models for LES and shock capturing.
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(a) (b)

Figure 2.14: Initial pressure distributions: (a) Cartesian mesh; (b) curvilinear mesh. The contours
represent the pressure distributions for p ∈ [0.55, 0.71].

(a) (b) (c)

Figure 2.15: Pressure distributions on a Cartesian mesh after one advection period: (a) second-
order schemes; (b) fourth-order schemes; (c) compact sixth-order schemes. The contours represent
the pressure distributions for p ∈ [0.55, 0.71].

2.4.1 Advection of a homentropic swirl

A uniform background flow is prescribed along the x-direction at a Mach number of 0.5 on a two-

dimensional periodic domain, (x, y) ∈ [−6, 6)2. A swirling flow field is superposed as a homoentropic

perturbation. The flow is inviscid with no thermal diffusion. Assuming the perturbation amplitude

is sufficiently small compared to the freestream, the swirl flow feature will advect following the

freestream at a constant velocity. Considering the periodic boundaries, after a period, the initial

flow profile should be asymptotically recovered. The initial homoentropic perturbation profiles,
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denoted with a “¶” in front of each variable, are given as




¶u = ϵreα(1−r2)êl(¹)

¶T = −ϵ2 γ−1
4αγ e

2α(1−r2)
(2.57)

where r2 = x2 + y2; ¹ is the polar angle about (x, y) = (0, 0); êl is a clock-wise tangential unit

vector, êl(¹) = êx sin ¹ − êy cos ¹; ϵ = 0.3 characterizes the perturbation amplitude; and ³ = 1.2

characterizes the spatial localization of the swirl flow. The value of ³ used in this configuration

allows the Gaussian profile to achieve spatial decay of O(10−17) ∼ O(10−19) from the domain center

to the closest “boundary” point. With these ranges of spatial decay, the perturbation near the

domain “boundary” can be treated as numerically zero compared to the perturbation amplitude

near the center of the computational domain. Consequently, the non-smoothness caused by the

periodic extension of a Gaussian profile can be neglected. The fluid is a calorically perfect gas.

The ratio of specific heats is µ = 1.4, and the specific gas constant is R = 1. The speed of sound

and density in the freestream state are used for normalization. Therefore, the overall velocity field

is u = 0.5êx + ¶u, and the overall temperature field is T = (µR)
−1

+ ¶T . The perturbation is

homoentropic, so p/Äγ remains constant over the entire domain [75, 111, 165].
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Figure 2.16: Centerline pressure profiles after one advection period using different sets of spatial
discretization schemes, where p∞ is the freestream pressure, and ¶p is the pressure perturbation.
p∞, ¶p and the reference profile are analytically calculated from the initial condition.

The simulation is set up on both a Cartesian and a curvilinear mesh with size 32 × 32 as shown

in Fig. 2.14. The curvilinear mesh is generated via a two-dimensional perturbation on the Cartesian

mesh. The coordinate mapping is




x = L [À/Nξ − 1/2 −A sin(4Ã¸/Nη)]

y = L [¸/Nη − 1/2 + A sin(4ÃÀ/Nξ)]
(2.58)
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(a) (b) (c)

(d) (e) (f)

Figure 2.17: Pressure distribution on Cartesian mesh using 6th-order compact schemes after (a) 5
advection periods; (b) 8 advection periods; (c) 11 advection periods; (d) 12 advection periods; (e)
14 advection periods; and (f) 15 advection periods.

where L = 12 is the unperturbed domain length, and A = 0.07 characterizes the mesh wavi-

ness. The mesh spacing in the reference domain is unity in both directions. The interpolation

and differentiation with respect to the coordinates that use compact schemes to calculate GCL-

consistent metrics on a periodic domain are illustrated in A.3. Time advancement is carried out

using the third-order strong-stability-preserving Runge-Kutta (SSP-RK3) method [142] with a con-

stant Courant–Friedrichs–Lewy (CFL) number of 0.4. Spatial computations are conducted using the

same framework as previously described with second-order explicit, fourth-order explicit, and sixth-

order compact central schemes respectively. All three sets of numerical schemes are non-dissipative.

The simulation results using different spatial discretization schemes on the Cartesian mesh are

shown in Fig. 2.15. The contours represent the pressure profile for p ∈ [0.55, 0.71]. For visualization

purposes, the simulation results are upsampled using the cubic spline method during post-processing.



CHAPTER 2. ROBUST HIGH-RESOLUTION SIMULATION FRAMEWORK 35

(a) (b) (c)

Figure 2.18: Pressure distributions on a curvilinear mesh after one advection period: (a) second-
order schemes; (b) fourth-order schemes; (c) sixth-order compact schemes.

Compared with the reference profile given in Fig. 2.14a, after one advection period, the flow struc-

tures in the second-order simulation are completely distorted (Fig. 2.15a); significant numerical

errors can be observed in the fourth-order simulations, but the basic flow structures are preserved

(Fig. 2.15b); and almost no error is visible from the contours of the simulation using the sixth-order

compact schemes (Fig. 2.15c). The centerline pressure profiles for the three simulation cases are

shown in Fig. 2.16. As seen from the mesh generation, Eq. (2.58) for A = 0, the centerlines in both

directions are aligned with a row or column of collocated grid points while using even Nξ and Nη.

Therefore, the data points in Fig. 2.16 represent the nodal values directly computed in the simula-

tions. The reference profile is analytically calculated from the initial conditions, and the profile is

normalized by the maximum pressure perturbation in the initial condition. According to the center-

line profiles after one advection period, the sixth-order simulation best preserves the center location,

profile shape, and the peak value. As a further investigation of the performance of the sixth-order

compact schemes, the simulation is continued up to 15 advection periods. Some visualizations at

selected numbers of advection periods are shown in Fig. 2.17. As the simulation time progresses,

the numerical error accumulates and behaves as nonlinear dispersion. With this simulation setup,

the computational accuracy can be well preserved up to 11 advection periods. Beyond that, the

numerical error begins to spread out, and the flow structures are more contaminated.

The simulation results on the curvilinear mesh are shown in Fig. 2.18. The results are obtained

after one advection period, and Fig. 2.14b should be used for comparison. As shown in Eq. (2.44) –

Eq. (2.46), the mesh waviness creates extra nonlinearity in the computational system which makes

the simulations more challenging. As shown in Fig. 2.18a, the second-order simulation completely

destroys the flow features, and the numerical error is especially localized where the mesh is largely

skewed. The flow features in the fourth-order simulation (Fig. 2.18b) are also significantly distorted,
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Figure 2.19: Grid convergence measurements of the homentropic swirl advection simulations using
different sets of numerical schemes. N represents the number of grid points in each dimension,
and the numerical error is indicated by the root-mean-square pressure difference between the initial
condition and one advection period and is normalized by the maximum initial pressure perturbation.

but a small number of the original features can still be identified from the resulting field. The

compact sixth-order simulation (Fig. 2.18c) preserves majority of the flow features and gives the

best result among the three simulations although the numerical error is highly contaminated.

The grid convergence for all sets of simulations shown in this section is measured. In order

to reduce the numerical error caused by the time advancement scheme, the CFL number is set to

0.05. For all cases, the solution profiles at one advection period are used to evaluate the numerical

error. The numerical error is quantified by the root-mean-square pressure difference between the

final state and initial condition that is analytically set. The numerical error is further scaled by the

maximum perturbation pressure in the initial condition. The results are shown in Fig. 2.19 where

N is the number of grid points in each dimension. Compared to the reference curves in Fig. 2.19,

all simulations achieve the expected formal orders of convergence on both a uniform Cartesian mesh

and a curvilinear wavy mesh. Additionally, the visualizations of solution convergence with grid

refinement are shown in Fig. 2.20 and Fig. 2.21 for simulations on uniform Cartesian meshes and

curvilinear wavy meshes respectively.

2.4.2 Forced isotropic turbulence

This problem is configured on a three-dimensional periodic domain, (x, y, z) ∈ [0, 2Ã)3, with a set

up similar to the one described in Ref. [72]. An isotropic turbulent flow is energized by a low-

wavenumber solenoidal term, Äfi, added to the right-hand side of Eq. (2.24). Eq. (2.25) remains

unmodified, which implies the existence of an internal energy sink, Λ, that locally and instanta-

neously balances the forcing work, Λ + Äfjuj = 0. The forcing, fi, is updated via a solenoidally
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.20: Visualization of convergence of pressure on uniform Cartesian meshes. The sub-figures
in the first row ((a), (b), and (c)) are computed on a 642 mesh; the sub-figures in the second row
((d), (e), and (f)) are computed on a 1282 mesh; and the sub-figures in the third row ((g), (h),
and (i)) are computed on a 2562 mesh. The sub-figures in the first column ((a), (d), and (g)) are
computed using 2nd-order schemes; the sub-figures in the second column ((b), (e), and (h)) are
computed using 4th-order schemes; and the sub-figures in the third column ((c), (f), and (i)) are
computed using 6th-order compact schemes.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.21: Visualization of convergence of pressure on curvilinear meshes. The sub-figures in the
first row ((a), (b), and (c)) are computed on a 642 mesh; the sub-figures in the second row ((d),
(e), and (f)) are computed on a 1282 mesh; and the sub-figures in the third row ((g), (h), and (i))
are computed on a 2562 mesh. The sub-figures in the first column ((a), (d), and (g)) are computed
using 2nd-order schemes; the sub-figures in the second column ((b), (e), and (h)) are computed using
4th-order schemes; and the sub-figures in the third column ((c), (f), and (i)) are computed using
6th-order compact schemes.
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Figure 2.22: Visualization of flow fields: (a) z-velocity; (b) density; (c) pressure.

projected stochastic process [42] as expressed in Eq. (2.59),

fi =
∑

kLfkfkH

P§
ij b̂j(km, t)eikmxm (2.59)

where kL = 3 and kH = 5 are the cut-off wavenumbers defining a forcing band; k =
√
kmkm is

the magnitude of the wavenumber vector; P§
ij = ¶ij − kikj/k

2 is a solenoidal projector; and b̂j ∈ C
3

for each mode is updated using six independent Uhlenbeck-Ornstein random processes. The fluid is

a calorically perfect gas with µ = 1.4. The dynamic viscosity is calculated based on a power law,

µ = µref(T/Tref)
0.5, where the subscript “ref” represents a reference state. The thermal conductivity

is calculated based on the Prandtl number, Pr = cpµ/», where cp = µR/(µ − 1) is the specific heat

at a constant pressure. In this simulation, the Prandtl number remains constant at Pr = 0.72. The

fluid is assumed to have no physical bulk viscosity.
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Figure 2.23: Velocity energy spectrum.
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The computational mesh size is 1024×1024×1024. The simulation is conducted using sixth-order

compact schemes with the artificial bulk viscosity, ´∗, and artificial thermal conductivity, »∗, added

to the physical bulk viscosity and thermal conductivity respectively for eddy shocklet capturing. The

formulations of the ´∗ and »∗ are described in Ref. [76]. However, in this simulation, no solution

filtering is applied. The time advancement is calculated using the standard fourth-order Runge-

Kutta (RK4) method with CFL = 0.5. The simulation data over a period of seven eddy turnover

times is used in post-processing after the flow has reached a statistically stationary state.
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Figure 2.24: Normalized probability density functions of (a) velocity dilatation and (b) local Mach
number.

The visualizations of the instantaneous flow fields are shown in Fig. 2.22. The stationary isotropic

turbulence is resolved in the DNS regime with kmax¸ ≈ 3.2 where kmax is the maximum wavenumber

supported by the computational mesh, and ¸ is known as the Kolmogorov length scale. In this

case, ¸ is calculated as ¸ = (ïµð3 ïϵð−1 ïÄð−2
)1/4, where the angle bracket ï·ð denotes a volume

average, and ϵ is the dissipation rate, ϵ = 2µSijSij + (´∗ − 2µ/3)S2
kk. The velocity energy spectrum

is provided in Fig. 2.23 where Ek is defined as Ek = ûj û
∗
j/2 in continuous Fourier space for an

infinite domain. Using the discrete Fourier transform on a finite periodic domain, Ek is evaluated as

Ek = 4Ãk2
〈
ûj û

∗
j/2

〉
k
, where the operator ï(·)ðk indicates the average within a sampling bin centered

at k. The distributions of velocity dilatation, ¹ = uj,j , and local Mach number,
√
ujuj/c, are shown

in Fig. 2.24 where the function “std(·)” returns the standard deviation. The two-point correlations of

each velocity component are also provided in Fig. 2.25 to improve confidence in the computational

results, where Rii = ïui(x)ui(x + r)ð calculated using the discrete Fourier transform. Here, the

subscript indices in the expression for Rii do not follow the summation convention.

According to the post-processing, the demonstrative simulation has Reλ ≈ 162 and Mt ≈ 0.7,

where Reλ is the characteristic Reynolds number based on the Taylor microscale, ¼, and Mt is

known as the turbulent Mach number. For isotropic turbulence, Reλ and Mt are calculated as

Reλ = urms¼/ï¿ð and Mt =
√
ïujujð/ïcð respectively, where urms and ¼ are calculated as urms =
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Figure 2.25: Velocity two-point correlation.

√
ïujujð/3 and ¼ =

√
ïu2ð/ï(∂u/∂x)2ð respectively.

The value of Mt measured from this simulation indicates that the turbulence is highly com-

pressible [88]. Figure 2.26 shows the visualization of the shocklet distribution and the relative

profiles of ´∗ and »∗. The shocklets are visualized using a modified Ducros sensor, defined as

−¹|¹|/
[
¹2 + ÉjÉj + 10−32

]
, where ¹ = uj,j is the velocity dilatation, and Éi = εijkuk,j is the vor-

ticity. With this sensor, a shock is identified since the sensor value is close to +1. Compared with

Fig. 2.26a, the instantaneous spatial distributions of ´∗ and »∗ are highly localized at the eddy

shocklet structures, as shown in Fig. 2.26c and Fig. 2.26b respectively, to provide sufficient numeri-

cal dissipation. With the present framework, the solution filtering, which was deemed necessary by

previous works, is no longer required.

2.4.3 Two-dimensional implosion problem

This test problem is used to demonstrate the compatibility of the computational framework with

nonlinear shock-capturing schemes and approximate Riemann solvers. The problem is introduced

in Ref. [92], and a modified version is used in this demonstration. The problem is configured on

a two-dimensional periodic domain for (x, y) ∈ [−0.3, 0.3)2 and computed on a uniform Cartesian

mesh and a curvilinear wavy mesh respectively. Both simulations are conducted using a 512 × 512

mesh size. The curvilinear mesh generation follows the same analytical mapping used in Sec. 2.4.1

and is described in Eq. (2.58) with L = 0.6 and A = 0.05. The initial conditions contain two

homogeneous sub-regions as shown in Fig. 2.27. “Region 1” is the inner sub-region, and “region

2” is the outer sub-region. The border between the two sub-regions forms a diamond-shaped box

with the four corners located at (±0.15, 0) and (0,±0.15). The flow is initially at rest, and the

inner sub-region has a lower density and pressure than the outer sub-region. The changes across the

sub-region boundary are sharp. The mathematical expressions of the initial density and pressure
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Figure 2.26: Visualization of eddy shocklets and artificial diffusivities: (a) eddy shocklets visualized
by the modified Ducros sensor −¹|¹|/

[
¹2 + ÉjÉj + 10−32

]
; (b) distribution of »∗Pr/(cpµref); (c)

distribution of ´∗/µref ; and (d) a zoomed-in view of ´/µref corresponding to the boxed region in (a)
and (c). In this simulation, Tref ≈ ïT ð and µref ≈ ïµð.

are specified in Eq. (2.60):

[Ä, p] =





[0.125, 0.140] |x| + |y| < 0.15

[1.000, 1.000] |x| + |y| g 0.15
(2.60)

The fluid is a calorically perfect gas with µ = 1.4. The simulation is conducted without including

any physical viscosity and thermal conductivity, so the Euler system is solved. In this simulation, all

primitive variables at the edge-staggered points are obtained by the eight-point adaptive targeted
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Figure 2.27: Schematic of initial condition of the two-dimensional implosion problem.

essentially non-oscillatory (TENO8-A) interpolation scheme, which is modified from the reconstruc-

tion scheme designed for the finite volume framework [48]. The Riemann flux is calculated using the

Rusanov method [132]. The time advancement is conducted using SSP-RK3 method with CFL = 0.4.

(a) (b)

Figure 2.28: Density distributions of the two-dimensional implosion problem at t = 0.6 computed
on a (a) uniform Cartesian mesh and (b) curvilinear wavy mesh.

The density profiles of the two simulations at the final calculation time t = 0.6 are shown in

Fig. 2.28. Comparing the solution profiles on the uniform Cartesian mesh and the curvilinear wavy

mesh in Fig. 2.28a and Fig. 2.28b respectively, the large-scale wave patterns are identical. There is

no significant numerical issue corresponding to the mesh deformation and periodic domain extension

on the curvilinear mesh. The flow instability pattern in the central region is highly sensitive to the

perturbations. In these two simulations, the difference in the numerical perturbations is primarily

caused by capturing the oblique waves with different mesh deformations. This demonstration only

shows a specific combination of the shock-capturing scheme and approximate Riemann solver. Differ-

ent combinations of shock-capturing schemes and approximate Riemann solvers are also compatible

with this computational framework.
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2.4.4 LES of decaying isotropic turbulence

(a) (b) (c)

Figure 2.29: Visualizations of z-velocity fields in the x-y plane with the initial conditions: (a) mesh
resolution of 643; (b) mesh resolution of 1283; and (c) mesh resolution of 2563. For the purpose of
visualization, the coarse grid fields are upsampled to a fine grid via zero-padding in Fourier space.
The scale of the color maps are the same for the three different cases. The color map scale is
symmetric about 0.

This test problem is designed to investigate the performance of the simulation framework used in

LES or other eddy-resolving simulations of turbulent flows at very high Reynolds numbers. In an LES

or other eddy-resolving simulation of turbulence, when the Kolmogorov length scale is significantly

smaller than the computational grid size, physical viscous dissipation may be negligible compared to

the model dissipation or numerical dissipation. A high-resolution LES or high-quality eddy-resolving

simulation of a turbulent flow should keep the artificial dissipation length scale sufficiently small and

near the grid size in order to preserve the resolvable turbulent flow structures across a wide range

of length scales. In this test problem, the flow is assumed to be inviscid (Reλ → ∞). This can

be alternatively interpreted as the viscous dissipation occurs at a vanishingly small length scale

(kmax¸ → 0). The definitions of ¼ and ¸ are consistent with those defined in Sec. 2.4.2, and kmax is

the Nyquist wavenumber supported by the computational mesh. Therefore, no physical dissipation

exists in the computational system. The simulations are configured as LES using different central

schemes with an explicit SGS model and compared with eddy-resolving simulations using high-order

shock-capturing schemes in combination with an approximate Riemann solver without the explicit

SGS model.

The initial velocity field is solenoidal and randomly sampled in the Fourier space based on the von

Kármán spectrum [166]. The expression of the von Kármán velocity spectrum is given in Eq. (2.61).

Ek =
(A/ks) (k/ks)

4

[
1 + (k/ks)

2
]17/6 (2.61)

where given the most energetic wavenumber, ke, ks is calculated as ks = ke
√

5/12. In this configu-

ration, ke = 3 is used. A is an amplitude factor. The detail of the velocity generation approach for
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Figure 2.30: Initial velocity energy spectra of the simulations at different grid resolutions.

isotropic turbulence with a given energy spectrum is illustrated in Ref. [74]. Following this approach,

the velocity is first generated on a 2563 mesh. Then, a three-dimensional spectrally-sharp low-pass

filter is applied to only keep the non-trivial modes within a spherical region for k < 128 in Fourier

space. After filtering, the field of each velocity component is consistently re-scaled to numerically

match ïujujð = 1. Using this velocity field as the reference, the velocity fields are further filtered

using the three-dimensional spectrally-sharp low-pass filter to keep the non-trivial modes within

smaller spherical regions for k < 64 and k < 32. These filtered fields are eventually downsampled to

a 1283 mesh and a 643 mesh respectively. As a consequence, three sets of initial velocity fields are

obtained with three different grid resolutions. The cut-off wavenumbers of the low-pass filters are

equal to the Nyquist wavenumbers in each dimension instead of the maximum wavenumber that can

be resolved using the three-dimensional meshes. This use of spherical spectrally-sharp filtering, as

opposed to Cartesian spectrally-sharp filtering, allows for maintaining good statistical isotropy in the

initial conditions at every coarser grid level. Additionally, since all the velocity fields are obtained

via filtering and downsampling from the same velocity profile generated on a 2563 mesh, the discrete

initial velocity fields used as the initial conditions represent the same asymptotically smooth velocity

field resolved at different levels of resolution. The initial z-component velocity profiles are visualized

in Fig. 2.29, and the initial velocity energy spectra are shown in Fig. 2.30. The calculation of the

velocity energy spectra in this section follows the same method described in Sec. 2.4.2. The initial

dimensionless density field is uniform and set to be unity as a reference. The initial dimensionless

pressure is also uniform and equal to 3.5. This configuration leads to an initial turbulent Mach

number of Mt ≈ 0.45.

The LES are conducted using the 6th-order compact schemes, 4th-order explicit schemes, and

2nd-order explicit schemes respectively with the Vreman SGS model [167] in the momentum equation

and a constant turbulent Prandtl number, Prt, model in the energy equation. For a calorically

perfect gas, Prt is defined as Prt = cpµSGS/»SGS, where µSGS and »SGS are the SGS eddy viscosity

and thermal conductivity respectively. The Vreman SGS model requires a constant coefficient,
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CSGS, which is defined in A.2. In this demonstrative problem, CSGS is 0.044, 0.05 and 0.07 for

the simulations using the 6th-order compact schemes, 4th-order explicit schemes, and 2nd-order

explicit schemes respectively and is calibrated to obtain the correct turbulent kinetic energy decay

rate. The turbulent Prandtl number is 0.7 for all simulations in this sub-section. Additional eddy-

resolving simulations are conducted respectively using the TENO8-A and the five-point weighted

essentially non-oscillatory (WENO5-JS) interpolation schemes [73] which are modified from their

reconstruction forms designed for the finite volume framework. The simulations using the dissipative

shock capturing schemes (TENO8-A and WENO5-JS) do not include any explicit SGS model. The

time advancement for all simulations is conducted using the SSP-RK3 method with CFL = 0.4. The

stop time for all simulations is t = 10, which is when the turbulent kinetic energy decays by more

than a factor of 15 compared to the initial condition. At the final stage, the turbulent Mach number

is Mt ≈ 0.1.

The velocity fields of all simulations are visualized in Fig. 2.31. The color map scales for all

sub-figures in Fig. 2.31 are identical. The computational results are interpolated using the sinc

modes [140] during post-processing for visualization purposes only. The velocity energy spectra for

all the simulations are shown in Fig. 2.32. As shown by this comparison, the LES using central

numerical schemes with explicit SGS model shows much higher spectral resolution than the two

simulations conducted using dissipative schemes without SGS models. The SGS model dissipation

starts to become dominant approximately beyond the wavenumber of kmax/2. In contrast, the

selected high-order (corresponding to the optimal weights [73, 48]) shock-capturing schemes impose

numerical dissipation starting at a much lower wavenumber. As a result, from the flow visualizations

shown in Fig. 2.31, small-scale flow features are not well resolved using shock-capturing schemes

compared to the simulations using central schemes with the SGS model. In Fig. 2.32, the energy

spectra of all simulations using central schemes with the explicit SGS model clearly show the inertial

sub-range where the turbulent kinetic energy cascades follow the k−5/3 law. In contrast, the energy

spectra of simulations using implicit numerical dissipation without the SGS model do not show the

power-law energy cascade. This indicates that the dissipation implicitly imposed by the numerical

scheme is noticeably inconsistent with the scale similarity of the turbulent cascade compared to the

dissipation imposed by an explicit SGS model.

The LES results based on the central schemes do not show an observable difference in the

velocity fields. Compared to the simulations using 6th-order compact schemes, the simulations

using 4th-order and 2nd-order schemes do not show visible deterioration. As a further investigation

of the small-scale-resolving quality of simulations obtained with the three central schemes, a three-

dimensional bandpass filter is applied to only keep the non-trivial model within a spherical shell

for k ∈ [16, 32) in Fourier space. The bandpass-filtered velocity fields of all the simulations on the

643 mesh are shown in Fig. 2.33 (from Fig. 2.33a to Fig. 2.33e), and the bandpass-filtered velocity

obtained from the LES on the 2563 mesh using the 6th-order compact schemes is also provided in
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Figure 2.31: Visualizations of the final (t = 10) z-component velocity fields in the x-y plane. The
sub-figures in the first row ((a), (b), (c), (d), and (e)) are obtained from a 643 mesh; the sub-figures
in the second row ((f), (g), (h), (i), and (j)) are obtained from a 1283 mesh; and the sub-figures
in the third row ((k), (l), (m), (n), and (o)) are obtained from a 2563 mesh. The sub-figures in
the first column ((a), (f), and (k)) are computed using the 6th-order compact schemes; the sub-
figures in the second column ((b), (g), and (l)) are computed using the 4th-order explicit schemes;
the sub-figures in the third column ((c), (h), and (m)) are computed using the 2nd-order explicit
schemes; the sub-figures in the fourth column ((d), (i), and (n)) are computed using the TENO8-A
interpolation schemes in combination with the 6th-order compact finite difference schemes as the
divergence operator; and the sub-figures in the fifth column ((e), (j), and (o)) are computed using
the WENO5-JS interpolation schemes in combination with the staggered 6th-order compact finite
difference schemes as the divergence operator. The data, for visualization, has been upsampled in
Fourier space by zero-padding during post-processing. The scales of color maps are same for all
sub-figures, and the color scale is symmetric about 0.

Fig. 2.33f for reference. All sub-figures in Fig. 2.33 are shown with same scale of the color map. The

simulations based on the shock capturing schemes (Fig. 2.33d and Fig. 2.33e) have lower feature

intensities in the visualized wavenumber regime, and the sizes of the visualized features are larger
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Figure 2.32: Velocity energy spectra at the final simulation step (t = 10): (a) central schemes with
Vreman SGS model; (b) nonlinear shock capturing schemes with approximate Riemann solver where
the divergence operation is computed by the staggered 6th-order compact finite difference schemes.
The spectra obtained from the 643 mesh are plotted using solid curves, the spectra obtained from
the 1283 mesh are plotted using dashed curves, and the spectra obtained from the 2563 mesh are
plotted using dot-dashed curves.

than those of the bandpass-filtered LES results and the reference field (Fig. 2.33f). However, the

bandpass-filtered LES solutions (Fig. 2.33a, Fig. 2.33b, and Fig. 2.33c) are equally optimal compared

to the reference profile in Fig. 2.33f. These observations are consistent with the results presented in

Ref. [103].

A reasonable explanation of this observation is that the total error is not dominated by the

dispersion error of the numerical schemes. As opposed to the problem of the homoentropic swirl

advection illustrated in Sec. 2.4.1, the isotropic turbulence solution shows highly nonlinear behavior

although both solutions are obtained by solving fully nonlinear systems. The linear solution be-

havior in the swirl advection problem (cf. Sec. 2.4.1) indicates that the net contributions of all the

nonlinear interactions in the system are purely canceled. In contrast, the nonlinear interactions in

the isotropic turbulence produce higher-wavenumber features consistent with the turbulent energy

cascade. In LES, the higher-wavenumber flow features are eventually dissipated by the SGS model

near the grid-size scale. When a solution has strong linear behavior, although obtained from a non-

linear system, the dispersion error will significantly affect the computational quality in terms of the

flow structure preservation. On the other hand, the evolution of the LES solution of the isotropic

turbulence is dominated by the nonlinear interactions of the lower-wavenumber modes, and the

higher-wavenumber modes can also intrinsically tolerate more randomness. Therefore, the solution

quality evaluated from the velocity energy spectra shown in Fig. 2.32a and the flow visualizations of

the LES solutions in Fig. 2.31 and Fig. 2.33 essentially illustrate the aliasing error produced by the

nonlinear interactions among the low-wavenumber modes. Referring to the discussion in Sec. 2.2,

the numerical error of the three sets of central schemes are not as significant in the low-wavenumber
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Figure 2.33: Visualizations of bandpass-filtered z-component velocity fields on an x-y plane: (a) 6th-
order compact schemes; (b) 4th-order explicit schemes; (c) 2nd-order explicit schemes; (d) TENO8-A
interpolation schemes in combination with the staggered 6th-order compact finite difference schemes
for the divergence operation; and (e) WENO5-JS interpolation schemes in combination with the
staggered 6th-order compact finite difference schemes for the divergence operation. The sub-figures
from (a) to (e) are computed from a 643 mesh. (f) is used for reference which is computed using the
6th-order compact schemes from a 2563 mesh. The velocity profiles shown in all the sub-figures are
sampled within a spherical shell for k ∈ [16, 32) in Fourier space. For visualization only, the data
has been upsampled in Fourier space by zero-padding. The color map scale of all the sub-figures are
identical and symmetric about 0.

regime as they are in the high-wavenumber regime. Additionally, the transfer functions of the inter-

polation schemes of the lower-order schemes are even more favorable to dealiasing in the nonlinear

fluxes assembly by more aggressively reducing high-wavenumber mode amplitudes. Consequently,

for LES of decaying isotropic turbulence, the 2nd-order explicit schemes, 4th-order explicit schemes,

and 6th-order compact schemes present equally high-quality solutions in the velocity fields.

Besides the velocity field, the pressure field is also investigated. The configuration of the initial

condition generates significant transients in the flow, and they remain as acoustic waves in this

inviscid (asymptotically high-Reynolds-number) turbulence as it decays at the resolved scale. At

the final stage (t = 10), the visualizations of the pressure field from all simulations are shown in

Fig. 2.34 with same color map scale. For each scheme, more detailed wave structures are resolved as

the grid resolution increases. Comparing different schemes, higher-order schemes provide sharper and
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Figure 2.34: Visualizations of the final (t = 10) pressure fields in the x-y plane. The color map
scales are same for all sub-figures. See caption in Fig. 2.31 for details of each sub-figure.

clearer coherent wave structures at the same grid resolution, and they show more rapid enhancement

in resolving detailed wave features associated with grid refinement. Unlike the velocity field, the

simulations with the TENO8-A scheme and without an explicit SGS model provide significantly

improved spectral performance in resolving transient pressure waves. To quantify the numerical

performance, the pressure field is decomposed as follows.

p = psol + pdil + ïpð (2.62)

where psol and pdil are the solenoidal and dilatational components respectively, and ïpð is the mean

component. For the low-Mach number regime, the solenoidal pressure is estimated by solving the

Poisson equation [72].

− ∂2psol

∂xj∂xj
≈ ïÄð ∂u

sol
i

∂xj

∂usol
j

∂xi
(2.63)
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Figure 2.35: Energy spectra of solenoidal pressure at final step (t = 10): (a) central schemes with
Vreman SGS model and (b) nonlinear shock-capturing schemes with an approximate Riemann solver
where the divergence operation is computed by the staggered 6th-order compact finite difference
schemes. The line styles are same as those used in Fig. 2.32.
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Figure 2.36: Energy spectra of dilatational pressure at the final step (t = 10): (a) central schemes
with the Vreman SGS model and (b) nonlinear shock-capturing schemes with an approximated
Riemann solver where the divergence operation is computed by the staggered 6th-order compact
finite difference schemes. The line styles are same as those used in Fig. 2.32.

where usol
i is the solenoidal component of the velocity field. In this work, the solenoidal projection

is conducted in Fourier space using ûi(km), the three-dimensional discrete Fourier transform of ui

with respect to each wavenumber vector km.

usol
i =

∑

km ̸=0

P§
ij ûj(km)eikmxm (2.64)

where P§
ij is the solenoidal projector defined in Sec. 2.4.2. With the solenoidal pressure solved,

the dilatational pressure is calculated from Eq. (2.62). The energy spectra of the solenoidal and

dilatational pressure from all simulations are shown in Fig. 2.35 and Fig. 2.36 respectively. At a
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low turbulent Mach number, the solenoidal pressure is a reflection of the velocity field. Similar

trends are observed by comparing the energy spectra of the velocity in Fig. 2.32 and solenoidal

pressure in Fig. 2.36. The solenoidal pressure spectra of all the simulations using central schemes

with an explicit SGS model exhibit clear inertial sub-ranges up to near-Nyquist wavenumbers, and

at the same grid resolution, no large differences are observed as shown in Fig. 2.35a. The spec-

tra of solenoidal pressure obtained from shock-capturing-scheme-based simulations indicate overly

dissipative velocity fields and do not clearly resolve the turbulent cascade features, as shown in

Fig. 2.35b, due to the inconsistent numerical dissipation behavior between the nonlinear numerical

dissipation and physically expected SGS dissipation. On the other hand, the dilatational pressure

energy spectra, shown in Fig. 2.36, convey different evaluation perspectives compared to the veloc-

ity and solenoidal pressure spectra. Since the transient acoustic waves have relatively sharp wave

fronts and are strongly coherent at large scales, the simulation results are sensitive to the dispersion

error and the spectral resolution. Comparing the simulations conducted with central schemes, in

Fig. 2.36a, simulations using higher-order schemes resolve more acoustic energy in the moderate

wavenumber regime. In Fig. 2.36b, the simulations conducted with the TENO8-A scheme resolve

even more transient acoustic energy compared to the simulations using sixth-order compact schemes

that primarily benefit from higher-order convergence in the moderate wavenumber regime.

2.4.5 LES of flow over a cylinder

x

y

r
¹

L
sp

D

D0

p∞
T∞
M∞

domain boundary

numerical sponge

cylinder object

Figure 2.37: Schematic of configuration of LES of flow over a cylinder. The configuration is homo-
geneous in the z-direction (not shown in the schematic).

This set of problems is selected to demonstrate the numerical performance in applications of

LES using curvilinear meshes. The problems are defined in a three-dimensional domain where the

z-direction is periodic with length Lz. The schematic of the problem configuration in the x-y cross-

section is shown in Fig. 2.37. The cylinder object with a diameter D is placed at the origin, and

the wall of the cylinder defines the inner boundary of the physical domain. The outer boundary of
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the domain is concentric with the cylinder object, and its diameter is D0. The freestream in the

far-field is imposed and preserved by a numerical sponge layer [96]. The thickness of the sponge

layer is denoted as Lsp. For a quality setup, (D0 − 2Lsp)/D k 1 must be satisfied. The freestream

flow is aligned with the x-direction and specified by the pressure (p∞), temperature (T∞), and Mach

number (M∞). M∞ is defined as the ratio of the flow speed to the speed of sound at the freestream

conditions. For a calorically perfect gas, expressed in terms of the specified quantities, the freestream

speed is u∞ = M∞
√
µRT∞. The characteristic Reynolds number is defined as ReD = Ä∞u∞D/µ∞,

where Ä∞ is the freestream density calculated by the EOS of a calorically perfect gas. In this

set of problems, the specific gas constant and the ratio of specific heats are R = 1 and µ = 1.4

respectively. The local dynamic viscosity is evaluated as µ̌ = µ∞ (T/T∞)
0.76

. The Prandtl number

is assumed to be constant at Pr = 0.7. The definition of Pr is the same as that in Sec. 2.4.2

which is used to determine the local physical thermal conductivity. The Vreman SGS model [167]

is applied with CSGS = 0.06, and a constant turbulent Prandtl number, Prt = 1, is used for all the

simulations in this sub-section, where the definition of Prt is the same as that used in Sec. 2.4.4. The

compact numerical schemes along the non-periodic dimension where physical boundary conditions

are imposed are discussed in A.4, and the detailed SGS treatment is provided in A.2.

Label M∞ ReD Mesh Size Lz/D D0/D Lsp/D CFL ϕ∗
T ϕ∗

A

Case I 0.25 3900 256 × 128 × 128 2Ã 200 50 0.98 - -
Case II 0.25 3900 512 × 256 × 128 2Ã 200 50 0.98 - -
Case III 0.25 3900 512 × 512 × 128 2Ã 200 50 0.98 - -
Case IV 0.80 1.66 × 105 512 × 512 × 128 2Ã 200 60 0.60 0.45 0.05
Case V 0.80 1.66 × 105 768 × 768 × 128 2Ã 200 60 0.60 0.38 0.07
Case VI 0.80 1.66 × 105 1024 × 1024 × 384 2Ã 200 60 0.60 0.35 0.05
Case VII 0.80 1.66 × 105 1024 × 1024 × 384 2Ã 200 60 0.60 0.35 0

Table 2.2: Specifications of simulations in Sec. 2.4.5: Cases I, II and III use central fluxes only;
Cases IV, V, VI, and VII use central-Riemann hybrid fluxes, where a sharp switching, indicated by
the threshold values of a turbulence-based shock sensor, ϕ∗

T, and an acoustics-based shock sensor,
ϕ∗
A, is applied.

A nearly incompressible flow and a transonic flow are simulated as demonstrations. The

freestream Mach numbers for the two flow conditions are M∞ = 0.25 and M∞ = 0.8 respec-

tively. The Reynolds numbers are ReD = 3900 and ReD = 1.66× 105 respectively for the low-Mach

flow and transonic flow respectively. Both flow conditions have been investigated in prior stud-

ies [84, 113, 106]. For the low-Mach flow condition, the simulation only uses central fluxes, and

for the transonic flow condition, the simulation uses hybrid central-Riemann fluxes. The central

fluxes are calculated using the sixth-order compact schemes, and the Riemann fluxes are assembled

in Rusanov form [132] with the WENO5-JS interpolation scheme [73]. The hybridization is sharply

switched, so the fluxes are either fully central or Riemann-type. The switching is indicated by two

shock sensors evaluated based on the turbulent and acoustic flow features respectively. The values
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Figure 2.38: Curvilinear mesh mapping in the x-y plane: (a) mapping of the radial coordinate; (b)
mapping of the azimuthal coordinate. Symbols shown in the sub-figures are plotted every ten grid
points.
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Figure 2.39: Visualization of the computational mesh in an x-y cross-section used for Case I: (a)
full view; (b) detailed view in the wake region; (c) detailed view in the near-wall region. The mesh
spacing in z-direction is uniform.
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of the turbulence-based shock sensor and the acoustics-based shock sensor are denoted as ϕT and ϕA

respectively. In this work, the range of the sensor values are ϕT ∈ (−1, 1) and ϕA ∈ (−1, 1) where

a higher value indicates a stronger local compression. The Riemann flux will be used if both sensor

values are greater than their threshold values, ϕT > ϕ∗
T and ϕA > ϕ∗

A where the superscript, “∗”,

denotes the corresponding threshold value. The shock sensors are evaluated at each edge-staggered

location. The details of central-Riemann flux hybridization are discussed in the following context in

this section. Three simulations for the low-Mach flow condition (Cases I, II, and III) and three for

the transonic flow condition (Cases IV, V, and VI) were conducted to assess grid sensitivity, and one

additional simulation under the same transonic flow condition (Case VII) was conducted to further

investigate the effects of shock sensors. The detailed setup for each simulation is listed in Tab. 2.2.
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Figure 2.40: Streamwise velocity profiles along the centerline in the cylinder wake in the low-
Mach flow: the experimental data are from Lourenco and Shih [93], Ong and Wallace [113], and
Molochnikov et al. [105], measured using PIV, HWA, and SIV respectively.

The computational mesh is of the “O-” type with orthogonality preserved in physical space. In

order to keep the consistency of the right-hand coordinate system in both the reference domain and

the physical domain, the mapping from the reference domain to the physical domain is of the form

À 7→ r, ¸ 7→ ¹, and · 7→ z, where r and ¹ are the radial distance and the azimuthal angle respectively

as marked in Fig. 2.37. The grid spacing is uniform in z-direction. The detailed mapping for each

case listed in Tab. 2.2 is plotted in Fig. 2.39. Along the radial direction, the mesh is refined near the

cylinder object to resolve the laminar boundary layer and coarsened in the far-field region to save

the grid resolution while maintaining a sufficiently large domain. In the azimuthal direction, more

grid points are distributed on the wake side to enhance the mesh resolution in region of interest.

The computational mesh used for Case I is shown in Fig. 2.39 as an illustration. The near-wall mesh

pattern shown in Fig. 2.39c implies that the acoustic CFL condition is limited by the wall-normal

mesh refinement, and the azimuthal grid refinement does not cause a more restrictive constraint on

the time advancement process.
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For the low-Mach conditions, the mean streamwise velocity profile along the centerline in the

cylinder wake region for each simulation (Cases I, II, and III) is shown in Fig. 2.40, and the simu-

lation results are compared with the experimental data [93, 113, 105]. The experimental data from

Lourenco & Shin (1994) [93] are collected using the method of particle image velocimetry (PIV),

the data from Ong & Wallace (1996) [113] are measured using hot wire anemometry (HWA), and

the data from Molochnikov et al. (2019) [105] are obtained using the smoke image velocimetry

(SIV) technique. The operator ï(·)ð in this section denotes the temporal averaging and spatial av-

eraging in the z-direction. Temporal averaging is performed at every time-step once a statistically

stationary state devoid of any initial transients has been reached. With successive mesh refinement

from Case I to Case III, the streamwise velocity profiles asymptotically converge. In the near wake

region, x/D < 3, the converged profile is closer to the experimental data from Molochnikov et al.

(2019) [105]. It is also argued by Kravchenko & Moin (2000) [84] that an early transition in the

shear layers possibly occurs in the measurement conducted by Lourenco & Shin (1994) [93].
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Figure 2.41: Streamwise velocity profiles at different locations in the cylinder wake in the low-Mach
flow: (a) velocity profiles at near-wake locations; (b) velocity profiles at far-wake locations. The
symbols of the experimental data points are identical to those in Fig. 2.40.

The averaged streamwise velocity profiles along the transverse direction at different locations

in the cylinder wake are shown in Fig. 2.41. In the near-wake region, as shown in Fig. 2.41a, the

velocity profiles from all three cases well match the experimental measurements at x/D = 0.58.

However, at x/D = 1.06 and x/D = 1.54, the experimental data from Lourenco & Shih (1994) [93]

and Molochnikov et al. (2019) [105] have obvious discrepancies. The LES results from the coarsest

mesh (Case I) most closely match the measured profiles in Lourenco & Shih (1994) [93], and the

results from the refined meshes (Cases II and III) converge to the measured profiles in Molochnikov

et al. (2019) [105]. In the far-wake region, as shown in Fig. 2.41b, the discrepancy between the

two experimental measurements reduces as x/D increases, and the converged LES results agree well
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with the experimental data.

The profiles of velocity variance related to the streamwise and transverse velocity components

along the transverse direction at different cylinder wake locations are shown in Fig. 2.42. The LES

results are compared with the experimental measurements. Defining the fluctuating component

u′
i = ui − ïuið, the velocity variance is calculated as

〈
u′
iu

′
j

〉
= ïuiujð − ïuið ïujð assuming fully-

converged statistics. For all three variances, ïu′u′ð, ïu′v′ð, and ïv′v′ð, the converged simulation

data qualitatively agree with the experimental data. For the autovariances, ïu′u′ð and ïv′v′ð, the

simulation on the coarsest mesh gives an overestimation. The converged LES profiles still slightly

overestimate the experimental data at x/D = 4, but the profiles match well at other wake locations.

For the covariance, ïu′v′ð, a slight discrepancy between the LES and experimental data can be

observed at x/D = 4, but all three LES profiles agree well with the experimental measurements at

x/D = 7 and x/D = 10.
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Figure 2.42: Velocity variance profiles at different cylinder wake locations in the low-Mach flow: (a)
ïu′u′ð profiles; (b) ïu′v′ð profiles; (c) ïv′v′ð profiles. The symbols of the experimental data points
are identical to those in Fig. 2.40.

The simulations with the transonic freestream conditions, used as a demonstration, involve com-

prehensive use of the capabilities developed in this framework including the curvilinear mesh with pe-

riodic and non-periodic boundary conditions, SGS models, and central-Riemann flux-hybridization.

Representative flow visualizations from Case VI are shown in Fig. 2.43. Fig. 2.43a shows the numer-

ical Schlieren imaging at a cross-section in z-direction. The numerical Schlieren imaging primarily

reveals the turbulent wake flow structures associated with vortex shedding, a spatially and tempo-

rally growing Kevin-Helmholtz instability at the edge of the near-wake region leading to transition

to turbulence, and shock waves. The flow contains two strong normal shocks interacting with the

edge of turbulent wake and two weak oblique shocks attached to the laminar boundary layer at the

cylinder surface as observed from prior experimental and numerical studies [162, 97]. In addition,

the simulation also captures the eddy shocklets in the near wake region as well as the periodic for-

mation of normal shocks between the neighbouring shedding vortices caused by the counter-rotating
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Figure 2.43: Visualizations of the LES of transonic flow over a cylinder (Case VI) at the same
physical time: (a) numerical Schlieren imaging, |∇Ä|; (b) ratio of the SGS viscosity to the physically
computable viscosity, µSGS/µ̌ (cf. A.2).

flow motion. The ratio of the SGS viscosity to the physically computable viscosity is visualized in

Fig. 2.43b. Using an SGS viscosity model, this ratio of the viscosities also indicates the ratio of the

dissipation imposed by the SGS model to the resolved viscous dissipation in the LES. As shown in

Fig. 2.43b, in comparison with the numerical Schlieren imaging, the SGS viscosity rapidly vanishes

away from the turbulent flow structures. Near the cylinder wall, the SGS viscosity is nearly zero,

and the near-wall flow is well-resolved. Farther away from the cylinder, SGS dissipation becomes

dominant in resolving the turbulent structures mainly because of the mesh coarsening. For the

shock-turbulence interactions, to avoid the overly dissipative numerical behavior due to the activa-

tion of the shock-capturing treatment as well as the SGS model [6], the SGS model is enforced to

be zero locally where the shock-capturing scheme is active.

0 20 40 60 80 100 120

Angle from forward stagnation point [deg]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

C
p

LES (Case IV)

LES (Case V)

LES (Case VI)

LES (Case VII)

Exp. data (Murthy & Rose)

Figure 2.44: Profile of the pressure coefficient, Cp = (p− p∞) /
(
ÄU2

∞/2
)
, on the cylinder surface in

the transonic flow. The experimental data are from Murthy and Rose [106] and measured at the
static surface pressure ports through a scanning valve device.

The pressure coefficient profiles at the cylinder surface for the simulations of the transonic
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freestream condition (Cases IV, V, VI, and VII) are shown in Fig. 2.44. The simulation results

are compared with the experimental data [106] which are collected at the surface pressure ports

placed near the midspan locations through a scanning valve device. All four LES profiles show

quantitative agreement in the region where the angle from the forward stagnation point is less than

70◦. Additionally, the boundary layer separation points indicated by the pressure coefficient profiles

consistently match between the LES and experimental data. Some discrepancies exist in the back

pressure between the LES results and the experimental measurements, and the simulation results

with mesh refinement in the near-wake region (Cases V and VI) show a non-monotonic convergence

in the back pressure calculation compared to that of the coarsest mesh (Case IV). The use of the

acoustics-based shock sensor is insensitive to the calculation of the mean pressure coefficient for

Cases VI and VII.
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Figure 2.45: Visualizations of the LES of transonic flow over a cylinder (Case VII) at the same
physical time: (a) numerical Schlieren imaging, |∇Ä|; (b) ratio of the SGS viscosity to the physically
computable viscosity, µSGS/µ̌ (cf. A.2).

The hybridization of central and Riemann fluxes is jointly controlled by a turbulence-based shock

sensor and an acoustics-based shock sensor. The Riemann fluxes will be selected only when both

shock sensor values are greater than their corresponding threshold values as listed in Tab. 2.2. In

this work, the modified Ducros sensor (cf. Sec. 2.4.2) is used as the turbulence-based shock sensor,

ϕT.

ϕT =
−¹|¹|

¹2 + ÉjÉj + ϵ2
(2.65)

where ¹ is the velocity dilatation, Éj is the vorticity vector, and ϵ = 10−16 is applied for numerical

regularization. The acoustics-based shock sensor is given as

ϕA = − tanh (2¹∆/c) (2.66)

where c is the local speed of sound, and ∆ is a characteristic length scale representing the local grid

size. In this work, ∆ = 3
√
J is used where J is the Jacobian of the metric tensor (cf. Sec. 2.3.3) defined
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in Eq. (2.39). The modified Ducros sensor in Eq. (2.65) detects the shock based on the velocity

dilatation strength relative to the enstrophy. This sensor is particularly sensitive to the turbulent

flow structures and will deactivate the use of Riemann fluxes in the turbulent region. However, when

the enstrophy is relatively low as in the laminar flow region or the edge of the turbulent flow region,

the modified Ducros sensor is less sensitive due to the lack of reference enstrophy and may mis-

identify weak compression waves as shocks. The acoustics-based sensor will then play a dominant

role in such regions. In the definition of the acoustics-based sensor, in Eq. (2.66), the dimensionless

quantity, ¹∆/c, represents a “grid Mach number.” For a strong compression wave, including a

shock wave, the grid Mach number quantifies the difficulty in numerically resolving the wave with

the resolution supported by the computational mesh. According to the acoustics-based sensor, if a

compression wave is too strong to be well-resolved by the computational mesh, the shock-capturing

method should be enabled. The combination of the turbulence-based and acoustics-based shock

sensors will more effectively suppress the unnecessary utilization of the shock-capturing method to

avoid overly dissipative simulation results.

The simulation results from Cases VI and VII are used to compare the effects of the flux hy-

bridization. The simulation of Case VII uses a flow state computed with Case VI as its initial

conditions where all transients are flushed out of the domain of interest. The simulation results are

visualized in Fig. 2.45 after approximately another 33 convective time units, i.e., tU∞/D ≈ 33. The

visualizations in Fig. 2.43, for Case VI, and Fig. 2.45, for Case VII, are at the same physical time

for comparison. The large-scale flow structures in the two cases are identical. Setting the acoustics-

based shock sensor threshold to ϕ∗
A = 0 (Case VII) yields the strategy described in Ref. [76], where

the activation of a shock-capturing method is fully controlled by the modified Ducros sensor in the

compression region. In contrast, ϕ∗
A > 0 (Case VI) additionally enforces the central flux to be ap-

plied if the compression motion is relatively weak in both turbulent and laminar regions. Comparing

the visualizations shown in Fig. 2.43 and Fig. 2.45, more small-scale wave structures in the laminar

flow regions can be resolved in Case VI where ϕ∗
A > 0. Furthermore, the relative SGS viscosity in

the turbulent wake region is larger in Case VI compared to that in Case VII.

The behavior of the shock sensors and flux hybridization status for Cases VI and VII are vi-

sualized in Fig. 2.46. The turbulence-based shock sensor in both cases is capable of identifying

the shock structures and can effectively suppress the use of Riemann fluxes in the turbulent wake

region. However, near the forward stagnation point where the flow is laminar and shock-free, the

turbulence-based shock sensor mis-identifies the shock structure in both cases due to the small

vorticity magnitude compared to the compression motion characterized by negative dilatation. In

addition, in the wake region at the edges of the turbulent shedding vortices and the region farther

away, the acoustic waves are also mis-identified as shocks by the turbulence-based shock sensor. The

acoustics-based sensor in both cases highlights the shock structures and successfully recognizes the

weak compression near the forward stagnation point and the acoustic waves that can be well-resolved
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Figure 2.46: Visualizations of shock sensors and central-Riemann flux hybridization in LES of tran-
sonic flow over a cylinder in Cases VI and VII: (a) and (b) are visualizations of the turbulence-based
shock sensor values; (c) and (d) are visualizations of the acoustics-based shock sensor values; and
in (e) and (f), the Riemann fluxes are used in the dark regions, and the central fluxes are used in
the bright regions. The sub-figures in the left column, (a), (c), and (e), are from Case VI, and the
sub-figures in the right column, (b), (d), and (f), are from Case VII. The simulations of Cases VI
and VII start from the same initial conditions, and the visualizations are at the same computational
time.
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with the local mesh resolution. The simulation of Case VI benefits from the acoustics-based sensor

while the simulation of Case VII only uses the acoustics-based sensor to distinguish compression

motion from expansion motion. In the comparison shown in Fig. 2.46e and Fig. 2.46f, the use

of Riemann fluxes in Case VI is highly localized to the shock structures, and the shock-capturing

method is effectively deactivated elsewhere. In contrast, in Case VII, the shock-capturing method is

unnecessarily enabled in the non-turbulent flow region although it is successfully suppressed in the

turbulent flow structures.

2.5 Conclusions

A high-order compact finite difference based computational framework is proposed for simulations of

compressible turbulent flows. This framework uses collocated and staggered first derivative schemes

as well as the mid-point interpolation scheme. During the solution process, all conservative variables

are only stored at the collocated nodal points, and the fluxes are assembled at the edge-staggered

locations using the interpolated primitive variables. Fourier analysis indicates that robustness is

gained by reducing the aliased interactions during the assembly of the non-linear advective fluxes at

edge-staggered points. Additional robustness results from staggered evaluation of viscous fluxes that

leads to enhanced accuracy in resolving the viscous-type dissipation at small scales especially near

and at the Nyquist wavenumber. Eddy-resolving simulations, such as DNS and LES, can therefore

maintain numerical stability without additional numerical filtering of the solution. This attribute is

particularly pertinent to computations on curvilinear meshes where spatial variations of the metric

terms add to further aliasing. A GCL-consistent metric generation process is also developed as

part of the framework. For flows containing shocks, the flux evaluation is compatible with the

application of nonlinear shock-capturing schemes combined with an approximate Riemann solver

via state variable blending. The staggered calculation of viscous fluxes is favorable when other

shock-regularization schemes, such as localized artificial bulk viscosity and thermal conductivity

models, are used, especially in problems where small-scale eddy shocklets are present.

Different aspects of the numerical performance of the scheme are investigated using several

demonstrative computations of 2D and 3D canonical flow configurations. The results indicate that

high-order compact numerical schemes have significantly lower dispersion error and preserve coherent

flow structures even on highly skewed curvilinear meshes. The LES of decaying isotropic turbulence

shows that the framework is suitable for use with high-order compact schemes and can be favorably

combined with lower-order explicit central schemes to resolve decorrelated turbulent structures. The

results relying on implicit numerical dissipation are overly dissipative compared to those simulated

using explicit SGS models. Comprehensive use of the framework is demonstrated in the set of

LES of flow over a cylinder. The robustness and accuracy are justified in both the low-Mach and

transonic flow cases. For the transonic flow case, central-Riemann hybrid fluxes are used. The
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blending of primitive variables is self-controlled by two physics-based shock sensors. The simulation

results show that the turbulent flow structures and acoustic wave structures are preserved by central

fluxes with the SGS model only and are not affected by the numerical dissipation added from the

shock-capturing scheme and the approximate Riemann fluxes.



Chapter 3

Simulations of Compressible

Dense-Gas Flows

Supercritical fluids have a number of thermodynamic and chemical properties which make them

attractive for use in environmentally sustainable technologies. However, the dynamics of supercrit-

ical and transcritical fluid flows are less well-explored and understood even though the thermody-

namic properties of supercritical fluids have been studied comprehensively. Studying the behavior

of such fluid flows through high-quality computational investigations could provide crucial insights

into designing and controlling flow systems operating under supercritical and transcritical condi-

tions. An accurate and robust computational framework is a prerequisite to conducting high-quality

computational investigations. This work extends a high-resolution computational framework for

calorically-perfect-gas flows (cf. Ch. 2) by including real-gas thermodynamic and transport models.

The computational approach achieves robustness by reducing the aliasing error and improving the

spectral resolution of the viscous fluxes at high wavenumbers. No non-conservative correction or

filtering is needed to maintain robustness for shock-free flows if physical or physics-based model dis-

sipation is included. The framework is also compatible with applications of shock capturing schemes

and approximated Riemann solvers and supports simulations on curvilinear meshes.

The study illustrated in this chapter is published in Ref. [145].

3.1 Introduction

Supercritical fluids have recently drawn increasing attention in many industrial applications [18,

79]. As an example, supercritical CO2 power cycles offer key advantages in energy conversion due

to their compactness, high thermal efficiency, and longer life cycles due to corrosion resistance.

They can operate with a variety of heat sources, including sustainable sources, such as geothermal

64
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power, concentrated solar power and high temperature fuel cells, nuclear reactors, and traditional

fossil fuels [2]. A pure fluid reaches the supercritical state when both its pressure and temperature

are above the critical point. Transitioning between subcritical and supercritical states, the fluid

undergoes a pseudo phase change where the thermodynamic and transport properties, e.g., density,

viscosity, thermal conductivity, vary significantly within a narrow range of temperature and pressure.

Unlike ideal gases, a fluid near the critical point exhibits complex thermodynamic behavior. The

pressure-volume-temperature (p-v-T ) relation is highly nonlinear. Additionally, the specific internal

energy is dependent on both temperature and density (or specific volume) and accounts for the effects

of intermolecular interactions. Due to the complexities introduced by the behavior of thermodynamic

and transport properties, numerical solutions of flows in this regime require special consideration. In

many cases, when a flow of a transcritical or supercritical fluid is turbulent, the significant variations

in thermodynamic and transport properties of the fluid are highly coupled with the fluid motions

which further increases the complexity of the turbulence dynamics.

Numerical computations have been utilized to investigate the flows of dense gases. However,

for the fully compressible system, abrupt changes in thermodynamic properties, especially density,

associated with a small range of temperature and pressure variation may cause severe and spurious

oscillations [62, 77]. There are two common methods used to address this problem in the simulations.

The first approach is to rely on extra numerical dissipation, especially around the pseudo-phase

change regions [62, 36], and the second approach is to introduce a total energy correction [137] or

replace the energy equation by the pressure evolution equation [77]. Both of these modifications, in

general, achieve numerical robustness at the cost of sacrificing simulation accuracy to some degree.

Excessive numerical dissipation tends to damp the physically growing high wavenumber features. If

numerical dissipation is applied as a dominant mechanism in the computational approach, the local

simulation results should be considered as physically under-resolved solutions. Careful assessment

of fine-scale features is required to establish the physical quality of the simulated results.

In simulations of transcritical flows, the abrupt density changes are determined by the equation of

state (EOS) and are caused by physical temperature and pressure fluctuations in the flow. During

the pseudo-phase change from the subcritical state to the supercritical state, or vice versa, the

density change associated with pressure and temperature is still smooth. Therefore, in a shock-free

flow, there is no discontinuity in the flow during the pseudo-phase change. The simulation quality

thus primarily depends on the tolerance of the simulation framework to dispersion and aliasing errors

without excessive numerical dissipation. From this point of view, the pressure-based solver [77] can

effectively reduce the spurious oscillations in the simulation results. However, this robustness may

be at a cost of breaking the discrete conservation. For a fully compressible system that involves

shock waves, additional treatment may be needed under specific flow conditions.

This work proposes a unified simulation framework for simulations of transcritical fluid flows that

is an extension of the one proposed in Ch. 2. The conservative formulation of the computational
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systems for ideal gas flows is preserved. Additionally, the spatial discretization is based on compact

finite difference schemes and compact interpolations to achieve both high-order grid convergence

and highly improved spectral resolution [146]. The thermodynamic and transport properties are

calculated using physics-based models that resolve the abrupt changes in properties during pseudo

phase changes. In this chapter, the mathematical formulation of the problem and the associated

physical closure models are described in Sec. 3.2, the numerical solution methods are summarized

in Sec. 3.3, and some demonstrative computational results for simulations of a compressible planar

shear layer and turbulent boundary layer are presented and discussed in Sec. 3.4.

3.2 Physical and mathematical formulations

3.2.1 Governing equations

The simulation solves the compressible Navier-Stokes equations, including conservation of mass,

momentum, and total energy, given as

∂Ä

∂t
+

∂Äuj

∂xj
= 0 (3.1)

∂Äui

∂t
+

∂

∂xj
(Äuiuj + p¶ij) =

∂Ãij

∂xj
(3.2)

∂Äetot
∂t

+
∂

∂xj
[(Äetot + p)uj ] =

∂

∂xj
(uiÃij − qj) (3.3)

where index notation is applied, Ä is the density, ui is the velocity vector, p is the pressure, ¶ij is the

identity tensor, Ãij is the viscous stress tensor, and etot is the specific total energy which includes

the specific internal energy, e, and the specific kinetic energy, etot = e + ujuj/2. The bulk viscosity

of the fluid is not considered, and thus, the viscous stress tensor, Ãij , is calculated as

Ãij = 2µ (Sij − Skk¶ij/3) (3.4)

where µ is the dynamic viscosity of the fluid, Sij is the rate-of-strain tensor, defined as Sij =

(ui,j + uj,i)/2, and ¶ij is the identity tensor. The heat flux, qj , is calculated using Fourier’s law as

qj = −¼
∂T

∂xj
(3.5)

where ¼ is the thermal conductivity.

For a dense gas, the EOS includes the p-v-T relation, i.e., p = p(T, Ä), and the formulation

of the internal energy is determined by both temperature and density, or e = e(T, Ä). The trans-

port properties are calculated using both temperature and pressure. The formulation and non-

dimensionalization of the EOS and transport models are discussed in the following sub-sections, and
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more detailed derivations are provided in Appendix B.

3.2.2 Thermodynamic models
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Figure 3.1: p-v-T relation calculated from the Peng-Robinson EOS.

For a pure gas near its critical condition, the Peng-Robinson EOS [119] is used for the p-v-T

relation. The mathematical expression is provided as follows:

p =
RT

v − b
− a³(Tr)

v2 + 2vb− b2
(3.6)

where p is the pressure, T is the temperature, R is the specific gas constant, and a and b are model

constants defined as

a = 0.45723553
R2T 2

c

pc
and b = 0.07779607

RTc

pc
(3.7, 3.8)

where Tc and pc are the critical temperature and pressure respectively. Tr in Eq. (3.6) is the reduced

temperature, which is dimensionless, defined as Tr = T/Tc. The expression of ³(Tr) in Eq. (3.6) is

given as

³(Tr) =
[
1 + »

(
1 −

√
Tr

)]2
(3.9)

where » is a quadratic fitting of the acentric factor É and is given as

» = 0.37464 + 1.54226É − 0.26992É2 (3.10)

For CO2, É ≈ 0.239. Eq. (3.6) implies a non-dimensionalization using pc, Tc and R, where pc and Tc
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provide a pressure and temperature scale respectively. The density scale is defined as Ä0 = pc/(RTc).

Furthermore, drawing a parallel to kinematic motion, a velocity scale is derived as U0 =
√
RTc. As

a side note, Ä0 and U0 are results from dimensional analysis that may not be equal to the density

or speed of sound at the critical condition. The dimensionless form of Eq. (3.6) can be written as

pr =
Tr

v∗ − b∗
− a∗³(Tr)

v∗2 + 2v∗b∗ − b∗2
(3.11)

where pr = p/pc is known as the reduced pressure. The superscript “∗” denotes the non-

dimensionalized quantity, and the parameters a∗, b∗, and v∗ are given as:

a∗ = 0.45723553 b∗ = 0.07779607 v∗ = Ä0v (3.12, 3.13, 3.14)

The p-v-T behavior is plotted in Fig. 3.1. The model parameters are set for CO2. For reference, the

results obtained from the Peng-Robinson EOS are compared with data from the National Institute

of Standards and Technology (NIST) Web Book [91]. As shown in Fig. 3.1, the pseudo phase change

behavior is well-captured by the model p-v-T relation near the critical temperature at supercritical

pressures.
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Figure 3.2: Fitted isochoric specific heat for CO2 in the ideal-gas limit. The reference state is
chosen to be at the critical temperature in the ideal gas limit, and the model calculation results are
compared against the values obtained from the NIST database [91].

The internal energy can be calculated using the following equation:

e = eref +

∫ T

Tref

cv(T, vref)dT +

∫ v

vref

[
T

(
∂p

∂T

)

v

− p

]
dv (3.15)

where cv is the specific heat at constant volume, and the subscript “ref” indicates a reference state.

Eq. (B.17) indicates a two-step integration along an isochoric path followed by an isothermal path.

On the right-hand side of Eq. (B.17), the second integral can be evaluated by the p-v-T relation from
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Figure 3.3: Evaluation of the specific internal energy calculation for CO2: the reference state is
chosen to be at the critical temperature in the ideal gas limit, and the model calculation results are
compared against the values obtained from the NIST database [91].

Eq. (3.6). The first integral, however, requires an additional model for the temperature dependent

cv at a reference specific volume. Taking vref → ∞, the reference state is in the ideal gas regime.

For certain gases, cv(T,∞) can be evaluated based on the following power law for simplicity:

cv(T,∞) = cv(Tref ,∞)

(
T

Tref

)n

(3.16)

Using CO2 as an example, the accuracy of the calculation of the internal energy using Eq. (3.15) is

shown in Fig. 3.3, and the results are compared with data from the NIST database [91].

3.2.3 Transport models

The calculations of a fluid’s viscosity and thermal conductivity in the transcritical and supercritical

regimes are based on the approach proposed in Chung et al. (1988) [25]. The model accounts for

the effects of both temperature and pressure. The original version of the model, particularly for the

calculation of thermal conductivity, is formulated in a dimensional form for engineering applications.

Its utilization requires that quantities be provided in particular physical units. In this work, all the

dimensional parameters in the model formulation have been consistently scaled so that the model

can be directly used for both dimensional and dimensionless computations.

According to the model from Chung et al. (1988), the dynamic shear viscosity of a pure gas is

evaluated as
µ

µc
=

µ∗

µ∗
c

(3.17)
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where µc is the dynamic shear viscosity at the critical condition defined as µc = µ(Tc, pc). µ∗ is a

dimensionless function of temperature and density, and µ∗
c is µ∗ evaluated at the critical condition,

or µ∗
c = µ∗(Tc, Äc). The calculation of µ∗ requires a p-v-T relation, and to maintain consistency, the

Peng-Robinson model as described in Sec. 3.2.2 is used. The expression for µ∗ calculated using the

Peng-Robinson model is given as

µ∗ =

√
T ∗

Ωv(T ∗)
Fc

(
1

G2(Ä∗)
+ E6Ä

∗
)

+ ¸∗∗(T ∗, Ä∗) (3.18)

where the dimensionless temperature T ∗ is calculated as T ∗ = 1.2593Tr, and the dimensionless

density is evaluated as Ä∗ = Ävc/6 with vc representing the specific volume at the critical condition.

The parameters involved in Eq. (3.18) are determined from the properties of the gas molecules

and detailed in Ref. [25] and Ref. [125]. The whole calculation process is also documented in

Appendix B.3.1.

The thermal conductivity, ¼, based on the methods from Chung et al. (1988), can be calculated

as
¼

Rµc
= 3.75256µ¸

r Ψ(Tr, pr)

(
1

G2
+ E6Ä

∗
)

+ q∗E7G2Ä
∗2√Tr (3.19)

where µ¸
r = µ¸/µc is the relative low-pressure dynamic shear viscosity, and the superscript “¸”

denotes that the quantity is evaluated at the same temperature but in the low-pressure regime.

The detailed calculations of the model parameters are provided in Ref. [25] and Ref. [125]. The

left-hand side of Eq. (3.19) implies that the thermal conductivity is consistently scaled by Rµc, and

all calculations necessary to compute the right-hand side of Eq. (3.19) can be conducted using the

non-dimensionalized quantities. The calculations using the original transport models from Chung

et al. are dimensional. The complete instructions for non-dimensional calculations including the

determinations of the model parameters are documented in Appendix B.3.2.

3.3 Summary of numerical schemes

All numerical schemes used for collocated-to-edge interpolation and derivative operations are sixth-

order compact schemes [89, 107] as described in Sec. 2.3. The high-order formulation will provide

rapid grid convergence. Moreover, compared to explicit schemes, the compact scheme has sig-

nificantly improved spectral resolution especially in the high wavenumber regime. However, for

high-order and high-resolution schemes, numerical stability becomes a major concern [107].

The spatial discretization used in this work is based on the framework proposed by Song et

al. [146] which is also illustrated in Ch. 2. During the solution process, all conservative variables

evolve at the collocated grid points while the fluxes are assembled at the edge-staggered points in

each direction respectively. A minimum set of primitive variables, calculated from the conservative

variables, are interpolated from the collocated grid points to assemble the inviscid fluxes at the
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staggered grid points. For the viscous fluxes, the gradient components which are aligned with the

flux direction are calculated using staggered first derivative schemes, and the components that are

not aligned with fluxes directions are first calculated using collocated differential schemes and then

interpolated from the collocated grid points to the corresponding edge-staggered points. Eventually,

the divergence operators are evaluated using staggered first derivative schemes in each direction,

and the results are taken back from the edge-staggered grid points to the collocated grid points.

The discretization has been proven to work on both uniform Cartesian meshes and curvilinear wavy

meshes.

The discretization method significantly contributes to reducing the aliasing error in the nonlinear

inviscid fluxes and resolving the viscous dissipation in the high-wavenumber region including a non-

trivial response of viscous dissipation at the Nyquist wavenumber. A more quantitative analysis

and mathematical proofs are provided in Ch. 2. In simulations of flows in the transcritical regime,

the pseudo phase change of the fluid amplifies the aliasing error originating from the calculation of

temperature and pressure. The small spurious oscillations in the pressure and temperature fields may

lead to noticeable fluctuations in the mass flux that cause numerical errors to grow. The proposed

simulation framework addresses this issue by providing sufficient dealiasing during the assembly

of the nonlinear fluxes. Additionally, the high spectral resolution of the compact schemes used in

the simulation framework significantly reduces the dispersion error. Furthermore, the non-trivial

response of the viscous dissipation at the Nyquist wavenumber damps the grid-to-grid oscillations,

making the computational system more stable. The solution filtering operations, claimed to be

necessary in many compact-scheme-based frameworks, can be avoided.

In addition, for flows under transcritical conditions, the pseudo phase change behavior is physi-

cally regular per the EOS model on the macro scale. Therefore, the rapid density change associated

with a relatively small temperature fluctuation during the pseudo phase change should be a nu-

merically well-resolved feature in a direct numerical simulation (DNS). This requires the numerical

framework to have high spectral resolution and low numerical dispersion to resolve the solution

profile with a large local gradient and curvature.

For highly compressible flows, shocks may develop. In the proposed simulation framework, all

the fluxes are assembled at the edge-staggered grid points. The solution approach is naturally

compatible with the non-linear shock-capturing scheme combined with an approximate Riemann

solver. As a result, a hybrid central-Riemann flux is assembled. The approximate Riemann solver

and characteristic decomposition for a real-gas are detailed in Appendix A.5.3. In simulations of

compressible turbulent flows containing shocks, it is desirable that the numerical dissipation be

highly localized to the shock structures to artificially capture the under-resolved features. In the

shock-free region, the turbulent flow behavior should only rely on the physical or physics-based

model dissipation.

In this work, the flux blending is controlled by a physics-based shock sensor that is modified
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from the Ducros sensor. The mathematical formulation of the modified Ducros sensor, ϕ, is given

in the following equation:

ϕ =
− |¹| ¹

¹2 + ω · ω + ε2
(3.20)

Here, ¹ = ∇ · u is the velocity dilatation, ω = ∇ × u is the vorticity vector, and ε = 1 × 10−16 is

used for round-off regularization. According to the equation, in a non-uniform flow, ϕ < 0 indicates

local expansion, and ϕ > 0 indicates local compression. During simulation, a threshold sensor value,

ϕTH, is specified. If ϕ > ϕTH, Riemann fluxes will be used. Otherwise, only central fluxes will be

used.

3.4 Demonstrative computations

Results from idealized unit test problems are not shown in this paper. Instead, results from high-

resolution, three-dimensional turbulent flow simulations in two illustrative problems are shown.

These problems are intended as a numerical demonstration of the success of the proposed method

in simulating realistic turbulent flows.

3.4.1 Planar shear layer

numerical sponge

numerical sponge

initial perturbation

base flow condition (+)

base flow condition (-)

p
er

io
d

ic
b

ou
n

d
ar

y

x

y

(a) (b)

Figure 3.4: Simulation configuration of compressible planar shear layer: (a) configuration of compu-
tational domain; (b) computational mesh. The computational domain is periodic in the z-direction,
and the computational mesh is uniform in x and z.

The basic configuration of the compressible shear layer simulation is shown in Fig. 3.4. The

computational domain size is Lx × Ly × Lz = 12Ã × 20 × 6Ã, and the mesh size is Nx ×Ny ×Nz =

1024 × 512 × 512. The computational domain is periodic in the x− and z− directions, and the

computational mesh is uniform along these two dimensions. The computational mesh is stretched

in the y-direction to use a majority of the grid points to resolve the growth of the shear layer. Near
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Figure 3.5: Numerical Schlieren imaging of the planar shear layers: (a), (b), and (c) are the visu-
alizations of the supercritial CO2 flow at the normalized time, Ä , at values of 500, 600, and 700
respectively; (d), (e), and (f) are the visualizations of the calorically perfect gas at the same corre-
sponding normalized times.
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Figure 3.6: Visualization of the modified Ducros sensor in the dense gas shear layer at Ä = 700. The
modified Ducros sensor is defined in Eq. (3.20). The flow is at the same state as shown in Fig. 3.5c.
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the upper and lower domain boundaries in the y-direction, numerical sponge layers are applied to

enforce the far-field flow conditions on each side. The base flow velocity is parallel to the x-direction

with variation in the y-direction. The initial base flow velocity profile, U0, is regularized with a finite

shear layer thickness using the following hyperbolic tangent profile:

U0(y) =
U+∞ + U−∞

2
+

U+∞ − U−∞
2

tanh

(
Cδ

y

¶0

)
(3.21)

where U+∞ and U−∞ are constants representing the far-field velocities on the upper and lower

sides of the domain respectively. The dimensionless constant Cδ is a scaling factor that defines the

characteristic velocity based on the shear layer thickness ¶0. In this simulation, Cδ = 2 tanh−1(0.99),

and ¶0 represents the shear layer thickness such that the edge velocity matches 99% of the far-field

velocity. The momentum thickness, ¶∗∗, for an instantaneous velocity profile is defined as

¶∗∗ =
1

Ä−∞U2
−∞

∫ 0

−∞
Äũ (U−∞ − ũ) dy +

1

Ä+∞U2
+∞

∫ +∞

0

Äũ (U+∞ − ũ) dy (3.22)

where Ä−∞ and Ä+∞ are the far-field densities in the lower and upper sides of the domain respectively.

The operator (·) denotes Reynolds averaging within the x-z plane at each y location, and the operator

(̃·) denotes Favre averaging, such that (̃·) = Ä(·)/Ä. The convective Mach number Mc is defined as

Mc =
|U+∞ − U−∞|
c+∞ + c−∞

(3.23)

where c+∞ and c−∞ are the far-field speeds of sound on the upper and lower sides of the domain

respectively. The Reynolds numbers are defined as

Reδ = Ä0
|U+∞ − U−∞| ¶

µ0
and Reδ∗∗ = Ä0

|U+∞ − U−∞| ¶∗∗
µ0

(3.24, 3.25)

where Ä0 and µ0 are the characteristic density and dynamic shear viscosity respectively. In this

demonstrative simulation, the initial temperature and pressure are uniform. The initial reduced

pressure is pr0 = 1.8, and the initial reduced temperature is Tr0 = 1.4. Accordingly, Ä0 and µ0 in

(3.24) and Eq. (3.25) are the initial density and viscosity respectively. Given the symmetry of the

problem, the far-field velocities are set as U+∞ = −U−∞ = U∞ for U∞ > 0. As initial conditions, a

wide-band velocity perturbation is prescribed within the shear layer. The simulation is configured

with Mc = 1. The initial Reynolds numbers are Reδ ≈ 2232 and Reδ∗∗ ≈ 243 respectively. The time

advancement is conducted using the third-order strong stability preserving Runge-Kutta method

(SSP-RK3) [142] with CFL = 0.6.

As a comparison, a calorically perfect gas flow is also simulated with identical configurations.

In the simulation of the calorically perfect gas flow, the dynamic shear viscosity is calculated as

µ = µ0(Tr/Tr0)0.76. The thermal conductivity is calculated as ¼ = cpµ/Pr, where cp is the specific
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Figure 3.7: One-dimensional streamwise velocity energy spectra at the center plane y = 0: (a) and
(d): Ä = 500; (b) and (e): Ä = 600; (c) and (f): Ä = 700.

heat at constant pressure evaluated as cp = µR/(µ − 1), and the Prandtl number, Pr is assumed to

be constant at Pr = 0.7. The ratio of the specific heats, µ, is a constant, and µ = 1.4 here.

A convective nondimensional time, Ä , is introduced as

Ä = tU∞/¶∗∗0 (3.26)
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Visualizations of the simulation results are shown in Fig. 3.5 using numerical Schlieren imaging,

|∇Ä|, at Ä = 500, 600, and 700 respectively. For comparison, the visualizations of the dense gas flow

and perfect gas flow are shown at the same normalized convective time. The numerical Schlieren

imaging visualizations show that in both simulations, the turbulent shear layer structures generate

significant Mach waves and shock waves. In these simulations, the hybrid central-Riemann flux is

used as described in Sec. 3.3. The threshold sensor value is set to be ϕTH = 0.4. The Riemann

flux is assembled in the Rusanov form [132] with the fifth-order weighted essentially non-oscillatory

interpolation scheme (WENO5-JS) [73] for finite difference methods. An instantaneous visualization

of the modified Ducros sensor for the dense gas flow at Ä = 700 is shown in Fig. 3.6. The visualization

corresponds to the flow structures shown in Fig. 3.5c. By comparison, it can be seen that the shock

capturing scheme is highly localized to the shock structures, and no artificial dissipation is imposed

in the simulation of turbulent flow structures within the shear layer.
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Figure 3.8: Two-point correlation of the streamwise velocity at the center plane (y = 0): (a) the
two-point correlation in the x-direction and (b) the two-point correlation in the z-direction.

The one-dimensional streamwise velocity energy spectra along the streamwise (x) and spanwise

(z) directions at different times are shown in Fig. 3.7. As the turbulent shear layer grows, approxi-

mately one decade of turbulent cascade forms in both the dense gas and perfect gas flows, and there

is no significant difference between the energy spectra for the two types of flows. The two-point

correlation of the streamwise velocity in the center plane (y = 0) at Ä = 700 is shown in Fig. 3.8.

The results indicate that the turbulent structures have sufficient decorrelation in both streamwise

and spanwise directions, and the confinement from the domain periodicity has no noticeable effects

on the growth of the turbulent shear layer in both cases.

Lastly, the time histories of several flow profiles are provided in Fig. 3.9 for reference. The

fluctuating component corresponding to the Reynolds decomposition is defined as (·)′ = (·) − (·),
and the fluctuating component corresponding to the Favre decomposition is defined as (·)′′ = (·)−(̃·).
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Figure 3.9: Time histories of flow properties in growing planar shear layer: (a) momentum thickness;
(b) streamwise velocity fluctuation; (c) transverse velocity fluctuation; (d) density fluctuation; (e)
pressure fluctuation; and (f) temperature fluctuation.

The operator “ï(·)ð” denotes the domain average defined as

ï(·)ð =
1

¶∗∗

∫ +∞

−∞
(·)dy
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The results show that the turbulent shear layers for the dense gas and perfect gas have similar growth

rates measured from momentum thickness and turbulent velocity fluctuations. More noticeable

differences are present in the profiles of fluctuating thermodynamic quantities. The dense-gas shear

layer has a larger fluctuation in density and pressure during the entire history of shear layer growth.

However, as the shear layer becomes fully turbulent, the perfect-gas flow shows higher temperature

fluctuations. This phenomenon implies that under the flow conditions, the density fluctuations

are primarily due to the turbulent dilatational motion. Comparing the EOS of the dense gas and

perfect gas near the critical temperature, the dense-gas temperature is significantly less sensitive to

the density change. For similar turbulence intensities (Fig. 3.7), the temperature fluctuations of the

dense gas are less affected by the turbulent dilatational motion.

3.4.2 Zero-pressure-gradient turbulent boundary layer

x

y

inlet buffer outlet buffertest region for boundary layer development

far-field buffer (free-stream condition)

slip & adiabatic no-slip & isothermal (Tw) slip & adiabatic

blowing and suction region (imposed as B.C.)

Figure 3.10: Simulation configuration of turbulent boundary layer flow.

The basic simulation configuration is shown in Fig. 3.10. The spanwise direction is homogeneous

and periodic (not shown in the schematics). The computational domain in the x-y plane is divided

into four sub-regions: the top far-field buffer, inlet buffer, outlet buffer, and test region where the

boundary layer develops. The numerical sponge method is applied to the far-field region near the

top boundary to preserve the freestream flow conditions including streamwise velocity, zero spanwise

velocity, freestream density and temperature. The vertical velocity is not forced by the sponge, and

the boundary condition on the top of the domain enforces ∂v/∂y = 0. The inlet buffer also contains

a numerical sponge to enforce a prescribed inlet flow profile given as a function of the y-coordinate.

The prescribed velocity and temperature profiles are numerically regularized close to the bottom

boundary to mimic an infinitesimally thin but numerically resolved boundary layer. The thickness

of the numerically regularized inlet boundary layer is denoted as ¶in. Beyond the thickness, y > ¶in,

the flow is forced to reach freestream condition in the inlet buffer region. The density profile in the

inlet buffer is calculated using the Peng-Robinson p-v-T relation to preserve the uniform freestream

pressure. The flow in the outlet buffer is damped using the Riemann-flux with the WENO5-JS

interpolation scheme, and the homogeneous Neumann boundary condition is applied to the whole

flow field at the streamwise boundary. The bottom boundary in the test region is configured as a
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no-slip isothermal wall, and the wall temperature is denoted as Tw. The bottom boundary in the

inlet and outlet buffer regions are both slip and adiabatic.
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Figure 3.11: Visualization of the density field, Ä/Ä∞, in the turbulent boundary layer flow in the
streamwise cross-section.

In order to trigger a transition to turbulence, a region of blowing and suction is introduced as

the boundary condition near the inlet buffer. The blowing and suction region extends across the

entire spanwise direction but is narrow and localized in the streamwise direction. The center of the

blowing and suction region is denoted as xb, and the width of the region in the streamwise direction

is denoted as ∆xb. Within the blowing and suction region, a locally scaled streamwise coordinate is

defined as

x∗
b = (x− xb)/∆xb (3.27)

and the wall-normal velocity is prescribed as

vb(x
∗
b , z) = W (x∗

b)


A0

3x∗
b exp[(1− 3x∗

b)/2]

cos2(Ã/6)
+

Nb∑

j=1

Aj cos(kjz − φj)


 (3.28)

where A0 is the amplitude of the blowing and suction velocity, A1 through ANb
represent the

amplitudes of perturbations in the spanwise direction, and each perturbation is an individual spatial

Fourier mode with the wavenumber kj and phase angle φj . In practice, (Aj/U∞)j (A0/U∞)j 1 is

satisfied for j ̸= 0 where U∞ represents the freestream velocity. The blowing and suction boundary

condition is constant in time. W (x∗
b) is a mask function, defined as

W (x∗
b) =





cos2(Ãx∗
b) |x∗

b | f 0.5

0 |x∗
b | > 0.5

(3.29)

In this work, A0/U∞ = 0.03 is used, and four spanwise Fourier modes are applied with randomly

generated phase angles. The amplitudes of the spanwise perturbations are Aj/U∞ = 0.0144/2j , and

the spanwise wavenumbers are kjLz = 23+jÃ for j = 1, 2, 3, and, 4.
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Figure 3.12: Scaled mean streamwise velocity profile in the wall-normal direction.

The computational mesh in the test region is uniform in the x-direction and slightly stretched

in the y-direction. The computational mesh in the buffer regions is highly coarsened away from the

test region with a large mesh stretch rate in both the x- and y- directions. The computational mesh

in the z-direction is uniform in the entire computational domain. The freestream Mach number is

M∞ = 0.3, and the freestream reduced temperature and pressure are T∞/Tc = 1.5 and p∞/pc = 3

respectively. The reduced temperature at the isothermal wall is Tw/Tc = 0.9. The temperature

specification implies that the simulated boundary layer flow develops in the transcritical regime

with the pseudo phase change occurring when the Widom line is crossed. The time advancement

is conducted using the SSP-RK3 scheme with the adaptive time step limited by CFL = 0.85. The

shock capturing scheme is deactivated in the computational domain other than at the outlet buffer

region, and no other types of artificial dissipation are imposed within the test region.
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Figure 3.13: Normalized second-order moments in the transcritical CO2 turbulent boundary layer
flow: (a) components in the Reynolds stress tensor and (b) turbulent heat fluxes.

After reaching a statistically stationary state, the flow conditions at a streamwise stage are
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analyzed. The visualization of an instantaneous density field, Ä/Ä∞, is shown in Fig. 3.11. The

visualization qualitatively shows a rapid density change near the wall due to heat transfer. The

statistical quantities are averaged in both time and the spanwise direction. The mean streamwise

velocity profile is shown in Fig. 3.12, where the y coordinate and u are scaled by the “law of the

wall” quantities as y+ = yuτ/(µw/Äw) and u+ = u/uτ . µw is the kinematic viscosity at the wall,

and uτ is calculated as u2
τ = Äw/Äw where Äw = µw[∂u/∂y]w. Several components of the Reynolds

stress tensor and turbulent heat fluxes are shown in Fig. 3.13. The Reynolds stresses are scaled by

the wall shear stress, and the turbulent heat flux along the wall-normal direction is scaled using the

heat flux at the wall where h = eth + p/Ä is the specific enthalpy. The observed behavior indicates

that the simulation has achieved a realistic turbulent boundary layer state.

3.5 Conclusions

A high-order compact-finite-difference-based simulation framework has been applied to simulations

of compressible dense gas flows near the critical condition. The solution system is fully conservative

and closed by the Peng-Robinson p-v-T relation and the Chung et al. (1988) transport models. Ow-

ing to the staggered flux assembly using interpolated primitive variables, the computational results

for nonlinear problems have a significantly lower aliasing error than those computed using tradi-

tional collocated flux assembly. The divergence operations conducted by the edge-to-node staggered

difference scheme dramatically improve the accuracy of the viscous fluxes at small scales. Combined

with the compact finite difference methods, high-order convergence, high spectral resolution, and

robustness can be achieved without non-conservative correction or solution filtering. For highly

compressible flow simulations, central-Riemann hybrid fluxes can be used. The flux blending is

controlled by a physics-based shock sensor so that the numerical dissipation is highly localized at

the shock structures without contaminating the simulation of the turbulent regions. The numerical

performance of the simulation framework has been demonstrated in simulations of a compressible

supercritical shear layer flow at unity convective Mach number and a zero-pressure-gradient tran-

scritical turbulent boundary layer flow with an isothermal wall. The results of the shear layer

simulation are compared with those of a calorically perfect gas flow under the same flow conditions.

Different solution behaviors are observed in the thermodynamic quantities associated with the shear

layer growth. The boundary layer flow simulation results imply that a rapid change in the fluid

properties within a small portion of the turbulent boundary layer occurs due to the pseudo phase

change.



Chapter 4

Scalable Parallel Linear Solver for

Compact Banded Systems on

Heterogeneous Architectures

A scalable algorithm for solving compact banded linear systems on distributed memory architec-

tures is presented. The proposed method factorizes the original system into two levels of memory

hierarchies, and solves it using parallel cyclic reduction on both distributed and shared memory.

This method has a lower communication footprint across distributed memory partitions compared

to conventional algorithms involving data transposes or re-partitioning. The algorithm developed

in this work is generalized to cyclic compact banded systems with flexible data decomposition. For

cyclic compact banded systems, the method is a direct solver with deterministic operations and

communication counts depending on the matrix size, its bandwidth, and the partition strategy. The

implementation and runtime configuration details are discussed for performance optimization. Scal-

ability is demonstrated on the linear solver as well as on a representative fluid mechanics application

problem, in which the dominant computational cost is solving the cyclic tridiagonal linear systems of

compact numerical schemes on a 3D periodic domain. The algorithm is particularly useful for solving

the linear systems arising from the application of compact finite difference operators to a wide range

of partial differential equation problems, such as, but not limited to, the numerical simulations of

compressible turbulent flows, aeroacoustics, elastic-plastic wave propagation, and electromagnetics.

It alleviates obstacles to their use on modern high performance computing hardware, where memory

and computational power are distributed across nodes with multi-threaded processing units.

The study illustrated in this chapter has been published in Ref. [147].
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4.1 Introduction

In the past few decades, the use of graphics processing units (GPUs) in scientific computing has

emerged as an attractive option to significantly accelerate various algorithms. The transition of

several leadership class computing platforms to such heterogeneous architectures underscores the

importance of numerical methods which can take full advantage of the parallel nature of these

nodes. The methods for solving certain linear systems presented in this work are well-suited for not

only GPUs but also platforms with hybrid memory management and can take advantage of systems

with distributed memory combined with multithreading.

In multiscale physics problems, such as simulations of compressible turbulent flows, the resolution

of both large and small scales on a discrete grid is essential. Similarly, computational applications

involving hydrodynamic instabilities and wave-propagation, such as in aeroacoustics, solid mechan-

ics, and electromagnetics, require numerical discretizations with very low dispersion and dissipation

errors. High-order numerical methods have become increasingly attractive in tackling such problems

since they provide high solution fidelity at a manageable computational cost [27]. Differentiation us-

ing compact finite difference schemes and elliptic solves using spectral methods can be represented

discretely as compact banded matrices, and are prime candidates for such multiscale computa-

tions due to their increased performance in the high wavenumber regime [89, 57]. The desirable

performance of compact schemes for resolving large ranges of scales has been demonstrated in in-

compressible [85, 143, 54, 161] and compressible [159, 133, 72, 112] turbulent flows, aeroacoustics

[10, 175], as well as multiphysics applications with complex physical phenomena [53, 139]. These

higher-order finite differences are computed as a linear system with tridiagonal or other compact

banded matrices. As derived by Lele (1992) [89], the tridiagonal schemes for collocated first order

derivatives, f ′, at grid point i with spacing h = xi − xi−1 are formulated as

³f ′
i−1 + f ′

i + ³f ′
i+1 = b

fi+2 − fi−2

4h
+ a

fi+1 − fi−1

2h
(4.1)

Similarly, interpolation between values on collocated and staggered grids can also be formulated as

a tridiagonal matrix, where f is the original field and f I is the interpolated field [107]:

³̂f I
i−1 + f I

i + ³̂f I
i+1 = b

fi+3/2 + fi−3/2

2
+ a

fi+1/2 + fi−1/2

2
(4.2)

For strong shock-turbulence interaction problems, the compact shock capturing schemes combined

with an approximate Riemann solver have been proved to be both robust and less dissipative [176,

150]. For such schemes, block tridiagonal (or wider banded) systems will be formed, and the systems

commonly remain well-conditioned as their size grows.

Multiphysics solvers for structured, Eulerian grids in a multidimensional domain may be decom-

posed as shown in Fig. 4.1, with each processor given access to a single chunk of the global domain.
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This decomposition is particularly useful for fixed, structured, Cartesian grids since the grid chunks

on each processor can easily be determined from the decomposition layout using simple algebra.

This method of grid decomposition facilitates workload distribution and works particularly well for

architectures with a distributed memory layout. Operations such as derivatives or interpolation

along one dimension involve communication across a single row or column of grid partitioning such

as the chunks highlighted in red in Fig. 4.1. As shown by dotted lines in the matrix, sections of the

matrix are initially distributed among several processors or nodes; traditional parallel linear solvers

of this system commonly assume uniform memory access; and the solving process relies heavily on

its communication requirements for data transpose.

This work presents a linear solver for compact banded systems with highly scalable properties.

First, a brief review of cyclic reduction (CR) and parallel cyclic reduction (PCR) for banded matrices

is given. Sec. 4.2 illustrates the generalized PCR for generic acyclic compact banded systems,

which serves as a building block of the proposed algorithm. Sec. 4.3 describes in detail the solution

process for tridiagonal matrices of arbitrary size on an arbitrary number of processors followed by an

analytical extension of the method for other compact banded matrices. Sec. 4.4 provides additional

implementation details to improve performance. In Sec. 4.5, a demonstration is provided of the

computational performance of the linear solver and its use in solving the Navier-Stokes equations

for the Taylor-Green vortex problem.

Figure 4.1: Structure of cyclic banded linear system (left) and 3D grid decomposition (right). A
pencil of chunks aligned in the solve direction forms a sub-group. Each sub-group constructs an
individual linear system as shown on the left. An example sub-group is highlighted in red in the
grid decomposition on the right.

CR is a popular direct solve algorithm for structured-matrix linear systems, particularly block

tridiagonal linear systems [51]. It recursively reduces a linear system to half-size sub-systems until the

size of the sub-system (typically 1×1) makes it affordable to solve. Once the sub-system is solved, the

results can propagate backward to the parent system to solve for the remaining unknowns. Hockney

(1965) [64] initially derived CR in combination with the fast Fourier transform as an alternative
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algorithm for iterative solvers for the Poisson equation. Later, Buzbee et al. (1970) [21] presented

a unified formulation and generalization of Hockney’s CR and Buneman’s (1969) [20] algorithm,

which had mathematically equivalent reduction processes but differences in round-off errors and

stability. Sweet (1974) [153] and Sweet (1977) [154] further generalized CR from matrices with

block sizes of power-of-two to matrices of arbitrary block sizes. Similarly, Swarztrauber (1974) [152]

also generalized CR for tridiagonal systems associated with separable elliptic equations. A parallel

variant of CR, also known as PCR, was introduced by Hockney and Jesshope (1981) [65]. In the

PCR process, the upper and lower off-diagonal elements of both the even and odd indexed rows of

a tridiagonal matrix are simultaneously eliminated by the previous and the next rows in one step

of reduction. As a consequence, it splits a system into two half-size sub-systems at each step. The

communication pattern of an 8× 8 non-cyclic tridiagonal system is shown in Fig. 4.2. After enough

recursive splitting, all the sub-systems are of effectively trivial size, e.g. 1× 1 in the bottom layer of

Fig. 4.2, to solve all the unknowns in parallel. This means that PCR solves the linear system in a

single forward pass and does not require a backward substitution phase.
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Figure 4.2: Communication pattern of PCR for an 8 × 8 non-cyclic tridiagonal system. The sub-
systems in each step are grouped by the same colors.

Recent works have optimized both CR and PCR for modern parallel computing architectures

and have achieved considerable performance improvements for specific applications. For example, a

GPU implementation is suggested by Zhang et al. (2010) [183], and the works of Hirshman et al.

(2010) [63] and Seal et al. (2013) [138] improve the algorithm for block tridiagonal systems with large

dense blocks. Nevertheless, most of the general PCR solvers are implemented for shared memory

data access, and few improved algorithms have comprehensively considered data partitioning for

distributed memory. The parallel linear solver developed in this chapter to solve the banded system

is based on the concepts of CR and PCR, and optimized for grid decomposition on distributed

memory as shown in Fig. 4.1. These banded systems are typically (block) tridiagonal or (block)

pentadiagonal systems, but the present algorithm can be extended to wider bandwidths.
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4.2 Generalized parallel cyclic reduction method

Beyond the tridiagonal system, PCR can be easily generalized to compact banded systems with

arbitrary bandwidth. In order to form two sub-systems grouped by even and odd rows, each row

in the parent system, after a reduction step, is staggered with a zero entry between any of the two

non-zero entries on the diagonal and off-diagonals, as shown in Fig. 4.3. In the generalized PCR

approach, the total number of neighboring rows involved in eliminating the entries in row i equals

the number of off-diagonal elements. And the resulting row i is the linear combination of row i and

the neighboring rows.

aT

i

aT

i+1

aT

i−1

ǎT

i

(a)

aT

i

aT

i+1

aT

i+2

aT

i−1

aT

i−2

ǎT

i

(b)

Figure 4.3: Example of one step in generalized PCR: (a) tridiagonal system; (b) penta-diagonal
system. The colored circles are non-identically-zero entries and the uncolored circles are identically-
zero entries.

Let aT
i be the i-th row vector in the parent matrix, and the reduction operation to obtain the

i-th row vector in the resulted matrix, ǎT
i , can be expressed as

ǎT
i = aT

i −

(w−1)/2∑

j=1

(
k+ja

T
i+j + k−ja

T
i−j

)
(4.3)

where w is the bandwidth of the compact banded system. During a reduction step, each of the zero

staggered entries can be formed with a unique linear combination of the involved neighboring row

vectors, as shown by the boxed columns in Fig. 4.3. The coefficients, k+j and k−j can be solved

from the linear system described in Eq. (4.4).




. . .
. . .

. . .

· · · ai−2,i−3 ai−1,i−3 · · ·

· · · ai−2,i−1 ai−1,i−1 ai+1,i−1 · · ·

· · · ai−1,i+1 ai+1,i+1 ai+2,i+1 · · ·

· · · ai+1,i+3 ai+2,i+3 · · ·

. . .
. . .

. . .







...

k−2

k−1

k+1

k+2

...




=




...

ai,i−3

ai,i−1

ai,i+1

ai,i+3

...




(4.4)
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Specifically, for a tridiagonal parent system (w = 3), k+j and k−j for each row i are governed

by a 2 × 2 diagonal system shown in Eq. (4.5). For a penta-diagonal parent system (w = 5),

ai,i−3 = ai,i+3 = 0 for each row i, and k+j and k−j are governed by a 4 × 4 tridiagonal system

described in Eq. (4.6). [
ai−1,i−1

ai+1,i+1

][
k−1

k+1

]
=

[
ai,i−1

ai,i+1

]
(4.5)




ai−2,i−3 ai−1,i−3

ai−2,i−1 ai−1,i−1 ai+1,i−1

ai−1,i+1 ai+1,i+1 ai+2,i+1

ai+1,i+3 ai+2,i+3







k−2

k−1

k+1

k+2




=




0

ai,i−1

ai,i+1

0




(4.6)

4.3 Parallel linear solver for compact banded system

This section will introduce the parallel direct solver used for solving compact banded linear systems

with the data partitioned on distributed memory. Consistent with the grid decomposition pattern

in Fig. 4.1, the compact banded linear system, Ax = b, is also correspondingly decomposed into a

sparse block tridiagonal system [149] shown in Fig. 4.4. The data in x and b are stored in distributed

memory. Typically, applications require solving multiple systems with the same A matrix, like in

Fig. 4.1. Then, x and b can be a batch of vectors forming an N ×M matrix where M is the number

of independent solutions needed. The subscripts in Fig. 4.4 indicate the rank of the aligned grid

decomposition. Each rank has access to the data stored in its shared memory, the boundaries of

which are indicated by dotted lines. D̃i is an r× r dense square matrix whose dimension, r, is equal

to half the number of off-diagonal bands in the linear system, (w − 1)/2. For a tridiagonal system

(w = 3), D̃i is 1× 1, and for a penta-diagonal system (w = 5), D̃i is 2× 2, etc. L̃i and Ũi are short,

fat blocks, and Li and Ui are tall, skinny blocks. Di is a large, square, non-cyclic, banded block.

According to this grouping strategy, as shown in Fig. 4.4, two equations are formed within each

partition.

L̃ixi−1 + D̃ix̃i + Ũixi = b̃i (4.7)

Lix̃i + Dixi + Uix̃i+1 = bi (4.8)

Assuming Di is invertible – which is true for the linear systems formed from compact schemes –

then xi can be obtained if both x̃i and x̃i−1 are known.

xi = D−1
i [bi −Lix̃i −Uix̃i+1] (4.9)

Following the logic of CR, Eq. (4.9) can be used to eliminate xi−1 and xi in Eq. (4.7), which forms
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Ũi
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Figure 4.4: Partitioned linear system.

a sub-system, or a reduced system, shown in Eq. (4.10).

L̂ix̃i−1 + D̂ix̃i + Ûix̃i+1 = b̂i (4.10)

where

L̂i = −L̃iD
−1
i−1Li−1 (4.11)

D̂i = D̃i − L̃iD
−1
i−1Ui−1 − ŨiD

−1
i Li (4.12)

Ûi = −ŨiD
−1
i Ui (4.13)

b̂i = b̃i − L̃iD
−1
i−1bi−1 − ŨiD

−1
i bi (4.14)

Eq. (4.10) can be represented as Âx̃ = b̂, where Â is a block tridiagonal system. If A is cyclic,

then Â is also cyclic. Considering the grid decomposition strategy, each block in x̃i or b̂i is stored

across distributed memory, and each block can be solved efficiently with PCR. This data storage

pattern is favorable to PCR because the blocks can be easily located by the rank of the aligned grid

decomposition to conduct the data transfer across the distributed memory. Once the sub-system is

solved, all the x̃i are known, and the results can be propagated backward to solve xi in parallel.

The method can be also interpreted as a block LU-factorization, analogous to the illustration in

Gander & Golub (1997) [51]. Introducing a permutation matrix, P , the linear system, Ax = b, can

be modified to (PAP T )(Px) = Pb, where the row and column permutations, PAP T , regroup Di

and D̃i respectively. The resulting pattern is shown in Fig. 4.5b. The Di blocks remain in the top

left region on the diagonal, and the D̃i blocks are moved to the bottom right region also on the

diagonal. Correspondingly, the L̃i and Ũi blocks show up in the bottom left region, and the Li and
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Ui blocks are placed in the top right region. The process of obtaining Eq. (4.10) is block Gaussian

elimination. As a result, the permuted system becomes a block upper triangular system as shown

in Fig. 4.5c, and the sub-system Â is formed as the last diagonal block. Additionally, it is clearly

shown in Fig. 4.5c that the top left region only contains the diagonal located blocks, Di. All the

non-diagonal blocks link Di with Â only, and no coupling is created among different Di blocks.

This reaffirms that once the sub-system, Âx̃ = b̂, is solved, then the remaining sub-system, formed

by Eq. (4.8), can be solved in parallel on each data partition.

(a) (b) (c)

Figure 4.5: Sparsity patterns of the system during permutation and block LU-factorization. (a) is
the original matrix A; (b) is the permuted matrix PAP T ; and (c) is the block upper triangular
matrix obtained via the block LU-factorization from PAP T .

The following section discusses the solution methods for the sub-system, Âx̃ = b̂. As aforemen-

tioned, Â is a block tridiagonal system that may be cyclic depending on the original banded system,

A. The block size depends on the half bandwidth of A, and the dimension of Â equals the number

of the aligned grid partitions. The “dimension” of Â refers to the number of blocks in each row and

column of Â. Each block in x̃ and b̂ is stored in a unique partition. With non-periodic boundaries,

Â is acyclic, and the solution methods will follow the block PCR in a fairly straightforward way.

With periodic boundaries, Â is cyclic, so a non-zero block will show up in the top right and bottom

left corners. In this case, if the dimension of Â is a power of two, PCR can directly be applied.

PCR can still be applied for cyclic Â of arbitrary dimension using special treatment. Sweet, in his

work [154], suggests such a treatment for cyclic block tridiagonal systems. However, considering the

complexity of data storage and data migration, a different treatment is proposed in this paper which

requires the dimension of a sub-system of Â undergoing a PCR step to be even. If the dimension

is odd, a detaching step is needed before the PCR step. During the detaching step, the last row of

each sub-system will be used to eliminate the upper and lower off-diagonal blocks of the previous

row and the first row of the same sub-system respectively and then detached from the sub-system.

For periodicity, the lower diagonal block in the first row is placed in the last column. After this

step, the dimension of each sub-system is an even number, which is ready for the next PCR step.
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The detached rows will then be addressed and reattached to the sub-system through a backward

substitution phase after the rows are solved.
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Figure 4.6: Reduction procedure of an 11× 11 Â. From (a) to (b), the row 11 is detached from the
sub-system; from (b) to (c), two sub-systems are formed by a PCR step; from (c) to (d), row 9 and
row 10 are detached from the sub-systems; from (d) to (f), all the eight unknowns in the sub-systems
are solved; from (f) to (g), solutions backward propagate to the first level to solve row 9 and row
10; from (g) to (h), solutions backwards propagate to the root level to solve row 11.

An example is provided by setting Â to be a 11 × 11 cyclic tridiagonal matrix. The sparsity

pattern in each step is visualized in Fig. 4.6, and the communication pattern is shown in Fig. 4.7.

At the root level, the number of sub-systems is 1, and the dimension is 11. Since the dimension of

this subsystem is odd, the last row needs to detach from the sub-system before conducting PCR.

The last row can be used to eliminate the upper off-diagonal element of the tenth row and the lower

off-diagonal element of the first row, so that a 10 × 10 sub-system is created and the last row is

detached, as shown in Fig. 4.6b. After a PCR step, the 10 × 10 sub-system is split into two 5 × 5

sub-systems on the first level, as shown in Fig. 4.6c. Before conducting PCR on the first level, the

last row of each of the two sub-systems (row 9 and row 10) needs to be detached. Row 9 is used to

eliminate the upper off-diagonal element of row 7 (the second-to-last row of its sub-system on this

level) and the lower off-diagonal element of row 1. Row 10 is used to eliminate the upper off-diagonal

element of row 8 and the lower diagonal element of row 2 (the first row of its sub-system on this

level), so the two sub-systems are reduced to 4× 4 from 5× 5 as shown in Fig. 4.6d. Starting from

this level, the number of rows involved in the remaining PCR steps is eight, which is a power of two.

At this point, no further detachment is needed, and all the eight unknowns can be solved by two

steps of PCR. Then, the eight solutions are substituted backwards into the two 5×5 sub-systems on
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the first level to solve row 9 and row 10. In the final step, the ten solutions propagate backwards to

the root level and are substituted into the 11× 11 system to solve row 11 so that all the unknowns

are solved.

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11

Figure 4.7: Communication pattern of PCR for an 11 × 11 cyclic tridiagonal system. The sub-
systems in each step are grouped by the same colors.

4.4 Implementation details

The terms D−1
i Li, D−1

i Ui, and D−1
i bi, in Eq. (4.11) – Eq. (4.14), are computed by solving the

following linear systems for Si, Ri, and yi respectively.

DiSi = Li (4.15)

DiRi = Ui (4.16)

Diyi = bi (4.17)
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Based on the proposed approach, Di is an acyclic, compact banded matrix, and all the data on

the right-hand-side and the unknowns to be solved are stored in the same partition. Therefore,

generalized PCR can be used to further parallelize these solves. Using generalized PCR to solve

Si, Ri, and yi, the number of the parallel reduction steps for each system is +log2 Ni,, where Ni

is the dimension of Di. All the operations at this stage are conducted on the shared memory

simultaneously on each partition. Substituting Si, Ri, and yi into Eq. (4.11) – Eq. (4.14), the

reduced system – Eq. (4.10) – can be practically constructed according to the following equations.

L̂i = −L̃iSi−1 (4.18)

D̂i = D̃i − L̃iRi−1 − ŨiSi (4.19)

Ûi = −ŨiRi (4.20)

b̂i = b̃i − L̃iyi−1 − Ũiyi (4.21)

Following the proposed approach to solve for x̃i and substituting into Eq. (4.9), xi can be obtained

by the following operation.

xi = yi − Six̃i −Rix̃i+1 (4.22)

A sample implementation is shown in Algorithm 1 where the detaching step, block PCR step, and

reattaching step are shown in Algorithms 2, 3, and 4, respectively. The sample code is given in the

MPI (message passing interface) style where the rank of partition starts from zero.
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L̃i
Si−1, Ri−1, or yi−1

(a)

r

Ni

r

Ni

Ũi
Si, Ri, or yi

(b)

Figure 4.8: Communication and multiplication patterns: (a) L̃iSi−1, L̃iRi−1, and L̃iyi−1; (b) ŨiSi,

ŨiRi, and Ũiyi

Throughout the solution process, the terms L̃iSi−1, L̃iRi−1, and L̃iyi−1 require data transfer

from partition i − 1 to i, and the term Rix̃i+1 implies the data transfer from partition i + 1 to i.

It is important to emphasize that the sparsity pattern of the matrix L̃i results in only a fraction of

the allocated data in yi−1, Ri−1 and Si−1 being exchanged across neighboring data partitions as

illustrated in Fig. 4.5b and Fig. 4.8a. For the banded matrix A with a bandwidth of w = 2r+1, only

the last r columns in L̃i are non-trivial. Therefore, only the last r columns in Si−1, Ri−1, and yi−1



CHAPTER 4. SCALABLE PARALLEL LINEAR SOLVER 93

Algorithm 1: Implementation of in-place solver following the partitioning shown in Fig-
ure 4.4. The index i is the rank of partition of the distributed memory sub-group involved
in the linear system and is zero-based. The number of distributed memory chunks in the
linear system is given by p.

in : Di, L̃i, Ũi, i, p
in/out: Wi ← D̃i, Yi ← Li, Zi ← Ui, xi ← bi, x̃i ← b̃i

1 /* Factorization */

2 Yi ← generalizedPCR(Di, Yi);
3 Zi ← generalizedPCR(Di, Zi);
4 tag ← sendToPartition(send buffer = {Yi,Zi}, dest rank = (i + 1) mod p);

5 Ûi ← −ŨiZi;
6 {Yi,Zi} ← getFromPartition(tag, src rank = (p + i− 1) mod p);

7 L̂i ← −L̃iYi−1;

8 Wi ← Wi − L̃iZi−1 − ŨiYi;

9 /* Solve reduced system */

10 xi ← generalizedPCR(Di, xi);
11 tag ← sendToPartition(send buffer = xi, dest rank = (i + 1) mod p);
12 xi−1 ← getFromPartition(tag, src rank = (p + i− 1) mod p);

13 x̃i ← x̃i − L̃ixi−1 − Ũixi;

14 s ← 1; // stride as well as the number of sub-systems

15 n0 ← p; // size of each sub-system in the current PCR step

16 na ← p; // number of attached rows in the PCR step na ≡ s× n0

17 S ← initEmptyStack(); // a stack of boolean

18 while n0 > 1 do
19 S ← stackPush(n0 mod 2 > 0);
20 if n0 mod 2 > 0 then
21 n0 ← n0 − 1;
22 na ← na − s;
23 Detach the last row of each sub-system (See Algorithm 2);

24 end
25 Block PCR step (See Algorithm 3);
26 s ← s× 2;
27 n0 ← n0/2;

28 end
29 if i < na then
30 x̃i ← W−1

i x̃i;
31 end
32 while isNotEmpty(S) do
33 n0 ← n0 × 2;
34 s ← s/2;
35 if stackPop(S) then
36 Reattach the last row of each sub-system (See Algorithm 4);
37 na ← na + s;
38 n0 ← n0 + 1;

39 end

40 end
41 tag ← sendToPartition(send buffer = x̃i, dest rank = (p + i− 1) mod p);
42 x̃i+1 ← getFromPartition(tag, src rank = (i + 1) mod p);
43 xi ← xi − Yix̃i −Zix̃i+1;



CHAPTER 4. SCALABLE PARALLEL LINEAR SOLVER 94

Algorithm 2: Detaching process in Algorithm 1.

1 if na f i < (na + s) then

2 tag a ← sendToPartition(send buffer = {L̂i,Wi, Ûi, x̃i}, dest rank = i− s);

3 tag b ← sendToPartition(send buffer = {L̂i,Wi, Ûi, x̃i}, dest rank = i− na);

4 end
5 if na f (i + s) < (na + s) then

6 {L̂i+s,Wi+s, Ûi+s, x̃i+s} ← getFromPartition(tag a, src rank = i + s);

7 Wi ← Wi − ÛiW
−1
i+sL̂i+s;

8 x̃i ← x̃i − ÛiW
−1
i+sx̃i+s;

9 Ûi ← −ÛiW
−1
i+sÛi+s;

10 end
11 if na f (i + na) < (na + s) then

12 {L̂i−s,Wi−s, Ûi−s, x̃i−s} ← getFromPartition(tag b, src rank = i + na);

13 Wi ← Wi − L̂iW
−1
i−sÛi−s;

14 x̃i ← x̃i − L̂iW
−1
i−sx̃i−s;

15 L̂i ← −L̂iW
−1
i−sL̂i−s;

16 end

Algorithm 3: Block PCR process in Algorithm 1.

1 if i < na then

2 tag a ← sendToPartition(send buffer = {L̂i,Wi, Ûi, x̃i}, dest rank = (na + i− s)
mod na);

3 tag b ← sendToPartition(send buffer = {L̂i,Wi, Ûi, x̃i}, dest rank = (i + s) mod na);

4 {L̂i+s,Wi+s, Ûi+s, x̃i+s} ← getFromPartition(tag a, src rank = (i + s) mod na);

5 {L̂i−s,Wi−s, Ûi−s, x̃i−s} ← getFromPartition(tag b, src rank = (na + i− s) mod na);

6 Wi ← Wi − ÛiW
−1
i+sL̂i+s − L̂iW

−1
i−sÛi−s;

7 x̃i ← x̃i − ÛiW
−1
i+sx̃x+s − L̂iW

−1
i−sx̃i−s;

8 L̂i ← −L̂iW
−1
i−sL̂i−s;

9 Ûi ← −ÛiW
−1
i+sÛi+s;

10 end
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Algorithm 4: Reattaching process in Algorithm 1.

1 if na f (i + s) < (na + s) then
2 tag b ← sendToPartition(send buffer = x̃i, dest rank = i + s);
3 end
4 if na f (i + na) < (na + s) then
5 tag a ← sendToPartition(send buffer = x̃i, dest rank = i + na);
6 end
7 if na f i < (na + s) then
8 x̃i+s ← getFromPartition(tag a, src rank = i− na);
9 x̃i−s ← getFromPartition(tag b, src rank = i− s);

10 x̃i ← x̃i − L̂ix̃i−s − Ûix̃i+s;

11 x̃i ← W−1
i x̃i;

12 end

are needed for communication between neighbors. Similarly, the matrix products involving Ui can be

computed very efficiently due to its sparsity pattern as shown in Fig. 4.8b. If the number of rows in

each partition is much larger than the system bandwidth (Ni k r), significant reduction of data size

for communication and multiplication can be achieved. The reduced system Âx̃ = b̂ (Eq. (4.10))

is solved on distributed memory, and each parallel reduction step requires data communication

between neighboring partitions. If A is acyclic, then Â can be solved with classic block PCR,

although the proposed algorithm can still be used by setting the cyclic entries to zero, and the

number of parallel reduction steps is +log2 p,, where p is the number of partitions. If A is cyclic,

using the proposed algorithm, the number of parallel reduction steps is +log2 p,. In addition, if p is

not a power of 2, the number of rows that are involved in the detaching and reattaching throughout

the solving process equals p − 2+log2
p,, and the number of parallel detaching and reattaching steps

are
{∑+log

2
p,

n=0 (+2−np, mod 2)
}
− 1.

In motivating applications, such as evaluating derivatives using compact finite difference schemes

in a multiphysics application, Ax = b is frequently solved with varying b but constant A. Noticing

that the construction of L̂i, D̂i, Ûi, and Di, does not require the right-hand side, b, such construction

is needed only once, and the original matrix can be pre-factorized. During the pre-factorization,

the reduction coefficients on each stage, k+j and k−j , and the information needed to solve Âx̃ = b̂,

can be calculated and stored. During the solution process, Eq. (4.17) and Eq. (4.21) are needed to

construct the right-hand-side of the reduced system to solve for x̃i. Finally, Eq. (4.22) is used to

solve for xi.



CHAPTER 4. SCALABLE PARALLEL LINEAR SOLVER 96

4.5 Performance

4.5.1 Asymptotic performance analysis

This section describes the asymptotic analysis of compute and communication scaling for the pro-

posed algorithm. As described in Section 4.3 and 4.4, consider the system Ax = b where A is an

N×N cyclic compact banded matrix with bandwidth 2r+1. x and b are N×M matrices represent-

ing M independent solutions and right-hand-side vectors respectively. This system is partitioned

across p distributed memory processes, and the local system for process i, Di, is of size Ni ×Ni.

The algorithm can be grouped into 4 phases. Phases I and II are the local and coupled forward

elimination phases respectively. Phase III is the distributed solve of the reduced system, and phase

IV is the concurrent backward substitution phase. Tab. 4.1 shows the asymptotic scaling of the

dominant compute and communication costs per process for each phase of the algorithm. The

table shows that the explicit p-dependence is only in Phase III which computes the solution of the

reduced system. However, depending on the scaling regime and partitioning strategy, other hidden

dependencies on p might also be important.

Phase Equations Computation cost Communication cost
I (4.15) (4.16) (4.17) O [Ni log2 Ni max(r,M)] 0
II (4.18) (4.19) (4.20) (4.21) O

[
r2 max(r,M)

]
O [r max(r,M)]

III (4.10) O
[
r2M log2 p

]
O [rM log2 p]

IV (4.22) O [NirM ] O [rM ]

Table 4.1: Asymptotic scaling of computation and communication of each phase in the solution
process.

1D decomposition

Consider a problem with an N × N0 × N0 grid requiring a solution along the first dimension and

partitioned using p processes. The matrix bandwidth can also be considered to be much smaller

than the batch size, r jM , and the size of the local system, r j Ni. Then, max(r,M) = M . The

total cost of computation and communication during the solve process in the asymptotic limit is

Computation cost ∼ O (MNi log2 Ni + Mr [C1Ni + C2r log2 p]) (4.23)

Communication cost ∼ O (rM [C3 + log2 p]) (4.24)

where C1, C2 and C3 are all O(1) constants.

For strong scaling, N and M = N2
0 are held constant. From Table 4.1, the total cost of the
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algorithm in the strong scaling regime is

Computation cost ∼ O

(
N2

0N

{
1

p

[
C1r + log2

(
N

p

)]
+ C2

r2

N
log2 p

})
(4.25)

Communication cost ∼ O
(
rN2

0 [C3 + log2 p]
)

(4.26)

For weak scaling, Ni ≈ N/p, and M = N2
0 remaining constant. The total cost of the algorithm in

the weak scaling regime is then given by

Computation cost ∼ O
(
N2

0Ni [C1r + log2 Ni] + C2N
2
0 r

2 log2 p
)

(4.27)

Communication cost ∼ O
(
rN2

0 [C3 + log2 p]
)

(4.28)

3D decomposition

Consider a three dimensional problem with an N ×N ×N grid partitioned using p processes with

p1/3 processes per dimension. Then, Ni ≈ N/p1/3 and M ≈ N2
i ≈ N2/p2/3 are held constant. The

matrix bandwidth can also be considered to be much smaller than the batch size, r j M . As a

direct result, max(r,M) = M . From Table 4.1, the total cost of the algorithm in the weak scaling

regime is

Computation cost ∼ O

(
N3

i [C1r + log2 Ni] +
1

3
C2N

2
i r

2 log2 p

)
(4.29)

Communication cost ∼ O

(
rN2

i

[
C3 +

1

3
log2 p

])
(4.30)

4.5.2 Measured scaling results

In this section, the performance of the linear solver is demonstrated both in isolation and in the con-

text of a representative fluid mechanics application problem. All tests in this section were performed

on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF) at Oak

Ridge National Laboratory (ORNL) [163]. Each Summit node consists of 6 NVIDIA Tesla V100

GPUs and 2 IBM Power 9 processors. The nodes on the system are connected with the Mellanox

EDR 100G Infiniband interconnect arranged in a non-blocking fat tree topology. In the present im-

plementation, all compute operations are conducted on GPUs, while CPUs are dedicated to control

and communication tasks. The code for the results in this section was written in C++ using the

Kokkos framework [40, 160].

For the linear solver alone, both strong and weak scaling results are presented for solving Ax =

b, where A is a cyclic tridiagonal system with bands given by A = B [ 1/3, 1, 1/3 ]. This

linear system represents the left hand side of the sixth order compact first derivative scheme on a

periodic domain [89]. For all linear solver scaling tests, the linear system is solved 1000 times, and

speedup based on the average time is reported. In the strong scaling test, the dimension of A is
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8192 × 8192, and the linear system is solved 2562 times in parallel, i.e., the dimensions of b and x

are 8192× 2562. In the context of compact finite difference schemes, this is equivalent to computing

a spatial derivative along a column of 3D Cartesian grid partitions, where the grid dimension is 8192

along the solving direction and 256× 256 perpendicular to the solving direction. For example, when

solving along the first index, the grid dimension is 8192×256×256. As the number of GPUs used is

increased, the domain is decomposed equally along the solving direction so that each partition has

a size of (8192/p) × 256 × 256. When solving along other directions, the dimensions are permuted

correspondingly. Some small differences in performance among the directions are expected because

of memory striding. In this implementation, the right-memory layout is used where the third index

maps to contiguous memory. The strong scaling speedup, Ss, is defined as

Ss(p) =
T1

Tp
(4.31)

where Tp is the wall time when using p GPUs. The strong scaling results for each index direction

are shown in Fig. 4.9.
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Figure 4.9: Measured strong scaling of the linear solver for each of the coordinate indices. The curve
for each index is normalized by its own single-GPU time, so all speedups start at unity.

The strong scaling plot shows speedup from p = 1 to p = 64. Beyond p = 64, the speedup

plateaus. This is because in the strong scaling regime, the leading order compute cost decreases

linearly with p while the communication cost increases as log2 p as described in Section 4.5.1. The

speedup between p = 2 and p = 4 is super-linear and it is suspected that this is mainly due to

GPU cache benefits as the problem size per GPU keeps getting smaller. There is another effect that

contributes to this super linear scaling that stems from Eq. (4.25). As p increases, the computation

cost initially decreases as p−1 log2 p contributing to the super-linear scaling behavior. This is only
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valid in the compute-dominant limit of low p and large N , particularly when r2/N j 1. As p

increases, the cost of solving the reduced system increases causing a reduction in scaling efficiency

in addition to the increased communication cost. At p = 32, approximately where the three curves

cross the ideal scaling line, the data chunk on each GPU is 256× 256× 256. This is the chunk size

used as the basis of the weak scaling tests, which are discussed next.
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Figure 4.10: Measured weak scaling of the linear solver: (a) number of GPUs increasing in powers
of 2; (b) number of GPUs increasing linearly. Data is stored on the left memory layout where the
3rd index is the fast looping index.

The weak scaling performance is shown for solving Ax = b, with the same matrix A as in the

strong scaling test. The computational domain is partitioned along the solve direction into cubic

sub-domains of size N0 × N0 × N0, so A is pN0 × pN0, and it is solved N2
0 times in parallel. For

all the weak scaling tests, N0 = 256 is chosen, so that each GPU operates on a chunk of data that

is 2563. The weak scaling results for the isolated linear system solve are presented in two ways in

Fig. 4.10. Here, the weak scaling “speedup”, Sw, is reported:

Sw(p) =
p× T1

Tp
(4.32)

First, in Fig. 4.10a, the number of GPUs used is always a power of 2, from 1 to 2048. As the number

of GPUs is increased in the weak scaling test, the dimension of only one coordinate direction is

increased at a time, and all three directions are tested. The grid sizes for the series of tests for

the first index, for example, are 256 × 256 × 256, 512 × 256 × 256, 1024 × 256 × 256, etc. Second,

in Fig. 4.10b, the number of GPUs used increases linearly from 1 to 32 to show the effects of a

non-ideal problem decomposition on performance. Also, the differences in scaling among the index
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directions are very small, meaning that in a large-scale 3D problem, no one direction will dominate

the computational cost. These results show that the scaling of the linear solver is reasonably good

up to a very large number of GPUs. For context, the last data point comes from running on 2048

GPUs on Summit, or about 8% of the entire machine. This test exercises one coordinate direction

at a time on a column of the domain decomposition, comparable to the highlighted partitions in

Fig. 4.1, in order to predict the performance in a realistic computation application. Accordingly,

the last data point represents the intended 3D equal size domain decomposition used by the linear

solver in a production-size simulation which uses 20483 GPUs.
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Figure 4.11: Measured weak scaling of the linear solver using best-case (2n) and worst-case (2n− 1)
numbers of GPUs, solving along the 1st index.

These results also show that while the solver scales best when using a number of GPUs equal to

a power of 2, its performance is degraded using odd or even prime numbers of GPUs. This occurs

because additional work in the form of detach-reattach steps is required when not using power of 2

number of GPUs. The worst case scenario in terms of additional work required is to use a number of

GPUs equal to 2n − 1. This choice requires p− 1 stages of PCR and p− 1 stages of detach-reattach

operations. An additional series of weak scaling results is presented in Fig. 4.11, which compares

the weak scaling performance of using 2n vs. 2n − 1 GPUs. Only the 1st index direction is shown

since the results are qualitatively the same for all directions. Depending on the specific machine and

application size, it may not always be practical to use a number of GPUs that is a power of 2. As

a result, it is expected that the practical weak scaling behavior of this algorithm lies in the range

between the curves in Fig. 4.11. Both curves are demonstrated to be linear over the range tested.

This is expected based on how the number of PCR steps and attach-reattach operations scales with

the number of processes. Since the lines have different slopes, this means that the relative benefit

of using the ideal number of GPUs becomes greater as the problem size is increased.
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Figure 4.12: Measured weak scaling (2563 grid point per GPU) of a Navier-Stokes solver on the
Taylor-Green vortex problem using compact finite difference and interpolation methods. Data is
reported using both 4× 2n and 6× 2n GPUs per node on Summit.

Finally, weak scaling is demonstrated on a fluid mechanics application – the direct numerical

simulation of a Taylor-Green vortex problem at a Reynolds number of 1600 and Mach number of

0.08 [19] – by using a compressible Navier-Stokes direct numerical simulation solver. The simula-

tions were conducted using the sixth-order staggered compact finite difference schemes and compact

interpolators for spatial discretization [107]. The details of the problem description and numerical

formulation are illustrated in Appendix C. For each weak scaling test, a constant time step de-

termined by stability requirements was used, and wall time data was collected for 100 time steps.

The computational cost is dominated by calculating derivatives and interpolations in the Navier-

Stokes equations, which involves solving linear systems similar to the one above. The solution at

a representative time is visualized in Fig. C.1. This test is useful because its domain and domain

decomposition are much more realistic than the isolated linear solver test, and because it involves

approximately an equal number of linear solves along all three coordinate indices. Finally, it tests

whether the linear solver performance enables good scaling on a practical problem. Like the first

linear solver test, scaling is reported in powers of 2, but quantities of GPUs of 6×2n were also tested.

This second series corresponds to full utilization of Summit nodes, which have 6 GPUs each. The

weak scaling results, including both setups, are shown in Fig. 4.12, which demonstrates excellent

scaling up to 24576 GPUs, or 89% of the nodes on Summit.
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The reason that Taylor-Green vortex problem scales better than the linear solver test is due to

the 3D domain decomposition. The linear solver weak scaling tested an extreme scenario with a

1D domain decomposition. This would only be appropriate for a domain with one dimension much

longer than the other two. Such an aspect ratio is not typical for simulations of turbulent flows.

4.6 Conclusions

In this work, a direct linear solver for compact banded systems is presented and demonstrated to

have scalable performance on a petascale GPU platform. The algorithm is applicable for a wide

variety of high performance computing platforms with heterogeneous computing capabilities. The

sparsity patterns that result in the factorized matrix blocks are leveraged in the overall algorithm

to avoid large data transfers across the distributed memory partitions and to reduce the floating

point operational cost of matrix-matrix multiplications. As such, the proposed algorithm has sig-

nificant advantages over conventional strategies that involve “all-to-all” communication patterns.

These advantages thereby enable the proposed algorithm to be suitable for distributed heteroge-

neous computing environments requiring programming paradigms such as “MPI+X,” and to reduce

the strong performance dependence on the underlying network topology. The weak scalability is

shown on a canonical 3D periodic Navier-Stokes problem using compact finite difference and in-

terpolation schemes involving cyclic banded tridiagonal linear systems. The algorithm works on a

flexible number of distributed memory partitions and optimal performance is recovered when the

number of ranks is a power of two. This work is directly beneficial to large-scale computations of a

wide range of partial differential equation problems using compact numerical schemes such as those

in fluid mechanics, solid mechanics, and electromagnetics.



Chapter 5

Compressibility Effects in

Compressible Isotropic Turbulence

In this chapter, compressibility effects are studied using direct numerical simulations of solenoidally

forced compressible isotropic turbulence. The turbulent Mach numbers, Mt, range from 0.2 to 0.7,

and the Taylor-microscale Reynolds numbers, Reλ, are approximately 170. For each case, data over

approximately 10 eddy-turnover times at statistically stationary states are collected for analysis. The

effects of compressibility are investigated from the statistics of the fluctuating thermodynamic and

kinematic quantities. The solenoidal and dilatational motions are studied based on the Helmholtz

decomposition of the velocity field. The budget equations of the decomposed velocity variance

are analytically derived from the Navier-Stokes system. According to the budget equations, the

simulation data indicates a balance between solenoidal forcing work and solenoidal dissipation at

low Mt. As Mt increases, specific terms develop a bias in their statistical distribution and thus

represent the net transfer or exchange of energy characterized by variance.

5.1 Introduction

Compressible turbulence is prevalent and plays a significant role in many industrial applications

involving high-speed flows as well as in many natural astrophysical and terrestrial phenomena. Fun-

damental understanding of compressible turbulence dynamics is crucial yet still quite limited. In

the formulation of compressible flows, the propagation of acoustic waves is resolved at a finite speed.

Due to the acoustic wave propagation and non-radiative local flow motion, local compression and

expansion occur and are associated with density and pressure changes. This has been referred

to as the compressibility of the flow [90]. An obvious consequence of compressibility is that the

flow velocity field does not maintain a divergence-free state, which leads to local compression and

103
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expansion and enables bidirectional transfer between kinetic energy and internal energy. In com-

pressible turbulence, the strength of the compressibility is characterized by the turbulent Mach

number, Mt, which is defined as the ratio of the turbulent velocity fluctuations to the mean speed

of sound. Mt can be defined in different ways, and the definition used in this work is consistent

with Mt =
√
ïu′′ · u′′ð/ ïcð, where the pair of angle braces, ï(·)ð, denotes a spatial average; u′′ is the

fluctuating velocity with respect to the Favre average [45], u′′ = u−ïÄuð / ïÄð where u is the flow ve-

locity field and Ä is the density field; and c is the speed of sound. As Mt → 0, compressibility effects

asymptotically vanish, and the flow behavior degenerates to incompressible turbulence. Kovásznay

(1953) [81] conducted a perturbation analysis at vanishing Mt and identified three distinct modes

– the vorticity mode, sound-wave mode, and entropy mode – from the linearized Navier-Stokes

equations, commonly known as the Kovásznay decomposition. Adding on to the leading order of

the Kovásznay decomposition, Chu & Kovásznay (1958) [24] carry the quadratic terms and con-

duct a weakly nonlinear analysis to investigate the bilateral interactions among the three modes,

which serves as a second-order correction to the linearized solution. The inclusion of the quadratic

terms improves the accuracy on an extended range of Mt, but as a prerequisite of the perturbation

analysis, Kovásznay decomposition is valid only for Mt j 1. At large Mt, the linear theory and

weakly nonlinear analysis no longer hold due to strong nonlinear interactions among different modes.

These nonlinear interactions dominate the dynamics of compressibility, creating more complex flow

behavior such as eddy shocklets [88, 168] and change of scaling in Mt [72].

A more generic approach to examining the compressibility effects is to study the decomposed

turbulent motion using the Helmholtz decomposition. For a smooth vector field, v(x), the Helmholtz

decomposition uniquely identifies three components, v = vs + vd + ïvð, where vs and vd are the

solenoidal and dilatational components respectively, satisfying ∇ · vs = 0 and ∇ × vd = 0, and

ïvð corresponds to the spatially-averaged mean. In Fourier space, the solenoidal and dilatational

components are orthogonal with respect to the same wavenumber, v̂s
k
· v̂d

k
= 0, where k is the

wavenumber vector and vs/d =
∑

k
v̂
s/d
k

eik·x. In physical space, the orthogonality leads to the iden-

tity
〈
vs · vd

〉
= 0. For incompressible turbulence, the density is constant and the flow motion is

purely solenoidal, while for compressible turbulence, the dilatational motion directly contributes to

the density fluctuations, which thereby forms the aforementioned local compression and expansion.

Conceptually relating to the Kovásznay decomposition at a low Mt, the solenoidal motion is associ-

ated with the vorticity mode, and the dilatational motion contains the sound-wave mode and entropy

mode. In the low-Mt limit, Sarkar et al. (1991) [135] argue that the time scales of solenoidal motion

and acoustic dilatational motion differ, and the ratio of the two time scales is O(Mt). Accordingly,

the dilatational velocity and pressure fluctuations are estimated based on a justified acoustic quasi-

equilibrium assumption with respect to the solenoidal motion. Additionally, Ristorcelli (1997) [128]

proposes a pseudo-sound theory based on the assumptions of statistical homogeneity and normality

where two relevant length scales – an inner length scale associated with the turbulence field and an
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outer length scale associated with radiative acoustic waves generated from turbulent solenoidal mo-

tion – were recognized in a homogeneous low-Mt turbulent flow, and the ratio of the two length scales

is O(Mt). The pressure fluctuations associated with local solenoidal motion within the inner length

scale, known as the pseudo-sound, are the dominant component in the overall pressure fluctuations.

Accordingly, the compressibility effects are calculated from a one-way coupling of the solenoidal

motion. The pseudo-sound theory also provides a single-point moment closure model to calculate

the pressure dilatation, ïp′¹′ð and variance of velocity dilatation, ï¹′¹′ð where p is the pressure, ¹ is

the velocity dilatation, and (·)′ = (·) − ï(·)ð denotes the fluctuating component of a given quantity.

For isotropic turbulence at a high Reynolds number, two-point moment closure models, such as the

direct interaction approximation (DIA) and eddy-damped quasi-normal Markovian (EDQNM), are

proposed by Kraichnan (1959) [82] and Orszag (1970) [114] respectively, where the spectral damping

mechanism due to the viscosity and the leading-order energy transfer mechanism are modeled. Fur-

thermore, Bertoglio et al. (2001) [7] extend the DIA and EDQNM models for weakly compressible

isotropic turbulence, but the model is applied to a relatively wide range of Mt [134]. Moreover, the

compressibility effects on turbulent statistics and flow structures were also investigated based on

direct numerical simulations (DNS) of forced compressible isotropic turbulence at variable Reynolds

numbers and turbulent Mach numbers [171, 170, 37, 72, 169, 172, 38].

For quantitative study of the decomposed motions in compressible turbulence beyond the low-Mt

regime, an important question encountered in applying the Helmholtz decomposition is which vector

field, representing the flow motion, should be decomposed. The answer is not as obvious as it seems

to be because any choice will create consequential difficulty in the analysis. Towards the incompress-

ible limit, all kinematic vector fields, such as velocity and momentum, are mathematically equivalent.

Considering density fluctuations, some inconsistency is unavoidable due to triadic mode interactions.

The orthogonality only holds for vector fields that directly result from the Helmholtz decomposition.

The decomposed momentum and the decomposed velocity are no longer mathematically equivalent.

The momentum associated with the solenoidal velocity permits non-zero dilatational components,

and vice versa. Additionally, the decomposed motion strength, characterized by the mean turbu-

lent kinetic energy may introduce a cross term to close the budget, ïKð = ïKsð +
〈
Kd

〉
+

〈
Ksd

〉
,

where K = Äu · u/2 is the kinetic energy; Ks and Kd are the solenoidal and dilatational fields

respectively calculated from the decomposed motion vectors; and Ksd is the cross-contribution to

the overall kinetic energy. As an example, if the velocity field u undergoes the Helmholtz decom-

position, u = us + ud assuming ïuð = 0, then the corresponding decomposed kinetic energy terms

are ïKsð = ïÄus · usð /2,
〈
Kd

〉
=

〈
Äud · ud

〉
/2, and

〈
Ksd

〉
=

〈
Äus · ud

〉
. From the expressions, the

density Ä serves as a nonuniform weighting function such that
〈
Ksd

〉
is not guaranteed to be zero or

positive-definite, which is undesirable for analysis. One way to avoid the cross term is to properly

select the vector field to characterize the flow motion. Kida & Orszag (1990) [78] defined a state

vector w =
√
Äu for the Helmholtz decomposition, w = ws +wd + ïwð. Correspondingly, assuming
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ïwð = 0, the expression of K becomes K = w ·w/2, so that ïKð = ïKs
w
ð +

〈
Kd

w

〉
and

〈
Ksd

w

〉
= 0

are enforced with Ks
w

= ws ·ws/2, Kd
w

= wd ·wd/2, and Ksd
w

= ws ·wd. An alternative method

is to reinterpret the mean kinetic energy. Following this approach, the mean kinetic energy is not

calculated by averaging the local kinetic energy but instead directly calculated using characteristic

quantities. For instance, the characteristic mean kinetic energy for velocity decomposition and mo-

mentum decomposition can be defined as Kavg,u = ïÄð ïu · uð /2 and Kavg,ρu = 1
2 ï(Äu) · (Äu)ð / ïÄð

respectively. This approach may be particularly interesting from the perspective of turbulence

modeling [3]. Regarding physical considerations, velocity decomposition is still preferred as the

decomposed components directly connect to the vorticity and velocity dilatation fields.

Another challenge encountered in the analysis of compressible turbulence is the fluctuation of

transport properties associated with the fluctuation of the thermodynamic state of the fluid. This

directly impacts the decomposition of the mean viscous dissipation, ïϵð. It is well-known that the

viscous dissipation, ϵ, can be written as ϵ = σ : S, where σ is the viscous stress tensor and S is the

strain rate tensor. Sarkar et al. (1991) derive the decomposition, ïϵð = ïϵsð +
〈
ϵd
〉
, where ϵs and ϵd

are known as the solenoidal dissipation and dilatational dissipation [135]. The derivation assumes

constant viscosity. Following the derivation in Sarkar et al. (1991) and based on the expression

for σ, the expressions for ϵs and ϵd are 2µΩ2 and (´ + 4
3µ)¹2 respectively, where µ and ´ are

the dynamic shear viscosity and bulk viscosity respectively, Ω is the enstrophy, and ¹ is the velocity

dilatation. As shown in the expressions for ϵs and ϵd, for constant transport properties, the solenoidal

dissipation is only due to the solenoidal velocity and dilatational dissipation is only caused by the

dilatational velocity. However, considering the fluctuations of µ and ´, the overall local dissipation

is ϵ = 2µΩ2 + (´ + 4
3µ)¹2 − 4µI2, where I2 = 1

2

(
¹2 − S : S + Ω2

)
is the second invariant of the

velocity gradient tensor. The first two terms in the expression for ϵ are the contributions of solenoidal

and dilatational velocity components respectively, and the third term, −4µI2, corresponds to the

cross-contribution. The positivity of the cross-contribution is not guaranteed although ϵ is positive

definite. For modeling purposes, the cross-contribution is usually ignored, as is also commented on

by Sarkar et al. (1991) [135], who suggest that the two-component decomposition is asymptotically

exact for turbulence with a high Reynolds number.

This work focuses on the compressibility effects and energy exchange between solenoidal and

dilatational motions in statistically stationary compressible isotropic turbulence. The investigation

is based on a set of DNS of solenoidally forced isotropic turbulence for 0.2 f Mt f 0.7. The

configurations of the DNS are detailed in Sec. 5.2. The turbulence statistical quantities are provided

in Sec. 5.3 where the effects of Mt are discussed. The energy exchange between solenoidal and

dilatational motions is investigated based on the analytically derived decomposed velocity variance

budget equations in Sec. 5.4.
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5.2 Configurations of direct numerical simulations

A set of DNS of solenoidally forced compressible isotropic turbulence were conducted for the numer-

ical investigation. The DNS solves the compressible Navier-Stokes equations including conservation

of mass, momentum and total energy, shown as follows,

∂Ä

∂t
+

∂Äuj

∂xj
= 0 (5.1)

∂Äui

∂t
+

∂

∂xj
(Äuiuj + p¶ij − Ãij) = Äfi (5.2)

∂Äe

∂t
+

∂

∂xj
(Äeuj + puj − uiÃij + qj) = 0 (5.3)

where Ä is density, ui is the velocity vector, p is pressure, ¶ij is the identity tensor, Ãij is the viscous

stress tensor, fi is the external forcing, e is specific total energy, and qj is conductive heat flux. The

fluid is assumed to be a calorically perfect gas satisfying the following equation of state.

p = ÄRT (5.4)

where R is the specific gas constant and T is temperature. For a calorically perfect gas, the ratio

of specific heats, µ, is constant. In this work, µ = 1.4 and R = 1 are used. Consistently, e is the

specific total energy at a constant volume.

e =
RT

µ − 1
+

1

2
ujuj (5.5)

The constitutive formulation of the viscous stress tensor is

Ãij = 2µSij +

(
´∗ − 2

3
µ

)
¹¶ij (5.6)

where Sij = 1
2 (ui,j + uj,i) is the overall strain rate tensor, and ´∗ represents an artificial bulk vis-

cosity [76]. The dynamic shear viscosity is temperature-dependent and modeled using the power-law

µ

µref
=

(
T

Tref

)α

(5.7)

where µref and Tref are the dynamic shear viscosity and temperature at a reference state, and the

exponent ³ is a dimensionless parameter. The heat flux represents the heat diffusion formulated

with Fourier’s law

qj = −(» + »∗)
∂T

∂xj
(5.8)

where » is the molecular thermal conductivity of the fluid, and »∗ is an artificial thermal conduc-

tivity [76]. The molecular thermal conductivity is calculated assuming constant Prandtl number,
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Pr.

» =
µRµ

Pr(µ − 1)
(5.9)

In this work, ³ = 0.5 and Pr = 0.72 are selected in accordance with Jagannathan & Donzis

(2016) [72]. The artificial properties ´∗ and »∗ belong to the set of localized artificial diffusivi-

ties (LAD) formulated in Kawai et al. (2010) [76] for shock capturing at high Mt. The LAD terms

are highly localized to the occurrence of strong eddy shocklets for numerical stability and zero else-

where. Unlike the simulation framework in Kawai et al. (2010) [76], the DNS conducted in this

work do not have any numerical filter on simulation results [146]. Using LAD without filtering, all

artificial dissipation introduced in the computations is quantifiable.

The numerical operations in the computations are based on a set of six-order compact finite

difference methods and compact interpolations [89, 107]. The simulations with and without the LAD

model are conducted without solution filtering due to the intrinsic dealiasing and enhanced spectral

resolution in the simulation framework [146]. The computational domain is a cubic box with 3D

periodic conditions, xi ∈ [0, 2Ã)3, and the computational mesh size is 10243. The time integration

uses the standard fourth-order Runge-Kutta scheme with an adaptive time step determined by

Courant–Friedrichs–Lewy (CFL) number. In this work, CFL = 0.6 is used for all simulations.
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Figure 5.1: Visualization of an instantaneous velocity field, u = uêx + vêy + wêz, in x-y plane at
Mt ≈ 0.7: (a) u/urms, (b) v/urms, and (c) w/urms.

The external forcing fi is purely solenoidal, fi,i = 0, and contains two components, fi = fs
i +ïfið,

where ïfs
i ð = 0 and ïfið = −ïÄfs

i ð / ïÄð. Therefore, ïfið is transient but homogeneous in space,

which serves as a correction to numerically enforce ïÄfið / ïÄð = 0. As a result, the forcing strategy

does not impose net momentum to the flow system, and ïÄuið = 0 is numerically preserved in the

computational domain. fs
i is a low wavenumber banded stochastic forcing generated in Fourier space

following the algorithm proposed in Ref. [42]. The Fourier representation of the solenoidal forcing

fs
i is

fs
i =

∑

kLfkfkH

P§
ij b̂j(km, t)eikmxm (5.10)
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Figure 5.2: Ensemble-averaged velocity two-point correlation at Mt ≈ 0.7: (a) R11, (b) R22, and (c)
R33. The shaded area represents the fluctuation amplitude characterized by the radius of standard
deviation in the ensemble averaging.

where k =
√
kmkm is the modulus of the wavenumber vector; kL and kH are the cut-off wavenumbers

at the low end and high end of the forcing respectively; each Fourier mode, b̂j(km, t), is generated

using six independent, integrated Uhlenbeck-Ornstein random processes, and P§
ij = ¶ij − kikj/k

2 is

a spectral solenoidal projector. In this work, the cut-off wavenumbers are chosen to be kL = 3 and

kH = 5 to achieve sufficient spatial decorrelation across the computational domain while maintaining

the natural development of turbulence dynamics at intermediate and small scales. The large-scale

decorrelation is expected to accelerate the convergence of turbulence statistics. The decorrelation

time scale of the Uhlenbeck-Ornstein random process is approximately 0.1 eddy-turnover times,

where the time scale of a unity eddy-turnover time, te, is defined as te = ïKð / ïϵð with ensemble

averaging. With the external forcing added to Eq. (5.2), the form of Eq. (5.3) implies a nonuniform

sink of internal energy, −Äfjuj , where the negative sign indicates that the internal energy is removed

from the flow system. Therefore, the work due to the forcing is locally balanced with the sink of the

internal energy, and the total energy of the flow system, ïÄeð, is conservative.

Case Reλ Mt LAD kx,max¸ ¼/¸ le/¼ |ïuð| / ïujujð1/2
M02 173 0.20 none 1.65 25.90 2.18 7.33 × 10−5

M03 172 0.30 none 1.67 25.80 2.14 6.81 × 10−5

M04 172 0.40 ´∗ & »∗ 1.66 25.81 2.14 2.21 × 10−5

M05 171 0.50 ´∗ & »∗ 1.68 25.73 2.15 2.09 × 10−4

M06 171 0.61 ´∗ & »∗ 1.65 25.90 2.21 7.66 × 10−4

M07 166 0.70 ´∗ & »∗ 1.68 25.80 2.16 5.19 × 10−4

Table 5.1: Configuration details of DNS of solenoidally forced compressible isotropic turbulence.

The numerical investigations in this work use six DNS for comparison at different turbulent Mach

numbers. For each case, the simulation data are collected at a constant sampling rate approximately
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every 0.055 eddy turnover times, and the total data for analysis span a range of approximately 10

eddy turnover times. The details of each DNS configuration are listed in Tab. 5.1 where all statistics

are calculated based on ensemble averaging. The Reynolds number based on the longitudinal Taylor

microscale, Reλ, is approximately 170 for each case. The turbulent Mach number, Mt, ranges from

0.2 to 0.7. le is the integral length scale defined as le =
∫∞
0

k−1Euu(k)dk/
∫∞
0

Euu(k)dk, where

Euu(k) is the velocity energy spectrum. For compressible isotropic turbulence, Reλ and Mt are

defined as

Reλ =
urms¼

ïµ/Äð and Mt =

√
ïujujð
ïcð (5.11, 5.12)

where for a calorically perfect gas, c =
√
µp/Ä; for isotropic turbulence, ¼ and urms are defined as

¼ =
1

3
(¼x + ¼y + ¼y) and urms =

√
ïujujð

3
(5.13, 5.14)

where

¼x =

√
ïu2ð

ï(∂u/∂x)2ð ¼y =

√
ïv2ð

ï(∂v/∂y)2ð ¼z =

√
ïw2ð

ï(∂w/∂z)2ð (5.15, 5.16, 5.17)

Reλ is adjusted by varying µref . The variation of Mt is achieved by adjusting the mean speed of sound

while preserving the mean density. The Kolmogorov length scale, ¸, is also tracked. The Kolmogorov

length scale identifies the length scale in a turbulent flow where viscous dissipation is dominant,

which was originally derived by Kolmogorov (1941) based on dimensional analysis for incompressible

turbulent flows [80]. For compressible turbulence, the extended definition of the Kolmogorov length

scale, ¸ = (ïµð3 ïϵð−1 ïÄð−2
)1/4, is used [72]. The grid resolution satisfies kx,max¸ ≈ 1.6 measured

from the results. Due to the large-scale decorrelation, the mean velocity is sufficiently small. The

averaged x-component of velocity for each case is reported in Tab. 5.1. As a demonstration, the

visualizations of the velocity field in an x-y plane are shown in Fig. 5.1, and the two-point correlations

of all three components of the velocity field are shown in Fig. 5.2 in all three directions. The spatial

two-point correlation of the velocity field is defined as Rii = ïui(x)ui(x + r)ð / ïui(x)ui(x)ð where

the subscript indices in this definition do not imply summation. The LAD model, including the

artificial bulk viscosity, ´∗, and artificial thermal conductivity, »∗, is only used in the cases when

Mt g 0.4 for shock capturing. The visualization of ´∗ is shown in Fig. 5.3 in comparison with

the structure of eddy shocklets detected by the modified Ducros sensor, −¹|¹|/(¹2 + 2Ω2 + ε2),

where ε = 10−16 for numerical regularization. The modified Ducros sensor varies on the interval

(−1, 1) for infinitesimal ε, where the shocklets are identified when the local sensor value is close to

1. The artificial bulk viscosity is scaled by the local physical dynamic shear viscosity, ´∗/µ, and

the visualization in Fig. 5.3b is shown on a logarithmic color scale. The visualizations in Fig. 5.3

demonstrate that the artificial dissipation for shock capturing is highly localized at the shocklet
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structures.
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Figure 5.3: Visualizations of (a) modified Ducros sensor, −¹|¹|/(¹2 + 2Ω2 + ε2) and (b) relative
artificial bulk viscosity, ´∗/µ in the x-y plane at Mt ≈ 0.7.

5.3 Statistical quantities

The Helmholtz decomposition on the velocity vector field, u− ïuð = us + ud, is calculated as

ud = ∇ϕ and us = u− ïuð − ∇ϕ (5.18, 5.19)

where the scalar potential, ϕ, is calculated by solving a Poisson equation.

∇2ϕ = ∇ · u (5.20)

In a three-dimensional periodic domain x ∈ [0, 2Ã)3, the Poisson equation is solved in Fourier space

−k2ϕ̂(k) = ik · û(k) (5.21)

where the operator (̂·) denotes the Fourier transform which is defined as (·) =
∑

k
(̂·)(k) exp(ik ·x),

and i =
√
−1 is an imaginary unit associated with the Fourier transform. The energy spectrum,

Evv(k), with respect to an arbitrary vector field v is calculated as

Evv(k) =

(
L

2Ã

)3 ∫

ks

1

2
v̂(ks) · v̂∗(ks)¶ (|ks| − k) dks (5.22)
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where L = 2Ã is the one-dimensional domain period, “(·)∗” denotes the complex conjugate, and ¶ is

a dimensional Dirac delta function with units of “1/k.” In practice, the Evv(k) is calculated based

on sampling within a thin spherical shell in Fourier space.

Evv(k) =
4Ãk2

Ns(k; ∆k)

(
L

2Ã

)3 ∑

||ks|−k|f∆k/2

v̂(ks) · v̂∗(ks)/2

where ∆k is the thickness of the spherical wavenumber shell for sampling, and Ns(k; ∆k) is the

number of total samples within the wavenumber shell of wavenumber volume 4Ãk2∆k. The energy

spectrum of a scalar quantity can be calculated with a consistent approach.

The compensated energy spectra of the overall and decomposed velocity fields are shown in

Fig. 5.4. The velocity energy spectra are scaled by k−5/3 (ïϵð / ïÄð)2/3 according to the Kolmogorov

hypothesis [80], and the wavenumber is normalized by the Kolmogorov length scale, ¸. Comparing

the three velocity energy spectra, the solenoidal velocity fluctuations are dominant in the overall

velocity fluctuation for 0.2 f Mt f 0.7. The solenoidal velocity spectra are not sensitive to Mt. The

bumps for all cases at 0.01 < k¸ < 0.02 are due to the solenoidal forcing where the solenoidal velocity

is mostly energetic. A clear inertial subrange associated with the energy cascade over a decade of

wavenumbers can be observed for each case, and the energy cascade follows the “−5/3” law [80].

Additionally, the viscous subrange for more than 1.2 decades is resolved for each case. The energy

spectra of the dilatational velocity component is largely sensitive to Mt. With the increase of Mt, a

larger range of the energy cascade is formed. At Mt ≈ 0.7, the range of the energy cascade shown

from the energy spectrum of dilatational velocity is comparable to the inertial subrange shown from

the solenoidal velocity spectrum. When Mt g 0.3, Eudud(k) decays at a slightly smaller rate than

k−5/3 at large scales. These observations are consistent with the theoretical prediction from the

compressible EDQNM model [7]. Furthermore, at Mt ≈ 0.2, the profile of Eudud is qualitatively

similar to the schematic sketch of the energy spectrum of the dilatational velocity in the nonlinear

equilibrium state in Sagaut & Cambon (2008) [134], where the sketch is claimed to be created

according to the analytical model provided by Fauchet & Bertoglio (1999) [44].

The energy spectra of the vorticity, ω = ∇× u, and velocity dilatation, ¹ = ∇ · u, are shown in

Fig. 5.5. Consistently with the observation from the energy spectra of solenoidal and dilatational

velocities, the vorticity energy spectra collapse for all Mt. In the inertial subrange, a power-law

is observed, and the log-scale slope is slightly larger than k1/3. The energy spectra of the velocity

dilatation at Mt ≈ 0.3 is mostly excited in the low-wavenumber regime, and the spectral energy

decays rapidly when k¸ > 0.1. With increasing Mt, a wider range of wavenumbers is excited.

Additionally, at Mt ≈ 0.3, Eθθ(k) does not show a uniform power-law decay in the high-wavenumber

regime. dEθθ/dk has clear non-monotonic behavior in the high-wavenumber decay regime, and the

profile of Eθθ contains an inflection point. This non-monotonic decay behavior does not exist in the

dilatation energy spectra for higher Mt. For the cases of Mt ≈ 0.3 and Mt ≈ 0.4, Eθθ(k) shows
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Figure 5.4: Energy spectra of (a) total velocity, (b) solenoidal velocity, and (c) dilatational velocity.

a power-law decay according to observation. The power-law decay behavior is not resolved for the

cases of Mt > 0.4 where a larger range of dilatation spectral energy is excited. The visualizations of

velocity dilatation at Mt ≈ 0.2 and Mt ≈ 0.7 are shown in Fig. 5.6. The values are normalized by

their standard deviation. For a three-dimensional periodic domain, ï¹ð = 0 is numerically enforced,
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Figure 5.5: Energy spectra of (a) vorticity and (b) velocity dilatation.

so ¹ represents the fluctuating component. The structures of velocity dilatation are significantly

different between a high-Mt flow and a low-Mt flow. At Mt ≈ 0.2, the structure of ¹, as shown

in Fig. 5.6a, appears to have a cloud shape. This is due to the rapid decay of high-wavenumber

spectral energy. In contrast, at Mt ≈ 0.7, the contours of ¹, as shown in Fig. 5.6b, contain strong

and thin structures at small and intermediate length scales. These structures are highly anisotropic

although ¹ is still homogeneous and isotropic over the whole computational domain due to the

large-scale decorrelation. Some of these structures form eddy-shocklets. Combined with the energy

spectrum shown in Fig. 5.5b, it is suggested that the formation of these structures is related to

the weaker compression motions at larger scales normal to the strong and thin structures. The

variance of velocity dilatation as a function of Mt and the probability density functions (PDF) of

the normalized velocity dilatation for all cases are shown in Fig. 5.7. In Fig. 5.7a, the trend line,

M4
t , is provided to compare the scaling given by compressible EDQNM [134]. In this work, the

eddy-turnover times used for scaling are approximately the same for all cases. The increase of ï¹¹ð

roughly follows the trend of M4
t , but discrepancies still exist and become more obvious for Mt g 0.6.
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Figure 5.6: Visualizations of normalized velocity dilatation, ¹/std (¹), of flows at (a) Mt ≈ 0.2 and
(b) Mt ≈ 0.7.

At low Mt, the distribution of ¹ is symmetric. However, the PDF develops negative skewness when

Mt g 0.4, which indicates that the compression motion formed in the flow due to compressibility

effects is stronger than the expansion motion measured by ¹. This trend in the PDF is consistent

with those reported in previous studies [72, 170]. Combined with the visualization in Fig. 5.6b,

the skewness of the PDF in the negative branch is due to the formation of local strong and thin

compression structures and eddy-shocklets.
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Figure 5.7: Statistics of velocity dilatation: (a) variance of ¹ as a function of Mt and (b) PDF of
¹/std(¹). The eddy-turnover times are approximately the same for all cases in this work.
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The energy spectra of density is shown in Fig. 5.8. The spectra are normalized by the variance

of density, ïÄ′Ä′ð. At a low Mt, the decay of Eρ′ρ′ within the inertial subrange is approximately k−2.

At a higher Mt, the scaling changes to k−5/3, which is consistent with the corresponding observation

in Wang et al. (2019) [172]. The statistics of density at different Mt are shown in Fig. 5.9. For

different cases, the variance of density, ïÄ′Ä′ð, is plotted as a function of Mt in Fig. 5.9a and an

algebraic scaling is observed. For 0.2 f Mt f 0.7, the fitting result shows that the density variance

is proportional to M
7/2
t . The PDF of the normalized density fluctuations, (Ä − ïÄð)/std(Ä), for all

cases, are shown in Fig. 5.9b. When Mt f 0.4, the PDF has negative skewness. However, when

Mt g 0.5, the skewness becomes positive and increases with Mt. The density fluctuations can be

indirectly visualized using numerical Schlieren imaging, as shown in Fig. 5.10. It can be observed

that at a low Mt (Fig. 5.10a), relatively strong fluctuations are localized to the center of vortical

flow structures where Ä′ < 0. However, at a high Mt (Fig. 5.10b), the strong density fluctuations

are localized to the compression wave structures where Ä′ > 0.
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Figure 5.8: Energy spectra of density.

Associated with the velocity decomposition, the pressure field can be decomposed into three

components.

p = ps + pd + ïpð (5.23)

where ps is known as the solenoidal pressure fluctuation and pd is known as the dilatational pressure

fluctuation. According to Jagannathan & Donzis (2016) [72], the solenoidal pressure fluctuation can

be estimated by solving a Poisson equation.

−
∂2ps

∂xj∂xj
= ïÄð

∂us
i

∂xj

∂us
j

∂xi
(5.24)

and the dilatational pressure fluctuation can then be calculated as pd = p−ïpð−ps. In this work, the

Poisson equation is solved in Fourier space with the nonlinear term on the right-hand side calculated



CHAPTER 5. COMPRESSIBILITY EFFECTS IN ISOTROPIC TURBULENCE 117

10
−1

10
0

Mt

10
−4

10
−3

10
−2

10
−1

〈 ρ
′ ρ

′ 〉
/
〈 ρ

〉2

∼ M
7/2

t

(a)

−25 −20 −15 −10 −5 0 5 10 15 20 25

Normalized Value

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

P
D

F

Gaussian

Mt ≈ 0.2

Mt ≈ 0.3

Mt ≈ 0.4

Mt ≈ 0.5

Mt ≈ 0.6

Mt ≈ 0.7

(b)

Figure 5.9: Statistics of density: (a) variance of Ä as a function of Mt and (b) PDF of (Ä−ïÄð)/std(Ä).
The mean density ïÄð remains the same constant during simulation across all cases.
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Figure 5.10: Numerical Schlieren imaging, |∇Ä| /std (|∇Ä|), of flows at (a) Mt ≈ 0.2 and (b) Mt ≈ 0.7.

in physical space.

k2p̂s = ïÄð ûs
i,ju

s
j,i

The energy spectra of p, ps, and pd are shown in Fig. 5.11 for all cases. In the energy spectra of the

overall pressure field, as shown in Fig. 5.11a, a “−7/3” law is observed at Mt ≈ 0.2 in the inertial

subrange. This observation is consistent with the calculation from compressible EDQNM [7, 134].

As Mt increases, the decay of the overall energy spectra changes to a “−5/3” law. The k−5/3

energy decay is also observed in other DNS of forced compressible isotropic turbulence as reported
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in Wang et al. (2019)[172]. The energy spectra of solenoidal pressure fluctuations for all cases

(Fig. 5.11b) show a k−5/3 decay in the inertial subrange, and the spectra with different Mt show

similarity behavior over the entire wavenumber range. The energy spectra of the dilatational pressure

fluctuations in Fig. 5.11c show a wider range of excited wavenumbers with increasing Mt. At high

wavenumbers, the decay rate in the inertial subrange is close to k−3/2 by observation. As predicted

by compressible EDQNM, a k−5/3 decay will be recovered when Mt is close to 1 [134].

5.4 Decomposed velocity variance budget

Based on the orthogonality of the Helmholtz decomposition, the decomposed velocity variance can be

obtained by projection following the identities ïus
iuið = ïus

iu
s
i ð and

〈

ud
i ui

〉

=
〈

ud
i u

d
i

〉

. The projection

is a bilinear spatial operation, and the operation commutes with the time derivative operator, which

can be shown in Fourier space. The compressible Navier-Stokes equation, Eq. (5.2), is rearranged

in primitive form to obtain the evolution of velocity.

∂ui

∂t
+ uj

∂ui

∂xj
+

1

Ä

∂

∂xj
[p¶ij − Ãij ] = fi (5.25)

The solenoidal and dilatational projections are applied by taking the spatial average of each term in

the equation after multiplying by us
i and ud

i respectively. The spatial average of the flux-divergence

is zero, which is numerically enforced for the simulations with a 3D periodic domain. As a result,

the budget equations of the solenoidal and dilatational velocity variance are obtained in Eq. (5.26)

and Eq. (5.27) respectively.

1

2

d
〈

us
ju

s
j

〉

dt
=

〈

(us
iÃij − pus

j)Ä,j
〉

−
〈

uiujS
d
ij

〉

+ ïEð −
〈

Ãs
ijS

s
ij

〉

−
〈

2¿Ss
ijS

d
ij

〉

+
〈

fs
j u

s
j

〉

(5.26)

1

2

d
〈

ud
ju

d
j

〉

dt
=

〈

(ud
i Ãij − pud

j )Ä,j
〉

−
〈

uiujS
s
ij

〉

− ïEð −
〈

Ãd
ijS

d
ij

〉

−
〈

2¿Ss
ijS

d
ij

〉

+
〈

fd
j u

d
j

〉

+ ïp¹ð

(5.27)

where the overbar operator denotes multiplying by Ä−1, (·) = (·)/Ä; ¿ is the kinematic shear viscos-

ity, ¿ = µ; Ss
ij = 1

2 (us
i,j +us

j,i) and Sd
ij = 1

2 (ud
i,j +ud

j,i) are the rate of strain tensors of the solenoidal

velocity and dilatational velocity respectively; Ãs
ij and Ãd

ij are the viscous stress tensors associated

with the solenoidal and dilatational velocities; fs
j and fd

j are the solenoidal and dilatational com-

ponents of the external forcing; and E serves as the variance exchange term, which has the same

expression but different signs in the two budget equations. The expression for the variance exchange

term is

E =
1

2

(

us
ju

s
j − ud

ju
d
j

)

¹ (5.28)
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Figure 5.11: Energy spectra of (a) overall pressure, p, (b) solenoidal pressure fluctuation, ps, and
(c) dilatational pressure fluctuation, pd.

Based on the expression, the exchange term tends to amplify the stronger decomposed variance

while damping the weaker one through local expansion and reduces the discrepancy between the

two components of variance through local compression. Following the expression of the viscous stress
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tensor Ãij in Eq. (5.6), the decomposed viscous stress tensors Ãs
ij and Ãd

ij are provided in Eq. (5.29)

and Eq. (5.30) respectively.

Ãs
ij = 2µSs

ij and Ãd
ij = 2µSd

ij +

(

´ −
2

3
µ

)

¹¶ij (5.29, 5.30)

The terms on the right-hand sides of Eq. (5.26) and Eq. (5.27) describe the contributing mecha-

nisms to the changes of the decomposed velocity variance.
〈

(us
iÃij − pus

j)Ä,j
〉

and
〈

(ud
i Ãij − pud

j )Ä,j
〉

represent the contributions from the density fluctuations. The factor Ä,j characterizes the density

non-uniformity, which can be written as

Ä,j =
∂

∂xj
ln(Ä/ ïÄð) (5.31)

〈

uiujS
s
ij

〉

and
〈

uiujS
d
ij

〉

can be interpreted as the velocity and solenoidal strain rate alignment,

and the velocity and dilatational strain rate alignment respectively.
〈

Ãs
ijS

s
ij

〉

+
〈

2¿Ss
ijS

d
ij

〉

and
〈

Ãd
ijS

d
ij

〉

+
〈

2¿Ss
ijS

d
ij

〉

are the overall solenoidal and dilatational kinematic dissipation respectively,

where
〈

2¿Ss
ijS

d
ij

〉

represents the cross-contributions or the overlap effects. As observed from DNS

results, the contribution from
〈

2¿Ss
ijS

d
ij

〉

is negligible compared to
〈

Ãs
ijS

s
ij

〉

and
〈

Ãd
ijS

d
ij

〉

. Based on

the expression for Ãs
ij and Ãd

ij in Eq. (5.29) and Eq. (5.30), the kinematic dissipation satisfies

Ãs
ijS

s
ij = 2¿Ω2 + 2¿us

i,ju
s
j,i (5.32)

and

Ãd
ijS

d
ij =

(

´ +
4

3
¿

)

¹2 + 2¿ (¶mp¶nq − ¶mq¶np)
(

Sd
mnS

d
pq − Sd

mpS
d
nq

)

(5.33)

This analysis identifies the similarities and differences between the decomposed velocity variance

dissipation and the expressions given by Sarkar et al. (1991) [135]. It is worth noting that the

kinematic dissipation terms in Eq. (5.26) and Eq. (5.27) are with regards to the velocity variance

instead of the kinetic energy. ïp¹ð is the kinematic pressure dilatation, where p = p/Ä is interpreted

as the kinematic pressure.
〈

fs
j u

s
j

〉

and
〈

fd
j u

d
j

〉

are the specific work associated with the solenoidal

and dilatational forcing respectively. For generally forced isotropic turbulence, the Helmholtz de-

composition can also be applied to the forcing vector, fj = fs
j + fd

j + ïfjð, and the biorthogonality,
〈

fs
j u

d
j

〉

=
〈

fd
j u

s
j

〉

= 0, can be shown in Fourier space. The solenoidal and dilatational modes are

always orthogonal with respect to the same wavenumber vector, even between Helmholtz decom-

positions of different vector fields, since the solenoidal mode is parallel to the wavenumber vector

while the dilatational mode is perpendicular to the wavenumber vector. In this work, only solenoidal

forcing is applied, so fd
j = 0, and ïfjð =

〈

Äfs
j

〉

/ ïÄð to enforce the conservation of mean momentum.

Due to large-scale decorrelation, ïfjð ≈ 0.

In this analysis, all terms in the budget equations are normalized by the ensemble average of
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Figure 5.12: Velocity variance budget at Mt ≈ 0.2: (a) right-hand side terms in the solenoidal
velocity-variance budget and (b) right-hand side terms in the dilatational velocity-variance budget.

the solenoidal velocity variance dissipation,
〈

Ãs
ijS

s
ij

〉

. The time series of the budget terms over

approximately 10 eddy-turnover times for Mt ≈ 0.2 are shown in Fig. 5.12 and Fig. 5.13, where

Fig. 5.13 shows zoomed-in views to illustrate small-amplitude contributions from the budget terms.

The plots of the time series are signed where positive values indicate amplification contributions,

and negative values indicate damping contributions. At Mt ≈ 0.2, the budget equations primarily

show the balance of solenoidal forcing and solenoidal dissipation. The contributions from all other

terms are significantly smaller and negligible compared to the two balanced dominant mechanisms.

The time series of the budget terms at Mt ≈ 0.7 are shown in Fig. 5.14 as a zoomed-in view,

and contributions from
〈

fs
j u

s
j

〉

and
〈

Ãs
ijS

s
ij

〉

are outside the scales of the plots. Compared to the

low-Mt case, many terms develop clean biased behavior as Mt increases and have net contributions

of amplification or damping to the decomposed velocity variance. In the solenoidal budget, both

individual terms related to density fluctuations, ïus
iÃijÄ,jð and

〈

pus
jÄ,j

〉

, have approximately a 10%

contribution to the total budget, and their fluctuations are relatively small compared to other terms.
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Figure 5.13: Velocity variance budget at Mt ≈ 0.2: (a) right-hand side terms in the solenoidal
velocity-variance budget and (b) right-hand side terms in the dilatational velocity-variance budget.

However, due to their opposite signs, the contributions from these two terms are largely cancelled.

The term related to the alignment of velocity and dilatational strain rate,
〈

uiujS
d
ij

〉

, also has approx-

imately a 10% contribution to the damping of the solenoidal velocity variance, and the amplitude

is larger than the terms related to the density fluctuation. This term can be further decomposed

into three components,
〈

us
iu

s
jS

d
ij

〉

,
〈

ud
i u

d
jS

d
ij

〉

, and
〈

us
iu

d
jS

d
ij

〉

, where the dominant contribution is

from
〈

us
iu

s
iS

d
ij

〉

. The direct energy exchange term, ïEð, has a net contribution to the transfer from

solenoidal motion to dilatational motion. However, the fluctuation of ïEð is relatively large compared

to other terms, and its net contribution is only approximately 3.64%. In the dilatational budget, at

Mt ≈ 0.7, the dilatational dissipation,
〈

Ãd
ijS

d
ij

〉

has approximately a 10% contribution. Besides the

direct energy exchange, ïEð, another major amplification is gained from the alignment of velocity

and the solenoidal strain rate,
〈

uiujS
s
ij

〉

. However, this term shows a relatively large fluctuation in

time. Among the three further decomposed components,
〈

us
iu

s
jS

s
ij

〉

,
〈

ud
i u

d
jS

s
ij

〉

, and
〈

us
iu

s
jS

d
ij

〉

, the

amplitude of
〈

us
iu

s
jS

s
ij

〉

is significantly smaller than the other two components by observation.
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Figure 5.14: Velocity variance budget at Mt ≈ 0.2: (a) right-hand side terms in the solenoidal
velocity-variance budget and (b) right-hand side terms in the dilatational velocity-variance budget.
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Figure 5.15: Ratio of decomposed velocity variance as a function of Mt.
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Figure 5.16: Normalized PDFs of the decomposed velocity in x-direction: (a) solenoidal velocity
distribution, (us − ïusð) /std (us), and (b) dilatational velocity distribution,
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Figure 5.17: Selected terms in the decomposed velocity budget equations as functions of Mt: (a)
alignment of velocity and solenoidal strain rate, −

〈

uiujS
s
ij

〉

, (b) alignment of velocity and dilata-

tional strain rate,
〈

uiujS
d
ij

〉

, (c) exchange −ïEð, and (d) dilatational dissipation
〈

Ãd
ijS

d
ij

〉

.
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Figure 5.18: Normalized PDFs of selected terms in the decomposed velocity budget equations: (a)
alignment of velocity and solenoidal strain rate, −uiujS

s
ij , (b) alignment of velocity and dilatational

strain rate, −uiujS
d
ij , (c) exchange E, and (d) dilatational dissipation −Ãd

ijS
d
ij . The normalized

values are the fluctuating component scaled by their standard deviations.

The ratio of the decomposed velocity variance,
〈

ud
ju

d
j

〉

/
〈

us
ju

s
j

〉

, as a function of Mt is shown in

Fig. 5.15, where the trend lines are plotted for reference only. Within the range of Mt, the ratio

of the decomposed velocity variance monotonically increases with Mt as expected, but the trend

does not show a uniform scaling of Mt. The normalized PDFs of us and ud (x-components of the

decomposed velocities) are shown in Fig. 5.16. The normalized distribution of the solenoidal velocity

does not depend on Mt and remains Gaussian for all cases. This behavior is consistent with the

observations in Sec. 5.3. The dilatational velocity at low-Mt has a Gaussian distribution. However,

as Mt increases, the distribution starts to develop non-Gaussian behavior with heavier tails.

Several terms in the decomposed velocity variance budget equations that make non-negligible

contributions at high Mt are shown in Fig. 5.17 as functions of Mt. In order to show the Mt scaling

behavior on log-log plots, the sign of each term may not follow the right-hand sides of the budget
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equations if a scaling is observed. With Mt increasing approximately from 0.2 to 0.7, the budget

term related to the alignment of velocity and solenoidal strain rate, −
〈

uiujS
s
ij

〉

, does not show a

monotonic trend (Fig. 5.17a). At Mt ≈ 0.2 and Mt ≈ 0.3, the term switches sign. Additionally,

the Mt scaling is not obvious as Mt increases. However, as shown in the time series in Fig. 5.13b

and Fig. 5.14b, −
〈

uiujS
s
ij

〉

strongly oscillates in time, and the temporal fluctuation amplitude is

comparable to the amplitude of its net contribution. At a high Mt, this term makes a dominant

contribution to enhancing dilatational motion and balancing with the dilatational dissipation and

other minor mechanisms. The budget term related to the alignment of velocity and dilatational strain

rate,
〈

uiujS
d
ij

〉

, shows a scaling of M5
t asymptotically in the high-Mt regime (Fig. 5.18b). The direct

variance energy exchange, ïEð, shows a scaling of M3
t asymptotically towards the low-Mt regime

(Fig. 5.17d). For Mt > 0.5, the scaling does not hold. The dilatational dissipation term,
〈

Ãd
ijS

d
ij

〉

,

asymptotically shows a M5
t scaling towards the high-Mt regime when Mt g 0.3 (Fig. 5.18d). As the

value of each budget term is normalized by the solenoidal dissipation,
〈

Ãs
ijS

s
ij

〉

, the scaling shown

Fig. 5.18d reveals the scaling of the ratio of the dilatational dissipation to the solenoidal dissipation.

In this analysis,
〈

Ãd
ijS

d
ij

〉

and
〈

Ãs
ijS

s
ij

〉

represent the dilatational and solenoidal dissipation of the

decomposed velocity variance instead of the kinetic energy. Nevertheless, the M5
t scaling is consistent

with the theoretical prediction of the scaling given by the compressible EDQNM model for
〈

ϵd
〉

/ ïϵsð
when Mt > 0.2 [134]. This M5

t scaling is also consistent with the observation reported in Wang

et al. (2017) [169]. In this work, the DNS is conducted without solution filtering as a numerical

stabilization mechanism, the dilatational dissipation contains the dissipation from the eddy shocklets

quantified by the artificial bulk viscosity.
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Figure 5.19: Normalized joint statistical density of dilatational dissipation, Ãd
ijS

d
ij , with respect to

the normalized velocity dilatation, ¹/std(¹).

The normalized PDFs of the selected terms in the decomposed velocity variance budget equations
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are shown in Fig. 5.18 for all cases. The normalized distribution in each plot represents the fluctu-

ating component of the quantity of interest scaled by its standard deviation. The PDFs shown in

Fig. 5.18 are obtained by ensemble averaging over approximately 10 eddy-turnover times. As shown

in Fig. 5.18, none of the PDFs yield a Gaussian distribution. The profiles of PDFs are all heavy-

tailed on both sides, except for the dilatational dissipation, −Ãd
ijS

d
ij , which is a semi-negative-definite

quantity. At low Mt, all PDFs of −uiujS
s
ij , −uiujS

d
ij , and E are symmetric. As Mt increases, the

PDFs of −uiujS
d
ij and E develop obvious skewness, but the normalized PDF of −uiujS

s
ij is less

sensitive to the variation in Mt.

The normalized joint statistical density of the dilatational dissipation, Ãd
ijS

d
ij , with respect to

the normalized velocity dilatation, ¹/std(¹), is shown in Fig. 5.19. The normalized joint statistical

density, Φ
(

¹/std(¹);Ãd
ijS

d
ij

)

, is defined as

Φ
(

¹/std(¹);Ãd
ijS

d
ij

)

=

∫

X∈{σd
ij
Sd
ij
}

Xφ (X, ¹/std(¹)) dX

∫

Y ∈{θ/std(θ)}

∫

X∈{σd
ij
Sd
ij
}

Xφ (X,Y ) dXdY

(5.34)

where φ(X,Y ) represents the joint PDF of the random variables X and Y sampled for Ãd
ijS

d
ij

and ¹/std(¹) respectively. This definition is equivalent to the normalized dilatational-dissipation-

weighted PDF of the normalized velocity dilatation. As shown in Fig. 5.19, at Mt ≈ 0.2, the profile

contains minor positive skewness. This indicates that the local expansion motion tends to cause

slightly more dilatational dissipation compared to the local compression motion. As discussed in

Sec. 5.3, the local expansion regions are localized to the center of small-scale vortical flow structures

where density fluctuations tend to be negative, Ä′ < 0, and it is more efficient for the dilatational

dissipation to damp the local dilatational velocity fluctuation. At Mt ≈ 0.3, the profile of Φ is

approximately symmetric, which implies that the dilatational velocity variance is approximately

equally damped by compression and expansion motions in the domain. When Mt g 0.4, the profiles

of Φ start to develop large negative skewness. At Mt ≈ 0.4 and Mt ≈ 0.5, the majority of dilatational

dissipation is still due to the weak dilatational motion. However, when Mt > 0.5, the dilatational

dissipation associated with strong compression motions becomes more significant.

5.5 Conclusions

In this work, compressibility effects in compressible isotropic turbulence are studied. The inves-

tigation uses a set of DNS of solenoidally forced compressible isotropic turbulence ranging from

Mt ≈ 0.2 to Mt ≈ 0.7 with Reλ ≈ 170 for all cases. The computational mesh size for each case is

10243, and the simulations are configured on a 3D periodic domain with mean density and mean

momentum numerically preserved. The solenoidal forcing is stochastic and evolves in Fourier space
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with wavenumbers in the range 3 f k f 5, which provides sufficient large-scale decorrelation while

allowing for the development of small-scale turbulent flow structures over a wide range of length

scales. For Mt g 0.4, the localized artificial bulk viscosity and artificial thermal conductivity models

are applied for shock capturing. The simulation framework has improved spectral resolution and

all simulations do not have solution filtering. Approximately 10 eddy turnover times are used for

ensemble averaging of statistical quantities in the analysis. The Helmholtz decomposition is applied

to the velocity field. The energy spectra of the overall and decomposed velocity fields, vorticity

field, velocity dilatation field, and solenoidal and dilatational pressure fields are provided. The re-

sults show that the quantities associated with the solenoidal motions are not sensitive to the change

in Mt, but the quantities related to the dilatational motions are quite sensitive to Mt. At a low

Mt, the dilatational motion is gentle. The energy spectra associated with the dilatational motion

are excited primarily in the low-wavenumber regime. However, as Mt increases, the flow starts to

develop strong compression motions and forms thin, locally anisotropic wave-like structures shown

by the velocity dilatation field. Some of the strong compression motions form eddy shocklets. This

behavior is revealed in the energy spectra where a higher wavenumber regime is excited, and it

leads to a negative skewness in the PDF of velocity dilatation when Mt > 0.3. The velocity di-

latation variance approximately shows a M4
t scaling, and the density variance approximately shows

a M
7/2
t scaling over the range of Mt investigated. The decomposed velocity variances are used as

the energy norm to characterize the strength of the decomposed motions. The budget equations

of the decomposed velocity variances are analytically derived from the compressible Navier-Stokes

equations without a closure model. At a low Mt, the budget equations primarily show the balance

between solenoidal forcing and solenoidal dissipation. At a higher Mt, more terms on the right-hand

sides of the budget equations are excited and show biased behavior indicating net amplification or

damping of the decomposed motions. As Mt increases, the ratio of the dilatational velocity variance

to the solenoidal velocity variance monotonically increases, but the ratio does not show a uniform

scaling with Mt. However, several terms in the budget equations that have major contributions

show a clear Mt scaling within part of the range of Mt used in this work. The PDFs of these

terms are non-Gaussian. The normalized PDF of the alignment of velocity and solenoidal strain

rate does not show a strong dependence on Mt. The normalized PDFs of the alignment of velocity

and dilatational strain rate, uiujS
d
ij , and the term of exchange, E, develop obvious skewness as

Mt increases. The normalized joint statistical density of the dilatational dissipation is calculated,

and the results indicate that at Mt ≈ 0.2 the total dilatational dissipation due to local expansion

is slightly greater than that due to the local compression motion. However, when Mt > 0.3 the

overall dilatational dissipation caused by local compression motions is higher than that caused by

the local expansion motions. For Mt f 0.5, the majority of dilatational dissipation is caused by

weak dilatational motions, but the dilatation dissipation caused by strong local compression motion

become more significant when Mt > 0.5.



Chapter 6

Numerical Study of Transonic

Laminar Shock Buffet

The shock buffet phenomenon in a transonic flow over the OALT25 laminar supercritical airfoil is

investigated using a wall-resolved large-eddy simulation. The airfoil is configured in a Mach 0.735

freestream with a 4-degree angle-of-attack. The chord-length-based Reynolds number is 1 million.

The simulation is conducted using a high-resolution computational framework based on high-order

compact finite difference methods and hybrid central-Riemann fluxes combined with nonlinear in-

terpolation schemes for shock-capturing. Data over a range of approximately 267 convective time

units are collected and used in the analysis. It is observed that the flow on the suction side re-

mains laminar up to the boundary layer separation point. The flow transitions to turbulence due

to the Kelvin-Helmholtz instability after laminar separation, and the main shock is located above

the turbulent portion of the boundary layer close to the transitional region. Associated with shock

buffet, the signals corresponding to the lift and drag coefficients show two dominant frequencies at

Strouhal numbers of approximately 0.1 and 0.55. Further signal processing identifies that the two

peak frequencies correspond to shock buffet and turbulent vortex shedding respectively. Spectral

proper orthogonal decomposition using different energy norms is applied to further investigate the

space-time correlations of the flow system during shock buffet. Five frequencies, including the shock

buffet and turbulent vortex shedding frequencies, are identified where the system has low-rank be-

havior. The evolution of the low-rank mode shapes at the dominant frequencies suggests several

feedback mechanisms.

The study illustrated in this chapter is published in Ref. [148].
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6.1 Introduction

Shock buffet over an airfoil can create large-amplitude low-frequency fluctuations in its aerody-

namic performance and may lead to strong aircraft structural vibrations, which drastically limits

the flight envelope [87, 55]. Transonic shock buffet over airfoils has been widely studied both ex-

perimentally [123, 124, 71, 99] and numerically [70, 4, 17, 179, 56]. For large-scale airfoils operating

under transonic conditions, the chord-length-based Reynolds number is sufficiently high so that the

boundary layer becomes fully turbulent close to the leading edge. When shock buffet occurs, the

phenomenon is commonly referred to as turbulent buffet. A variety of two-dimensional airfoil geome-

tries, such as OAT15A [71], RA16SC1 [5], NACA 0012 [101], and NACA 64A204 [69], are provided

as benchmarks for broad investigations. Numerical investigations based on popular approaches, such

as unsteady Reynolds-averaged Navier-Stokes (RANS) simulations [17, 69], wall-modeled large-eddy

simulations (LES) [50, 4, 56] , and hybrid RANS / LES [34, 59, 179], have been undertaken for

either low-cost parameter studies or high-fidelity analysis of detailed mechanisms. A mechanism for

transonic shock buffet over a supercritical airfoil with a fully separated turbulent boundary layer

was proposed by Lee (1990) [86] based on signal processing from an experimental measurement.

The theory suggests a feedback mechanism in which the pressure disturbance generated from the

shock propagates downstream within the separated flow region to the trailing edge and then creates

upstream-traveling waves at the trailing edge which further perturbs the shock unsteadiness [86].

In addition, a global instability theory is formulated and justified by Crouch et al. (2007) [32]

to predict the onset of turbulent shock buffet. The study analyzes modal linear stability about a

steady-state mean flow from a RANS solution [32]. Iwatani et al. (2023) [70] identify two types of

mechanisms that contribute to shock buffet using resolvent analysis [155]. The study suggests that

the phenomenon of shock buffet is co-contributed to by both periodic pressure disturbances due to

the variation of separated flow height near the trailing edge and upstream traveling pressure waves

around the shock.

Recently, laminar supercritical airfoils, designed to significantly push the boundary layer transi-

tion point further downstream as compared to traditional airfoils, have gained increasing attention

motivated by drag reduction for fuel-efficient aircraft design [60]. In transonic flows under buffeting

conditions, the shock over a laminar supercritical airfoil is commonly located above the turbulent

boundary layer near the transition point. This phenomenon is commonly recognized as laminar

shock buffet as opposed to turbulent shock buffet, where the shock is located above a fully turbu-

lent boundary layer. A complete laminar shock buffet system contains shock / laminar boundary

layer interactions, unsteadiness of laminar separation, shear-instability-induced flow transitioning to

turbulence, turbulent vortex shedding, etc. Several two-dimensional laminar supercritical airfoil ge-

ometries with their wind-tunnel experimental data are accessible for public research. These include,

but are not limited to, the OALT25 airfoil designed by ONERA [15] and the V2C airfoil designed

by Dassault Aviation [124]. High-resolution LES transonic shock buffet over an OALT25 airfoil at
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a chord-length-based Reynolds number of 3 million are conducted by Dandois et al. (2018) [33] and

the results are validated by the wind-tunnel measurements. Detailed shock and flow structures and

signal processing results are reported, and the effects of the Kelvin-Helmholtz instability and the

breathing of the separation bubble associated with turbulent vortex shedding are discussed in detail.

Zauner et al. (2020) [181] investigate laminar shock buffet at a low Reynolds number. The results

show that laminar shock buffet at a relatively low Reynolds number, 0.5 million, contains multiple

unsteady shocks, and the primary oscillations of lift may be uncorrelated with the periodic shock

motions. Zauner et al. (2023) [180] conduct spectral proper orthogonal decomposition (SPOD)

analyses [158] of both OALT25 and V2C airfoils under transonic shock buffet conditions using the

LES data. Selected mode shapes are reported. Furthermore, the effects of flow structures and a

scaling approach are justified at various Reynolds numbers.

This work focuses on understanding the physical mechanisms that cause transonic laminar shock

buffet on a laminar supercritical airfoil. The study uses data generated from a wall-resolved LES

of transonic flow over the OALT25 airfoil [15] at a Reynolds number of 1 million. The simulation

details are provided in Sec. 6.2. The simulation results and data analysis are shown in Sec. 6.3.

Finally, the conclusions are given in Sec. 6.4.

6.2 Simulation setup

6.2.1 Physical formulation

The simulation solves the compressible Navier–Stokes equations using the wall-resolved LES ap-

proach, which includes conservation of mass, momentum, and total energy:

∂Ä

∂t
+

∂Äuj

∂xj
= 0, (6.1)

∂Äui

∂t
+

∂

∂xj
(Äuiuj + p¶ij) =

∂Ãij

∂xj
, (6.2)

∂Äe

∂t
+

∂

∂xj
[(Äe + p)uj ] =

∂

∂xj

(

uiÃij + »
∂T

∂xj

)

. (6.3)

The equations are written in index notation, where xi and t are the spatial coordinate vector and

time respectively. Ä is the density, ui is the velocity vector, p is the pressure, ¶ij is the identity tensor,

Ãij is the viscous stress tensor, e is the specific total energy, » is the total thermal conductivity, and

T is the temperature. The primitive variables, Ä, ui, and T are interpreted as filtered quantities

supported by the computational grid resolution as compared to the full range of length scales of the

turbulent structures. The subgrid-scale (SGS) models are absorbed into the transport properties

based on the Boussinesq hypothesis [13]. The fluid is assumed to be calorically perfect with the
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ideal gas equation of state:

p = ÄRT, (6.4)

where R is the specific gas constant. The total energy contains two components, e = eth + ujuj/2,

where the internal energy and kinetic energy are the first and second terms on the right hand side

of the equation. For a calorically perfect gas, the specific internal energy can be calculated as

eth =
RT

µ − 1
, (6.5)

where µ is the ratio of specific heats and remains as a constant. The viscous stress tensor is calculated

as

Ãij = 2µSij +

(

´ − 2

3
µ

)

Skk¶ij , (6.6)

where µ is the total dynamic shear viscosity, ´ is the bulk viscosity, and Sij is the strain rate tensor

which is calculated as

Sij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

. (6.7)

The total dynamic shear viscosity, µ, includes two components, µ = µ̌+ µSGS, where µ̌ is computed

using the power-law relation as a physical model:

µ̌ = µref (T/Tref)
0.76

, (6.8)

and µSGS is calculated based on the Vreman SGS model [167]. The bulk viscosity only includes a

physical component, which is set to be directly proportional to the physical dynamic shear viscos-

ity [58]:

´ = 0.67µ̌. (6.9)

No SGS model is applied to the dynamic bulk viscosity in this simulation. The total thermal

conductivity also contains the computable physical and SGS components, » = »̌ + »SGS. The

computable physical component, »̌ is calculated based on a constant Prandtl number, Pr:

»̌ = cpµ̌/Pr, (6.10)

where cp is the specific heat at a constant pressure. For a calorically perfect gas, cp is calculated as

cp = µR/(µ− 1). The SGS component is calculated based on a constant turbulent Prandtl number,

Prt, as follows.

»SGS = cpµSGS/Prt. (6.11)

In this simulation, the Prandtl numbers are set to Pr = 0.7 and Prt = 1.

Transonic flow past the OALT25 supercritical airfoil is investigated in this work. The problem
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Figure 6.1: Schematics of problem configuration.

configuration is shown in Fig. 6.1. The airfoil is placed so that the chord is aligned with the x-

direction, and the chord length is denoted as c. The uniform freestream conditions are specified by

the Mach number M∞ and angle of attack ³. The Mach number is defined as M∞ = U∞/a∞, where

U∞ and a∞ are the flow speed and the speed of sound in the freestream respectively. With the

given thermodynamic values of T∞ and p∞, the speed of sound for a calorically perfect gas can be

calculated as a∞ =
√
µRT∞. The chord-based Reynolds number is defined as Rec = Ä∞U∞c/µ∞,

where Ä∞ and µ∞ are the density and dynamic shear viscosity in the freestream respectively. The

freestream is assumed to be laminar, so µSGS = 0 is implied in the far-field.

6.2.2 Numerical methods

The schematic of the computational configuration is shown in Fig. 6.2. The computational domain

is circular in the x-y plane. The domain has a radius of Rdom = 70c. The far-field flow region is

regularized with a numerical sponge using the freestream conditions. The numerical sponge layer

starts from Rspg = 50c. The simulation uses a hybrid central-Riemann flux with an explicit SGS

model in the regions within a radius of RLES, while a pure Riemann flux, calculated using an upwind-

biased shock-capturing scheme, is applied beyond the radius RLES. In this work, RLES = 1.55c is

chosen based on the grid resolution as well as the domain of interest.

The simulation is conducted using sixth-order compact finite difference methods [89] arranged in

a high-resolution computational framework without numerical filtering [146]. The shock-capturing

method is coupled with the compact finite difference method in the convective flux discretiza-

tion [110, 182, 176, 150]. The shock-capturing method is based on explicit fifth-order interpolation

using the nonlinear weights of the weighted essentially non-oscillatory scheme (WENO5-Z) [11] and

the Rusanov-type (local Lax-Friedrichs) Riemann flux [132] as a Riemann solver. To localize the

numerical dissipation introduced by the shock-capturing scheme, the Riemann flux is hybridized

with the central flux controlled by the modified Ducros sensor, ϕ, defined as follows:

ϕ =
−¹|¹| + ε2

¹2 + ω · ω + ε2
, (6.12)

where ¹ = ∇·u is the velocity dilatation, ω = ∇×u is the vorticity vector, and ε is a small constant

set to ε = 1× 10−16 to avoid division by zero. The simulation in this work uses binary flux blending
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Figure 6.2: Simulation configurations shown in x-y plane: (a) schematics of computational domain
setup; and (b) visualization of computational mesh (down-sampled for better visualization) near the
airfoil in the x-y plane. The computational domain is periodic and homogeneous in the z-dimension,
with uniform computational grid spacing.

with a specified threshold sensor value ϕTH = 0.4. When ϕ > ϕTH, the Riemann flux is used;

otherwise, only the central flux is used. The time advancement is conducted using the three-stage

third-order strong-stability-preserving Runge–Kutta (SSPRK3) method [142] with an adaptive time

step controlled by the global Courant–Friedrichs–Lewy (CFL) condition [31]. A CFL number of 0.95

is used for the simulation, and the time step size is mainly limited by the near-wall mesh spacing.

The simulation is deployed on an O-type computational mesh in the x-y plane that is generated

by a smooth orthogonal hyperbolic extrusion from the airfoil geometry. To avoid spurious numerical

oscillations caused by interactions between any non-smooth geometry components and the high-order

numerical schemes on a curvilinear mesh, the trailing edge starting from x = 0.997c on each side

of the airfoil is smoothed using a quadratic Bézier curve [43] while maintaining the original chord

length. The grid size is stretched along the airfoil wall-normal direction to resolve the boundary
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layer flow. Since ³ > 0 for the flow under investigation, the computational grid along the stream-

wise direction is highly refined on the suction side to capture the shock waves and resolve the Mach

waves and turbulent structures at fine scales. The computational domain is periodic in the spanwise

z-direction with a span of W = 0.25c. The computational grid spacing is uniform in the spanwise

direction. The computational mesh size is 420 × 3072 × 512 in the radial, azimuthal, and spanwise

directions respectively.

6.2.3 Justification of model and numerical dissipation
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Figure 6.3: Visualizations of relative model and numerical dissipation imposed in the simulation:
(a) numerical Schlieren imaging; (b) ratio of SGS eddy viscosity to the physical viscosity, µSGS/µ̌;
and (c) modified Ducros sensor, ϕ, shown in Eq. (6.12), where shock-capturing scheme is used when
ϕ > 0.4.

A brief justification of both the SGS and numerical dissipation for shock-capturing is provided

by comparing the instantaneous flow fields of the numerical Schlieren imaging, relative SGS eddy

viscosity, and modified Ducros sensor, as shown in Fig. 6.3. The relative SGS eddy viscosity is

defined as µSGS/µ̌, and the modified Ducros sensor is already stated in Eq. (6.12). Based on the

comparison shown in Fig. 6.3, the SGS terms are only locally turned on in regions containing the

turbulent flow features. In the near-wall region, µSGS/µ̌ ∼ O(1), and in the wake region farther away

from the airfoil trailing edge, µSGS/µ̌ is close to but still lower than 10. The use of Riemann fluxes

is highly localized at shocks and strong compression waves, and the numerical dissipation from the

shock-capturing scheme is essentially not in effect in the turbulent regions. Additionally, comparing

the plots of µSGS and ϕ, it can be confirmed that the activation of the shock-capturing scheme

simultaneously suppresses the SGS model locally to avoid imposing excessive numerical dissipation,

which can help capture the shock-turbulence interactions more accurately [6].
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6.3 Results and discussions

The analysis illustrated in this section is based on the wall-resolved LES described in Sec. 6.2. In

this work, the freestream Mach number of the problem is set as M∞ = 0.735, and the Reynolds

number is Rec = 1 × 106. The angle of attack is chosen to be ³ = 4◦ to induce shock buffet. The

simulation time is normalized to the convective time unit (CTU) by one flow through time, which is

defined as tCTU = c/U∞. After the initial transient, the simulation data are collected at a fixed time

interval, approximately 0.02174 CTUs. Data, including 12288 snapshots spanning approximately

267 CTUs, are used for post-simulation analysis. In the following context, the visualization-based

observations about shock buffet and the related flow structures are described in Sec. 6.3.1. Detailed

analysis of signals at selected probe locations is illustrated in Sec. 6.3.2. Finally, the low-rank model

analysis based on spectral proper orthogonal decomposition (SPOD) is discussed in Sec. 6.3.3.

6.3.1 Visualizations of shock buffet and related flow structures

Figure 6.4: Visualization of 3D instantaneous flow fields at approximately 137 CTUs around the
gray airfoil geometry, where the cross-sectional view shows numerical Schlieren imaging and the
iso-surfaces show the normalized Q-criterion approximately at the value of 2644.4. The iso-surface
is colored by the value of the local Mach number.

An instantaneous three-dimensional (3D) flow visualization is shown in Fig. 6.4. The visualization
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Figure 6.5: Numerical Schlieren imaging of 2D instantaneous flow states: (a) 131.8 CTUs; (b) 134.2
CTUs; (c) 136.6 CTUs; and (d) 139.0 CTUs.

contains cross-sectional numerical Schlieren imaging, indicated by |∇Ä| (c/Ä∞), and iso-surfaces of

the normalized Q-criterion at a value of around 2644.4. The concept of Q-criterion is introduced in

Hunt et al. (1988) [67]. The definition of the normalized Q-criterion used in this work is

Q =
1

2

(

¹2 +
1

2
ÉjÉj − SijSij

)(

c

U∞

)2

.

The iso-surfaces are colored by the local Mach number. The visualization indicates that the sub-

sonic freestream flow accelerates to supersonic conditions through an expansion near the leading

edge. The flow on the suction side is initially laminar from the leading edge. Then, the boundary

layer separates at approximately 30% of the chord length from the leading edge and transitions to

turbulence due to the Kelvin-Helmholtz instability. An oblique shock (strong compression wave)

/ the front-branch of a ¼-shock forms in front of the laminar separation points and interacts with

the laminar boundary layer. The main shock forms slightly after the boundary layer transitions
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to turbulence. A terminating shock behind the main shock is observed in the visualization at this

instant in time. This is similar to what is shown in some of the simulation cases of the same airfoil

at different Reynolds numbers [180]. The transitional turbulent boundary layer generates strong

acoustic waves that propagate into the slightly far-field regions. Turbulent vortex shedding associ-

ated with the unsteadiness of the transitional separated boundary layer also occurs. The turbulent

structures, visualized by the Q-criterion, suggest sufficient decorrelation in the spanwise periodic

and homogeneous computational domain of a quarter of the chord length.
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Figure 6.6: Visualizations of velocity dilatation of 2D instantaneous flow states: (a) 131.8 CTUs;
(b) 134.2 CTUs; (c) 136.6 CTUs; and (d) 139.0 CTUs.

A set of two-dimensional (2D) visualizations are shown in Fig. 6.5, Fig. 6.6, and Fig. 6.7 at

four successive instants in time with an approximately fixed time interval between them. Combined

with the 3D visualization, the 2D visualizations show that the up-travelling waves originating from

the turbulent boundary layer become steeper along their propagation direction into the slightly far-

field regions and form large-scale wave fronts. Some steepened waves merge and form short-lasting

shocks. Across the main shock, the flow changes from supersonic to subsonic. Near the back of
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Figure 6.7: Visualizations of Mach number of 2D instantaneous flow states: (a) 131.8 CTUs; (b)
134.2 CTUs; (c) 136.6 CTUs; and (d) 139.0 CTUs.

the main shock foot region, an expansion region periodically forms where the flow re-accelerates to

a supersonic state. The re-accelerated flow eventually switches back to subsonic again through a

periodically-formed terminating shock that is caused by the steepening of the up-traveling strong

acoustic waves in the re-accelerated supersonic flow. Based on observation, the after-shock expansion

and terminating shock mostly form behind a retreating shock that moves towards the trailing-edge.

While the main shock moves downstream, the expansion wave is strengthened. The terminating

shock forms at the end of the expansion region and is pushed farther downstream. When the main

shock moves upstream, the expansion wave becomes weaker. The terminating shock also moves

forward and eventually merges into the advancing main shock. The upstream-traveling acoustic

waves originating from the turbulent wake also steepen while they are propagating upstream and

interact with the flow near the main shock region.
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Figure 6.8: Distributions of mean Cp and Cf , their fluctuations indicated by the symmetric intervals
of their temporal standard deviations (marked by the blue shading). The plot of Cf only shows the
distribution on the suction side.

6.3.2 Analysis of aerodynamic coefficients and locally probed signals

The pressure coefficient, Cp = 2(p− p∞)/(Ä∞U2
∞), and skin-friction coefficient, Cf = 2Äw/(Ä∞U2

∞),

are measured at the airfoil surface, where Äw is the local wall shear stress. The results are averaged

in both the spanwise direction and time. The distribution of Cp and Cf and the magnitudes of
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their temporal fluctuations, indicated by the symmetric intervals of their standard deviations of

the spanwise averaged values, are shown in Fig. 6.8. Combined with the visualizations shown in

Sec. 6.3.1, it is seen that in the region where the foot of the oblique shock / compression wave near

the laminar separation point (0.2 < x/c < 0.3) occurs, large fluctuations in Cp and Cf are observed

compared to neighboring regions. The laminar separation point mostly varies in the region of 0.30c

– 0.42c. After the flow transitions to turbulence, significant fluctuations in both Cp and Cf are

observed due to turbulent vortex shedding.
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Figure 6.10: Time histories of (a) lift coefficient, CL, and (b) drag coefficient, CD.

To further investigate the time history, the x-t diagram of Cf on the suction side and the power

spectral density (PSD) are provided in Fig. 6.9. The PSD is generated using the discrete Fourier

transform in the time dimension. Welch’s method [173] is applied to achieve better convergence

of the statistics, and each windowed data segment contains 3072 snapshots and a 75% overlap

between each sequential segment. The Hann window is applied to each segment to prevent spectral

leakage. In addition, the frequencies in the PSDs are normalized using U∞/c. Comparing the x-t

diagram of Cf shown in Fig. 6.9 with the flow visualizations in Fig. 6.5, the strong negative Cf near

x/c = 0.5 is caused by the flow separation and transition to turbulence in the separate flow. The

oscillations, or periodic growing and detaching, of the separation bubbles are strongly correlated

with the vortex shedding. The propagation of shedding vortices is characterized by the interleaved
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trajectories of the positive and negative contours of Cf in the x-t diagram in the region where

x/c > 0.6. The PSD of Cf in Fig. 6.9 indicates that such vortex shedding is at the non-dimensional

frequency St ≈ 0.55, where for a given dimensional frequency f , the definition of the non-dimensional

frequency, also known as the Strouhal number, is defined as St = fc/U∞. Along the x-dimension in

the PSD contour, higher fluctuation energy is located at the foot of the oblique shock / compression

wave region (0.2 < x/c < 0.3) and turbulent flow region (x/c > 0.6). In contrast, relatively less

fluctuation energy is measured by Cf near the laminar separation point (x/c ≈ 0.3). Along the

frequency dimension, a peak at lower frequency, St ≈ 0.1, is detected beside the shedding frequency

at St ≈ 0.55, which is also observed in the x-t diagram in Fig. 6.9a. The corresponding location

of the peak at the frequency of St ≈ 0.1 is near 0.5 < x/c < 0.7 where the main shock, expansion

wave, and terminating shock appear.
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Figure 6.11: PSD plots of (a) lift coefficient, CL, and (b) drag coefficient, CD.

The time series of lift coefficient, CL, and drag coefficient, CD, are shown in Fig. 6.10, and their
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Figure 6.12: Schematic of probing locations relative to the airfoil.

PSDs are shown in Fig. 6.11. The lift and drag coefficients are calculated by integrating the pressure

and shear stress over the whole airfoil.

CL,D =
1

Aairfoil

∮

airfoil

(
Cf t̂− Cpn̂

)
· êL,DdA (6.13)

where Aairfoil is the total area of the airfoil surface, t̂ is the unit tangential vector of the airfoil in

the x-y plane, n̂ is the unit outgoing normal vector of the airfoil geometry, and êL,D is the unit

reference vector. For the calculation of CL, êL = −êx sin³+ êy cos³, and for the calculation of CD,

êD = êx cos³+ êy sin³, where êx and êy are the unit vectors in the x and y directions respectively.

The oscillations of CL and CD, as the integrated aerodynamic coefficients, also contain the two

dominant frequencies that are the same as the values measured in the Cf profile on the suction side,

where the oscillation at St ≈ 0.55 is identified as caused by the turbulent vortex shedding.

In order to further investigate the Strouhal number at St ≈ 0.1, three line sets of numerical probes

are placed at fixed locations to sample the local signals in time. The locations are determined by

an normal extrusion of the airfoil surface on the suction side from x/c = 0.05 to x/c = 0.95. The

normal extrusion displacements, ∆yn, are set to 0.01c, 0.2c, 0.9c. At each reference surface in the

x-y plane, 512 numerical probes are created. The labeling nomenclature of the numerical probes and

their locations are shown in Fig. 6.12. Probe set 0 is used to diagnose the near-wall region, probe

set 1 is used to measure the main shock buffet, and probe set 2 is used to sense the flow outside the

sonic line.

The pressure and velocity dilatation collected by probe sets 0, 1, and 2 are shown in Fig. 6.13,

Fig. 6.14, and Fig. 6.15 respectively as x-t diagrams. Both short-term (range of 20 CTUs) and

long-term (range of 260 CTUs) time intervals are plotted. At the location of probe set 0, both
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Figure 6.13: x-t diagrams of data collected by probe set 0: (a), (b) pressure (normalized by p∞);
and (c), (d) velocity dilatation (normalized by U∞/c). (b) and (d) zoom in over a shorter range of
time compared to (a) and (c) respectively.

transition and vortex shedding are captured by the pressure and dilatation signals. Moreover, the

dilatation x-t diagram also captures the motion of the ¼-compression wave / shock in front of the

laminar separation point. Its unsteadiness is highly correlated with vortex shedding. Additionally,

the lower frequency can be observed in the long-term x-t diagram. It can also be seen that strong

fluctuating dilatational motion occurs in the region where the flow transitions to turbulence and
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Figure 6.14: x-t diagrams of data collected by the probe set 1: (a), (b) pressure (normalized by p∞);
and (c), (d) velocity dilatation (normalized by U∞/c). (b) and (d) zoom in over a shorter range of
time compared to (a) and (c) respectively.

creates strong acoustic radiation. The location of probe set 2 is set in the freestream region across

the main shock location. Both pressure and velocity dilatation signals clearly capture the main

shock buffet as shown in Fig. 6.15. It can be seen that the main shock buffet is primarily at a low

frequency, but its buffet trajectory is also affected by the vortex shedding frequency. Specifically,

from the dilatation x-t diagram in Fig. 6.14, the formation of strong compression waves behind the



CHAPTER 6. NUMERICAL STUDY OF TRANSONIC LAMINAR SHOCK BUFFET 147

0.2 0.4 0.6 0.8

x/c

0

20

40

60

80

100

120

140

160

180

200

220

240

260

C
T

U
s

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(a)

0.2 0.4 0.6 0.8

x/c

125.0

127.5

130.0

132.5

135.0

137.5

140.0

142.5

145.0

C
T

U
s

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(b)

0.2 0.4 0.6 0.8

x/c

0

20

40

60

80

100

120

140

160

180

200

220

240

260

C
T

U
s

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

(c)

0.2 0.4 0.6 0.8

x/c

125.0

127.5

130.0

132.5

135.0

137.5

140.0

142.5

145.0

C
T

U
s

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

(d)

Figure 6.15: x-t diagrams of data collected by the probe set 2: (a), (b) pressure (normalized by p∞);
and (c), (d) velocity dilatation (normalized by U∞/c). (b) and (d) zoom in over a shorter range of
time compared to (a) and (c) respectively.

main shock that partially extend from the terminating shock in the lower region, can be observed,

and these waves eventually merge into the main shock. In between, the x-t diagram also captures

the periodic expansion waves after the main shock. The signals outside the sonic line collected by

probe set 2 shown in Fig. 6.15 are dominated by upstream-traveling waves, and the signal variations

contain both higher and lower frequencies as observed from the signals sensed by other sets of probes.
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The PSD contours of the pressure signals sampled by all three probe sets are shown in Fig. 6.16.

By comparison, it can be seen that the signals at all three locations have the same two dominant

frequencies at St ≈ 0.1 and St ≈ 0.55 respectively. Additionally, in Fig. 6.16b, the high spectral

energy mostly peaks in the region where 0.5 < x/c < 0.6 and St ≈ 0.1. This feature confirms that

the low-frequency peak at St ≈ 0.1 is the shock buffet Strouhal number. With this, revisiting the

PSD of Cf shown in Fig. 6.9, besides the regular turbulent vortex shedding at St ≈ 0.55, the motion

of the compression wave / oblique shock, laminar separation points, transition to turbulence, and

variation vortex shedding at a longer time range are all correlated with the shock buffet Strouhal

number at St ≈ 0.1. It can be also seen that both vortex shedding and shock buffet strongly affect

the variations of the integrated aerodynamic coefficients, CL and CD.

6.3.3 Low-rank modal analysis

To further investigate the correlation between the shock buffet and other flow structures, a low-rank

modal analysis is conducted using SPOD [158, 136]. SPOD is a special form of the proper orthogonal

decomposition (POD) method which was introduced as a data-driven approach to the study of fluid

mechanics by Lumley (1967) [95]. In this approach, POD modes are extracted by decomposing

the two-point spatial correlation matrix arranged in a Fredholm eigenvalue problem [158]. The

formulation of the eigenvalue problem defines an inner product with respect to a Hermitian positive-

definite matrix serving as the weights. The variance corresponding to the inner product introduces

an energy norm. The POD modes are orthogonal corresponding to the inner product and try to

generate a set of optimal bases, so that a small subset of the modes can represent the coherence

that carries dominant portion of energy in the original data. If most of the energy representing the

original data is projected to one or few modes, the data is considered to have low-rank behavior.

While POD represents spatial correlations, SPOD analysis can further show space-time correlations

using time-resolved data at a stationary state.

An efficient implementation of the SPOD solver for large datasets is described in Towne et al.

(2018) [158] and Schmidt et al. (2020) [136]. The discrete eigenvalue problem for SPOD can be

denoted as

Q̂Q̂HW Ψ̂ = Ψ̂Λ (6.14)

where each column in Q̂ contains the discrete Fourier transform in time for one bin of realizations

at a specified frequency, W is the weighting matrix which is Hermitian and positive-definite, Λ

is a diagonal matrix containing the eigenvalues at the given frequency, and the columns of Ψ̂ are

the SPOD modes corresponding to the eigenvalues in Λ. The matrix on the left-hand side of

Eq. (6.14), Q̂Q̂H , represents a cross-spectral density matrix. An alternative eigenvalue problem can

be formulated by left-multiplying Eq. (6.14) by Q̂HW and right-multiplying it by Λ
−1/2 on both
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sides

Q̂HWQ̂Θ̂ = Θ̂Λ (6.15)

where Θ̂ is unitary and is defined as

Θ̂ = Q̂HW Ψ̂Λ
−1/2 (6.16)

This suggests that Q̂HWQ̂ has the same non-zero eigenvalues as Q̂Q̂HW . As the number of data

points per snapshot becomes much larger than the number of bins, solving the alternative eigenvalue

problem shown in Eq. (6.15) can significantly reduce the computational cost. Based on the definition

of Θ̂ and Eq. (6.14), the relation, Q̂Θ̂ = Ψ̂Λ
1/2, can be obtained. Finally, the eigenvectors (SPOD

modes), Ψ̂, are calculated as

Ψ̂ = Q̂Θ̂Λ
−1/2 (6.17)

In this work, an SPOD analysis is conducted with the Chu’s disturbance energy norm [23], and

two different scalar energy norms, including the pressure, p, and enstrophy, ÄÉjÉj/2. The expression

for the Chu’s disturbance energy norm used in this work is

EChu =
1

2

(
Äu′

ju
′
j + a2Ä−1Ä′

2
+ ÄcvT

−1
T ′2

)
(6.18)

where (·) denotes averaging in time and (·)′ denotes the fluctuations, calculated as (·)′ = (·)−(·). For

the SPOD analysis using Chu’s disturbance energy norm, the time-averaged quantities are absorbed

in the weighting matrix. At each data point, the area represented by the local grid point is also

contained in W . The bin size is set to 3072 with a 75% overlap between each neighboring bin as in

the calculations of PSD profiles. The spectra of the largest 10 eigenvalues for each SPOD analysis,

¼, are plotted in Fig. 6.17 in the descending order of the energy. The spectra corresponding to the

first SPOD mode obtained from all three energy norms resolve five peaks frequencies, St1 ≈ 0.105,

St2 ≈ 0.195, St3 ≈ 0.554, St4 ≈ 1.093, and St5 ≈ 1.647, where both the shock buffet frequency and

the vortex shedding frequency are included. The five peak frequencies are labeled in Fig. 6.17. At

each peak of the first eigenvalue profile, clear low-rank behavior is observed. Among all identified

frequencies, St1 and St3 are the fundamental frequencies corresponding to shock buffet and vortex

shedding. St2 and St4 are approximately at the harmonic frequencies corresponding to St1 and St3.

The value of St5 suggests a second harmonic mode corresponding to St3. In the following context, the

mode shapes at the two fundamental frequencies of St1 and St2 are discussed. The SPOD eigenvalue

spectra calculated using the pressure norm and Chu norm still shows high lower-frequency energy

below St1. However, this is limited by the total range of time resolved by the simulation data.

In order to further investigate the spectral behavior at lower frequency, much longer simulation is

needed to obtain statistically converged spectra.

At the shock buffet frequency, St1 ≈ 0.105, the first SPOD modes of pressure and enstrophy,
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Figure 6.17: Spectra of the largest 10 eigenvalues in the SPOD analysis using (a) pressure norm, p,
(b) enstrophy norm, ÄÉjÉj/2, and (c) Chu norm. The marked Strouhal numbers are St1 ≈ 0.105,
St2 ≈ 0.195, St3 ≈ 0.554, St4 ≈ 1.093, and St5 ≈ 1.647.

obtained from scalar energy norms, and temperature, obtained from the analysis using Chu’s dis-

turbance energy, are shown in Fig. 6.18, Fig. 6.19, and Fig. 6.20 respectively. For each mode, the

shapes at different phase angles, φ, are provided to show their evolution. The phase angle is defined

as φ = 2ÃSt(tc/U∞). The evolution of the modal shape is calculated as Ψ̂eiϕ for i =
√
−1. The

pressure mode directly captures the low-frequency buffet of the main shock although the thin shock
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structure is not directly reconstructed. Additionally, the mode evolution also captures the propa-

gation of large-scale acoustic waves. Furthermore, the evolution of the oblique shock / compression

wave can be observed. The enstrophy mode primarily captures the near-wall flow behavior. At St1,

the evolution of the enstrophy mode captures the low-frequency boundary layer breathing associated

with the movement of the transition point. The evolution of the temperature mode is similar to

that of the pressure mode. However, compared to the pressure mode, the temperature mode can

clearly capture the laminar boundary layer separation near the leading edge as well as the interaction

between the shock and the boundary layer.

At the vortex shedding frequency, St3 ≈ 0.554, the first SPOD modes are shown in Fig. 6.21,

Fig. 6.22, and Fig. 6.23, for pressure, enstrophy, and temperature respectively. The enstrophy

mode directly captures the periodically detaching vortices associated with the oscillation of the

turbulent separation bubble on the suction side near the trailing edge. In contrast, the pressure

mode captures the shedding vortices by the non-radiative pseudo-sound propagating with the vortical

flow structures. Additionally, the acoustic radiation from the turbulent vortex shedding and shock

boundary layer interaction is well-captured. It is observed that the pressure oscillations generated

at the shock foot have a wide domain of impact. On the post-shock side, the acoustic waves radiate

over a large range of angles. On the pre-shock side, the pressure fluctuations propagate towards

the upstream direction below the supersonic region near the wall. The upstream-traveling pressure

fluctuations form Mach waves and interact with the main shock and oblique shock / compression

wave. In addition, the temperature mode shows the correlation between the laminar separation point

and turbulent vortex shedding. The evolution of the mode shape suggests that the fluctuations travel

towards the downstream direction.

At both the shock buffet and vortex shedding frequencies, the evolution of the mode shapes

shows waves traveling upstream. Globally, these upstream-traveling waves can carry the fluctua-

tions in the post-shock region and bring them back to the pre-shock region, forming feedback paths.

On the suction side, the post-shock fluctuations travel back to the upstream region over the shock

and above the supersonic region. This phenomenon is also supported by the signal processing of

the numerical probes placed above the main shock as shown in Fig. 6.15. Moreover, the upstream-

traveling fluctuations also exist on the pressure side of the airfoil. The observations suggest that

the upstream-traveling fluctuations originate from the trailing-edge acoustic scattering. The obser-

vations of the feedback paths are consistent with the SPOD analysis conducted by Zauner et al.

(2023) [180] and resolvent analysis presented in Iwatani et al. (2023) [70].

6.4 Conclusions

A high-resolution wall-resolved LES of transonic flow over the OALT25 laminar supercritical airfoil

is performed at M∞ = 0.735, Rec = 1 × 106, and ³ = 4◦. The simulation is conducted using
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high-order compact finite difference methods with hybrid central-Riemann fluxes. The use of shock-

capturing schemes is controlled by a physics-based shock sensor, and the numerical dissipation from

the shock-capturing is not imposed in the turbulence region. Data, including 12288 snapshots over

approximately 267 CTUs, are used in the analysis. The instantaneous flow and wave structures

are visualized and discussed. The flow conditions are locally sensed on the airfoil surface and at

three reference lines created via orthogonal extrusion of the airfoil wall boundary on the suction side

during the simulations. A clear shock buffet phenomenon was observed in both flow visualizations

and the x-t diagram of velocity dilatation sensed in the freestream above the suction side of the

airfoil. Two dominant Strouhal numbers are detected from variations in the integrated aerodynamic

coefficients, CL and CD. The lower Strouhal number is at St ≈ 0.1 and results from shock buffet.

The higher Strouhal number is at St ≈ 0.1 and is caused by the turbulent vortex shedding. SPOD

analysis is conducted using the scalar norms of pressure, density-weighted dilatation, and enstrophy

respectively. Both shock buffet and turbulent vortex shedding frequencies are captured by all three

energy norms. The SPOD modes at the fundamental frequencies, corresponding to the shock buffet

(St1 ≈ 0.105) and turbulent vortex shedding (St3 ≈ 0.554) are visualized. The results imply that

the flow fluctuations near the main shock foot associated with periodic movement of the laminar

boundary layer separation point, boundary layer transition, etc., play important roles in affecting

the shock buffet behavior. Upstream-traveling waves above the supersonic region on the suction side

are observed from both SPOD analysis and probe signals, forming a possible feedback mechanism.



Chapter 7

Concluding Remarks

The research work included in this thesis contains three major contributions:

1. A robust and high-resolution simulation framework based on compact numerical schemes for

simulations of compressible turbulent flows was developed.

2. A direct parallel linear solver algorithm for solving the cyclic compact banded system arising

from the numerical methods used in the simulation framework was developed.

3. Investigations of the fundamental physics of compressible turbulence and transonic aerody-

namics were carried out.

The major conclusions of each component are summarized in Sec. 7.1. Discussions of potential future

work related to the topics covered in this dissertation are included in Sec. 7.2.

7.1 Conclusions

The basic formulation of the high-resolution simulation framework is presented in Ch. 2. The simu-

lation framework is based on compact finite difference methods. This simulation framework achieves

high-resolution simulations of compressible turbulent flows using high-order compact finite differ-

ence methods without solution filtering. During the time advancement, the conservative variables

are stored at the collocated grid points, and fluxes are assembled at the edge-staggered grid points.

The assembly of the nonlinear inviscid fluxes in the compressible Navier-Stokes equations is based

on the interpolation of primitive variables, which leads to an effective reduction of aliasing errors.

The assembly of viscous fluxes and the calculation of the divergence of fluxes uses staggered deriva-

tive schemes. From this treatment, the viscous fluxes gain significantly enhanced spectral resolution

in the high-wavenumber regime including at the Nyquist wavenumber. This property is particu-

larly favorable to eddy-resolving simulations of compressible turbulent flows using techniques such

156
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as direct numerical simulations (DNS) and large-eddy simulations (LES). The simulation frame-

work enables robust and high-resolution simulations on both Cartesian and curvilinear meshes. The

geometric-law-consistent metric tensor generation specifically for the simulation framework is also

presented. The grid convergence test shows that the simulation framework preserves the formal order

of convergence of the numerical schemes for simulations on both Cartesian and curvilinear meshes.

The simulation framework is compatible with various different shock-capturing methods such as

the localized artificial diffusivity (LAD) model and an approximate Riemann solver with nonlinear

upwind-biased interpolation. When using the LAD model, solution filtering, as claimed to be pre-

viously necessary, can be completely avoided. The application of the approximate Riemann solver

with nonlinear shock-capturing interpolation schemes suggests that the use of Riemann fluxes should

be highly localized to the shock structures, and in the shock-free region, central fluxes should still

be used to maintain simulation resolution by avoiding excessive numerical dissipation. Two physics-

based shock sensors are illustrated for central-Riemann flux hybridization, and the demonstrative

simulation shows that the shock detection becomes more sensitive while maintaining robustness. An

extension of this simulation framework for compressible dense-gas flows is presented in Ch. 3. The

simulation uses the Peng-Robinson equation of state to estimate the pressure-volume-temperature re-

lation of CO2 under transcritical conditions and applies a temperature-pressure-dependent transport

model for calculations of viscosity and thermal conductivity. In this work, a proper nondimension-

alization of these real-gas models is presented. A DNS of a compressible planar shear layer with

unity convective Mach number and a DNS of a zero-pressure-gradient turbulent boundary layer with

isothermal-wall-induced heat transfer across the critical temperature are provided as demonstrative

simulations. The robustness is achieved for each simulation with large and rapid density changes

with respect to small pressure or temperature fluctuations due to the high-speed flow motion or heat

transfer.

The simulation framework can be efficiently used for large-scale simulations on modern high-

performance computing architectures. The bottleneck computational cost for simulations using

compact numerical schemes has been addressed with a direct parallel linear solver algorithm pre-

sented in Ch. 4. The algorithm is designed to solve cyclic compact banded systems on heterogeneous

computing architectures. The linear solver algorithm uses cyclic reduction and parallel cyclic re-

duction methods as the elementary elimination patterns and comprehensively considers hierarchical

parallelism on shared-memory and distributed-memory. The solution process does not require data-

transposes or re-partitioning and has a significantly reduced communication footprint compared to

traditional parallel linear solvers. The algorithm also supports flexible grid partitioning and natu-

rally addresses non-zero cyclic entries with arbitrary system size using a method of detaching and

reattaching for the block cyclic tridiagonal system formulated across distributed memory partitions

during the solution process. The asymptotic scaling of the linear solver algorithm has been jus-

tified. The parallel performance has been demonstrated on the Summit supercomputer using a
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representative fluid mechanics simulation, and the algorithm has achieved scalability of up to 24576

GPUs.

Two studies of compressible turbulent flow physics are presented in Ch. 5 and Ch. 6. The com-

pressibility effects in isotropic turbulence are discussed in Ch. 5. The study uses a set of DNS of

solenoidally forced compressible isotropic turbulence with the turbulent Mach number ranging from

0.2 to 0.7. The Reynolds number measured using the longitudinal Taylor microscale is approximately

170 for all cases, and the flow fields demonstrate sufficient large-scale decorrelation across the do-

main. The size of the computational mesh for all simulations is 1024×1024×1024, and the analysis

of turbulence statistics is based on an ensemble average of statistically stationary data over 10 eddy-

turnover times. The Helmholtz decomposition is applied to the velocity field to define solenoidal

and dilatational motion. Both energy spectra and normalized probability density functions show

that quantities solely related to the solenoidal motion are not sensitive to the turbulent Mach num-

ber. However, quantities associated with the dilatational motion strongly depend on the change in

turbulent Mach number. The wavenumber scaling of the energy spectra in the inertial subrange and

turbulent Mach number scaling of the statistical moments are investigated, and the observations are

compared with predictions from an analytical model and other related research work. In addition,

a system of budget equations associated with decomposed velocity variances is derived to study

the energy exchange between solenoidal and dilatational motions. The statistics of dominant con-

tributing terms are investigated. The numerical study of shock buffet over a laminar supercritical

airfoil in transonic flow is illustrated in Ch. 6. The study is based on a wall-resolved LES. The

simulation uses hybrid central-Riemann fluxes for shock-capturing and the Vreman subgrid-scale

model to account for the effects of under-resolved turbulent flow structures. The airfoil geometry is

an OALT25 laminar supercritical airfoil provided by ONERA. In this study, the freestream Mach

number is 0.735, and chord-length-based Reynolds number is 1 million. The airfoil is configured at

an angle-of-attack of 4 degrees. Simulation data over a range of approximately 267 convective time

units (CTUs) are collected after the flow reaches a stationary state. The simulation results show

that the boundary layer on the suction side remains laminar near the leading edge, and the boundary

layer separates at approximately 30% of the chord length. The flow transitions to turbulence after

the laminar separation point due to the growth of the Kelvin-Helmholtz instability. The main shock

is located above the turbulent boundary layer near the transition point. Vortex shedding is formed

associated with the movement of laminar separation and transition points. The signals of lift and

drag coefficients indicate that the flow system has two dominant frequencies at Strouhal numbers

of approximately 0.1 and 0.55 respectively. Further data analysis identifies that the two dominant

frequencies are associated with shock buffet and turbulent vortex shedding respectively. A modal

analysis is conducted using spectral proper orthogonal decomposition (SPOD) to investigate the

space-time correlations of the shock buffet system. The SPOD has been conducted using pressure,

enstrophy, and Chu’s disturbance energy as the energy norms. The spectra of the SPOD eigenvalues



CHAPTER 7. CONCLUDING REMARKS 159

indicate that the flow has low-rank behavior at each dominant frequency. The SPOD modes at the

frequencies corresponding to shock buffet and turbulent vortex shedding are computed. Both signal

processing sampled by the numerical probes and the evolution of SPOD modes show that the system

contains feedback paths.

7.2 Suggested future work

The research outcomes presented in this thesis open many avenues for future exploration in both

fundamental studies and engineering applications. First of all, both ideal-gas and real-gas flows have

been simulated using the framework outlined in this thesis. This approach can be further extended

to simulations of compressible turbulent flows involving multiple components including multi-species

and multi-phase flows. Additionally, robustness and accuracy have been achieved in simulations on

both Cartesian and curvilinear meshes. To further expand the capability of the simulation framework

to address flows with more complex geometries, simulations using multi-block curvilinear meshes or

overset structured meshes can be investigated. Furthermore, the simulation framework has shown

that it is ready to conduct the state-of-the-art numerical studies of compressible turbulent flows.

Beyond demonstrative problems, large-scale high-resolution simulations of various other problems

can also be directly configured using the current simulation framework. The simulation framework

can also be used as a test bed for studies of numerical schemes such as shock-capturing schemes,

positivity preserving methods, shock sensors, compact numerical schemes with further optimization

of dispersion relations, and numerical boundary conditions.

Regarding the parallel linear solver algorithm, round-off error propagation can be further inves-

tigated from the perspective of numerical linear algebra. To make the solution process more reliable,

it is useful to quantify the sensitivity of the round-off error to the condition number, total size of the

system, the strategy of grid partitioning, etc. From the perspective of high-performance computing,

efficient implementation of the algorithm should be explored. During the solution process, much

performance optimization is possible according to the mathematical structure of the linear system

as well as the operation patterns. Further performance optimization can be achieved by consider-

ing specific computing hardware. Detailed quantification of the computational cost for solving a

tridiagonal system and a penta-diagonal system can be conducted.

Associated with the study of compressibility effects in this work, a large amount of DNS data

has been generated. These datasets directly enable numerical analysis of compressible isotropic

turbulence from many different perspectives. Meanwhile, additional exploration will further advance

and strengthen the studies presented in this thesis. As several statistical quantities are provided

over a range of turbulent Mach numbers, the change in detailed flow structures can be further

investigated. Additionally, the results presented in this thesis are based on DNS of compressible

isotropic turbulence with stochastically-evolved low-wavenumber solenoidal forcing. It is valuable to
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further provide insight to the research community on how statistical quantities and flow structures

change with different forcing methods. The analysis includes solenoidal forcing based on different

strategies for flow decomposition, combination of solenoidal and dilatational forcing, effects of the

stochastic process, etc.

For the study of transonic shock buffet over a laminar supercritical airfoil, a large amount of

time-resolved simulation data are generated which can also directly enable data analysis of various

problems using the same flow configuration. In addition, more detailed analysis regarding laminar

shock buffet mechanisms needs to be further explored. Along the feedback paths, the SPOD analysis

can be used in a quantitative way, and the phase speed can be further measured. Different data-

driven approaches, including resolvent analysis and the adjoint method, can be applied along with

SPOD analysis to gain a more comprehensive understanding. The linear response of the shock

buffet system is another helpful aspect to study. The investigation can be conducted by solving the

linearized system representing the perturbation of the LES solution. Furthermore, a simple model

can be explored to predict the shock buffet frequencies and amplitude using a significantly reduced

amount of simulation data.



Appendix A

Formulation Details in the

Simulation Framework

A.1 Calculation of the truncation error of the model linear

advection-diffusion system

Considering a one-dimensional linear advection-diffusion process, the modified equation, Eq. (2.20),

can be written in the following form.

dϕ̂

dt
+
(
ikv′ + k2¿′

)
ϕ̂ = 0 (A.1)

where, without loss of generality, k, v′ and ¿′ can be interpreted as the x-component of the wavenum-

ber, modified spectral advective velocity, and modified spectral diffusivity respectively. The complete

definitions and explanations of v′ and ¿′ are given in Sec. 2.2. Compared to the exact operations,

the truncation error can be quantified in Fourier space.

dϕ̂

dt
+
(
ikV + k2¿

)
ϕ̂ = ϵ̂adv + ϵ̂dif (A.2)

where ϵ̂adv and ϵ̂dif denote the spectral truncation error generated from the numerical advection

operator and diffusion operator respectively.

ϵ̂adv = ikV (1 − v′/V ) ϕ̂ and ϵ̂dif = k2¿ (1 − ¿′/¿) ϕ̂ (A.3, A.4)

For v′(k∆x) and ¿′(k∆x), when evaluated using a Taylor series about k∆x = 0, it can be easily

shown that 1−v′(0)/V = 0 and 1−¿′(0)/¿ = 0 are satisfied for a consistent discretization. Therefore,

161
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the general forms for ϵ̂adv and ϵ̂dif can be denoted as

ϵ̂adv = −ikV ϕ̂

∞∑

n=1

[
1

n!

dn(v′/V )

d(k∆x)n

∣∣∣∣
k∆x=0

(k∆x)n
]

(A.5)

ϵ̂dif = −k2¿ϕ̂

∞∑

n=1

[
1

n!

dn(¿′/¿)

d(k∆x)n

∣∣∣∣
k∆x=0

(k∆x)n
]

(A.6)

which enables calculation of the leading-order truncation error of specific schemes from their spectral

behaviors.

For the collocated scheme specified in Eq. (2.1), v′/V = (k′∆x)/(k∆x) and ¿′/¿ = (k′∆x)2/(k∆x)2.

The modified wavenumber is given in Eq. (2.13). Considering the constraints on the coefficients given

in Eq. (2.2) and Eq. (2.3) for a formally fourth-order derivative approximation, the Taylor-expansion

approximations are

ϵ̂adv = −V ϕ̂

{
(ik)5

3³− 1

30(2³ + 1)
∆x4 − (ik)7

18³2 − 10³ + 1

252(2³ + 1)2
∆x6

}
+ O

(
∆x8

)
(A.7)

and

ϵ̂dif = ¿ϕ̂

{
(ik)6

3³− 1

15(2³ + 1)
∆x4 − (ik)8

18³2 − 10³ + 1

126(2³ + 1)2
∆x6

}
+ O

(
∆x8

)
(A.8)

The results indicate that the truncation errors in physical space are

ϵadv = −V

{
3³− 1

30(2³ + 1)

[
∂5ϕ

∂x5

]
∆x4 − 18³2 − 10³ + 1

252(2³ + 1)2

[
∂7ϕ

∂x7

]
∆x6

}
+ O

(
∆x8

)
(A.9)

and

ϵdif = ¿

{
3³− 1

15(2³ + 1)

[
∂6ϕ

∂x6

]
∆x4 − 18³2 − 10³ + 1

126(2³ + 1)2

[
∂8ϕ

∂x8

]
∆x6

}
+ O

(
∆x8

)
(A.10)

For staggered derivative and midpoint interpolation schemes specified in Eq. (2.4) and Eq. (2.7)

respectively, v′/V = [T (k∆x)] (k′∆x) /(k∆x) and ¿′/¿ = (k′∆x)2/(k∆x)2. The transfer function of

the midpoint interpolation scheme, T (k∆x), is given in Eq. (2.17), and the modified wavenumber of

the staggered derivative scheme is given in Eq. (2.14). For the formally fourth-order discretization,

the truncated Taylor series of ϵ̂adv is

ϵ̂adv = −V ϕ̂

{
(ik)5

212³D³I − 14³D + 66³I − 27

960 (2³I + 1) (2³D + 1)
∆x4−

(ik)7
1376³2

D³2
I − 52³2

D³I + 844³D³2
I + 134³2

D − 584³D³I + 246³2
I + ³D − 111³I + 9

4032 (2³D + 1)
2

(2³I + 1)
2 ∆x6

}

+ O
(
∆x8

)
(A.11)

where the subscripts “D” and “I” are used for the coefficients of staggered derivative and midpoint
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interpolation schemes respectively. The truncated Taylor series of ϵ̂dif is

ϵ̂dif = ¿ϕ̂

{
(ik)6

62³− 9

960 (2³ + 1)
∆x4 − (ik)8

820³2 − 244³ + 9

16128 (2³ + 1)
2 ∆x6

}
+ O

(
∆x8

)
(A.12)

The results indicate that the truncation errors in physical space are

ϵadv = −V

{
212³D³I − 14³D + 66³I − 27

960 (2³I + 1) (2³D + 1)

[
∂5ϕ

∂x5

]
∆x4−

1376³2
D³2

I − 52³2
D³I + 844³D³2

I + 134³2
D − 584³D³I + 246³2

I + ³D − 111³I + 9

4032 (2³D + 1)
2

(2³I + 1)
2

[
∂7ϕ

∂x7

]
∆x6

}

+ O
(
∆x8

)
(A.13)

and

ϵdif = ¿

{
62³− 9

960 (2³ + 1)

[
∂6ϕ

∂x6

]
∆x4 − 820³2 − 244³ + 9

16128 (2³ + 1)
2

[
∂8ϕ

∂x8

]
∆x6

}
+ O

(
∆x8

)
(A.14)

The same procedure can be applied in combining second-order schemes. The modified wavenum-

ber profiles are k′∆x = sin(k∆x) and k′∆x = 2 sin( 1
2k∆x) for the collocated and staggered

derivative schemes respectively, and the transfer function for the midpoint interpolation scheme

is T (k∆x) = cos( 1
2k∆x). For fourth-order explicit schemes, ³ for all schemes is set to 0, and the

values of ³ for sixth-order compact schemes are provided in Tab. 2.1. The leading-order truncation

errors of the model equation computed using different combinations of central schemes are shown in

Tab. A.1

Order
ϵadv/V ϵdif/¿

Collocated schemes Staggered schemes Collocated schemes Staggered schemes

2 − 1
6

[
∂3φ
∂x3

]
∆x2 − 1

6

[
∂3φ
∂x3

]
∆x2 1

3

[
∂4φ
∂x4

]
∆x2 1

12

[
∂4φ
∂x4

]
∆x2

4 1
30

[
∂5φ
∂x5

]
∆x4 9

320

[
∂5φ
∂x5

]
∆x4 − 1

15

[
∂6φ
∂x6

]
∆x4 − 3

320

[
∂6φ
∂x6

]
∆x4

6 − 1
2100

[
∂7φ
∂x7

]
∆x6 − 59

89600

[
∂7φ
∂x7

]
∆x6 1

1050

[
∂8φ
∂x8

]
∆x6 61

179200

[
∂8φ
∂x8

]
∆x6

Table A.1: Leading-order truncation errors in calculations of the model one-dimensional linear
advection-diffusion equation on a periodic domain.
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A.2 Formulations of the subgrid-scale models used in the

demonstrative simulations

The large-eddy simulation (LES) system solved in this work is interpreted as the Favre-filtered

system with respect to the velocity and temperature fields [46, 52]. No subgrid-scale (SGS) model is

applied to mass conservation, Eq. (2.23), and the SGS models in momentum conservation, Eq. (2.24),

and energy conservation, Eq. (2.25), are formulated as the turbulent viscosity and conductivity

respectively according to the Boussinesq hypothesis [13]. Therefore, the overall dynamic viscosity,

µ, and thermal conductivity, », used with the Navier-Stokes system are

µ = µ̌ + µSGS and » = »̌ + »SGS (A.15, A.16)

where µ̌ and »̌ are the computable dynamic viscosity and thermal conductivity respectively, and

µSGS and »SGS are the modeled turbulent viscosity and conductivity respectively.

In this work, µSGS is calculated using the Vreman SGS model [167]. The calculation method is

summarized in the following equations.

µSGS = ÄCSGS∆2
√
B[m]/ ∥∇u∥2F (A.17)

where ∆ is a length scale characterizing the grid spacing. On a uniform Cartesian mesh and curvi-

linear mesh, ∆ are calculated as

∆ = 3

√
∆x∆y∆z and ∆ =

3
√
J

respectively, where ∆x, ∆y, and ∆z are the grid spacings on the uniform Cartesian mesh along the

x-, y-, and z-directions respectively, and J is the metric Jacobian assuming the grid spacing of the

reference mesh is unity in all directions. For the applications shown in this work, the treatment

in the calculation of ∆ with respect to the grid anisotropy is ignored. The Frobenius norm of the

resolved velocity gradient tensor is computed as

∥∇u∥2F = ui,jui,j (A.18)

m is a 3 × 3 symmetric semi-positive-definite tensor defined as

mij = ui,kuj,k (A.19)

Finally, B[m] is a functional defined as

B[m] =
1

2
¶ijεiklεjpqmkpmlq (A.20)
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where ¶ij is the identity tensor, and εikl and εjpq are the Levi-Civita permutation tensors.

»SGS is calculated based on a constant turbulent Prandtl number, Prt

»SGS = cpµSGS/Prt (A.21)

where cp is the specific heat at a constant pressure.

A.3 Calculation of metrics using compact numerical schemes

on a periodic domain

Given a pair of periodic “boundaries,” ∂Ba and ∂Bb, for ∀xa ∈ ∂Ba, ∃xb ∈ ∂Bb such that

xb = Qxa + l (A.22)

where Q is an orthogonal tensor denoting rigid rotation, and l represents rigid translation. At the

mapped locations in the pair of periodic boundaries, all physical quantities are equivalent. According

to the mapping in Eq. (A.22), a scalar quantity field, ϕ, at the pair of periodic boundaries satisfies

ϕ(xb) = ϕ(xa), and a vector field, v, satisfies v(xb) = Qv(xa). Q is an identity tensor for a

translationally-periodic boundary.

xb = xa + l (A.23)

As a result, each component in the vector field can be mapped individually, and each component in

a tensor field can be smoothed over the entire domain including across the periodic boundary. In

this work, only translationally-periodic boundaries are considered with the mapping formulated in

Eq. (A.23).

Nevertheless, the physical coordinates may still be discontinuous across the periodic boundary

unless l = 0 as in the demonstrative simulations in Sec. 2.4.5 in the azimuthal direction. Therefore,

the compact schemes used for generation of the metric tensor, illustrated in Sec. 2.3.4, require the

following modifications along the periodic dimension to avoid discontinuity or inconsistency. The

modifications are illustrated using the sixth-order compact differential schemes and interpolation

schemes used in this work, and the methods can be easily generalized for different compact schemes.

For staggered differentiation of the coordinate along the periodic dimension, according to
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Eq. (2.4), the linear system can be formulated as




1 ³ 0 · · · 0 0 ³

³ 1 ³ · · · 0 0 0

0 ³ 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 ³ 0

0 0 0 · · · ³ 1 ³

³ 0 0 · · · 0 ³ 1







(∂x)0

(∂x)1

(∂x)2
...

(∂x)N−3

(∂x)N−2

(∂x)N−1




= a




x1/2 − x−1/2

x3/2 − x1/2

x5/2 − x3/4

...

xN−5/2 − xN−7/2

xN−3/2 − xN−5/2

xN−1/2 − xN−3/2




+
b

3




x3/2 − x−3/2

x5/2 − x−1/2

x7/2 − x1/2

...

xN−3/2 − xN−9/2

xN−1/2 − xN−7/2

xN+1/2 − xN−5/2




(A.24)

where x represents an arbitrary component of the coordinate system and ∂x denotes a metric com-

ponent corresponding to x. The mesh spacing in the reference domain is set to be unity. Assuming

that there are N grid points along the periodic dimension, the coordinate, with its subscript from 0

to N −1, is represented by the computational mesh. Based on a rigid translation, the out-of-bounds

coordinates in Eq. (A.24) are calculated as

x−j = xN−j − l and xN+j = xj + l for 0 f j < N (A.25, A.26)

where l is the translational period in such a dimension.

For periodic coordinate interpolation, according to Eq. (2.7), at the first and last grid points,

the equations are

³x−1/2 + x1/2 + ³x1/2 =
a

2
(x0 + x1) +

b

2
(x−1 + x2) (A.27)

³xN−3/2 + xN−1/2 + ³xN+1/2 =
a

2
(xN−1 + xN ) +

b

2
(xN−2 + xN+1) (A.28)

where the out-of-bounds coordinates on the right-hand side of the equations can still be calculated

using the relations given in Eq. (A.25) and Eq. (A.26). However, the out-of-bounds coordinates

on the left-hand side of the equations are extra unknowns that are not directly solvable from the

linear system. To address this, Eq. (A.25) and Eq. (A.26) are imposed to modify Eq. (A.27) and

Eq. (A.28) so that x−1/2 and xN+1/2 will be substituted with xN−1/2 and x1/2 respectively. As a
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result, the solvable linear system is formulated as




1 ³ 0 · · · 0 0 ³

³ 1 ³ · · · 0 0 0

0 ³ 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 ³ 0

0 0 0 · · · ³ 1 ³

³ 0 0 · · · 0 ³ 1







x1/2

x3/2

x5/2

...

xN−5/2

xN−3/2

xN−1/2




=
a

2




x0 + x1

x1 + x2

x2 + x3

...

xN−3 + xN−2

xN−2 + xN−1

xN−1 + xN




+
b

2




x−1 + x2

x0 + x3

x1 + x4

...

xN−4 + xN−1

xN−3 + xN

xN−2 + xN+1




+³




l

0

0
...

0

0

−l




(A.29)

where the last term on the right-hand side is caused by modifying the out-of-bounds coordinates on

the left-hand side.

A.4 Boundary and near-boundary schemes

Along a non-periodic dimension, one-sided schemes are applied. The detailed derivations of one-

sided schemes for collocated differentiation, staggered differentiation, and midpoint interpolation

are discussed in Ref. [89] and Ref. [107] respectively. In this work, the physical boundary is placed

at the first (or last) edge-staggered point, which is a half-grid spacing from the first (or last) nodal

point on the interior side. The boundary scheme associated with the collocated sixth-order compact

finite difference method shown in Eq. (2.1) is

f ′
0 + 3f ′

1 =
1

∆À

(
−17

6
f0 +

3

2
f1 +

3

2
f2 −

1

6
f3

)
(A.30)

This discretization makes the boundary scheme formally fourth-order accurate. At the first near-

boundary point, the most compact fourth-order central discretization is used.

1

4
f ′
0 + f ′

1 +
1

4
f ′
2 =

3

4
(f2 − f0) /∆À (A.31)

At the second near-boundary point, a fourth-order central scheme with a wider stencil is used.

163

508
f ′
1 + f ′

2 +
163

508
f ′
3 =

393

508
(f3 − f1) /∆À +

3

127
(f4 − f0) /∆À (A.32)

Starting from the third near-boundary point, the interior scheme is applied. The schematic of bound-

ary and near-boundary stencils associated with the collocated sixth-order compact finite difference

method scheme is shown in Fig. A.1.

The boundary scheme of the node-to-edge interpolation associated with the compact interpolation
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1st near-boundary stencil

2nd near-boundary stencil

Figure A.1: Schematic of the collocated differentiation near a boundary.

scheme shown in Eq. (2.7) is

f I
1/2 =

5

16
f0 +

15

16
f1 −

5

16
f2 −

1

16
f3 (A.33)

This form yields a fourth-order explicit interpolation, and the boundary scheme is one-way coupled

with the linear system to determine the interpolated values at near-boundary and interior edge-

staggered points. At the first near-boundary point, the scheme is set to be a fourth order scheme.

1

4
f I
1/2 + f I

3/2 +
1

4
f I
5/2 =

23

32
(f2 + f1) +

1

32
(f3 + f0) (A.34)

Starting from the second near-boundary point, the interior scheme is applied. The boundary and

near-boundary stencils associated with the interpolation schemes are shown in Fig. A.2.
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right-hand side stencil point

physical boundary

boundary stencil

1st near-boundary stencil

Figure A.2: Schematic of the one-dimensional node-to-edge interpolation near a boundary.

The edge-to-node differentiation that is used for the divergence operator includes a ghost point

beyond the physical boundary. The scheme at the ghost point is in an explicit sided form.

f ′
0 =

1

∆À

(
−71

24
f1/2 +

47

8
f3/2 −

31

8
f5/2 +

23

24
f7/2

)
(A.35)

The discretization is formally third-order accurate with dissipative leading order truncation error.

Similar to the interpolation scheme, by setting the off-diagonal coefficient to zero, the boundary

scheme is one-way coupled with the near boundary and interior schemes. The actual boundary

scheme uses the most compact fourth-order central difference method as follows:

1

22
f ′
0 + f ′

1 +
1

22
f ′
2 =

12

11

(
f3/2 − f1/2

)
/∆À (A.36)

The combination of Eq. (A.35) and Eq. (A.36) results in a compact one-sided scheme at the boundary
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stencil. The scheme at the first near-boundary stencil is

9089

69564
f ′
1 + f ′

2 +
9089

69564
f ′
3 =

95257

92752

(
f5/2 − f3/2

)
/∆À +

5927

75888

(
f7/2 − f1/2

)
/∆À (A.37)

Starting from the second near-boundary stencil, the interior scheme is used. The boundary and near-

boundary stencils associated with the staggered central differencing schemes are shown in Fig. A.3.
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ghost stencil

boundary stencil

1st near-boundary stencil

Figure A.3: Schematic of the one-dimensional edge-to-node differentiation near a boundary.

With the physical boundary placed at the edge-staggered points, the boundary conditions are

weakly imposed on the Navier-Stokes system via fluxes. This treatment provides extra robustness

and the flexibility to impose different types of boundary conditions. In this work, the boundary

conditions for the simulations in Sec. 2.4.5 are imposed by setting the variables at the ghost nodal

points prior to calculating the variables at the edge-staggered points (cf. Sec. 2.3.2 and Sec. 2.3.3).

A.5 Shock-capturing methods

The methods for shock capturing used in this work are documented in this section. The localized

artificial diffusivity (LAD) model is described in A.5.1. The nonlinear interpolation schemes and

the approximate Riemann solver are illustrated in A.5.2 and A.5.3 respectively. The LAD model

and the nonlinear interpolation scheme combined with an approximate Riemann solver are two

independent methods for shock capturing. In this work, these two approaches are not mixed in the

same simulation. This work proposes that the latter method be hybridized with central schemes in

simulation of compressible turbulent flows. The details are illustrated in Sec. 2.3.5 and Sec. 2.4.5.

A.5.1 Localized artificial diffusivity models

The LAD model used in this work is primarily based on the formulation given in Ref. [75] and

Ref. [76]. For shock capturing, only artificial bulk viscosity and thermal conductivity models are

used. The artificial diffusivities are added to the overall bulk viscosity, ´, and thermal conductivity,

», in the Navier-Stokes equations described in Sec. 2.3.1.

´ = ˇ́ + ´∗ and » = »̌ + »∗ (A.38, A.39)
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where ˇ́ and »̌ are calculated using the physical bulk viscosity and thermal conductivity models

respectively, and ´∗ and »∗ are the artificial bulk viscosity and thermal conductivity respectively.

On Cartesian meshes, the artificial diffusivities are formulated as

´∗ = CβG
{
ÄH
( −¹ |¹|
¹2 + ÉiÉi + ε2

) ∣∣∣∣Dmpql
∂4¹

∂xm∂xp∂xq∂xl

∣∣∣∣
(

∆xj
∂Ä

∂xj

)2(
∂Ä

∂xk

∂Ä

∂xk
+ ε2

)−1
}

(A.40)

»∗ = CκG





Äc

T

∣∣∣∣Dmpql
∂4eth

∂xm∂xp∂xq∂xl

∣∣∣∣

√(
∆xj

∂eth
∂xj

)2(
∂eth
∂xk

∂eth
∂xk

+ ε2
)−1



 (A.41)

where Cβ and Cκ are the model constants for ´∗ and »∗ respectively, G(·) denotes the truncated

Gaussian filter [30], H(·) denotes the Heaviside step function, Ä is density, c is the speed of sound,

T is temperature, eth is internal energy, ¹ = uk,k is the velocity dilatation, Éi is the vorticity

vector, ε = 1 × 10−16 serves as numerical regulation, and ∆xj is the grid spacing in the j-th di-

mension. Dmpql is a fourth-order tensor operator. The early version proposed in Ref. [29] uses

Dmpql = (∆x∆y∆z)
4/3

¶mp¶ql. In Ref. [75] and Ref. [76], based on the consideration of the compu-

tational cost, especially for curvilinear meshes, the operation of Dmpql is reduced as Dmpql = ∆x4
m

if m = p = q = l, otherwise Dmpql = 0. This design makes the operation Dmpql∂xm
∂xp

∂xq
∂xl

the sum of undivided fourth derivatives in all dimensions. The terms
√

(∆xjÄ,j)2/(Ä,kÄ,k) and√
(∆xjeth,j)2/(eth,keth,k) define the length scales considering both grid spacing in different direc-

tions and the obliqueness of shock waves indicated by the normalized density and internal energy

gradient respectively. The fourth derivative is approximated using the following scheme [89].

³f ′′′′
j−1 + f ′′′′

j +³f ′′′′
j+1 = a

fj−2 − 4fj−1 + 6fj − 4fj+1 + fj+2

∆x4
+ b

fj−3 − 9fj−1 + 16fj − 9fj+1 + fj+3

6∆x4

(A.42)

where f ′′′′
j denotes the numerical evaluation of ∂4

xf at xj . For a formally fourth-order scheme, the

coefficients satisfy the following constraints.

a = 2(1 − ³) and b = 4³− 1 (A.43, A.44)

If ³ = 7/26, the scheme in Eq. (A.42) becomes formally sixth-order, and a = 19/13 and b = 1/13.

In this work, the sixth-order scheme is used. The truncated Gaussian filter used is given by the

following.

[G(f)]j =

3565

10368
fj+

3091

12960
(fj+1 + fj−1)+

1997

25920
(fj+2 + fj−2)+

149

12960
(fj+3 + fj−3)+

107

103680
(fj+4 + fj−4)

(A.45)
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A.5.2 Nonlinear interpolation schemes for shock-capturing

The concept of nonlinear interpolation schemes for shock-capturing referred to in this work is origi-

nally introduced in Ref. [73] and known as the weighted essentially non-oscillatory (WENO) method.

The five-point-stencil scheme introduced in Ref. [73] is known as the WENO5-JS scheme. Consistent

with the higher-order staggered finite difference schemes used for evaluating the flux divergence, the

interpolation is used to preserve high-order convergence as opposed to the reconstruction scheme

designed for the higher-order finite volume method or the finite difference method referred to in

Ref. [141], where the flux difference operation is applied. Since many in literature have provided

discussions on the details of the WENO5-JS interpolation scheme and the schemes improved from

it, only the key steps are documented.

j − 2 j − 1 j j + 1
2 j + 1 j + 2

S0

S1

S2

Figure A.4: Candidate sub-stencils of the WENO5-JS interpolation scheme using nodal-point values
within the stencil to approximate the edge-staggered value at j + 1/2.

The WENO5-JS interpolation scheme evaluates the value at j + 1/2 using three candidate sub-

stencils, S0, S1 and S2, within a five-point nodal stencil from j − 2 to j + 2 as shown in Fig. A.4.

Each candidate sub-stencil provides an independent evaluation of the interpolated value at j + 1/2

using Lagrange interpolation.

f I
j+ 1

2

[S0] =
1

8
(3fj−2 − 10fj−1 + 15fj) (A.46)

f I
j+ 1

2

[S1] =
1

8
(−1fj−1 + 6fj + 3fj+1) (A.47)

f I
j+ 1

2

[S2] =
1

8
(3fj + 6fj+1 − fj+2) (A.48)

(A.49)

where f I
j+ 1

2

[Sk] denotes the numerically-interpolated value evaluated using the candidate sub-stencil

Sk. Optimally, a convex superposition of the interpolated results from all three sub-stencils can

form a fifth-order upwind-biased Lagrange interpolation.

d0f
I
j+ 1

2

[S0] + d1f
I
j+ 1

2

[S1] + d2f
I
j+ 1

2

[S2] =
1

128
(3fj−2 − 20fj−1 + 90fj + 60fj+1 − 5fj+2) (A.50)

where d0 = 1/16, d1 = 5/8, and d2 = 5/16 are known as the linear or optimal weights. In practice,
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the convex combination may not use the linear weights especially when the interpolated function is

not smooth within the stencil, so a set of nonlinear weights are used to determine the interpolated

values.

f I
j+ 1

2

= É0f
I
j+ 1

2

[S0] + É1f
I
j+ 1

2

[S1] + É2f
I
j+ 1

2

[S2] (A.51)

where the nonlinear weights, É0, É1, and É2, are calculated as

Ék =
³kdk

³0d0 + ³1d1 + ³2d2
for k = 0, 1, 2 (A.52)

³k can be interpreted as a weighting score indicating the quality of the interpolated result from each

candidate sub-stencil and is calculated as

³k = (´k + ε)
−p

(A.53)

where ε and p are model parameters. In the demonstrations, ε = 1× 10−6 and p = 2 are used. ´k is

known as the smoothness indicator measuring the non-smoothness of the discrete profile within the

candidate sub-stencil Sk and is defined as

´k =

2∑

l=1

∆x2l−1

∫ xj+
1

2
∆x

xj−
1

2
∆x

(
∂lf [Sk]

∂xl

)2

dx (A.54)

The smooth function f [Sk] is the Lagrange polynomial constructed using all the nodal values within

the candidate sub-stencil Sk. For WENO5-JS interpolation, the smoothness indicator of each sub-

stencil specified in Fig. A.4 is calculated as follows:

´0 =
13

12
(fj−2 − 2fj−1 + fj)

2
+

1

4
(fj−2 − 4fj−1 + 3fj)

2
(A.55)

´1 =
13

12
(fj−1 − 2fj + fj+1)

2
+

1

4
(fj+1 − fj−1)

2
(A.56)

´2 =
13

12
(fj − 2fj+1 + fj+2)

2
+

1

4
(fj+2 − 4fj+1 + 3fj)

2
(A.57)

The targeted essentially non-oscillatory (TENO) method is originally introduced in Ref. [49] and

extended from classic WENO schemes. The method generalizes the design of candidate sub-stencils

for higher-order methods and calculation of nonlinear weights. Additionally, the interpolation at

optimal weights is consistent with central interpolation. These improvements successfully reduce

undesirable dissipation and maintain robustness for strong shock capturing in higher-order sim-

ulations. Further improvements on the adaptive criterion while calculating nonlinear weights are

provided in Ref. [48] for flux reconstruction in a high-order finite volume framework. The coefficients

for interpolation are derived in the following context, and the evaluations of some model coefficients

are slightly different from those described in Ref. [48].
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Figure A.5: Candidate sub-stencils of the TENO8-A interpolation scheme using nodal-point values
within the stencil to approximate the edge-staggered value at j + 1/2.

In this work, the eighth-order adaptive TENO scheme is used and is referred to as the TENO8-A

scheme. The scheme contains six candidate sub-stencils from S0 to S5 to interpolate the nodal values

within an overall 8-point stencil to the edge-staggered point at j + 1/2 as shown in Fig. A.5. The

individual Lagrange interpolation for each candidate sub-stencil is

f I
j+ 1

2

[S0] =
1

8
(−fj−1 + 6fj + 3fj+1) (A.58)

f I
j+ 1

2

[S1] =
1

8
(3fj + 6fj+1 − fj+2) (A.59)

f I
j+ 1

2

[S2] =
1

8
(3fj−2 − 10fj−1 + 15fj) (A.60)

f I
j+ 1

2

[S3] =
1

16
(5fj + 15fj+1 − 5fj+2 + fj+3) (A.61)

f I
j+ 1

2

[S4] =
1

16
(−5fj−3 + 21fj−2 − 35fj−1 + 35fj) (A.62)

f I
j+ 1

2

[S5] =
1

128
(35fj + 140fj+1 − 70fj+2 + 28fj+3 − 5fj+4) (A.63)

At optimal weights, the convex combination of the interpolated results from the sub-stencils equals

the sixth-order central interpolation.

5∑

k=0

dkf
I
j+ 1

2

[Sk] =
1225

2048
(fj + fj+1) − 245

2048
(fj−1 + fj+2) +

49

2048
(fj−2 + fj+3) − 5

2048
(fj−3 + fj+4)

(A.64)

where the optimal weights are d0 = 175/384, d1 = 105/384, d2 = 14/384, d3 = 63/384, d4 = 3/384,

and d5 = 24/384. The weighting score, ³k, of each candidate sub-stencil Sk is calculated in the same

way as formulated in Eq. (A.53) with ε = 1 × 10−40 and p = 6. Unlike the WENO method, TENO

schemes further normalize ³k to determine a binary pick-up mask function, ¶k, for each candidate
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sub-stencil.

¶k = H (³k − CT ) (A.65)

where H(·) denotes the Heaviside step function, ³k = ³k/
(∑5

l=0 ³l

)
is a normalized weighting

score, and CT is a cut-off threshold which is dynamically determined for the adaptive method. The

nonlinear weights Ék are determined as

Ék =
¶kdk∑5
l=0 ¶ldl

(A.66)

and the nonlinear interpolated result is calculated as

f I
j+ 1

2

=
5∑

k=0

Ékf
I
j+ 1

2

[Sk] (A.67)

The smoothness indicator, ´k, needed for calculation of ³k for each candidate sub-stencil in the

TENO8-A scheme is calculated as follows:

´0 =
1

4
(fj+1 − fj−1)2 +

13

12
(fj−1 − 2fj + fj+1)2 (A.68)

´1 =
1

4
(3fj − 4fj+1 + fj+2)2 +

13

12
(fj − 2fj+1 + fj+2)2 (A.69)

´2 =
1

4
(3fj − 4fj−1 + fj−2)2 +

13

12
(fj − 2fj−1 + fj−2)2 (A.70)

´3 =
1

64
(15fj − 25fj+1 + 13fj+2 − 3fj+3)2 +

13

12
(2fj − 5fj+1 + 4fj+2 − fj+3)2

+
61

720
(fj − 3fj+1 + 3fj+2 − fj+3)2

(A.71)

´4 =
1

64
(15fj − 25fj−1 + 13fj−2 − 3fj−3)2 +

13

12
(2fj − 5fj−1 + 4fj−2 − fj−3)2

+
61

720
(fj − 3fj−1 + 3fj−2 − fj−3)2

(A.72)

´5 =
1

256
(35fj − 70fj+1 + 56fj+2 − 26fj+3 + 5fj+4)2

+
1

2246400
(4613fj − 13772fj+1 + 15198fj+2 − 7532fj+3 + 1493fj+4)2

+
61

2880
(5fj − 18fj+1 + 24fj+2 − 14fj+3 + 3fj+4)2

+
1861

1310400
(fj − 4fj+1 + 6fj+2 − 4fj+3 + fj+4)2

(A.73)

The cut-off threshold, CT , in Eq. (A.65) is calculated based on the definition of the local nodal

smoothness indicator, µj , which is defined as

µj =
2 |(fj+1 − fj)(fj − fj−1)| + εµ

(fj+1 − fj)
2

+ (fj − fj−1)
2

+ εµ
(A.74)
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where the numerical regularization factor, εµ, is determined as

εµ =
0.9cr

1 − 0.9cr
εµ,0 (A.75)

εµ is statically calculated with tunable model constants cr and εµ,0. As suggested in Ref. [48],

cr = 0.23 and εµ,0 = 1 × 10−6 are used, which leads to εµ = (207/793) × 10−6. A complementary

indicator, Ã, is defined using µj in a narrower stencil.

Ã = 1 − min {1,min {µj−1, µj , µj+1, µj+2} /cr} (A.76)

Finally, the cut-off threshold, CT , is calculated as

CT = 10−+c1−c2(1−g(σ)), (A.77)

where c1 = 10.5 and c2 = 3.5 are model constants suggested in Ref. [48], and g(·) is a nonlinear

mapping defined as

g(Ã) = (1 − Ã)4(1 + 4Ã) (A.78)

A.5.3 Characteristic decomposition on curvilinear meshes and approxi-

mate Riemann solver

The use of nonlinear interpolation schemes is combined with the characteristic decomposition for a

linearized decoupled system. Considering the inviscid fluxes only, the Navier-Stokes system reduces

to an Euler system as follows.

∂JW

∂t
+

∂F̂ξ

∂À
+

∂F̂η

∂¸
+

∂F̂ζ

∂·
= 0 (A.79)

where W is the vector of conservative variables, and F̂ξ, F̂η, and F̂ζ are the vectors of inviscid

contravariant fluxes in À, ¸, and · directions respectively. The expressions for W , F̂ξ, F̂η, and F̂ζ

are given as

W =




Ä

Äu

Äv

Äw

Äe




F̂ξ =




ÄÛξ

ÄuÛξ + pg̃Txξ

ÄvÛξ + pg̃Tyξ

ÄwÛξ + pg̃Tzξ

ÄhÛξ




F̂η =




ÄÛη

ÄuÛη + pg̃Txη

ÄvÛη + pg̃Tyη

ÄwÛη + pg̃Tzη

ÄhÛη




F̂ζ =




ÄÛζ

ÄuÛζ + pg̃Txζ

ÄvÛζ + pg̃Tyζ

ÄwÛζ + pg̃Tzζ

ÄhÛζ




where the components in vector and tensor quantities are explicitly expressed as individual quan-

tities, and the matrix-vector notation denotes the Euler equation system. u, v, and w are the
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three-components of the velocity vector in physical space in the x-, y-, and z-directions respectively.

Other notation is consistent with that defined in Sec. 2.3.1 and Sec. 2.3.3.

The characteristic decomposition of the contravariant flux Jacobian in the À-dimension can be

denoted as
∂F̂ξ

∂W
= RξΛξL

T
ξ (A.80)

where Λξ is a diagonal matrix storing the eigenvalues, and the columns in Rξ and Lξ are the

right and left eigenvectors respectively associated with the eigenvalues stored in Λξ. A form of

characteristic decomposition is provided as follows.

Rξ =




1 0 1 0 1

u− cgTxξ lxξ u mxξ u + cgTxξ

v − cgTyξ lyξ v myξ v + cgTyξ

w − cgTzξ lzξ w mzξ w + cgTzξ

h− cU ξ U l(ξ) ek Um(ξ) h + cU ξ




(A.81)

Λξ =




Ûξ − cg̃Tnξ 0 0 0 0

0 Ûξ 0 0 0

0 0 Ûξ 0 0

0 0 0 Ûξ 0

0 0 0 0 Ûξ + cg̃Tnξ




(A.82)

LT
ξ =




γ−1
2c2 ek +

Uξ

2c − gT

xξ

2c − γ−1
2c2 u − gT

yξ

2c − γ−1
2c2 v − gT

zξ

2c − γ−1
2c2 w

γ−1
2c2

−U l(ξ) lxξ lyξ lzξ 0

1 − γ−1
c2 ek

γ−1
c2 u γ−1

c2 v γ−1
c2 w −γ−1

c2

−Um(ξ) mxξ myξ mzξ 0

γ−1
2c2 ek −

Uξ

2c

gT

xξ

2c − γ−1
2c2 u

gT

yξ

2c − γ−1
2c2 v

gT

zξ

2c − γ−1
2c2 w

γ−1
2c2




(A.83)

where g̃Tnξ =

√(
g̃Txξ

)2
+
(
g̃Tyξ

)2
+
(
g̃Tzξ

)2
is the magnitude of the metrics in À dimension. gTxξ,

gTyξ, and gTzξ are the normalized metric components defined as gTxξ = g̃Txξ/g̃
T
nξ, gTyξ = g̃Tyξ/g̃

T
nξ, and

gTzξ = g̃Tzξ/g̃
T
nξ. [lxξ, lyξ, lzξ]T and [mxξ,myξ,mzξ]T are two unit vectors that form a set of orthonormal

basis vectors in three-dimensional physical space together with [gTxξ, g
T
yξ, g

T
zξ]T. ek = (u2+v2+w2)/2

is the specific kinetic energy. U ξ, U l(ξ), and Um(ξ) are defined as U ξ = ugTxξ + vgTyξ + wgTzξ,

U l(ξ) = ulxξ + vlyξ +wlzξ, and Um(ξ) = umxξ + vmyξ +wmzξ respectively. Due to the symmetry of

the contravariant flux formulations in different dimensions in the reference domain, the characteristic

decompositions in ¸- and ·-dimensions are not provided.
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For a general equation-of-state model, the following thermodynamic relations are needed.

³ =

(
∂p

∂Ä

)

eth

and ´ =

(
∂p

∂e

)

ρ

(A.84, A.85)

where eth is the internal energy and satisfies the relation e = eth + ek. Based on the definitions of

³ and ´ and the definition of the speed of sound, c, the following relation holds.

c2 = ³ + ´p/Ä2 (A.86)

Correspondingly, the characteristic decomposition, for a real-gas flow, becomes

Rξ =




1 0 1 0 1

u− cgTxξ lxξ u mxξ u + cgTxξ

v − cgTyξ lyξ v myξ v + cgTyξ

w − cgTzξ lzξ w mzξ w + cgTzξ

h− cU ξ U l(ξ) h− ρc2

β Um(ξ) h + cU ξ




(A.87)

LT
ξ =




1
2 − β(h−2ek)

2ρc2 +
Uξ

2c − gT

xξ

2c − βu
2ρc2 − gT

yξ

2c − βv
2ρc2 − gT

zξ

2c − βw
2ρc2

β
2ρc2

−U l(ξ) lxξ lyξ lzξ 0
β(h−2ek)

ρc2
βu
ρc2

βv
ρc2

βw
ρc2 − β

ρc2

−Um(ξ) mxξ myξ mzξ 0

1
2 − β(h−2ek)

2ρc2 − Uξ

2c

gT

xξ

2c − βu
2ρc2

gT

yξ

2c − βv
2ρc2

gT

zξ

2c − βw
2ρc2

β
2ρc2




(A.88)

The eigenvalue matrix, Λξ, remains same as shown in Eq. (A.82).

During the numerical solution process, the Euler system is locally linearized in each dimension

so that the flux Jacobian is frozen within an interpolation stencil. Based on this assumption, the

characteristic variables within a stencil can be calculated as

Qξ =
〈
LT

ξ

〉
W (A.89)

where Qξ is the vector of characteristic variables in the locally linearized Euler system in the À-

dimension, and the operator ï(·)ð denotes that a quantity remains constant within the stencil.

The nonlinear shock-capturing schemes will be applied to interpolate Q to the edge-points using

a stencil of nodal points. The nonlinear interpolation scheme is not statically symmetric about

the stencil, which provides upwind-biased numerical dissipation in the non-smooth region. For

shock-capturing, the nonlinear interpolation needs to be applied using both backward-biased and

forward-biased stencils to obtain the characteristic variables that are potentially carried by the

“right-” traveling waves, Q+
ξ , interpolated from the “left” side (which is commonly denoted by “L”)

and the “left-” traveling waves, Q−
ξ , interpolated from the “right” side (which is commonly denoted
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by “R”) respectively. After interpolation, the characteristic variables obtained on the edge-points

are converted back to the conservative variables using the right eigenvectors.

W+
ξ = ïRξðQ+

ξ and W−
ξ = ïRξðQ−

ξ (A.90, A.91)

where W+
ξ and W−

ξ are the volume weighted conservative variables converted from the interpolated

characteristic variables, Q+
ξ and Q−

ξ . In this work, the elements in the locally averaged eigenvectors,〈
LT

ξ

〉
and ïRξð, are assembled by the Roe-Pike averaged quantities [131, 130] which are calculated

using the first nodal values on both sides of each targeted edge-point location.

With W+
ξ and W−

ξ obtained, the approximate Riemann flux can be calculated. In this work,

the Rusanov flux [132, 157] is used.

F̂Riemann
ξ =

1

2

(
F̂−
ξ + F̂+

ξ

)
− 1

2
S
(
W−

ξ −W+
ξ

)
(A.92)

where F̂Riemann
ξ is the Rusanov type of approximate Riemann flux, F̂−

ξ and F̂+
ξ are the contravariant

fluxes assembled by W−
ξ and W+

ξ respectively, and S is an approximate wave speed calculated as

S = max
{∣∣∣Û+

ξ

∣∣∣+ c+ξ g̃
T
nξ,
∣∣∣Û−

ξ

∣∣∣+ c−ξ g̃
T
nξ

}
(A.93)

where c+ξ and c−ξ are the speeds of sound calculated using W+
ξ and W−

ξ respectively. For hybrid

central-Riemann flux assembly, the hybridization is applied in constructing the primitive variables

after the calculation of W+
ξ and W−

ξ , and the volume weighted conservative variables and con-

travariant fluxes are calculated using blended primitive variables. If only primitive variables that

are interpolated using central compact schemes are used, W+
ξ = W−

ξ and F̂+
ξ = F̂−

ξ . In this

scenario, F̂Riemann
ξ is same as the central flux.



Appendix B

Real-Gas Thermodynamic and

Transport Properties

This chapter documents the derivations and calculations used in the computational code for simula-

tions of dense-gas flows and the corresponding data post-processing related to this thesis work. The

novelty of the work documented in this chapter is not claimed, the author conducted the deriva-

tions based on well-developed theories that were present in the community. In this chapter, the

derivations of thermodynamic relations are presented in detail. Alternatively, the derivations can be

also conducted using existing formulas for convenience, such as the Bridgman’s derivation [14]. The

derivations of thermodynamic relations based on the first and second laws of thermodynamics and

definitions are summarized in Sec. B.1. The calculations of the thermodynamic properties based on

the Peng-Robinson model [119] are documented in Sec. B.2 where the modeling of the temperature-

dependent specific heat at constant volume is particularly suitable for CO2. The calculations of

temperature- and pressure-dependent viscosity and thermal conductivity based on the Chung et al.

(1988) transport models [25] are documented in Sec. B.3.

B.1 Fundamentals of pure-substance thermodynamics

Starting from the first law of thermodynamics,

de = ¶q − ¶w (B.1)

where e is the specific internal energy, q is the specific heat exchange, and w is the specific work

done by the substance. Only considering the work due to changes in volume, the variation in work

can be expressed as ¶w = pdv where p and v are the pressure and specific volume respectively. Let

179
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density be Ä so that Ä = 1/v. The specific enthalpy, h, is defined as

h = e + pv (B.2)

Then, the specific heat capacity at constant volume, cv, and constant pressure, cp, can be defined

as

cv =

(
∂e

∂T

)

v

and cp =

(
∂h

∂T

)

p

(B.3, B.4)

where T is the temperature. For an isochoric process, ¶q = de = cvdT , and for an isobaric pro-

cess, ¶q = dh = cpdT . As the identification of thermodynamic states, in general, using reversible

process from a reference state, e = e(T, v) and h = h(T, p), and correspondingly, cv = cv(T, v)

and cp = cp(T, p). The calculation from eref to e assumes a process of isochoric heat exchange

from Tref to T and then an isothermal expansion/compression from vref to v; and the calculation

from href to h assumes a process of isobaric heat exchange from Tref to T and then an isothermal

expansion/compression from pref to p.

de = cvdT +

(
∂e

∂v

)

T

dv and dh = cpdT +

(
∂h

∂p

)

T

dp (B.5, B.6)

(∂e/∂v)T in Eq. (B.5) is known as the energy of imperfection of a real gas that induces the heat

effects due to intermolecular interactions. For an ideal gas, molecules are assumed to be sufficiently

far from each other and result in no interaction. Therefore, (∂e/∂v)T = 0, which also leads to

(∂h/∂p)T = 0. Then e and h are determined by T only. However, this may not hold for real gases.

Using the definition of the specific enthalpy in Eq. (B.2), Eq. (B.4) leads to

cp =

(
∂h

∂T

)

p

=

(
∂e

∂T

)

p

+ p

(
∂v

∂T

)

p

(B.7)

where (
∂e

∂T

)

p

=

(
∂e

∂T

)

v

+

(
∂e

∂v

)

T

(
∂v

∂T

)

p

Substituting into Eq. (B.7) and combining with Eq. (B.3), the following relation can be obtained

cp = cv +

[(
∂e

∂v

)

T

+ p

](
∂v

∂T

)

p

(B.8)

From the second law of thermodynamics, for a reversible process, ¶q = Tds, where s is the

specific entropy. Combined with Eq. (B.1), it can be shown that

Tds = de + pdv (B.9)
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Combining Eq. (B.9) and Eq. (B.2), an alternative form can be obtained as

Tds = dh− vdp (B.10)

From Eq. (B.9), for an isothermal process and an isochoric process the following two relations hold

respectively.

(
∂e

∂v

)

T

= T

(
∂s

∂v

)

T

− p and T

(
∂s

∂T

)

v

=

(
∂e

∂T

)

v

(B.11, B.12)

Differentiate Eq. (B.11) with respect to T along an isochoric process, and differentiate Eq. (B.12)

with respect to v along an isothermal process respectively.

[
∂

∂T

(
∂e

∂v

)

T

]

v

= T

[
∂

∂T

(
∂s

∂v

)

T

]

v

+

(
∂s

∂v

)

T

−
(
∂p

∂T

)

v

(B.13)

T

[
∂

∂v

(
∂s

∂T

)

v

]

T

=

[
∂

∂v

(
∂e

∂T

)

v

]

T

(B.14)

The mixed second derivatives in Eq. (B.13) and Eq. (B.14) are commutable.

[
∂

∂T

(
∂e

∂v

)

T

]

v

=

[
∂

∂v

(
∂e

∂T

)

v

]

T

and

[
∂

∂T

(
∂s

∂v

)

T

]

v

=

[
∂

∂v

(
∂s

∂T

)

v

]

T

Therefore, Eq. (B.13) combined with Eq. (B.14) can be reduced to the following relation which is

known as one of the Maxwell relations [100].

(
∂s

∂v

)

T

=

(
∂p

∂T

)

v

(B.15)

Eq. (B.15) enables replacing (∂s/∂v)T in Eq. (B.11) to obtain the specific energy imperfection in

terms of p, v and T . (
∂e

∂v

)

T

= T

(
∂p

∂T

)

v

− p (B.16)

Eq. (B.16) can be used to evaluate the energy imperfection, cf. Eq. (B.5), with a pressure-volume-

temperature (p-v-T ) relation, an identified reference state, and a model of cv(T, vref). The internal

energy can be calculated by integrating Eq. (B.5) from the reference state following a path that has

an isothermal process and an isochoric process.

e = eref +

∫ T

Tref

cv(T, vref)dT +

∫ v

vref

[
T

(
∂p

∂T

)

v

− p

]
dv (B.17)
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Combining Eq. (B.8) and Eq. (B.16), an alternative expression of cp is

cp = cv + T

(
∂p

∂T

)

v

(
∂v

∂T

)

p

(B.18)

Furthermore, given a thermodynamic process described by the p-v-T relation,

dp =

(
∂p

∂T

)

v

dT +

(
∂p

∂v

)

T

dv (B.19)

for an isobaric process, dp = 0, the following relation holds.

(
∂v

∂T

)

p

= −
(
∂p

∂T

)

v

(
∂p

∂v

)−1

T

(B.20)

Substituting this relation into Eq. (B.18), another calculation of cp can be obtained as

cp = cv − T

(
∂p

∂T

)2

v

(
∂p

∂v

)−1

T

(B.21)

In the compressible Navier-Stokes solver, T needs to be calculated iteratively from e during the

conversion from conservative variables to primitive variables if an explicit expression is not accessible.

The iterative solution process can be denoted as follows.

T (m+1) = T (m) − ³
e(T (m), v)

cv(T (m), v)
(B.22)

where ³ is a relaxation factor, and for the standard Newton-Raphson method, ³ = 1; the superscripts

on T represent the iteration step counts.

The speed of sound, c, that is required in the flow solver, is defined as

c2 =

(
∂p

∂Ä

)

s

= −v2
(
∂p

∂v

)

s

(B.23)

where the derivative (∂p/∂v)s can be calculated using the chain rule.

(
∂p

∂v

)

s

=

(
∂p

∂T

)

s

(
∂T

∂v

)

s

(B.24)

where the derivatives (∂p/∂T )s and (∂T/∂v)s can be calculated using the thermodynamic processes

defined by

ds =

(
∂s

∂T

)

p

dT +

(
∂s

∂p

)

T

dp and ds =

(
∂s

∂T

)

v

dT +

(
∂s

∂v

)

T

dv
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respectively by imposing an isentropic constraint ds = 0. The results are

(
∂p

∂T

)

s

= −
(
∂s

∂T

)

p

(
∂s

∂p

)−1

T

and

(
∂T

∂v

)

s

= −
(
∂s

∂v

)

T

(
∂s

∂T

)−1

v

Substituting these two results into Eq. (B.24) yields

(
∂p

∂v

)

s

=

(
∂s

∂T

)

p

(
∂T

∂s

)

v

(
∂p

∂v

)

T

(B.25)

Combining Eq. (B.9) and Eq. (B.5) the thermodynamic relation can be obtained as

Tds− pdv = cvdT +

(
∂e

∂v

)

T

dv

For an isochoric process, dv = 0, the derivative, (∂s/∂T )p, is calculated as

(
∂s

∂T

)

p

=
cp
T

(B.26)

Similarly, combining Eq. (B.10) and Eq. (B.6), an alternative relation is obtained as

Tds + vdp = cpdT +

(
∂h

∂p

)

T

dp

For an isobaric process, dp = 0, and the derivative, (∂T/∂s)v, is calculated as

(
∂T

∂s

)

v

=
T

cv
(B.27)

Substituting the results obtained in Eq. (B.26) and Eq. (B.27) into Eq. (B.25), the derivative,

(∂p/∂v)s can be calculated as (
∂p

∂v

)

s

=
cp
cv

(
∂p

∂v

)

T

Combining with Eq. (B.23), the speed of sound, c, can be calculated as

c2 = −v2
cp
cv

(
∂p

∂v

)

T

=
cp
cv

(
∂p

∂Ä

)

T

(B.28)

An equivalent form of the speed of sound calculated based on the formulation of thermodynamic

model, p = p(Ä, e), can be derived similarly to the procedure provided above. The right-hand side

of Eq. (B.24) can be modified using e as the intermediate variable.

(
∂p

∂v

)

s

=

(
∂p

∂e

)

s

(
∂e

∂v

)

s

(B.29)
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where skipping the steps of setting up the thermodynamic processes, the derivatives, (∂p/∂e)s and

(∂e/∂v)s, on the right-hand side of Eq. (B.29) are evaluated as

(
∂p

∂e

)

s

= −
(
∂s

∂e

)

p

(
∂s

∂p

)−1

e

and

(
∂e

∂v

)

s

= −
(
∂s

∂v

)

e

(
∂s

∂e

)

v

Substituting these results into Eq. (B.29), the derivative, (∂p/∂v)s, can be further expressed as

(
∂p

∂v

)

s

=

(
∂s

∂e

)

p

(
∂p

∂v

)

e

(
∂e

∂s

)

v

(B.30)

The derivative, (∂s/∂e)p, on the right-hand side of Eq. (B.30) can be calculated using the identity

(
∂s

∂e

)

p

=

(
∂s

∂e

)

v

+

(
∂v

∂e

)

p

(
∂s

∂v

)

e

(B.31)

Eq. (B.9) is used to compute the derivatives, (∂e/∂s)v and (∂s/∂v)e, by imposing the constraints

dv = 0 and de = 0, respectively.

(
∂e

∂s

)

v

= T and

(
∂s

∂v

)

e

=
p

T

Combining all the results, Eq. (B.30) becomes

(
∂p

∂v

)

s

=

[
1 + p

(
∂v

∂e

)

p

](
∂p

∂v

)

e

(B.32)

where using the relation

dv =

(
∂v

∂e

)

p

de +

(
∂v

∂p

)

e

dp

it can be obtained, based on the identity for dv = 0, that

(
∂v

∂e

)

p

(
∂p

∂v

)

e

= −
(
∂p

∂e

)

v

Therefore, combining Eq. (B.23), the speed of sound can be also calculated as

c2 = −v2
[(

∂p

∂v

)

e

− p

(
∂p

∂e

)

v

]
=

(
∂p

∂Ä

)

e

+
p

Ä2

(
∂p

∂e

)

ρ

(B.33)

Besides the calculation of the speed of sound using Eq. (B.33), the derivatives, (∂p/∂Ä)e and

(∂p/∂e)ρ, are also needed for the characteristic decomposition in the application of a shock-capturing

scheme. For specific internal energy modeled with the form e = e(T, Ä), the derivatives can be
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evaluated using the mathematical identities combined with the definition of cv in Eq. (B.3).

(
∂p

∂Ä

)

e

=

(
∂p

∂Ä

)

T

+

(
∂T

∂Ä

)

e

(
∂p

∂T

)

ρ

and

(
∂p

∂e

)

ρ

=
1

cv

(
∂p

∂T

)

ρ

(B.34, B.35)

where the following identity can be applied to calculate the derivative, (∂T/∂Ä)e, more conveniently.

(
∂T

∂Ä

)

e

= − 1

cv

(
∂e

∂Ä

)

T

Therefore, Eq. (B.34) can be rewritten as

(
∂p

∂Ä

)

e

=

(
∂p

∂Ä

)

T

− 1

cv

(
∂p

∂T

)

ρ

(
∂e

∂Ä

)

T

(B.36)

Furthermore the following equation holds according to the definition of v as v = 1/Ä.

(
∂x

∂Ä

)

T

= −v2
(
∂x

∂v

)

T

and

(
∂x

∂T

)

ρ

=

(
∂x

∂T

)

v

where x can be either p or e for the related derivatives in Eq. (B.35) and Eq. (B.36).

The specific Gibbs free energy is also needed in general to determine the physical solution among

multiple roots obtained from the thermodynamic model. The definition of the specific Gibbs free

energy, g, is

g = h− Ts (B.37)

Combining Eq. (B.37) with Eq. (B.10), the variation in the specific Gibbs free energy can be ex-

pressed as

dg = vdp− sdT (B.38)

Eq. (B.38) implies the identity that (
∂g

∂p

)

T

= v (B.39)

According to the chain rule, (
∂g

∂p

)

T

=

(
∂g

∂v

)

T

(
∂v

∂p

)

T

(B.40)

Therefore, the derivative, (∂g/∂v)T , which is useful to the derivations in the following sections, can

be calculated using the p-v-T relation as

(
∂g

∂v

)

T

= v

(
∂p

∂v

)

T

(B.41)
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B.2 Calculations of thermodynamic properties

The thermodynamic behavior of a real-gas near the critical condition is calculated using the Peng-

Robinson equation of state (EOS) model [119]. The Peng-Robinson model proposes a p-v-T relation

formulated as a cubic EOS. The expression of the Peng-Robinson model is

p =
RT

v − b
− a³(Tr)

v2 + 2vb− b2
(B.42)

where R is the specific gas constant; a and b are constant parameters determined by the critical

condition, with values

a = 0.45723553
R2T 2

c

pc
and b = 0.07779607

RTc

pc
(B.43, B.44)

where Tc and pc are the critical temperature and pressure respectively. ³ is a function of the reduced

temperature, Tr = T/Tc, defined as

³ =
[
1 + »

(
1 −

√
Tr

)]2
(B.45)

where » is a model parameter calculated using the acentric factor of the gas molecule, É,

» =





0.37464 + 1.54226É − 0.26992É2 for É f 0.49

0.379642 + 1.48503É − 0.164423É2 + 0.016666É3 for É > 0.49
(B.46)

The p-v-T relation requires the following model parameters: É, Tc, pc and R. The derivatives based

on the p-v-T relation are calculated as

(
∂p

∂T

)

v

=
R

v − b
+

a
[
1 + »

(
1 −

√
Tr

)]

v2 + 2vb− b2

(
»

Tc

√
Tr

)
(B.47)

(
∂p

∂v

)

T

= − RT

(v − b)
2 +

2a (v + b)
[
1 + »

(
1 −

√
Tr

)]2

(v2 + 2vb− b2)
2 (B.48)

The calculation of internal energy is based on Eq. (B.17) with the reference state set to the

ideal-gas limit at the critical temperature, vref → ∞ and Tref = Tc. In the ideal-gas limit, the

temperature-dependent specific heat at constant volume, cv(T,∞), is modeled using a power law.

cv(T,∞) = cv(Tc,∞)

(
T

Tc

)n

=
R

µc,∞ − 1

(
T

Tc

)n

(B.49)

where n is a dimensionless model parameter and µc,∞ is the ratio of specific heats in the ideal-gas

limit at the critical temperature.
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B.2.1 Calculation of density from the Peng-Robinson model

Eq. (B.42) is explicit in p but implicit in T and v (or Ä). Define a compressibility factor Z as

Z =
pv

RT
(B.50)

An equivalent expression of Eq. (B.42) is formulated in terms of a cubic equation with respect to Z

instead of v [26].

Z3 − (1 −B)Z2 + (A− 2B − 3B2)Z + B(B2 + B −A) = 0 (B.51)

where A and B are temporally defined for convenience as

A =
³ap

R2T 2
and B =

bp

RT

Eq. (B.51) has the form

Z3 + a2Z
2 + a1Z + a0 = 0

Transform Eq. (B.51) to a depressed form by a change of variables, Z = y − a2/3,

y3 + b1y + b0 = 0 (B.52)

where

b1 = a1 −
1

3
a22 b0 =

2

27
a32 −

1

3
a2a1 + a0

The discriminant of Eq. (B.52), ∆y, is given as

∆y =
b20
4

+
b31
27

For ∆y > 0, Eq. (B.52) has one real root and two complex conjugate roots, and the valid solution

is the real root.

y =

(
−b0

2
+
√

∆y

)1/3

+

(
−b0

2
−
√

∆y

)1/3

(B.53)

For ∆y < 0, Eq. (B.52) has three distinct real roots,





y1 = r cos(ϕ)

y2 = r cos(ϕ + 2Ã/3)

y3 = r cos(ϕ− 2Ã/3)

(B.54)
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where

r = 2
√
−b1/3 and ϕ =

1

3
arccos

(
−b0/2√
−b31/27

)

When multiple real roots are present, the solution is the positive root that corresponds to the

lowest specific Gibbs free energy [26]. The specific Gibbs free energy can be formally calculated by

integrating along an isothermal compression / expansion process.

∆g = g(T, v) − g(T, vref) =

∫ v

vref

(
∂g

∂v

)

T

dv (B.55)

For the Peng-Robinson EOS model, and according to the derivation in Eq. (B.41), the specific Gibbs

free energy can be calculated as

∆g =

∫ v

vref

{
−RTv

(v − b)2
+

2Bv(v + b)

(v2 + 2vb− b2)
2

}
dv (B.56)

Since the objective is to select a physically valid root for the specific volume, v, the common constant

terms in the evaluations of ∆g for different values of v can be neglected. Therefore, the calculation

can be simplified to

∆g = ∆g0 +
RTb

v − b
− a³v

v2 + 2vb− b2
−RT ln(v/b− 1) +

a³

2
√

2b
ln

[
v − (

√
2 − 1)b

v + (
√

2 + 1)b

]
(B.57)

where ∆g0 contains all the common constant terms that are not relavant to the calculation of the

specific Gibbs free energy to select the root of v, and ³ = ³(T/Tc) is implied as defined based on

the Peng-Robinson EOS in Eq. (B.45).

B.2.2 Calculation of temperature from the Peng-Robinson model

The Peng-Robinson EOS, Eq. (B.42), is a quadratic equation for
√
Tr, which can be written as

(
A−B»2

)
Tr + 2B»(» + 1)

√
Tr −B(» + 1)2 − p = 0 (B.58)

where A and B here are temporally defined as

A =
RTc

v − b
and B =

a

v2 + 2vb− b2

Therefore, the temperature can be calculated as

T = Tc

[
B»(» + 1) +

√
AB(» + 1)2 + (A−B»2)p

(A−B»2)

]2
(B.59)



APPENDIX B. REAL-GAS THERMODYNAMIC AND TRANSPORT PROPERTIES 189

B.2.3 Calculations of internal energy, specific heats, and other relations

The calculation of the internal energy is based on Eq. (B.17), where vref → ∞ and Tref = Tc. The

calculation of cv(T, vref) is given in Eq. (B.49). Combined with the Peng-Robinson p-v-T relation,

the specific internal energy can be calculated as

e(Tr, v) =
RTc(T

n+1
r − 1)

(µc,∞ − 1)(n + 1)
+

a

2
√

2b
(» + 1)

(
»− »

√
Tr + 1

)
ln

(
v + (1 −

√
2)b

v + (1 +
√

2)b

)
(B.60)

where n is introduced in Eq. (B.49) for the calculation of the temperature dependent specific heat

in the ideal-gas limit. The specific heat at constant volume in the dense-gas regime is calculated

based on its definition given in Eq. (B.3).

cv(Tr, v) = cv(Tr,∞) −
(

a»(» + 1)

4
√

2bTc

√
Tr

)
ln

[
v − (

√
2 − 1)b

v + (
√

2 + 1)b

]
(B.61)

The specific heat at constant pressure, cp, can be calculated using Eq. (B.21) combining with the

calculation of cv in Eq. (B.61), where the derivatives based on the p-v-T relation, (∂p/∂T )v and

(∂p/∂v)T , are given in Eq. (B.47) and Eq. (B.48) respectively. The energy of imperfection, (∂e/∂v)T ,

is calculated as (
∂e

∂v

)

T

=
a(» + 1)(»− »

√
Tr + 1)

v2 + 2vb− b2
(B.62)

B.3 Calculations of transport properties

The calculations of the transport properties of a fluid considering the effects of temperature and

pressure are calculated using the transport models proposed by Chung et al. (1988) [25]. The detailed

calculations documented in this section also largely reference the work published in Ref. [125].

The original Chung et al. (1988) model involves dimensional model parameters so that specific

physical units are required with the given formulas during calculation. In addition to the model

that is formulated in a dimensional form, the derivation provided in this section also contains the

nondimensional form of the transport models converted from Chung et al. (1988) [25] as proposed

in Ch. 3.

Given a Lennard-Jones potential curve, a dimensionless temperature, T ∗, is defined as

T ∗ = kT/ϵ

where k is the Boltzmann constant, and ϵ is the depth of the potential well. It is reported by Chung

et al. that

kTc/ϵ = 1.2593 (B.63)
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Therefore, T ∗ can be calculated using the reduced temperature Tr.

T ∗ = 1.2593Tr (B.64)

The collision integral from a gas-dynamics point of view, Ωv, is calculated based on an empirical

relation proposed by Neufeld et al. [108]. For 0.3 f T ∗ f 100, Ωv can be calculated as

Ωv(T ∗) = AT ∗−B + C exp(−DT ∗) + E exp(−FT ∗) (B.65)

where A, B, C, D, E, and F are constant dimensionless model coefficients whose values are provided

in Tab. B.1. The scaled electric dipole moment, µr, is calculated as

µr =
131.3µ[debyes]√

Vc[cm3/mol] × Tc[K]
(B.66)

where µ is the dimensional electric dipole moment given in units of debyes, Vc is the molar volume

given in units of cm3/mol, and Tc is the critical temperature given in units of K.

A B C D E F
1.16145 0.14874 0.52487 0.77320 2.16178 2.43787

Table B.1: Coefficients for the calculation of Ωv in Eq. (B.65).

B.3.1 Calculation of dynamic viscosity

According to the method of Chung et al. (1988), the dynamic viscosity of a pure gas, ¸, can be

calculated as

¸ = ¸c¸
∗/¸∗c (B.67)

where ¸c is the dynamic viscosity at the critical condition, ¸c = ¸(Tc, pc). ¸∗ is a function of

temperature and density, and ¸∗c is ¸∗ at the critical condition. ¸∗ is calculated as

¸∗ =

√
T ∗

Ωv
Fc

(
1

G2
+ E6y

)
+ ¸∗∗ (B.68)

where the variables, y, Fc, G2, and ¸∗∗ are calculated following the equations below.

y = Ävc/6 (B.69)

Fc = 1 − 0.2756É + 0.059035µ4
r + »p (B.70)

G1 = (1 − 0.5y)/(1 − y)3 (B.71)
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G2 =
E1

(
1 − e−E4y

)
/y + E2G1e

E5y + E3G1

E1E4 + E2 + E3
(B.72)

¸∗∗ = E7G2y
2 exp

(
E8 + E9T

∗−1 + E10T
∗−2
)

(B.73)

In the equations from Eq. (B.68) to Eq. (B.73), y is a dimensionless density, G1 and G2 are functions

of y, ¸∗∗ is a function of T ∗ and y, and Fc accounts for the molecular shapes and polarities of dilute

gases. Ωv is calculated using Eq. (B.65). vc is the specific volume at the critical condition; É is

the acentric factor; µr is the scaled electric dipole moment (cf. Eq. (B.66)); and »p is a special

correction for highly polar substances such as alcohols and acids. The dimensionless coefficients Ei

are calculated as

Ei = ai + biÉ + ciµ
4
r + di»p (B.74)

where the coefficients ai, bi, ci, and di are listed in Tab. B.2. Note that all Ei’s only depend on

the molecular structure. According to the calculation process, at the critical point T ∗ = 1.2593 and

y = 1/6, which can be used to calculate ¸∗c . The input arguments for the solver initialization are

µr, »p, É, pc, Tc, and ¸c. Then given p and T with the procedure introduced in this sub-section, ¸

can be uniquely calculated.

i ai bi ci di
1 6.3240E+00 5.04120E+01 -5.1680E+01 1.189E+03

2 1.2100E-03 -1.15400E-03 -6.2570E-03 3.728E-02

3 5.2830E+00 2.54209E+02 -1.6848E+02 3.898E+03

4 6.6230E+00 3.80960E+01 -8.4640E+00 3.142E+01

5 1.9745E+01 7.63000E+00 -1.4354E+01 3.153E+01

6 -1.9000E+00 -1.25370E+01 4.9850E+00 -1.815E+01

7 2.4275E+01 3.45000E+00 -1.1291E+01 6.935E+01

8 7.9720E-01 1.11700E+00 1.2350E-02 -4.117E+00

9 -2.3820E-01 6.77000E-02 -8.1630E-01 4.025E+00

10 6.8630E-02 3.47900E-01 5.9260E-01 -7.270E-01

Table B.2: Coefficients for the calculation of Ei for dynamic viscosity calculation in Eq. (B.74).

B.3.2 Calculation of thermal conductivity

According to the method of Chung et al. [25], the thermal conductivity of a pure gas, ¼, can be

calculated as

¼ = R¸c

{
3.75256¸¸r Ψ

(
1

G2
+ E6y

)
+ q∗E7G2y

2
√
Tr

}
(B.75)

where the superscript “¸” denotes the quantity that is evaluated at a low pressure, i.e., ¸¸ = ¸(T, p¸)

and ¸¸r = ¸¸/¸c for p¸/pc j 1. The definitions of y and G2 in Eq. (B.75) are the same as those for

the calculation of dynamic viscosity associated with G1, Ei (cf. Eq. (B.69), Eq. (B.71), Eq. (B.72),
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and Eq. (B.74)), whereas the coefficient matrix used to calculate Ei is different from those used

for the calculation of viscosity. The coefficients ai, bi, ci, and di for the calculation of thermal

conductivity are listed in Tab. B.3.

i ai bi ci di
1 2.4166E+00 7.4824E-01 -9.1858E-01 1.2172E+02

2 -5.0924E-01 -1.5094E+00 -4.9991E+01 6.9983E+01

3 6.6107E+00 5.6207E+00 6.4760E+01 2.7039E+01

4 1.4543E+01 -8.9139E+00 -5.6379E+00 7.4344E+01

5 7.9274E-01 8.2019E-01 -6.9369E-01 6.3173E+00

6 -5.8634E+00 1.2801E+01 9.5893E+00 -6.5529E+01

7 9.1089E+01 1.2811E+02 -5.4217E+01 5.2381E+02

Table B.3: Coefficients for the calculation of Ei for the thermal conductivity calculation in Eq. (B.74).

Consistent with the method of Chung et al. the low-pressure viscosity can be calculated as

¸¸ = ¸¸c
Ωvc

Ωv

√
Tr (B.76)

where ¸¸c denotes the dynamic viscosity at the critical temperature but at a low-pressure, i.e.,

¸¸c = ¸(Tc, p
¸), and Ωvc is the collision integral at the critical condition calculated from Eq. (B.65)

for T ∗ = 1.2593.

The function Ψ in Eq. (B.75) is calculated as

Ψ(Tr, pr) = 1 + ³′ 0.215 + 0.28288³′ − 1.061´′ + 0.26665z

0.6366 + ´′z + 1.061³′´′
(B.77)

where the dimensionless factor ³′ is calculated as

³′ =
cv
R

− 3

2
(B.78)

where cv and R are the specific heat at constant volume and the specific gas constant. cv(T, v)

can be calculated from the thermodynamic equation of state. ´′ is an empirical correlation. For

nonpolar molecules, ´′ is calculated as

´′ = 0.7862 − 0.7109É + 1.3168É2 (B.79)

while for polar gas molecules, ´′ is species dependent. For a type of polar gas molecule whose ´′ is

not available, the default value to use is ´′ = 0.758. z characterizes the number of collisions required

to interchange between quantum of rotational energy and translational energy, which is calculated

as

z = 2.0 + 10.5T 2
r (B.80)
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In Eq. (B.75), the dimensionless factor q∗ is defined as

q∗ = q/(R¸c) (B.81)

where the calculation of the dimensional quantity, q, is given as an empirical correlation in dimen-

sional form [125].

q[W/(m · K)] = 3.586 × 10−3

√
Tc[K] ÷M [kg/mol]

(Vc[cm3/mol])
2/3

(B.82)

where M is the molar mass of the molecules, and Vc is molar volume of the fluid at the critical

condition. in Eq. (B.82), the critical temperature Tc is specified in K, the molar mass, M , is

specified in kg/mol, the molar volume, Vc, is specified in cm3/mol, and the result, q, is obtained in

the unit of W/(m · K).



Appendix C

Formulation of the Taylor-Green

Vortex Used in the Performance

Test of the Parallel Linear Solver

C.0.1 Problem description

The Taylor-Green vortex problem is a well-established fluid mechanics problem defined on a 3D

periodic domain, x ∈ [0, 2Ãl) × [0, 2Ãl) × [0, 2Ãl), where l is a characteristic length. The tests used

in this work were conducted by solving the compressible Navier-Stokes equations.

∂φ

∂t
+ ∇ · F + ∇ ·G = 0 (C.1)

where φ is the set of the conservative variables; F is the set of inviscid fluxes; and G is the set of

diffusive fluxes. They are defined as

φ =




Ä

Äu

Ä(e + u · u/2)


 (C.2)

F =




Äu

Ä (u¹ u) + PI

u (Äe + Äu · u/2 + P )


 (C.3)

G =




0

−σ

q − u · σ


 (C.4)
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where Ä is the density; u = [u, v, w]T is the velocity vector; P is the pressure; I is the identity tensor;

e is the specific internal energy, σ is the viscous stress tensor; and q is the heat flux. The fluid is

treated as an ideal gas with the following equation of state.

P = ÄRT (C.5)

where R is the specific gas constant; and T is the temperature. Accordingly, the internal energy is

e =
RT

µ − 1
(C.6)

where µ is the ratio of specific heat. The viscous stress tensor is modeled as

σ = µ
[
(∇u) + (∇u)T

]
+

(
´ − 2

3
µ

)
(∇ · u) I (C.7)

where µ is the dynamic shear viscosity; and ´ is the bulk viscosity. For the simulations used in this

work, ´ = 0, and µ is set to be a constant determined from the Reynolds number, Re.

Re =
Ä0V l

µ
(C.8)

where Ä0 is the mean density as well as the initial density of the fluid, and V is a characteristic

velocity. The heat flux q is computed based on Fourier’s law

q = −»∇T (C.9)

where » is the heat conductivity controlled by the Prandtl number, Pr, defined as the following.

Pr =
µRµ

(µ − 1)»
(C.10)

The initial velocity, [u0, v0, w0]T , and pressure, P0, fields are set as [19]

u0 = V sin(x/l) cos(y/l) cos(z/l) (C.11)

v0 = −V cos(x/l) sin(y/l) cos(z/l) (C.12)

w0 = 0 (C.13)

P0 = Pref +
Ä0V

2

16
[cos(2x/l) + cos(2y/l)] [cos(2z/l) + 2] (C.14)

where l = 1, V = 1, Ä0 = 1, and Pref = 100. The Reynolds number and Prandtl number are set to

Re = 1600 and Pr = 0.7, respectively. The specific gas constant is set to unity, and the specific heat

ratio µ = 5/3, so that the Mach number, Ma, consistent with the initial conditions, is approximately
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0.08, calculated based on the following based on its definition:

Ma =
V√

µPref/Ä0
(C.15)

(a) (b)

Figure C.1: Q-criterion iso-surface colored by enstrophy in the Taylor-Green vortex problem using
2563 points.

C.0.2 Numerical schemes

The problem is numerically computed on a 3D Cartesian uniform mesh using the staggered sixth

order compact finite difference schemes and the sixth order compact interpolators [89, 107], as shown

in the following two equations.

9

62
f ′
i−1 + f ′

i +
9

62
f ′
i+1 =

63

62

(
fi+1/2 − fi−1/2

∆

)
+

17

62

(
fi+3/2 − fi−3/2

3∆

)
(C.16)

3

10
f I
i−1 + f I

i +
3

10
f I
i+1 =

3

2

(
fi+1/2 + fi−1/2

2

)
+

1

10

(
fi+3/2 + fi−3/2

2

)
(C.17)

where f , f ′, and f I represent the original field, first derivative, and interpolated field, respectively;

the subscripts indicate the grid indices in the corresponding direction; and ∆ is the grid spacing

in the corresponding direction. The primitive variables are all stored at the collocated grid points,

and all the fluxes in F and G are constructed at the edge-staggered locations in the corresponding

directions. The time advancement uses the standard fourth order Runge-Kutta method.



Bibliography

[1] Yoshiaki Abe, Taku Nonomura, Nobuyuki Iizuka, and Kozo Fujii. Geometric interpreta-

tions and spatial symmetry property of metrics in the conservative form for high-order finite-

difference schemes on moving and deforming grids. Journal of Computational Physics, 260:163–

203, 2014.

[2] Yoonhan Ahn, Seong Jun Bae, Minseok Kim, Seong Kuk Cho, Seungjoon Baik, Jeong Ik Lee,

and Jae Eun Cha. Review of supercritical CO2 power cycle technology and current status of

research and development. Nuclear Engineering and Technology, 47(6):647–661, 2015.

[3] Hussein Aluie. Scale decomposition in compressible turbulence. Physica D: Nonlinear Phe-

nomena, 247(1):54–65, 2013.

[4] Ponnampalam Balakumar, Prahladh S Iyer, and Mujeeb R Malik. Turbulence simulations of

transonic flows over an NACA-0012 airfoil. In AIAA SciTech 2023 Forum, AIAA 2023-0254,

2023.

[5] B Benoit and I Legrain. Buffeting prediction for transport aircraft applications based on

unsteady pressure measurements. In 5th Applied Aerodynamics Conference, AIAA 1987-2356,

1987.

[6] Iván Bermejo-Moreno, Johan Larsson, and Sanjiva K Lele. LES of canonical shock-turbulence

interaction. Annual Research Briefs, pages 209–222, 2010.

[7] Jean-Pierre Bertoglio, Françoise Bataille, and Jean-Denis Marion. Two-point closures for

weakly compressible turbulence. Physics of Fluids, 13(1):290–310, 2001.

[8] GA Blaisdell, ET Spyropoulos, and JH Qin. The effect of the formulation of nonlinear terms

on aliasing errors in spectral methods. Applied Numerical Mathematics, 21(3):207–219, 1996.

[9] Gregory Allan Blaisdell. Numerical Simulation of Compressible Homogeneous Turbulence. PhD

thesis, Stanford University, 1991.

197



BIBLIOGRAPHY 198

[10] Daniel J Bodony and Sanjiva K Lele. On using large-eddy simulation for the prediction of

noise from cold and heated turbulent jets. Physics of Fluids, 17(8):085103, 2005.

[11] Rafael Borges, Monique Carmona, Bruno Costa, and Wai Sun Don. An improved weighted

essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of Computational

Physics, 227(6):3191–3211, 2008.

[12] Sanjeeb T Bose, Parviz Moin, and Donghyun You. Grid-independent large-eddy simulation

using explicit filtering. Physics of Fluids, 22(10):105103, 2010.
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