Gradual Typing Performance, Micro Configurations
and Macro Perspectives

Mohammad Wahiduzzaman Khan and Sheng Chen

UL Lafayette, Lafayette LA 70503, USA
{mohammad-wahiduzzaman.khanl,chen}@louisiana.edu

Abstract. Static typing and dynamic typing have respective strengths and weak-
nesses, and a language often commits to one typing discipline and inherits the
qualities, good or bad. Gradual typing has been developed to reconcile these typ-
ing disciplines, allowing a single program to mix both static and dynamic typing.
It protects soundness of typed regions with runtime checks when values flown
into them do not have required static types. One issue with gradual typing is that
such checks can incur significant performance overhead. Previous work on per-
formance has focused on coarse-grained gradual typing where each module (file)
has to be fully typed or untyped. In contrast, the performance of fine-grained grad-
ual typing where each single parameter can be partially-typed (such as specifying
the parameter as a list without giving element type) has not been investigated.
Motivated by this situation, this paper systematically investigates performance of
fine-grained gradual typing by studying the performance of more than 1 million
programs. These programs are drawn from seven commonly-used benchmarks
with different types for parameters: some parameters are untyped, some are stat-
ically typed, and others are partially statically typed. The paper observes many
interesting phenomena that were previously unknown to the research commu-
nity. They provide insights into future research directions of understanding, pre-
dicting, and optimizing gradual typing performance as well as migrating gradual
programs towards more static.

1 Introduction

In static typing, compilers use types to catch programming errors, provide documen-
tation, and optimize program performance. Static type systems are considered as one
of the most successful formal methods. Static typing also has several shortcomings.
For example, it requires the program to be complete and free of type errors before it
can be run, even though the region that causes the type error may not be covered in a
certain execution. It also prevents some commonly used programming idioms for fast
prototyping, such as heterogeneous data structures and reflection.

Dynamic typing provides the flexibility that not supported by static typing but offer
little static error detection. Overall, these two typing disciplines are complementary, of-
fering different strengthens and having different weaknesses. In early years, a language
chose one typing discipline and committed to it. It is impossible to have the advantage
of a typing discipline that the language did not choose to follow. For example, it is im-
possible to have the flexibility of dynamic typing in C, which uses static typing and to
have static error detection in Python, which uses dynamic typing.

2 Mohammad Wahiduzzaman Khan and Sheng Chen

In real-world development, it is often desirable for a single language to support both
static and dynamic typing. There have been two different typing disciplines developed
for this purpose, optional typing and gradual typing. In both disciplines, type annota-
tions can optionally be added to variables, parameters, and return values to specify their
types, allowing for static type checking. However, unannotated code retains the flexibil-
ity of dynamic typing, enabling rapid prototyping and exploration without the burden of
explicit type declarations. Both have attracted enormous attention, from both industry
and academia.

The main difference between optional typing and gradual typing is that the latter
performs runtime type checks while the former does not. There are many advantages of
performing runtime type checks, including ensuring the soundness of typed code, early
detection of runtime type errors, and precise blaming of code that violates runtime er-
rors. The main issue with runtime type checks is, however, such checks can significantly
slowdown program performance.

The performance problem has been well known. Several studies have conducted
in-depth investigations of gradual typing performance [29,13]. These studies have ob-
served that sound gradual typing incurs significant performance overhead, in some case
the slowdown could be more than 100 times. However, such studies have focused on
gradual typing where type additions are supported only at the granularity level of mod-
ules. Specifically, if developers wanted to add type annotations to their codebase, then
they have to add type annotations to all functions in a module or they have to leave the
module completely untyped. For a codebase with n modules, 2" different configurations
may be created, where each configuration adds type annotations to a certain subset of
all n modules. Such a gradual typing system has been added to Racket to create Typed
Racket.

However, no studies have investigated the performance characteristics of micro
gradual type systems, where type annotations may be added to any individual func-
tion of a module or even a single parameter. Moreover, in practice, the type for each
parameter may be a mix of static and dynamic types, rather than fully dynamic (denot-
ing that the parameter is untyped) or fully static (denoting that the full type information
for the parameter can be completely decided at compile time). To illustrate, consider
the function reduce in Figure 1. This function takes three parameters and reduces the
list (1st) into a single value using the function £ with the initial value init. In this ex-
ample, the parameter £ has a dynamic type, written as Dyn. This type indicates that the
type of £ can not be known at compile time, and its usage should not be type checked
statically. The type for init is Int, which is fully static. The type for 1st, List (Dyn),
is a partially static type. This type specifies that the parameter 1st will be used as a list
without any restrictions on the element type of the list.

Without a clear understanding of the performance landscape of micro gradual typ-
ing, a few questions remain unanswered. First, how to evaluate the performance of
micro gradual typing and specific benchmarks? The full configuration space of using
micro gradual typing is very huge. For a program with n parameters, we are able to
generate 2" configurations, where the type for each parameter is a Dyn or a fully static
type. We refer to such configurations as outlying configurations. In addition, we are
able to generate more configurations where the type for some parameter is a mix of

Gradual Typing Performance, Micro Configurations and Macro Perspectives 3

def reduce(f:Dyn, lst:List(Dyn), init:Int):
result = init
for i in range(len(lst)):
result = f(result,lst[i])
return result

Fig. 1: A gradual program in Python type hint syntax that mixes different kinds of type
annotations.

Dyns and static types. We refer to such configurations as intermediate configurations.
For example, reduce in Figure 1 is an intermediate configuration because the type for
1st contains both static type information (List) and a Dyn. However, had we changed
the type of 1st to Dyn or List(List (Int)), then reduce is an outlying configuration.
The number of intermediate configurations quickly doubles the number of outlying
configurations, depending on the type structure of each parameter. For example, if the
static type for a parameter is Tuple(Int,Float,List(Int)), then in an outlying con-
figuration, the parameter may be assigned eleven different types, with two possibilities
for the first component of the tuple, two for the second component, and three (Dyn,
List(Dyn), List(Int)) for the third componentl.

Given this sheer number of possible configurations, how to measure the perfor-
mance of gradual programs? It is obviously infeasible to measure all configurations.
Sampling is therefore necessary. The question is, what sampling strategy should be
used? Should the samples include both outlying configurations and intermediate con-
figurations or outlying configurations are sufficiently representative? Early work on mi-
cro gradual typing performance [32,34,33,4,5] considered only outlying configurations.
Should future work on micro gradual typing also sample intermediate configurations for
evaluation?

The second question remains unanswered is, what are desirable type annotations
for parameters? This question is closely intertwined with the problem of gradual type
migration, which studies the challenges and solutions of adding static type annotations
to gradual programs. While manually adding type annotations is one possible way for
small programs, it does not scale to large programs. Several approaches based on type
inference [6,14,3,24,7,27,2,16,22], dynamic approaches [18,9], and machine learning
based approaches [17,21,23,1], have been developed. Such approaches often fail to infer
most static types for parameters. It is very likely that the user will start from the types
added by such type migration tools and make the types more static. The questions are
then, how diverse are the run times of the configurations when a single parameter is
assigned different types, do the performance keep on increasing when the type for a
parameter becomes more static, does the most static type lead to the best performance?

This paper aims to answer these questions through a systematic evaluation of around
1.25 million configurations drawn from six commonly-used benchmarks for gradual
typing research. This paper makes the following contributions:

12 %2 %3 =12, but we need to minus one combination whose all components are static.

4 Mohammad Wahiduzzaman Khan and Sheng Chen

def reducel(f:Function([Int,Dyn],Int),
1st:[Dyn], init:Int):
result = init
for i in range(len(lst)):
result = f(result,lst[i])

return result

def wider(cw:Int, ci:Dyn) -> Int:

return max(cw, len(ci))

[r11,r2,31,14,5,611]
reducel (wider,cont,0)

cont =

(a) reducel, with 1st type being [Dyn]

def reduce2(f:Function([Int,Dyn],Int),
1st:[[Dyn]l], init:Int):
result = init
for i in range(len(lst)):
result = f(result,lst[i])
return result

reduce2(wider,cont,0)

(c) reduce?2, with 1st type being [[Dyn]]

def reducel(f, 1lst, init):
result = init

for i in range(len(lst)):
result = f(result, 1lst[i])

return result : Int => Dyn

def wider(cw, ci):

return max(cw, len(ci)) : Dyn => Int
cont = [[1],[2,3],[4,5,6]]
reducel(wider, cont : Dyn => [Dyn], 0)

(b) Cast inserted version of reducel
def reduce2(f, 1lst, init):
result = init
for i in range(len(lst)):
result = f(result, 1lst[i]

return result : Int => Dyn

reduce2(wider, cont :

(d) Cast inserted version of reduce2

Fig.2: Two different versions of reduce (left) that differ by only one parameter
type and their corresponding cast-inserted programs (right). The function type with
two parameters whose types are t1 and t2 and with return type t3 is written as

Function([t1,t2],t3).

1. It creates a benchmark with around 1.25 million configurations. Such configura-
tions have fine-grained types. With precise type information and corresponding ex-
ecution times, it facilitates future research in gradual typing.

2. It studies three research questions concerning the representativeness of outlying
configurations and performance change as parameter types undergo minor changes.

3. Based on the evaluation results, it makes affirmative answers to the studied research
questions. Specifically, the result reveals that outlying configurations are not always
representative, the performance can change radically even with small changes in
type annotations, and counter-intuitively, the performance often decreases as pa-
rameter types become more precise. These answers suggest a better performance
evaluation method for future work on gradual typing performance. They also indi-
cate where further research attention is needed to make gradual typing practical.

[Dyn] => Dyn)

Dyn => [[Dynll, 0)

Gradual Typing Performance, Micro Configurations and Macro Perspectives 5

2 Background

The purpose of gradual typing is to strike a balance between the safety and performance
guarantees of static typing and the flexibility and expressiveness of dynamic typing.
As such, in gradual typing, a parameter or variable may be assigned a static type if
the type expectation of the parameter or variable can be statically determined and the
uses of it need to be statically checked. In contrast, if the type can not be determined
statically, then the type should remain dynamic. The absence of a type annotation or a
Dyn for a parameter denotes that the parameter has dynamic type. It is also possible that
a parameter is annotated with a partially static type, as [Dyn] for 1st in Figure 2(a).

A static type annotation for a parameter is a protocol for both the internal and ex-
ternal of the function. For the internal of the function, the type specifies the guarantee
of the type of the parameter to the rest of the function definition. For example, the type
for £ indicates that the return type is Int. As a result, inside the function, every call will
always return a value of type Int. For the external of the function, the type specifies the
expectation of the corresponding argument to the function. For example, when reducel
is called, the first argument must be a function type and the first parameter type and the
return type of it must be Int.

The argument may be statically typed and matches the expectation of the parameter
type. In this case, no runtime checks are needed. Otherwise, runtime checks will be
inserted to protect the type annotations, a notion known as enforcing type soundness.
To illustrate, consider the execution of the program in Figure 2(a). When a gradually-
typed program is executed, it is often translated to a program in the underlying language
with runtime checks inserted. For example, the gradually-typed language Reticulated
Python [32,34] is translated to Python. The translated program for Figure 2(a) is given
in Figure 2(b).

In translating the call of reduce1 (the last line of Figure 2(a)), the type expectation
of £ (Function([Int,Dyn],Int)) matches the type of the argument since the type of
wider is also Function([Int,Dyn],Int) (see the caption of Figure 2 for an explanation
of type syntax for function types). As a result, no runtime checks will be inserted for
wider. However, for 1st, the expectation is [Dyn] (based on the type annotation for 1st
in the definition of reduce1), and the argument has type Dyn (many gradual type systems
do not assign a static type to a list because lists can be heterogeneous). As a result, a
runtime check, often called a cast, is inserted to make sure that cont has the expected
type for calling reducel. The cast is written as cont: Dyn => [Dyn], expressing that
the statically known type of cont is Dyn but it is used in a context that requires it to
have the type [Dyn]. A general form of a cast is written as expr : source_type =>
target_type.

Casts may have very different runtime overheads. Basic casts involving primitive
types (such as Int, Bool, and Float) and Dyn are very lightweight. For example, the
caste: Dyn => Int induces very little runtime overhead because a single runtime type
check (such as isinstance(e,int) in Python) suffices to check if the cast will be suc-
cessful. However, casts involving other types, such as lists and functions, can be very
expensive. The reason is that such casts can not be verified at where they appear. To il-
lustrate, consider a cast £:Dyn => Int -> Bool. This cast means that £ should return a
Bool value whenever it is called with an Int value. It is impossible to measure whether

6 Mohammad Wahiduzzaman Khan and Sheng Chen

f satisfies the cast at its occurrence location because in dynamic languages a function
may return values of different types for values of the same type.

Instead, for such a cast, a proxy needs to be created to make sure that it has expected
type at each call site. Continuing the example from the previous paragraph, when £ is
called, the proxy for £ checks whether the argument has the type Int and the return type
of £ has the type Bool. Creating proxies and checking the argument and return types for
each call involves more significant overheads.

Such casts are the main reason that sound gradual typing radically slows down pro-
gram performance. Earlier work [29] observed this phenomenon when types are added
to a single module (file). This work investigates the impact of changing the type an-
notation of a single parameter on program performance. To illustrate how performance
may be affected due to a type change, consider the program in Figure 2(c). The only
difference (with a gray background) compared to Figure 2(a) is that the type annotation
for 1st is changed to [[Dynl]. The single type change, however, led to the changes of
two inserted casts, shown in Figure 2(d) with a gray background. One of these casts is
inside a for loop, and it in fact induces high overhead for this program. We measured
the performance of these programs and observed that the performance for program in
Figure 2(c) doubles that in Figure 2(a).

Distribution of running times Monte carlo Monte carlo (93600 configurations)
35000 100
30000 80
525000
§ 20000 60
]
=
@ 15000 40
T
10000 2
5000
o ,,4 L 0
0o 2 4 6 8 10 12 14 16 0 5 10 15 20 25 30
Distribution of running times Pascal-1 Pascal-1 (4063 configurations)
100
700
600 80
>
gs00 60
$ 400
g —
£300] | 40
200 20
100
o L] 0
0 25 50 75 100 125 150 175 0 50 100 150 200 250 300
Distribution of running times Pascal-2 Pascal-2 (98304 configurations)
30000 — 100
25000 /\ 80
>20000
2 60
[
215000
o 40
T
10000
20
5000
0 . 0

0 25 50 75 100 125 150 175 200

o

50 100 150 200 250 300

Fig. 3: The execution time distribution for each benchmark.

Gradual Typing Performance, Micro Configurations and Macro Perspectives

Distribution of running times Scimark-1

1400

1200

1000

®
=3
=)

3

Frequency
o
(=3
S

80000
70000
a60000
§ 50000
g 40000
* 30000
20000
10000

40000
35000
30000
gzsooo
ézoooo
T 15000
10000
5000

0

600000
500000
'400000
*300000
200000
100000

0

Frequency
= N w S w =
(=] o (=3 o (=3 (=3
S 3 8 & & &

=)

10 20 30 40 50

Distribution of running times Scimark-2

0 5 10 15 20

Distribution of running times Nbody

-

0 5 10 15 20 25 30

Distribution of running times Raytrace

o
-
5]
-

5 20 25 30 35 40

Distribution of running times Sieve

10 12 14

Distribution of running times Chaos

Scimark-1 (4200 configurations)

100

80

60

40

20

\

0

25 50 7.5 100 125 150 17.5 20.0

Scimark-2 (323070 configurations)

100

80

60

40

20

80

60

40

20

100

80

60

40

20

100

80

60

40

20

800 1000

o
N
1=}
5]

600

Nbody (91520 configurations)

=3
-
=)
=3

Raytrace (635040 configurations)

Chaos (6000 configurations)

Fig. 4: The execution time distribution for each benchmark (continued)

8 Mohammad Wahiduzzaman Khan and Sheng Chen

Benchmark ‘LOC‘# of functions‘# of pars‘# of typed pars|# of configurations

Monte Carlo| 90 4 9 9 93600
Pascal-1 70 7 19 15 4062
Pascal-2 70 7 19 15 98304
Scimark-1 65 5 22 17 4602
Scimark-2 | 65 5 22 17 323070
Nbody 195 4 21 18 91525
Raytrace 455 21 94 67 635040
Sieve 56 9 22 21 15361
Chaos 271 22 42 29 6000

Table 1: Python benchmarks used for performance evaluation. The last column gives
the number of configurations generated for the corresponding benchmark. We gener-
ated two datasets for Pascal and Scimark to investigate how the size of dataset affects
evaluation results.

3 Benchmarks and Evaluation Protocol

For the purpose of evaluation, we consider seven benchmarks. They are mainly adapted
from Python performance benchmark suits and have been frequently in gradual typing
research [34,32,4,5]. Table 1 lists some basic metrics of each benchmark, such as num-
ber of lines of code, number of functions, etc. Note, the number of typed parameters
may be fewer than the number of parameters in a program because not all parameters
can receive static types. For a parameter that can be statically typed, we consider differ-
ent possible types for the parameter, from Dyn to most static. To generate a manageable
number of configurations for each benchmark, we set a single type for some parame-
ter if the parameter does not have much interaction with the rest of the program. For
example, for Nbody benchmark, it has one function defined as follows.

def bench_nbody(loops, reference, iterations):
for _ in xrange(loops):

Here loops can be given two possible types: Dyn or Int. Since loops does not interact
with the rest of the code except for being used in xrange, we consider only assigning Int
to loops. To test the validity this idea, we generate many pairs of configurations such
that in each pair loops receive different types. We observed that the execution times are
almost exactly the same within each pair. We briefly describe each benchmark below.

Monte Carlo This benchmark is to predict possible outcomes of uncertain events by
generating random numbers. It contains complex parameter and return types for several
functions. One such type is Tuple([Float], [Floatl, [Int])).

Pascal The purpose of this benchmark is to evaluate the efficiency and performance
of algorithms and functions related to generating Pascal’s triangle and permutations in
Python. One of the parameter in this benchmark is matrix, which is essentially a 2-D ar-
ray. In our generated configurations, we assigned four different types to this parameter:
Dyn, [Dyn], [[Dynll, and [[Float]].

Scimark It has six functions which contains a parameter arr. The most static type of
arr is Tuple (Int,Int,Int). This parameter can be typed in 8 different ways.

Gradual Typing Performance, Micro Configurations and Macro Perspectives 9

Sieve This benchmark implements the search of prime numbers using the idea of a
“Steam”. A main parameter in this benchmark is st, which represents the current state
of the stream. Its most static type is class Stream.

Nbody. This benchmark simulates the movement of celestial bodies under
gravity. It has several complex parameter types. For example, one of them is
[Tuple(Tuple([Float], [Float], Float), Tuple([Float], [Float], Float))]
There can be multiple ways with Dyn combinations to type this parameter.

Raytrace This benchmark is for simulating lighting for games. Its type structure is
similar to that of Scimark.

Figures 3 and 4 depict the runtime distribution of generated configurations for each
benchmark. For the left column in each figure, the x-axis is the execution time in sec-
onds and the y-axis is the number of configurations. Each image in the right column
presents the performance slowdowns compared to the fastest configuration in each
benchmark. The x-axis is the slowdown and the y-axis is the percentage of all con-
figurations. A point of (x,y) on the curve means that x% of all configurations have a
slowdown of smaller than y compared to the fastest configuration.

From these figures, we can observe that the execution times are very different

within and across benchmarks. The distributions are also very different, some have
more spread-out times while others are clustered. The number of clusters and the dis-
tances between them are also quite different. These factors encourage the validity of the
observations we make in this paper.
Evaluation protocol We use Reticulated Python [32,34], a gradual typing implemen-
tation for Python, to measure the execution time. The experiments are run on a system
equipped with Intel(R) 533 Core(TM) 19-9900K CPU @ 3.60GHz, 8 Core(s), and 32GB
RAM. Each measured time is an average of 10 runs.

4 Representativeness of Outlying configurations

While previous work [4,34,33] on gradual typing performance has largely focused on
outlying configurations, it is an interesting question to know if such configurations are
indeed representative of the whole benchmark.

For this investigation, we first separate all configurations into outlying configura-
tions and intermediate configurations. A configuration is outlying if the type for each
parameter in the configuration is a Dyn or a fully static type. Otherwise, a configuration
is intermediate.

We depict the temporal distribution of runtimes for outlying and intermediate con-
figurations. The kernel density (KD) plots (the left column of the figures) illustrate the
divergence in runtime characteristics between outlying and intermediate configurations.
An inspection of the KD plots reveals that the multimodal nature of both outlying and
intermediate configurations is characterized by the presence of multiple peaks. The box
plots (the right column of these figures) provide insights into the central tendency of
each distribution. Notably, outlying configurations exhibit a tendency to clusters closer
to their mean, while intermediate configurations display numerous outliers distributed
far from the mean.

10

Mohammad Wahiduzzaman Khan and Sheng Chen

Monte carlo Running Time

ntermediate

= outying
0.4
0.3
>
=
@
3]
802
0.1
0.0] \
2 4 6 8 10 12 14 16
Pascal-1 Running Time
mermedite
s = ouyng
om0
>
Zoas
§
o
om0
o005
EJ E)) BT
Running Time (seconds)
Pascal-2 Running Time
mermediate
0030 =3 Outiying

EY

150 175

7 100 125
Running Time (seconds)

Sciamrk-1 Running Time

0.175
0.150
0.125
>
£0.100
2
§
8 0.075
0.050
0.025

0.000

[——
=3 ouying

10

20 30 40 50

Sciamrk-2 Running Time

Intemediate
= ouying

090 2

Fig. 5: Execution time distribution of outlying and intermediate configurations

50 7.5 10.0 12.5 15.0 17.5 20.0

-
o

-
I

-
N

Run times

Run times

Run times

-
o

oON MO ®

H

IS
)

Run times

Run times

w
=)

N
S}

=
)

20

15

Monte carlo Running Time

9 =3 memediate
s =3 outying
1 2

Pascal-1 Running Time

= remedne
| = ouym

=

T 3

Pascal-2 Running Time

o =3 inermediate
=3 outying

Sciamrk-1 Running Time

=3 inermediate
= outying

Sciamrk-2 Running Time

o =3 inermediate
= outying

Gradual Typing Performance, Micro Configurations and Macro Perspectives 11

Raytrace Running Time Raytrace Running Time
s s = romedate
0.5 = ouyng 20 8 = oy
35 H

30

0.2y 15
0.1 10 %
5
0.0 =
)

5 10 15 20 25 30 35 40 1 2
Sieve Running Time Sieve Running Time
marmedie = niomedate
= v = oviyes
0.8 14
12
2061 $10
@ £
& g s
0 0.4 E] 6
0.2 4
2 -
0.0 2 4 6 8 10 12 14 1 2
0.018 Chaos Running Time Chaos Running Time
" 3 intermediate
0.016 100 = ouyng
0.014 90
0.0121 w 80
20.010] £
g > £ 70
20.0081 5 60
0.006{
50
0.004{
0.002] 40
30
0.000 T 5

Fig. 6: Execution time distribution of outlying and intermediate configurations (contin-
ued)

Based on these figures, we can observe that, except for Pascal-2, Raytrace, and
Chaos, the outlying configurations do not represent the whole benchmark well. More-
over, the reason why they are not representative vary across benchmarks. For example,
for Monte Carlo, outlying configurations represent configurations with large execution
times only while for Pascal-1 they represent only those with small execution times.

Overall, these figures suggest that future work on gradual typing performance
should sample from outlying as well as intermediate configurations to make sure the
result is representative.

5 Time Variations of Intermediate configurations

This section investigates how diverse are execution times of intermediate configurations
that differ by type annotations for a few parameters. Understanding the diversity is an
important problem that has both practical and theoretical implications.

In practice, type migrations are often done in small steps or with the help of type
migration tools. It is often common that such tools infer only part of the type informa-
tion, infer too specific type, or contain incorrect types, particularly when the static type

12 Mohammad Wahiduzzaman Khan and Sheng Chen

©.“D o0 <00 Q‘QO® ®) QO‘Q 08
<00 o0N0 00 90> ©080 ©000 - ©Q00

_

® 000

Fig. 7: The lattice, which has 8 outlying configurations ((D through ®), for a program
with three parameters. Each configuration is represented as three ovals, which each oval
indicates if the corresponding parameter is typed (filled) or not (unfilled). Each solid
line connects a less precise configuration (lower in the lattice) to a more precise one
(higher in the lattice). Assume the fully static type of the first parameter is [[Float]],
two intermediate configurations, one with the type of first parameter being [Dyn] (©)
and the other being [[Dyn]] (@), may be added between @ and . Likewise, assum-
ing the full static type of the second parameter is Tuple(Int,Float,Bool), then eight
intermediate configurations (®B) through (G)) can be generated between @ and 3. In B)
through (G), the three ovals in the middle indicate whether the three components of the
second parameter have static types or not.

is complex. In this case, it is likely that the developer will fix the type annotations, make
them more specific, or change them to new types. From the performance perspective,
there are several related questions. First, how such changes will affect the performance
of the program? Will the performance largely stay the same because the change of the
type is relatively minor compared to the type annotations for the whole program or will
such a small change already lead to significant performance swings?

Second, if the performance indeed changes radically due to such small type changes,
is the performance getting better or worse? The answer to this question provides useful
guidance for type migration. For example, if slightly making the type of a parameter
more specific decreases the performance, should the user make it even more specific or
reverse the type addition to restore the performance?

The answers to these questions can help both the users and researchers of gradual
typing. For the former, these answers will help develop useful guidance with program
migration, making programs more static while aware of the performance landscape. For
the latter, these answers reveal the real challenges of harmonizing program migration
and performance issues, indicating where the research is needed to make gradual typing
practical.

To answer these questions, we need to first find out groups that have different type
annotations for a specific number of parameters. To illustrate, consider the lattice in
Figure 7. From this lattice, we can extract two groups. The first group contains four
configurations (@, @, ©, and @), differing types in the first parameter. The second

Gradual Typing Performance, Micro Configurations and Macro Perspectives 13

Monte carlo group variances Pascal-1 group variances Pascal-2 group variances
H 5000 H
4000

3000 B
30 [

2000 .
1000 I
. . 1

1 1 1

o B N W » U o N

70 Scimark-1 group variances Scimark-2 group variances Nbody group variances
o f o
60 2500 H 2000
50 i 2000
H 1500
40 . 1500 H !
30 4 H 1000]
I 1000 ! i
20 i 0
5
10 | 500 |
o o o
! i 1

Raytrace group variances Sieve group variances

H 8
6
4
02 o
2
0.0 0 -

1 1

Fig. 8: Benchmark’s group variance distribution

group contains 8 configurations (2, ®, and B) through ©)), differing types in the second
parameter.

Given a group, we want to measure how diverse are the execution times of the
configurations in that group. We use variance to measure the variability of execution
times. Variance gives us an idea of how much the execution times deviate from the
average or mean runtime for that group. We calculate variance for each group in the
following steps. First, we compute the mean runtime for each group of programs. This
is achieved by summing up all the execution times within a group and dividing the total
by the number of configurations in that group. Second, for each individual runtime in the
group, the squared difference between it and the mean runtime is determined. Squaring
these differences ensures that negative and positive deviations do not cancel each other
out, providing a more accurate representation of dispersion. Third, the average of all the
squared differences calculated in the previous step is determined. This average value
represents the variance of the runtimes within the group.

Based on the calculation, a larger variance indicates greater spread or variability
of runtimes from the mean, suggesting a less consistent or stable performance across
the programs within the group. Conversely, a smaller variance signifies that the run-
times are closer to the mean, indicating less variability and potentially more consistent
performance.

14 Mohammad Wahiduzzaman Khan and Sheng Chen

Table 2: Benchmarks groups variance information

Benchmark ‘# of Groups‘Avg group size‘min Variance‘average variance|max variance

Monte Carlo| 57120 8 0.0 2.58 61.976
Pascal-1 4096 4 0.0 30.97 5153.21
Pascal-2 110376 7 0 0.27 7.33
Scimark-1 8226 3 0.0 0.83 67.57
Scimark-2 446875 5 0.0 3.56 2700.23
Nbody 43969 8 0.0 2.87 2170.60
Raytrace 10061 6 0.0 0.06 0.96
Sieve 71888 3 0.0 0.82 14.62

Table 3: Benchmarks group ordering information

Benchmark ‘# of Groups‘Avg group size‘% of increasing‘% of decreasing|% of neutral

Monte Carlo| 57120 8 34.69% 21.26% 44.04%
Pascal-1 4096 4 36.54% 16.62% 46.82%
Pascal-2 110376 7 12.15% 16.28% 71.56%
Scimark-1 8226 3 66.44% 21.34% 12.20%
Scimark-2 446875 5 11.29% 41.89% 46.81%
Nbody 43969 8 67.18% 4.55% 28.26%
Raytrace 10061 6 32.85% 14.34% 52.79%
Sieve 71888 3 88.37% 11.45% 0.16%

Table 2 gives the information about the number of groups for each benchmark,
average group size, the minimum, average, and maximum variance for all the groups
within a benchmark. Figure 8 depicts the variances of all groups within each bench-
mark. Based on this figure, it becomes evident that certain benchmark groups exhibit
notably higher variances compared to others. For instance, despite having similar code
structures, Pascal-1 and Pascal-2 demonstrate significantly different variances, with
Pascal-1 displaying a notably higher variance. Conversely, in the case of Scimark-1 and
Scimark-2, which also share similar code structures, Scimark-1 exhibits considerably
higher runtime than Scimark-2.

Based on these results, we can conclude that, with a small change of type annota-
tion for a single parameter, the performance can be very different. This indicates the
importance of finding the right type for each parameter to achieve good performance.

Given that each groups has a lot of variance, it is interesting to study if the perfor-
mance is increasing, decreasing, or a mix of them. For such a study, we first order all
configurations within a group based on the precision of the type. For example, as the
type for the first parameter in @ (Figure 7) is Dyn while that for @ is [Dyn], we say @
is more precise than @. After ordering, @ is the most precise, followed by @), @), and
@. 1t is possible that not all configurations in a group can be ordered, such as ®) and

Gradual Typing Performance, Micro Configurations and Macro Perspectives 15

®. For such groups, we consider only the path that configurations can be fully ordered
along the path.

After ordering each group, we can easily decide if the execution time is decreasing,
increasing, or a mix. Table 3 summarizes the result for this study. In the table, the
last three columns calculate the percentage of all groups whose execution times are
increasing, decreasing, or neutral. Note, if a group has an increasing execution time, the
performance degrades as configurations become more precise. Based on the results, we
can conclude that the performance often decreases as programs become more precise.
Fortunately, there are exist groups whose performance increases as program become
more precise. This indicates that future research is needed that takes into consideration
both performance and program migration. In particular, it is critical to find parameters
such that making them more precise also increases the performance.

6 Related Work

This paper studies the performance of micro gradual typing, where a partial or full static
type annotation may be given to a parameter, return value, or variable. Micro gradual
typing has been used in Reticulated Python [34,32], Grift [15], and many others [25,26].
There is another kind of gradual typing, adopted by Typed Racket [30], where the de-
cision of whether adding type annotation or not is made at the granularity of a module.
Several studies [29,13] have investigated the performance of this kind of gradual typing.
A benchmark for this kind of gradual typing research has also been developed [12]. The
goal of these papers are thus quite different from ours. Moreover, this paper also inves-
tigates representativeness of outlying configurations and how performance changes as
the type for a single parameter experiences changes, which are unique to micro gradual
typing.

The overhead of gradual typing is due to the checks inserted for protecting typed
regions. Such checks are performed at runtime. In contrast, optional typing uses type
annotations for performing static type checking to catch more programming mistakes
before program are run. TypeScript [10], Flow [8], and type hints for Python? fall in this
approach. To illustrate the difference between optional and gradual typing, consider the
expression reducel(add, [’c’,’d’],0) where add is defined as follows and reducel is
defined in Figure 2(a).

def add(a:Int, b:Int) -> Int:
return at+b

In both optional typing and gradual typing, no static type errors are detected in the ex-
pression reducel(add, [’a’,’b’]1,0). However, the behavior of runtime error reporting
is very different. In optional typing, the runtime error is reported inside the definition
of add, when a receives the value 0 and b receives the value ’c’. In gradual typing, the
type error is reported at 1st[i] within reducel because 1st[i] has the type String
while the parameter type of add is Int. An important design principle of gradual typ-
ing is that well-typed programs should not be blamed [28,35] for causing runtime type

2 https://docs.python.org/3/library/typing. html

16 Mohammad Wahiduzzaman Khan and Sheng Chen

errors. Since add is fully typed, its body should never be blamed for causing dynamic
type errors.

A recent user study [31] with programmers has revealed that in practice program-
mers anticipate type systems to behave like gradual typing. When a runtime error hap-
pens, they prefer the error to not be reported within a typed function.

Program migration, which aims to add static type annotations to a dynamic
program, and performance understanding and optimization have been two impor-
tant aspects of gradual typing. Many approaches have been proposed for program
migration[6,14,3,24,7,27,2,16,22,3] and performance optimization [5,11,20,19,15,33].
While these approaches have focused on a single aspect, this work tries to bridge these
two by investigating how the small change of a type annotation may affect performance.
This work also suggests that performance evaluation should focus on intermediate con-
figurations as well as outlying configurations while most previous work have largely
focused on outlying configurations.

7 Conclusion

Gradual typing has received a lot of attention in the past decade thanks to its promises
of harmonizing static and dynamic typing. However, a systematic study of the perfor-
mance landscape for gradual typing that supports fine-grained type annotations was still
missing. This work solves this issue through a systematic study of around 1.25 million
micro configurations that covers all type variations across the untyped-typed spectrum
of parameter types.

Based on this study, we extract several major perspectives regarding gradual typing
performance. First, a small change of the type annotation for a certain parameter may
significantly change the performance, sometimes larger than 10 times. Second, mak-
ing types more static is strongly correlated to degrading program performance. These
observations indicate that, while currently treated separately, program migration and
program performance should be considered in unison in future research in gradual typ-
ing. Also, better tooling support is needed for understanding, predicting, and optimizing
fine-grained gradual typing to make it more practical.

Due to space limitation, several questions are left out for future investigation, such
as under what context the type change for a parameter leads to more abrupt performance
swings.

References

1. Allamanis, M., Barr, E.T., Ducousso, S., Gao, Z.: Typilus: neural type hints. In: Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation. ACM (jun 2020). https://doi.org/10.1145/3385412.3385997

2. Campora, J., Chen, S., Erwig, M., Walkingshaw, E.: Migrating gradual types. In: Proceedings
of the 45th ACM SIGPLAN Symposium on Principles of Programming Languages. POPL
’18, ACM, New York, NY, USA (2018)

3. Campora, J.P., Chen, S.: Taming type annotations in gradual typing. Proc. ACM Program.
Lang. 4(O0OPSLA) (nov 2020). https://doi.org/10.1145/3428259

10.

11.

13.

14.

15.

16.

17.

18.

19.

Gradual Typing Performance, Micro Configurations and Macro Perspectives 17

. Campora, J.P., Chen, S., Walkingshaw, E.: Casts and costs: Harmonizing safety and per-

formance in gradual typing. Proc. ACM Program. Lang. 2(ICFP), 98:1-98:30 (Jul 2018).
https://doi.org/10.1145/3236793

. Campora, J.P., Khan, M.W., Chen, S.: Type-based gradual typing performance optimization.

Proc. ACM Program. Lang. 8(POPL) (jan 2024). https://doi.org/10.1145/3632931

. Castagna, G., Lanvin, V., Petrucciani, T., Siek, J.G.: Gradual typing: A new perspective.

Proc. ACM Program. Lang. 3(POPL) (Jan 2019). https://doi.org/10.1145/3290329

. Chandra, S., Gordon, C.S., Jeannin, J.B., Schlesinger, C., Sridharan, M., Tip, F., Choi, Y.:

Type inference for static compilation of javascript. In: Proceedings of the 2016 ACM SIG-
PLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications. pp. 410-429. OOPSLA 2016, ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2983990.2984017

. Chaudhuri, A., Vekris, P, Goldman, S., Roch, M., Levi, G.: Fast and precise type check-

ing for javascript. Proc. ACM Program. Lang. 1(OOPSLA), 48:1-48:30 (Oct 2017).
https://doi.org/10.1145/3133872, http://doi.acm.org/10.1145/3133872

. Cristiani, F., Thiemann, P.: Generation of typescript declaration files from javascript code.

In: Proceedings of the 18th ACM SIGPLAN International Conference on Managed Pro-
gramming Languages and Runtimes. p. 97-112. MPLR 2021, Association for Computing
Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3475738.348094 1
Feldthaus, A., Mgller, A.: Checking correctness of typescript interfaces for javascript li-
braries. SIGPLAN Not. 49(10), 1-16 (Oct 2014). https://doi.org/10.1145/2714064.2660215
Feltey, D., Greenman, B., Scholliers, C., Findler, R.B., St-Amour, V.: Collapsible contracts:
Fixing a pathology of gradual typing. Proc. ACM Program. Lang. 2(OOPSLA) (oct 2018).
https://doi.org/10.1145/3276503, https://doi.org/10.1145/3276503

. Greenman, B.: Gtp benchmarks for gradual typing performance. In: Proceedings of

the 2023 ACM Conference on Reproducibility and Replicability. p. 102-114. ACM
REP °23, Association for Computing Machinery, New York, NY, USA (2023).
https://doi.org/10.1145/3589806.3600034

Greenman, B., Takikawa, A., New, M.S., Feltey, D., Findler, R.B., Vitek, J., Felleisen, M.:
How to evaluate the performance of gradual type systems. Journal of Functional Program-
ming 29, e4 (2019). https://doi.org/10.1017/S0956796818000217

Kristensen, E.K., Mgller, A.: Type test scripts for typescript testing. Proc. ACM Program.
Lang. 1(OOPSLA), 90:1-90:25 (Oct 2017). https://doi.org/10.1145/3133914, http://doi.
acm.org/10.1145/3133914

Kuhlenschmidt, A., Almahallawi, D., Siek, J.G.: Toward efficient gradual typing
for structural types via coercions. In: Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. p. 517-532.
PLDI 2019, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3314221.3314627

Migeed, Z., Palsberg, J.: What is decidable about gradual types? Proc. ACM Program. Lang.
4(POPL) (Dec 2019). https://doi.org/10.1145/3371097

Mir, A.M., Latoskinas, E., Proksch, S., Gousios, G.: Typedpy: practical deep similarity
learning-based type inference for python. In: Proceedings of the 44th International Con-
ference on Software Engineering. pp. 2241-2252 (2022)

Miyazaki, Y., Sekiyama, T., Igarashi, A.: Dynamic type inference for gradual
hindley—milner typing. Proc. ACM Program. Lang. 3(POPL), 18:1-18:29 (Jan 2019).
https://doi.org/10.1145/3290331

Moy, C., Nguy™én, P.C., Tobin-Hochstadt, S., Van Horn, D.: Corpse reviver: Sound and ef-
ficient gradual typing via contract verification. Proc. ACM Program. Lang. S(POPL) (jan
2021). https://doi.org/10.1145/3434334

18

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

Mohammad Wahiduzzaman Khan and Sheng Chen

Ortin, F, Garcia, M., McSweeney, S.: Rule-based program specialization to op-
timize gradually typed code. Knowledge-Based Systems 179, 145-173 (2019).
https://doi.org/https://doi.org/10.1016/j.knosys.2019.05.013

Peng, Y., Gao, C., Li, Z., Gao, B., Lo, D., Zhang, Q., Lyu, M.: Static inference meets deep
learning: A hybrid type inference approach for python. In: Proceedings of the 44th Interna-
tional Conference on Software Engineering. p. 2019-2030. ICSE 22, Association for Com-
puting Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3510003.3510038
Phipps-Costin, L., Anderson, C.J., Greenberg, M., Guha, A.: Solver-based
gradual type migration. Proc. ACM Program. Lang. S5(OOPSLA) (oct 2021).
https://doi.org/10.1145/3485488

Pradel, M., Gousios, G., Liu, J., Chandra, S.: Typewriter: Neural type prediction with search-
based validation (2020)

Rastogi, A., Chaudhuri, A., Hosmer, B.: The ins and outs of gradual type
inference. pp. 481494. POPL ’12, ACM, New York, NY, USA (2012).
https://doi.org/10.1145/2103656.2103714

Rastogi, A., Swamy, N., Fournet, C., Bierman, G.M., Vekris, P.: Safe & efficient gradual
typing for typescript. In: POPL (2015)

Siek, J., Vitousek, M.M., Cimini, M., Tobin-Hochstadt, S., Garcia, R.: Monotonic references
for efficient gradual typing (2015), https://doi.org/10.1007/978-3-662-46669-8_
18

Siek, J.G., Vachharajani, M.: Gradual typing with unification-based inference. In: Proceed-
ings of the 2008 Symposium on Dynamic Languages. pp. 7:1-7:12. DLS *08, ACM, New
York, NY, USA (2008). https://doi.org/10.1145/1408681.1408688

Siek, J.G., Vitousek, M.M., Cimini, M., Boyland, J.T.: Refined criteria for gradual typing. In:
LIPIcs-Leibniz International Proceedings in Informatics. vol. 32. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2015)

Takikawa, A., Feltey, D., Greenman, B., New, M.S., Vitek, J., Felleisen, M.: Is sound gradual
typing dead? In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. pp. 456—468. POPL *16, ACM, New York, NY, USA
(2016). https://doi.org/10.1145/2837614.2837630

Tobin-Hochstadt, S., Felleisen, M.: Interlanguage migration: From scripts to programs. In:
Companion to the 21st ACM SIGPLAN Symposium on Object-oriented Programming Sys-
tems, Languages, and Applications. pp. 964-974. OOPSLA ’06, ACM, New York, NY, USA
(2006). https://doi.org/10.1145/1176617.1176755

Tunnell Wilson, P., Greenman, B., Pombrio, J., Krishnamurthi, S.: The behavior of gradual
types: a user study. In: Proceedings of the 14th ACM SIGPLAN International Symposium
on Dynamic Languages. p. 1-12. DLS 2018, Association for Computing Machinery, New
York, NY, USA (2018). https://doi.org/10.1145/3276945.3276947

Vitousek, M.M., Kent, A.M., Siek, J.G., Baker, J.: Design and evaluation of gradual typing
for python. In: Proceedings of the 10th ACM Symposium on Dynamic Languages. pp. 45—
56. DLS *14, ACM, New York, NY, USA (2014). https://doi.org/10.1145/2661088.2661101
Vitousek, M.M., Siek, J.G., Chaudhuri, A.: Optimizing and evaluating transient
gradual typing. pp. 28-41. DLS 2019, ACM, New York, NY, USA (2019).
https://doi.org/10.1145/3359619.3359742

Vitousek, M.M., Swords, C., Siek, J.G.: Big types in little runtime: Open-world soundness
and collaborative blame for gradual type systems. In: Proceedings of the 44th ACM SIG-
PLAN Symposium on Principles of Programming Languages. pp. 762-774. POPL 2017,
ACM, New York, NY, USA (2017). https://doi.org/10.1145/3009837.3009849

Wadler, P, Findler, R.B.: Well-typed programs can’t be blamed. pp. 1-16. ESOP
’09, Springer-Verlag, Berlin, Heidelberg (2009), http://dx.doi.org/10.1007/
978-3-642-00590-9_1

	Gradual Typing Performance, Micro Configurations and Macro Perspectives

