
Gradual Typing Performance, Micro Configurations

and Macro Perspectives

Mohammad Wahiduzzaman Khan and Sheng Chen

UL Lafayette, Lafayette LA 70503, USA

{mohammad-wahiduzzaman.khan1,chen}@louisiana.edu

Abstract. Static typing and dynamic typing have respective strengths and weak-

nesses, and a language often commits to one typing discipline and inherits the

qualities, good or bad. Gradual typing has been developed to reconcile these typ-

ing disciplines, allowing a single program to mix both static and dynamic typing.

It protects soundness of typed regions with runtime checks when values flown

into them do not have required static types. One issue with gradual typing is that

such checks can incur significant performance overhead. Previous work on per-

formance has focused on coarse-grained gradual typing where each module (file)

has to be fully typed or untyped. In contrast, the performance of fine-grained grad-

ual typing where each single parameter can be partially-typed (such as specifying

the parameter as a list without giving element type) has not been investigated.

Motivated by this situation, this paper systematically investigates performance of

fine-grained gradual typing by studying the performance of more than 1 million

programs. These programs are drawn from seven commonly-used benchmarks

with different types for parameters: some parameters are untyped, some are stat-

ically typed, and others are partially statically typed. The paper observes many

interesting phenomena that were previously unknown to the research commu-

nity. They provide insights into future research directions of understanding, pre-

dicting, and optimizing gradual typing performance as well as migrating gradual

programs towards more static.

1 Introduction

In static typing, compilers use types to catch programming errors, provide documen-

tation, and optimize program performance. Static type systems are considered as one

of the most successful formal methods. Static typing also has several shortcomings.

For example, it requires the program to be complete and free of type errors before it

can be run, even though the region that causes the type error may not be covered in a

certain execution. It also prevents some commonly used programming idioms for fast

prototyping, such as heterogeneous data structures and reflection.

Dynamic typing provides the flexibility that not supported by static typing but offer

little static error detection. Overall, these two typing disciplines are complementary, of-

fering different strengthens and having different weaknesses. In early years, a language

chose one typing discipline and committed to it. It is impossible to have the advantage

of a typing discipline that the language did not choose to follow. For example, it is im-

possible to have the flexibility of dynamic typing in C, which uses static typing and to

have static error detection in Python, which uses dynamic typing.



2 Mohammad Wahiduzzaman Khan and Sheng Chen

In real-world development, it is often desirable for a single language to support both

static and dynamic typing. There have been two different typing disciplines developed

for this purpose, optional typing and gradual typing. In both disciplines, type annota-

tions can optionally be added to variables, parameters, and return values to specify their

types, allowing for static type checking. However, unannotated code retains the flexibil-

ity of dynamic typing, enabling rapid prototyping and exploration without the burden of

explicit type declarations. Both have attracted enormous attention, from both industry

and academia.

The main difference between optional typing and gradual typing is that the latter

performs runtime type checks while the former does not. There are many advantages of

performing runtime type checks, including ensuring the soundness of typed code, early

detection of runtime type errors, and precise blaming of code that violates runtime er-

rors. The main issue with runtime type checks is, however, such checks can significantly

slowdown program performance.

The performance problem has been well known. Several studies have conducted

in-depth investigations of gradual typing performance [29,13]. These studies have ob-

served that sound gradual typing incurs significant performance overhead, in some case

the slowdown could be more than 100 times. However, such studies have focused on

gradual typing where type additions are supported only at the granularity level of mod-

ules. Specifically, if developers wanted to add type annotations to their codebase, then

they have to add type annotations to all functions in a module or they have to leave the

module completely untyped. For a codebase with n modules, 2n different configurations

may be created, where each configuration adds type annotations to a certain subset of

all n modules. Such a gradual typing system has been added to Racket to create Typed

Racket.

However, no studies have investigated the performance characteristics of micro

gradual type systems, where type annotations may be added to any individual func-

tion of a module or even a single parameter. Moreover, in practice, the type for each

parameter may be a mix of static and dynamic types, rather than fully dynamic (denot-

ing that the parameter is untyped) or fully static (denoting that the full type information

for the parameter can be completely decided at compile time). To illustrate, consider

the function reduce in Figure 1. This function takes three parameters and reduces the

list (lst) into a single value using the function f with the initial value init. In this ex-

ample, the parameter f has a dynamic type, written as Dyn. This type indicates that the

type of f can not be known at compile time, and its usage should not be type checked

statically. The type for init is Int, which is fully static. The type for lst, List(Dyn),

is a partially static type. This type specifies that the parameter lst will be used as a list

without any restrictions on the element type of the list.

Without a clear understanding of the performance landscape of micro gradual typ-

ing, a few questions remain unanswered. First, how to evaluate the performance of

micro gradual typing and specific benchmarks? The full configuration space of using

micro gradual typing is very huge. For a program with n parameters, we are able to

generate 2n configurations, where the type for each parameter is a Dyn or a fully static

type. We refer to such configurations as outlying configurations. In addition, we are

able to generate more configurations where the type for some parameter is a mix of



Gradual Typing Performance, Micro Configurations and Macro Perspectives 3

def reduce(f:Dyn, lst:List(Dyn), init:Int):

result = init

for i in range(len(lst)):

result = f(result,lst[i])

return result

Fig. 1: A gradual program in Python type hint syntax that mixes different kinds of type

annotations.

Dyns and static types. We refer to such configurations as intermediate configurations.

For example, reduce in Figure 1 is an intermediate configuration because the type for

lst contains both static type information (List) and a Dyn. However, had we changed

the type of lst to Dyn or List(List(Int)), then reduce is an outlying configuration.

The number of intermediate configurations quickly doubles the number of outlying

configurations, depending on the type structure of each parameter. For example, if the

static type for a parameter is Tuple(Int,Float,List(Int)), then in an outlying con-

figuration, the parameter may be assigned eleven different types, with two possibilities

for the first component of the tuple, two for the second component, and three (Dyn,

List(Dyn), List(Int)) for the third component1.

Given this sheer number of possible configurations, how to measure the perfor-

mance of gradual programs? It is obviously infeasible to measure all configurations.

Sampling is therefore necessary. The question is, what sampling strategy should be

used? Should the samples include both outlying configurations and intermediate con-

figurations or outlying configurations are sufficiently representative? Early work on mi-

cro gradual typing performance [32,34,33,4,5] considered only outlying configurations.

Should future work on micro gradual typing also sample intermediate configurations for

evaluation?

The second question remains unanswered is, what are desirable type annotations

for parameters? This question is closely intertwined with the problem of gradual type

migration, which studies the challenges and solutions of adding static type annotations

to gradual programs. While manually adding type annotations is one possible way for

small programs, it does not scale to large programs. Several approaches based on type

inference [6,14,3,24,7,27,2,16,22], dynamic approaches [18,9], and machine learning

based approaches [17,21,23,1], have been developed. Such approaches often fail to infer

most static types for parameters. It is very likely that the user will start from the types

added by such type migration tools and make the types more static. The questions are

then, how diverse are the run times of the configurations when a single parameter is

assigned different types, do the performance keep on increasing when the type for a

parameter becomes more static, does the most static type lead to the best performance?

This paper aims to answer these questions through a systematic evaluation of around

1.25 million configurations drawn from six commonly-used benchmarks for gradual

typing research. This paper makes the following contributions:

1 2×2×3 = 12, but we need to minus one combination whose all components are static.



4 Mohammad Wahiduzzaman Khan and Sheng Chen

def reduce1(f:Function([Int,Dyn],Int),

lst:[Dyn], init:Int):

result = init

for i in range(len(lst)):

result = f(result,lst[i])

return result

def wider(cw:Int, ci:Dyn) -> Int:

return max(cw, len(ci))

cont = [[1],[2,3],[4,5,6]]

reduce1(wider,cont,0)

(a) reduce1, with lst type being [Dyn]

def reduce1(f, lst, init):

result = init

for i in range(len(lst)):

result = f(result, lst[i])

return result : Int => Dyn

def wider(cw, ci):

return max(cw, len(ci)) : Dyn => Int

cont = [[1],[2,3],[4,5,6]]

reduce1(wider, cont : Dyn => [Dyn], 0)

(b) Cast inserted version of reduce1

def reduce2(f:Function([Int,Dyn],Int),

lst:[[Dyn]], init:Int):

result = init

for i in range(len(lst)):

result = f(result,lst[i])

return result

reduce2(wider,cont,0)

(c) reduce2, with lst type being [[Dyn]]

def reduce2(f, lst, init):

result = init

for i in range(len(lst)):

result = f(result, lst[i] : [Dyn] => Dyn)

return result : Int => Dyn

reduce2(wider, cont : Dyn => [[Dyn]], 0)

(d) Cast inserted version of reduce2

Fig. 2: Two different versions of reduce (left) that differ by only one parameter

type and their corresponding cast-inserted programs (right). The function type with

two parameters whose types are t1 and t2 and with return type t3 is written as

Function([t1,t2],t3).

1. It creates a benchmark with around 1.25 million configurations. Such configura-

tions have fine-grained types. With precise type information and corresponding ex-

ecution times, it facilitates future research in gradual typing.

2. It studies three research questions concerning the representativeness of outlying

configurations and performance change as parameter types undergo minor changes.

3. Based on the evaluation results, it makes affirmative answers to the studied research

questions. Specifically, the result reveals that outlying configurations are not always

representative, the performance can change radically even with small changes in

type annotations, and counter-intuitively, the performance often decreases as pa-

rameter types become more precise. These answers suggest a better performance

evaluation method for future work on gradual typing performance. They also indi-

cate where further research attention is needed to make gradual typing practical.



Gradual Typing Performance, Micro Configurations and Macro Perspectives 5

2 Background

The purpose of gradual typing is to strike a balance between the safety and performance

guarantees of static typing and the flexibility and expressiveness of dynamic typing.

As such, in gradual typing, a parameter or variable may be assigned a static type if

the type expectation of the parameter or variable can be statically determined and the

uses of it need to be statically checked. In contrast, if the type can not be determined

statically, then the type should remain dynamic. The absence of a type annotation or a

Dyn for a parameter denotes that the parameter has dynamic type. It is also possible that

a parameter is annotated with a partially static type, as [Dyn] for lst in Figure 2(a).

A static type annotation for a parameter is a protocol for both the internal and ex-

ternal of the function. For the internal of the function, the type specifies the guarantee

of the type of the parameter to the rest of the function definition. For example, the type

for f indicates that the return type is Int. As a result, inside the function, every call will

always return a value of type Int. For the external of the function, the type specifies the

expectation of the corresponding argument to the function. For example, when reduce1

is called, the first argument must be a function type and the first parameter type and the

return type of it must be Int.

The argument may be statically typed and matches the expectation of the parameter

type. In this case, no runtime checks are needed. Otherwise, runtime checks will be

inserted to protect the type annotations, a notion known as enforcing type soundness.

To illustrate, consider the execution of the program in Figure 2(a). When a gradually-

typed program is executed, it is often translated to a program in the underlying language

with runtime checks inserted. For example, the gradually-typed language Reticulated

Python [32,34] is translated to Python. The translated program for Figure 2(a) is given

in Figure 2(b).

In translating the call of reduce1 (the last line of Figure 2(a)), the type expectation

of f (Function([Int,Dyn],Int)) matches the type of the argument since the type of

wider is also Function([Int,Dyn],Int) (see the caption of Figure 2 for an explanation

of type syntax for function types). As a result, no runtime checks will be inserted for

wider. However, for lst, the expectation is [Dyn] (based on the type annotation for lst

in the definition of reduce1), and the argument has type Dyn (many gradual type systems

do not assign a static type to a list because lists can be heterogeneous). As a result, a

runtime check, often called a cast, is inserted to make sure that cont has the expected

type for calling reduce1. The cast is written as cont: Dyn => [Dyn], expressing that

the statically known type of cont is Dyn but it is used in a context that requires it to

have the type [Dyn]. A general form of a cast is written as expr : source type =>

target type.

Casts may have very different runtime overheads. Basic casts involving primitive

types (such as Int, Bool, and Float) and Dyn are very lightweight. For example, the

cast e: Dyn => Int induces very little runtime overhead because a single runtime type

check (such as isinstance(e,int) in Python) suffices to check if the cast will be suc-

cessful. However, casts involving other types, such as lists and functions, can be very

expensive. The reason is that such casts can not be verified at where they appear. To il-

lustrate, consider a cast f:Dyn => Int -> Bool. This cast means that f should return a

Bool value whenever it is called with an Int value. It is impossible to measure whether







8 Mohammad Wahiduzzaman Khan and Sheng Chen

Benchmark LOC # of functions # of pars # of typed pars # of configurations

Monte Carlo 90 4 9 9 93600

Pascal-1 70 7 19 15 4062

Pascal-2 70 7 19 15 98304

Scimark-1 65 5 22 17 4602

Scimark-2 65 5 22 17 323070

Nbody 195 4 21 18 91525

Raytrace 455 21 94 67 635040

Sieve 56 9 22 21 15361

Chaos 271 22 42 29 6000

Table 1: Python benchmarks used for performance evaluation. The last column gives

the number of configurations generated for the corresponding benchmark. We gener-

ated two datasets for Pascal and Scimark to investigate how the size of dataset affects

evaluation results.

3 Benchmarks and Evaluation Protocol

For the purpose of evaluation, we consider seven benchmarks. They are mainly adapted

from Python performance benchmark suits and have been frequently in gradual typing

research [34,32,4,5]. Table 1 lists some basic metrics of each benchmark, such as num-

ber of lines of code, number of functions, etc. Note, the number of typed parameters

may be fewer than the number of parameters in a program because not all parameters

can receive static types. For a parameter that can be statically typed, we consider differ-

ent possible types for the parameter, from Dyn to most static. To generate a manageable

number of configurations for each benchmark, we set a single type for some parame-

ter if the parameter does not have much interaction with the rest of the program. For

example, for Nbody benchmark, it has one function defined as follows.

def bench_nbody(loops, reference, iterations):

for _ in xrange(loops):

...

Here loops can be given two possible types: Dyn or Int. Since loops does not interact

with the rest of the code except for being used in xrange, we consider only assigning Int

to loops. To test the validity this idea, we generate many pairs of configurations such

that in each pair loops receive different types. We observed that the execution times are

almost exactly the same within each pair. We briefly describe each benchmark below.

Monte Carlo This benchmark is to predict possible outcomes of uncertain events by

generating random numbers. It contains complex parameter and return types for several

functions. One such type is Tuple([Float],[Float],[Int])).

Pascal The purpose of this benchmark is to evaluate the efficiency and performance

of algorithms and functions related to generating Pascal’s triangle and permutations in

Python. One of the parameter in this benchmark is matrix, which is essentially a 2-D ar-

ray. In our generated configurations, we assigned four different types to this parameter:

Dyn, [Dyn], [[Dyn]], and [[Float]].

Scimark It has six functions which contains a parameter arr. The most static type of

arr is Tuple(Int,Int,Int). This parameter can be typed in 8 different ways.



Gradual Typing Performance, Micro Configurations and Macro Perspectives 9

Sieve This benchmark implements the search of prime numbers using the idea of a

“Steam”. A main parameter in this benchmark is st, which represents the current state

of the stream. Its most static type is class Stream.

Nbody. This benchmark simulates the movement of celestial bodies under

gravity. It has several complex parameter types. For example, one of them is

[Tuple(Tuple([Float], [Float], Float), Tuple([Float], [Float], Float))]

There can be multiple ways with Dyn combinations to type this parameter.

Raytrace This benchmark is for simulating lighting for games. Its type structure is

similar to that of Scimark.

Figures 3 and 4 depict the runtime distribution of generated configurations for each

benchmark. For the left column in each figure, the x-axis is the execution time in sec-

onds and the y-axis is the number of configurations. Each image in the right column

presents the performance slowdowns compared to the fastest configuration in each

benchmark. The x-axis is the slowdown and the y-axis is the percentage of all con-

figurations. A point of (x,y) on the curve means that x% of all configurations have a

slowdown of smaller than y compared to the fastest configuration.

From these figures, we can observe that the execution times are very different

within and across benchmarks. The distributions are also very different, some have

more spread-out times while others are clustered. The number of clusters and the dis-

tances between them are also quite different. These factors encourage the validity of the

observations we make in this paper.

Evaluation protocol We use Reticulated Python [32,34], a gradual typing implemen-

tation for Python, to measure the execution time. The experiments are run on a system

equipped with Intel(R) 533 Core(TM) i9-9900K CPU @ 3.60GHz, 8 Core(s), and 32GB

RAM. Each measured time is an average of 10 runs.

4 Representativeness of Outlying configurations

While previous work [4,34,33] on gradual typing performance has largely focused on

outlying configurations, it is an interesting question to know if such configurations are

indeed representative of the whole benchmark.

For this investigation, we first separate all configurations into outlying configura-

tions and intermediate configurations. A configuration is outlying if the type for each

parameter in the configuration is a Dyn or a fully static type. Otherwise, a configuration

is intermediate.

We depict the temporal distribution of runtimes for outlying and intermediate con-

figurations. The kernel density (KD) plots (the left column of the figures) illustrate the

divergence in runtime characteristics between outlying and intermediate configurations.

An inspection of the KD plots reveals that the multimodal nature of both outlying and

intermediate configurations is characterized by the presence of multiple peaks. The box

plots (the right column of these figures) provide insights into the central tendency of

each distribution. Notably, outlying configurations exhibit a tendency to clusters closer

to their mean, while intermediate configurations display numerous outliers distributed

far from the mean.











14 Mohammad Wahiduzzaman Khan and Sheng Chen

Table 2: Benchmarks groups variance information

Benchmark # of Groups Avg group size min variance average variance max variance

Monte Carlo 57120 8 0.0 2.58 61.976

Pascal-1 4096 4 0.0 30.97 5153.21

Pascal-2 110376 7 0 0.27 7.33

Scimark-1 8226 3 0.0 0.83 67.57

Scimark-2 446875 5 0.0 3.56 2700.23

Nbody 43969 8 0.0 2.87 2170.60

Raytrace 10061 6 0.0 0.06 0.96

Sieve 71888 3 0.0 0.82 14.62

Table 3: Benchmarks group ordering information

Benchmark # of Groups Avg group size % of increasing % of decreasing % of neutral

Monte Carlo 57120 8 34.69% 21.26% 44.04%

Pascal-1 4096 4 36.54% 16.62% 46.82%

Pascal-2 110376 7 12.15% 16.28% 71.56%

Scimark-1 8226 3 66.44% 21.34% 12.20%

Scimark-2 446875 5 11.29% 41.89% 46.81%

Nbody 43969 8 67.18% 4.55% 28.26%

Raytrace 10061 6 32.85% 14.34% 52.79%

Sieve 71888 3 88.37% 11.45% 0.16%

Table 2 gives the information about the number of groups for each benchmark,

average group size, the minimum, average, and maximum variance for all the groups

within a benchmark. Figure 8 depicts the variances of all groups within each bench-

mark. Based on this figure, it becomes evident that certain benchmark groups exhibit

notably higher variances compared to others. For instance, despite having similar code

structures, Pascal-1 and Pascal-2 demonstrate significantly different variances, with

Pascal-1 displaying a notably higher variance. Conversely, in the case of Scimark-1 and

Scimark-2, which also share similar code structures, Scimark-1 exhibits considerably

higher runtime than Scimark-2.

Based on these results, we can conclude that, with a small change of type annota-

tion for a single parameter, the performance can be very different. This indicates the

importance of finding the right type for each parameter to achieve good performance.

Given that each groups has a lot of variance, it is interesting to study if the perfor-

mance is increasing, decreasing, or a mix of them. For such a study, we first order all

configurations within a group based on the precision of the type. For example, as the

type for the first parameter in 4 (Figure 7) is Dyn while that for 9 is [Dyn], we say 9

is more precise than 4 . After ordering, 7 is the most precise, followed by A , 9 , and

4 . It is possible that not all configurations in a group can be ordered, such as B and



Gradual Typing Performance, Micro Configurations and Macro Perspectives 15

E . For such groups, we consider only the path that configurations can be fully ordered

along the path.

After ordering each group, we can easily decide if the execution time is decreasing,

increasing, or a mix. Table 3 summarizes the result for this study. In the table, the

last three columns calculate the percentage of all groups whose execution times are

increasing, decreasing, or neutral. Note, if a group has an increasing execution time, the

performance degrades as configurations become more precise. Based on the results, we

can conclude that the performance often decreases as programs become more precise.

Fortunately, there are exist groups whose performance increases as program become

more precise. This indicates that future research is needed that takes into consideration

both performance and program migration. In particular, it is critical to find parameters

such that making them more precise also increases the performance.

6 Related Work

This paper studies the performance of micro gradual typing, where a partial or full static

type annotation may be given to a parameter, return value, or variable. Micro gradual

typing has been used in Reticulated Python [34,32], Grift [15], and many others [25,26].

There is another kind of gradual typing, adopted by Typed Racket [30], where the de-

cision of whether adding type annotation or not is made at the granularity of a module.

Several studies [29,13] have investigated the performance of this kind of gradual typing.

A benchmark for this kind of gradual typing research has also been developed [12]. The

goal of these papers are thus quite different from ours. Moreover, this paper also inves-

tigates representativeness of outlying configurations and how performance changes as

the type for a single parameter experiences changes, which are unique to micro gradual

typing.

The overhead of gradual typing is due to the checks inserted for protecting typed

regions. Such checks are performed at runtime. In contrast, optional typing uses type

annotations for performing static type checking to catch more programming mistakes

before program are run. TypeScript [10], Flow [8], and type hints for Python2 fall in this

approach. To illustrate the difference between optional and gradual typing, consider the

expression reduce1(add,[’c’,’d’],0) where add is defined as follows and reduce1 is

defined in Figure 2(a).

def add(a:Int, b:Int) -> Int:

return a+b

In both optional typing and gradual typing, no static type errors are detected in the ex-

pression reduce1(add,[’a’,’b’],0). However, the behavior of runtime error reporting

is very different. In optional typing, the runtime error is reported inside the definition

of add, when a receives the value 0 and b receives the value ’c’. In gradual typing, the

type error is reported at lst[i] within reduce1 because lst[i] has the type String

while the parameter type of add is Int. An important design principle of gradual typ-

ing is that well-typed programs should not be blamed [28,35] for causing runtime type

2 https://docs.python.org/3/library/typing.html



16 Mohammad Wahiduzzaman Khan and Sheng Chen

errors. Since add is fully typed, its body should never be blamed for causing dynamic

type errors.

A recent user study [31] with programmers has revealed that in practice program-

mers anticipate type systems to behave like gradual typing. When a runtime error hap-

pens, they prefer the error to not be reported within a typed function.

Program migration, which aims to add static type annotations to a dynamic

program, and performance understanding and optimization have been two impor-

tant aspects of gradual typing. Many approaches have been proposed for program

migration[6,14,3,24,7,27,2,16,22,3] and performance optimization [5,11,20,19,15,33].

While these approaches have focused on a single aspect, this work tries to bridge these

two by investigating how the small change of a type annotation may affect performance.

This work also suggests that performance evaluation should focus on intermediate con-

figurations as well as outlying configurations while most previous work have largely

focused on outlying configurations.

7 Conclusion

Gradual typing has received a lot of attention in the past decade thanks to its promises

of harmonizing static and dynamic typing. However, a systematic study of the perfor-

mance landscape for gradual typing that supports fine-grained type annotations was still

missing. This work solves this issue through a systematic study of around 1.25 million

micro configurations that covers all type variations across the untyped-typed spectrum

of parameter types.

Based on this study, we extract several major perspectives regarding gradual typing

performance. First, a small change of the type annotation for a certain parameter may

significantly change the performance, sometimes larger than 10 times. Second, mak-

ing types more static is strongly correlated to degrading program performance. These

observations indicate that, while currently treated separately, program migration and

program performance should be considered in unison in future research in gradual typ-

ing. Also, better tooling support is needed for understanding, predicting, and optimizing

fine-grained gradual typing to make it more practical.

Due to space limitation, several questions are left out for future investigation, such

as under what context the type change for a parameter leads to more abrupt performance

swings.

References

1. Allamanis, M., Barr, E.T., Ducousso, S., Gao, Z.: Typilus: neural type hints. In: Proceedings

of the 41st ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation. ACM (jun 2020). https://doi.org/10.1145/3385412.3385997

2. Campora, J., Chen, S., Erwig, M., Walkingshaw, E.: Migrating gradual types. In: Proceedings

of the 45th ACM SIGPLAN Symposium on Principles of Programming Languages. POPL

’18, ACM, New York, NY, USA (2018)

3. Campora, J.P., Chen, S.: Taming type annotations in gradual typing. Proc. ACM Program.

Lang. 4(OOPSLA) (nov 2020). https://doi.org/10.1145/3428259



Gradual Typing Performance, Micro Configurations and Macro Perspectives 17

4. Campora, J.P., Chen, S., Walkingshaw, E.: Casts and costs: Harmonizing safety and per-

formance in gradual typing. Proc. ACM Program. Lang. 2(ICFP), 98:1–98:30 (Jul 2018).

https://doi.org/10.1145/3236793

5. Campora, J.P., Khan, M.W., Chen, S.: Type-based gradual typing performance optimization.

Proc. ACM Program. Lang. 8(POPL) (jan 2024). https://doi.org/10.1145/3632931

6. Castagna, G., Lanvin, V., Petrucciani, T., Siek, J.G.: Gradual typing: A new perspective.

Proc. ACM Program. Lang. 3(POPL) (Jan 2019). https://doi.org/10.1145/3290329

7. Chandra, S., Gordon, C.S., Jeannin, J.B., Schlesinger, C., Sridharan, M., Tip, F., Choi, Y.:

Type inference for static compilation of javascript. In: Proceedings of the 2016 ACM SIG-

PLAN International Conference on Object-Oriented Programming, Systems, Languages,

and Applications. pp. 410–429. OOPSLA 2016, ACM, New York, NY, USA (2016).

https://doi.org/10.1145/2983990.2984017

8. Chaudhuri, A., Vekris, P., Goldman, S., Roch, M., Levi, G.: Fast and precise type check-

ing for javascript. Proc. ACM Program. Lang. 1(OOPSLA), 48:1–48:30 (Oct 2017).

https://doi.org/10.1145/3133872, http://doi.acm.org/10.1145/3133872

9. Cristiani, F., Thiemann, P.: Generation of typescript declaration files from javascript code.

In: Proceedings of the 18th ACM SIGPLAN International Conference on Managed Pro-

gramming Languages and Runtimes. p. 97–112. MPLR 2021, Association for Computing

Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3475738.3480941

10. Feldthaus, A., Møller, A.: Checking correctness of typescript interfaces for javascript li-

braries. SIGPLAN Not. 49(10), 1–16 (Oct 2014). https://doi.org/10.1145/2714064.2660215

11. Feltey, D., Greenman, B., Scholliers, C., Findler, R.B., St-Amour, V.: Collapsible contracts:

Fixing a pathology of gradual typing. Proc. ACM Program. Lang. 2(OOPSLA) (oct 2018).

https://doi.org/10.1145/3276503, https://doi.org/10.1145/3276503

12. Greenman, B.: Gtp benchmarks for gradual typing performance. In: Proceedings of

the 2023 ACM Conference on Reproducibility and Replicability. p. 102–114. ACM

REP ’23, Association for Computing Machinery, New York, NY, USA (2023).

https://doi.org/10.1145/3589806.3600034

13. Greenman, B., Takikawa, A., New, M.S., Feltey, D., Findler, R.B., Vitek, J., Felleisen, M.:

How to evaluate the performance of gradual type systems. Journal of Functional Program-

ming 29, e4 (2019). https://doi.org/10.1017/S0956796818000217

14. Kristensen, E.K., Møller, A.: Type test scripts for typescript testing. Proc. ACM Program.

Lang. 1(OOPSLA), 90:1–90:25 (Oct 2017). https://doi.org/10.1145/3133914, http://doi.

acm.org/10.1145/3133914

15. Kuhlenschmidt, A., Almahallawi, D., Siek, J.G.: Toward efficient gradual typing

for structural types via coercions. In: Proceedings of the 40th ACM SIGPLAN

Conference on Programming Language Design and Implementation. p. 517–532.

PLDI 2019, Association for Computing Machinery, New York, NY, USA (2019).

https://doi.org/10.1145/3314221.3314627

16. Migeed, Z., Palsberg, J.: What is decidable about gradual types? Proc. ACM Program. Lang.

4(POPL) (Dec 2019). https://doi.org/10.1145/3371097

17. Mir, A.M., Latoškinas, E., Proksch, S., Gousios, G.: Type4py: practical deep similarity

learning-based type inference for python. In: Proceedings of the 44th International Con-

ference on Software Engineering. pp. 2241–2252 (2022)

18. Miyazaki, Y., Sekiyama, T., Igarashi, A.: Dynamic type inference for gradual

hindley–milner typing. Proc. ACM Program. Lang. 3(POPL), 18:1–18:29 (Jan 2019).

https://doi.org/10.1145/3290331

19. Moy, C., Nguy˜ên, P.C., Tobin-Hochstadt, S., Van Horn, D.: Corpse reviver: Sound and ef-

ficient gradual typing via contract verification. Proc. ACM Program. Lang. 5(POPL) (jan

2021). https://doi.org/10.1145/3434334



18 Mohammad Wahiduzzaman Khan and Sheng Chen

20. Ortin, F., Garcia, M., McSweeney, S.: Rule-based program specialization to op-

timize gradually typed code. Knowledge-Based Systems 179, 145–173 (2019).

https://doi.org/https://doi.org/10.1016/j.knosys.2019.05.013

21. Peng, Y., Gao, C., Li, Z., Gao, B., Lo, D., Zhang, Q., Lyu, M.: Static inference meets deep

learning: A hybrid type inference approach for python. In: Proceedings of the 44th Interna-

tional Conference on Software Engineering. p. 2019–2030. ICSE ’22, Association for Com-

puting Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3510003.3510038

22. Phipps-Costin, L., Anderson, C.J., Greenberg, M., Guha, A.: Solver-based

gradual type migration. Proc. ACM Program. Lang. 5(OOPSLA) (oct 2021).

https://doi.org/10.1145/3485488

23. Pradel, M., Gousios, G., Liu, J., Chandra, S.: Typewriter: Neural type prediction with search-

based validation (2020)

24. Rastogi, A., Chaudhuri, A., Hosmer, B.: The ins and outs of gradual type

inference. pp. 481–494. POPL ’12, ACM, New York, NY, USA (2012).

https://doi.org/10.1145/2103656.2103714

25. Rastogi, A., Swamy, N., Fournet, C., Bierman, G.M., Vekris, P.: Safe & efficient gradual

typing for typescript. In: POPL (2015)

26. Siek, J., Vitousek, M.M., Cimini, M., Tobin-Hochstadt, S., Garcia, R.: Monotonic references

for efficient gradual typing (2015), https://doi.org/10.1007/978-3-662-46669-8_

18
27. Siek, J.G., Vachharajani, M.: Gradual typing with unification-based inference. In: Proceed-

ings of the 2008 Symposium on Dynamic Languages. pp. 7:1–7:12. DLS ’08, ACM, New

York, NY, USA (2008). https://doi.org/10.1145/1408681.1408688

28. Siek, J.G., Vitousek, M.M., Cimini, M., Boyland, J.T.: Refined criteria for gradual typing. In:

LIPIcs-Leibniz International Proceedings in Informatics. vol. 32. Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik (2015)

29. Takikawa, A., Feltey, D., Greenman, B., New, M.S., Vitek, J., Felleisen, M.: Is sound gradual

typing dead? In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages. pp. 456–468. POPL ’16, ACM, New York, NY, USA

(2016). https://doi.org/10.1145/2837614.2837630

30. Tobin-Hochstadt, S., Felleisen, M.: Interlanguage migration: From scripts to programs. In:

Companion to the 21st ACM SIGPLAN Symposium on Object-oriented Programming Sys-

tems, Languages, and Applications. pp. 964–974. OOPSLA ’06, ACM, New York, NY, USA

(2006). https://doi.org/10.1145/1176617.1176755

31. Tunnell Wilson, P., Greenman, B., Pombrio, J., Krishnamurthi, S.: The behavior of gradual

types: a user study. In: Proceedings of the 14th ACM SIGPLAN International Symposium

on Dynamic Languages. p. 1–12. DLS 2018, Association for Computing Machinery, New

York, NY, USA (2018). https://doi.org/10.1145/3276945.3276947

32. Vitousek, M.M., Kent, A.M., Siek, J.G., Baker, J.: Design and evaluation of gradual typing

for python. In: Proceedings of the 10th ACM Symposium on Dynamic Languages. pp. 45–

56. DLS ’14, ACM, New York, NY, USA (2014). https://doi.org/10.1145/2661088.2661101

33. Vitousek, M.M., Siek, J.G., Chaudhuri, A.: Optimizing and evaluating transient

gradual typing. pp. 28–41. DLS 2019, ACM, New York, NY, USA (2019).

https://doi.org/10.1145/3359619.3359742

34. Vitousek, M.M., Swords, C., Siek, J.G.: Big types in little runtime: Open-world soundness

and collaborative blame for gradual type systems. In: Proceedings of the 44th ACM SIG-

PLAN Symposium on Principles of Programming Languages. pp. 762–774. POPL 2017,

ACM, New York, NY, USA (2017). https://doi.org/10.1145/3009837.3009849

35. Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. pp. 1–16. ESOP

’09, Springer-Verlag, Berlin, Heidelberg (2009), http://dx.doi.org/10.1007/

978-3-642-00590-9_1


	Gradual Typing Performance, Micro Configurations and Macro Perspectives

