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Abstract

In this work, we study statistical learning with
dependent (ω-mixing) data and square loss in
a hypothesis class F → L!p

where !p is the
norm ↑f↑!p

↭ supm→1 m
↑1/p

↑f↑Lm for some
p ↓ [2,↔]. Our inquiry is motivated by the
search for a sharp noise interaction term, or vari-
ance proxy, in learning with dependent data. Ab-
sent any realizability assumption, typical non-
asymptotic results exhibit variance proxies that
are deflated multiplicatively by the mixing time of
the underlying covariates process. We show that
whenever the topologies of L2 and !p are compa-
rable on our hypothesis class F—that is, F is a
weakly sub-Gaussian class: ↑f↑!p

↫ ↑f↑ωL2 for
some ε ↓ (0, 1]—the empirical risk minimizer
achieves a rate that only depends on the complex-
ity of the class and second order statistics in its
leading term. Our result holds whether the prob-
lem is realizable or not and we refer to this as
a near mixing-free rate, since direct dependence
on mixing is relegated to an additive higher or-
der term. We arrive at our result by combining
the above notion of a weakly sub-Gaussian class
with mixed tail generic chaining. This combina-
tion allows us to compute sharp, instance-optimal
rates for a wide range of problems. Examples
that satisfy our framework include sub-Gaussian
linear regression, more general smoothly parame-
terized function classes, finite hypothesis classes,
and bounded smoothness classes.

1. Introduction

While a significant portion the data used in modern learn-
ing algorithms exhibits temporal dependencies, we still
lack a sharp theory of supervised learning from depen-
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dent data. Examples exhibiting such dependencies are far
ranging and abundant, and include forecasting applications
and data from controls/robotics systems. Over the last sev-
eral decades, an order-wise rather sharp theory of learning
with independent data has emerged. An entirely incom-
plete list of these advances includes the introduction of
local Rademacher compleixities by Bartlett et al. (2005),
sharp rates in misspecified linear regression by Hsu et al.
(2012), and culminates in the learning without concentra-
tion framework by Mendelson (2014), which enables an
instance-optimal understanding of many standard learning
problems through a critical radius that is sensitive to both
the noise scale and the (local) geometry of the hypothesis
class.

In principle, one expects these results to be carried over to
the dependent (ω-mixing) setting through blocking (Bern-
stein, 1927; Yu, 1994).1 At a high level, the blocking tech-
nique involves splitting the original data (of length n ↓ N)
into consecutive blocks, each of length k ↓ N, with the
length chosen such that the starting points of each block
are approximately independent. Indeed, several prior works
pursue this route (Mohri & Rostamizadeh, 2008; Kuznetsov
& Mohri, 2017; Roy et al., 2021). However, the drawback
with this approach is that it typically deflates the original
sample size by the block length factor k. If such a deflation
were to appear in the final rate of convergence, this would
clearly constitute worst-case behavior; it corresponds to ev-
ery data point being revealed repeatedly, k times and with
perfect dependence, within a sequence of n observations.

In the context of the square loss function, the typical ap-
proach to sidestep this sample size deflation relies on the
“noise” (residual term) forming a martingale difference se-
quence. This approach has been carried out for parametric
inference in (generalized) linear dynamical systems by Sim-
chowitz et al. (2018) and Kowshik et al. (2021) and also
for more general hypothesis classes and supervised learn-
ing with square loss by Ziemann & Tu (2022). For the
square loss function the martingale approach requires that
the problem is strongly realizable: the best predictor in the
hypothesis class should coincide with the regression func-
tion (conditional expectation of targets given past inputs).

1See Appendix E.1 for a description of this technique.
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Put differently, one requires that the hypothesis class is rich
enough such that conditional expectation function (of the
targets and given past inputs) can be realized by it.

In this paper, we instead show how the blocking approach
can be salvaged for a wide range of hypotheses classes and
the square loss function. In contrast to the just-mentioned
references, our analysis does not require a realizability as-
sumption. Instead, we show how to extend the analysis of
Ziemann et al. (2023b) for linear regression to more general
hypothesis classes. At a high level, this analysis involves
combining the above-mentioned blocking technique with
Bernstein’s inequality. To motivate this approach, let us con-
sider what happens in Bernstein’s inequality when we are
given V1:n b-bounded random variables that are k-wise in-
dependent, where k divides n, and with identical marginals
(for simplicity alone).2 By applying Bernstein’s inequality
to the bk-bounded variables V̄i:n/k, V̄i ↭ ∑ik

j=ik↑k+1 Vj

we find that with probability at least 1↗ ϑ:

1

n

n∑

i=1

Vi ↘ 2

√
k↑1E(V̄1)2 ln(1/ϑ)

n
+

4bk log(1/ϑ)

3n
. (1)

If the data instead were completely independent, then
in the small and moderate deviations regime ϑ ↬
exp(↗nEV 2

1 /b
2k), (1) is just as sharp as directly apply-

ing Bernstein’s inequality to the independent sum. In this
regime for this problem, nothing is lost by blocking, even
if the data happens to be iid and we use the blocked ver-
sion of Bernstein’s inequality. By contrast, if one were to
carry out the same computation using Hoeffding’s inequal-
ity (for bounded random variables) instead of Bernstein’s,
we would incur an irreducible factor k in the leading term
in all regimes—even if the dependent bound is instantiated
for independent variables. This suggests that the variance
interacts much more gracefully with blocking arguments
than higher order moments.

The difficulty in combining blocking with Bernstein’s in-
equality lies in making Bernstein’s inequality uniform across
the correct portion of the hypothesis class F . Namely, in
statistical learning it typically does not suffice to control
sums of a single sequence of random variables V1:n but
rather we need to uniformly control sums of an indexed fam-
ily {V1:n(f) : f ↓ F}. To obtain fast rates, this uniform
control needs to combined with a localization argument, so
that one does “pay” for hypotheses too far away from the
ground truth but only those within a certain critical radius.
Naïvely union-bounding (or chaining) over such a family
unfortunately again reintroduces a sample-size deflation by
the block-length factor k. This happens because the variance
term in (1) starts to balance the boundedness term at the

2We say that a sequence Z1:n is k-wise independent if each of
the blocks Zjk+1:(j+1)k (j = 0, 1, . . . , n/k → 1) are independent
of each other.

above-mentioned critical radius without further assumption.
Ziemann et al. (2023b) show how to overcome the issue of
uniformity when F is a linear class via the Fuk-Nagaev in-
equality (Einmahl & Li, 2008). Unfortunately, this inequal-
ity cannot be applied beyond the linear setting. Here, we
introduce machinery based on a refinement of sub-Gaussian
classes (Lecué & Mendelson, 2013), and a refinement of
Bernstein’s inequality (due to Maurer & Pontil (2021)), that
we combine with mixed-tail generic chaining (as introduced
by Dirksen (2015)). Our approach allows us to overcome
this issue with blocking and Bernstein’s inequality for a sur-
prisingly wide range of function classes, thereby relegating
any dependence on mixing to additive higher order terms,
instead of the typical multiplicative deflation term.

1.1. Contribution

Let us now make our contribution more precise. We are
given stationary ω-mixing data (X,Y )1:n where the Xi

(resp. Yi) assume values in a subset of a normed space
denoted (X, ↑ · ↑X) (resp. a Hilbert space (Y, ≃·, ·⇐, ↑ · ↑)).
We assume that (X,Y )1:n is stationary and denote for any
i ↓ [n] the joint distribution of (Xi, Yi) by PX,Y , and the
corresponding marginals are denoted PX and PY . We study
empirical risk minimization over a hypothesis class F , con-
taining functions f : X ⇒ Y, and with the square loss
function. In this scenario, we study the performance of the
(any) empirical risk minimizer

f̂ ↓ argmin
f↓F

1

n

n∑

i=1

↑f(Xi)↗ Yi↑
2. (2)

Our main contribution is to characterize the rate of conver-
gence of (2) to the best possible predictor fε in the class F

defined as:

fε ↓ argmin
f↓F

E↑f(X)↗ Y ↑
2, (X,Y ) ⇑ PX,Y . (3)

Let us also denote by Fε the star-hull of F around fε.
That is, Fε ↭ {ϖ(f ↗ fε) : f ↓ F , ϖ ↓ [0, 1]},
which, for a convex class F coincides with the shifted
class F ↗ {fε}. We further equip Fε with the L2-norm:
↑f↑2L2 ↭ E↑f(X)↑2, f ↓ Fε, X ⇑ PX . Let us also define
the “noise” W1:n by Wi ↭ Yi ↗ fε(Xi), i ↓ [n]. We focus
on the case when F is either (1) convex or (2) realizable
(i.e., E[Wi|Xi] = 0 for i ↓ [n]). Note that this restriction is
due to a known shortcoming of ERM which holds even in
iid settings, and can be removed by modifying the estimator
itself; we will discuss this issue in more detail shortly.

As is typical in the learning theory literature, we charac-
terize the rate of convergence of (2) through a fixed point,
or critical radius. This critical radius takes the form as a
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solution to:

rε ⇓ sup
g↓Fω↔rωSL2

V

(
1
⇔
n

n∑

i=1

〈
Wi,

g(Xi)

↑g↑L2

〉)

↖
complexity(Fε ↙ rεSL2)

rε
⇔
n

, (4)

where for r ↓ R, r > 0, rSL2 is the unit sphere of radius r
in L2 (the space of square integrable functions, and with the
corresponding unit ball denoted rBL2) and V(·) denotes
the variance operator. This critical radius is akin to the one
in Bartlett et al. (2005), but also resembles the noise interac-
tion term of Mendelson (2014, introduced following Equa-
tion 2.2) in that our radius depends on the weak variance,
supg↓Fω↔rωSL2

V
(

1
↗
n

∑n
i=1

〈
Wi,

g(Xi)
↘g↘

L2

〉)
.3 To aid in

the interpretation of rε, we will instantiate our main re-
sult, Theorem 3.1, for parametric classes and show that
this radius exhibits the desired “dimension counting” scaled
with noise-to-signal behavior, see Corollary 3.1 and Corol-
lary 3.2. Moreover, the weak variance term takes into ac-
count how targets Y1:n interact with the function class F

through W1:n, locally at radius rε near the minimizer fε,
via a second-order statistic. In particular, this variance term
is always sharper than the corresponding iid variance term
deflated by a factor of the mixing-time (or block-length).

With these preliminaries in place we are ready to state an
informal version of our main result.

Informal version of Theorem 3.1. Given data that mixes
sufficiently fast, for a wide range of (1) convex or (2) real-
izable hypothesis classes, any empirical risk minimizer f̂
over such a class F converges at least as fast a rate charac-
terized by the critical radius rε given by the solution to (4)
depending on the variance of the noise-class interaction and
local scale of the class F . That is with probability 1↗ ϑ:

↑f̂ ↗ fε↑
2
L2 ↫ r2ε +

(weak variance)↖ log(1/ϑ)

n
+ terms of higher order(rε, n↑1,mixing, log(1/ϑ)). (5)

Moreover, for d-dimensional parametric classes the leading
term is (weak variance)↖ d+log(1/ϑ)

n .

The crux of this result is that past a burn-in, the ERM excess
risk does not directly depend on mixing times, but only
on the relevant second order statistics. Put differently, the
effect of slow mixing has been relegated to a small additive
term with higher order dependence on 1/n. Indeed, both
rε and the variance term in (5) do not directly depend on
slow mixing (i.e., are not deflated by the block-length k) but

3The terminology weak variance comes from the empirical
processes literature in that the supremum in Definition 2.2 is on
the outside of the expectation.

only on relevant second order statistics. Slow mixing only
affects higher order additive terms that can be pushed into
the burn-in.

The qualifier “wide range” above refers to the requirement
that the class F satisfies a certain topological condition.
Recall that for a random variable Z the !p-norm is the
norm ↑Z↑!p

= supm→1 m
↑1/p

↑Z↑Lm . We will ask that
for some ε ↓ (0, 1] and L > 0, every f ↓ Fε satisfies
the inequality ↑f↑!p

↘ L↑f↑ωL2 . We will say that such
classes are weakly sub-Gaussian and will verify that such
an inequality indeed holds true for a range of examples in
Section 4:

• bounded smoothness classes, see Proposition 4.1;

• parametric classes that are Lipschitz in their parame-
terization, see Proposition 4.2;

• sub-Gaussian linear regression, see Proposition 4.3;

• finite hypothesis classes, see Proposition 4.4.

Finally, the requirement that F be either (1) convex or (2)
realizable can easily be removed with a few modifications
if one replaces the empirical risk minimizer by the star
estimator of Audibert (2007). In this case (but with the
L2-error replaced with the no-longer directly comparable
excess risk functional) the geometric inequality by Liang
et al. (2015, Lemma 1) takes a similar role to the basic
inequality we use below. The necessity of imposing (1)
or (2) is due to a known shortcoming of empirical risk
minimization outside of convex (or realizable) classes, and
not an issue directly related to dependent data (see e.g. the
discussion in Mendelson, 2019).

1.2. Proof Outline

From a more technical standpoint, our contribution is a
novel analysis of two empirical processes that arise in (but
are not restricted to) empirical risk minimization, and which
are sharp even for dependent data. Following the language
of Mendelson (2014), we refer to these as the quadratic
and multiplier empirical processes. The first of these, the
quadratic process, controls a one-sided discrepancy between
the empirical and population L2-norms:

Qn(f) ↭
1

n

n∑

i=1

E↑f(Xi)↗ fε(Xi)↑
2

↗
(1 + ϱ)

n

n∑

i=1

↑f(Xi)↗ fε(Xi)↑
2, (6)

for some ϱ ↓ (0, 1). Under our assumptions, we will show
that the process Qn(f) is eventually nonpositive uniformly
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for all sufficiently large f , implying that the empirical L2-
norm dominates the population L2-norm.

Now for r ↓ R+ and conditionally on the event {Qn(f) ↘

0, ∝f ↓ Fε \ rBL2}, using optimality of f̂ to (2) we also
have the following deterministic (basic) inequality:

↑f̂ ↗ fε↑L2 ↘ r

+
1 + ϱ

rn

n∑

i=1

2(1↗E≃)

[〈
Wi,

r
[
f̂(Xi)↗ fε(Xi)



↑f̂ ↗ fε↑L2


,

(7)

where E≃ denotes expectation with respect to a fresh copy
of randomness independent of f̂ .

Hence, we also need to control the multiplier process:

Mn(f) ↭
1 + ϱ

n

n∑

i=1

2(1↗E≃)≃Wi, f(Xi)⇐. (8)

It is the uniform control of Mn(f) over the class Fε inter-
sected with the radius r ball rSL2 balanced with the first
term of (7) that gives rise to the critical radius (4). This
argument is formalized in Lemma F.1. Just as in Mendel-
son (2014), it is the multiplier process (8) that yields the
dominant contribution to the error (5) (after a burn-in). This
is important as it allows us to use blocking to control (6)
without affecting the leading term of the final rate.

We reiterate that our analysis of the above two empirical
processes ((6) and (8)) rests crucially on the assumption that
Fε is a weakly sub-Gaussian class. Let us also point out
that we first make a simplifying assumption, namely that
our model is k-wise independent. We later port all results to
the ω-mixing setting by blocking, cf. Section 2.3. A sketch
of the analysis of Mn(f)—found in Section 2.1 with proofs
relegated to Appendix C—now goes as follows:

• We invoke a refinement of Bernstein’s inequality
(Lemma 2.1) to gain pointwise control of Mn(f). The
benefit of this over the standard version is that we do
not require boundedness, but rather finite !p-norm
suffices. Unless p = ↔ (boundedness), the price we
pay for this is that the variance proxy is degraded to a
moment of order 2q, q > 1 instead of order 2.

• We make this refinement of Bernstein’s inequality uni-
form over the class Fε intersected with the radius
r ball rSL2 by invoking mixed-tail generic chain-
ing (Dirksen, 2015). This splits the tail into an L2q-
component and a !p-component.

• Our assumption that Fε is a weakly sub-Gaussian class
now comes into play by ensuring that, past a burn-in,

the !p-component of the mixed tail is of lesser mag-
nitude than the L2q-part of the tail. Just as in our
introductory example with Bernstein’s inequality (1),
any dependence on mixing is relegated to this smaller
!p-component (which now assumes the role of bound-
edness).

• Combining these steps with (7) yields control of the
multiplier process and is summarized in Theorem 2.1.

The analysis of Qn(f) is relatively standard and amounts
to showing that the norm-bound ↑f↑!p

↘ L↑f↑ωL2 is suf-
ficient to modify a standard truncation argument (see e.g.
Wainwright, 2019, Theorem 14.12). We then proceed to con-
trol the remainder of said truncation argument completely
analogously to our above approach for Mn(f). We de-
tail these arguments in Section 2.2 and prove them in Ap-
pendix D. Finally, we combine our control of the multiplier
and quadratic processes (Theorem 2.1 and Theorem 2.2)
with blocking to arrive at our main result, Theorem 3.1.

1.3. Further Preliminaries

Notation. Expectation (resp. probability) with respect to
all the randomness of the underlying probability space
is denoted by E (resp. P). For q ↓ [1,↔) the 2q-
variance of a random variable Z is defined as V2q(Z) ↭
(E(Z ↗ EZ)2q)1/q with V2 = V being the standard vari-
ance. For p ↓ [1,↔), we also introduce the !p-norm
↑Z↑!p

↭ supm→1 m
↑1/p

↑Z↑Lm and also set ↑Z↑!→ ↭
↑Z↑L→ . Two extended real numbers q, q≃ ↓ [1,↔] are said
to be Hölder conjugates if 1/q + 1/q≃ = 1, where, as we
do throughout, 1/↔ is interpreted as 0. For two proba-
bility measures P and Q defined on the same probability
space, their total variation is denoted ↑P↗ Q↑TV. Maxima
(resp. minima) of two numbers a, b ↓ R are denoted by
a ′ b = max(a, b) (resp. a ∞ b = min(a, b)). For an inte-
ger n ↓ N, we also define the shorthand [n] ↭ {1, . . . , n}.
For a symmetric positive semidefinite matrix M , ςmin(M)
denotes its smallest nonzero eigenvalue.

Talagrand’s functionals. The complexity(Fε ↙ rεSL2)
term in (4) is made precise through Talagrand’s φϖ-
functional (with ↼ = 2 being the dominant term in our
result). Let be (H , d) a metric space. We denote the diam-
eter of H with respect to d by

”d(H ) ↭ sup
h,h↑↓H

d(h, h≃).

A sequence H = (Hm)m↓Z+ of subsets of H is called
admissible if |H0| = 1 and |Hm| ↘ 22

m

for all m ∈ 1. For
↼ ↓ (0,↔), the φϖ-functional of (H , d) is defined by

φϖ(H , d) ↭ inf
H

sup
h↓H

⇐∑

m=0

2m/ϖd(h,Hn), (9)

4
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where the infimum is taken over all admissible sequences
(we write d(h,H) = infs↓H d(h, s) whenever H is a
set). For ε ↓ (0, 1), we slightly abuse notation and write
φϖ(H , dω) for d replaced with dω in (9) (while being mind-
ful of that fact that dω is not a metric in general). Finally,
since entropy integrals upper-bound φϖ-functionals, it will
also be useful to introduce the covering number NL2(H , s),
which denotes the minimal number of L2-balls of radius s
required to cover H .

2. !p-Norms, Bernstein’s Inequality and

Empirical Processes

In this section we establish a few preliminary technical
lemmas that will be useful for controlling the multiplier and
quadratic processes ((8) and (6)). We begin with a version
of Bernstein’s inequality that controls the Laplace transform
of Z in terms of its L2q-norm (q ∈ 1) and some !p-norm.
The lemma comes from (Maurer & Pontil, 2021).
Lemma 2.1 (!p-Bernstein MGF Bound). Fix a random
variable Z and p ↓ [1,↔] such that EZ ↘ 0 and ↑Z↑!p

<
↔. Let q and q≃ be Hölder conjugates and suppose that
ς ↓ [0, 1/(q≃e)1/p↑Z↑!p

]. We have that:

E exp (ςZ) ↘ exp

(
ϱ2

2


E(Z)2q

1/q

1↗ ς(q≃e)1/p↑Z↑!p

)
. (10)

Our intention is to use Lemma 2.1 to afford us—
pointwise in g—control of the multiplier process intro-
duced in (8). Indeed, notice that in the regime ς ↓

(0, (2(q≃e)1/p↑Z↑!p
)↑1] the dominant term in (10) is 2q-

variance of Z. Since (7) can be localized to a ball of radius
r in L2 it suffices that the L2-norm provides some weak
control of the !p-norm for any constant choice of ς to be
admissible once the localization radius r is chosen small
enough. This in turn motivates the following definition.
Definition 2.1 (Weakly sub-Gaussian Class). Fix ε ↓ (0, 1]
and L ↓ [1,↔). We say that a class G is (L, ε)-!p if for
every g ↓ G we have that:

↑g↑!p
↘ L ↑g↑ωL2 . (11)

If (11) holds for G with ε ↓ (0, 1) and some L we will
call G a weak !p-class. If (11) instead holds for ε = 1 it
is simply a !p-class. This generalizes the notion of a sub-
Gaussian class from (Lecué & Mendelson, 2013), which cor-
responds to ε = 1 and p = 2. Let us further point out that by
homogeneity, if ε ↓ (0, 1) in (11), then one should expect
L to depend polynomially on some other norm (or homoge-
nous functional) of g. Indeed, by the Gagliardo-Nirenberg
interpolation inequality, the above relaxation (ε < 1) covers
smoothness classes (Proposition 4.1), whereas the strict sub-
Gaussian class assumption (ε = 1) of (Lecué & Mendelson,
2013) is difficult to verify beyond linear functionals.

As we have pointed out above, our intention is to apply
Lemma 2.1 pointwise to the multiplier process (8). However,
this yields a different variance term for each index point of
the empirical process. The solution to this is simply to
define a uniform variance term, as is done below.

Definition 2.2 (Noise Level). The 2q-noise-class-
interaction between F , the model P(X,Y )1:n , and the
shifted target W1:n = (Y ↗ fε(X))1:n at resolution G is
given by

V2q


F ,G ,P(X,Y )1:n



↭ sup
g↓G

V2q

(
1
⇔
n

n∑

i=1

〈
Wi,

g(Xi)

↑g↑L2

〉)
. (12)

We stress that, even though Definition 2.2 measures noise
uniformly over a function class, it does not generally grow
with the complexity of the class. For instance, under the
additional hypotheses that P(X,Y )1:n is drawn iid and that
Wi is independent of Xi for i ↓ [n], it is easy to see
that V2


F ,G ,P(X,Y )1:n


= V2(W ) for every such well-

specified class G . Rather, Definition 2.2 is a measure of
how well the targets Y1:n align with a given class G .

2.1. The Multiplier Process

We will not directly control the multiplier process for ω-
mixing variables. Instead we first suppose that the model
P(X,Y )1:n is k-wise independent (where k divides n). We
then port these results to the ω-mixing setting by blocking
(see Appendix E.1). We use the following shorthand no-
tation regarding V2q


F ,G ,P(X,Y )1:k


: we take the class

F and the probability model P(X,Y )1:k as fixed and thus
omit the dependence on F (via fε) and P(X,Y )1:k and write
V2q (G ) = V2q


F ,G ,P(X,Y )1:k


. With these remarks in

place, we now turn to establishing pointwise control of (8)
using Lemma 2.1.

Lemma 2.2 (Pointwise Control). Fix two Hölder conjugates
q and q≃. Suppose that the model P(X,Y )1:n is stationary and
k-wise independent where k divides n. For every g, g≃ ↓
L!p

and u ↓ (0,↔) we have that:

P

(
n∑

i=1

(1↗E)≃Wi, g(Xi)↗ g≃(Xi)⇐

>

4n↑g ↗ g≃↑2L2V2q ({g}↗ {g≃})u

+ 4(q≃e)2/pk↑W↑!p
↑g ↗ g≃↑!p

u

)
↘ 2e↑u. (13)

In the main development we will instantiate Lemma 2.2 with
r = ↑g ↗ g≃↑2L2 decaying to 0 (which should be thought
of as a fixed point upper-bounding the rate of convergence

5
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of ERM) at a polynomial rate in n. If furthermore G is
(L, ε)-!p, then the second term (linear in u) of (13) can
be rendered negligible at every scale r, which allows us
to invoke mixed-tail generic chaining (Dirksen, 2015) to
show that the weak variance V2q (Fε ↙ rSL2) dominates
the noise level in the small-to-moderate deviations regime.

Put differently, at the scale of localization considered here,
the noise level of the empirical process is almost entirely
dictated by the weak variance V2q(Fε↙ rSL2). Now, since
q≃ is the Hölder conjugate of q this further implies that
we may choose q = 1 + o(1) so that we might expect
V2q (Fε ↙ rSL2) = V (Fε ↙ rSL2) + o(1). Moreover if
p = ↔ this always the case and we may choose q = 1. In
principle no better variance proxy is possible, since already
for a single function g as n ⇒ ↔, by the central limit
theorem under mild ergodicity assumptions on P(X,Y )1:→
(e.g. for the Markovian situation cf. Meyn & Tweedie, 1993,
Theorem 17.3.6):

1
⇔
n

n∑

i=1

(1↗E)

〈
Wi,

g(Xi)

↑g↑L2

〉

⊜ N(0,V(Fε, {g},P(X,Y )1:→)), (14)

where the variance term on the right is:
V(Fε, {g},P(X,Y )1:→) ↭ lim

n⇒⇐

V(Fε, {g},P(X,Y )1:n).

Now, since r = o(1) in all practical situations one ex-
pects V(Fε ↙ rSL2) ∋ V({fε}) as long as the map
f △⇒ V(f/↑f↑L2) is sufficiently regular near fε.

We arrive at our main result for the multiplier process by
making uniform the pointwise control afforded to use by
Lemma 2.2 via an instantiation of mixed-tail generic chain-
ing (Dirksen, 2015) (for ease of reference, we restate a
corollary of his result as Lemma C.1 in the appendix). This
yields the following result.
Theorem 2.1. Fix a failure probability ϑ ↓ (0, 1), a positive
scalar r ↓ (0,↔), two Hölder conjugates q and q≃, and
a class F . Suppose that Fε ↗ Fε is (L, ε)-!p. Suppose
further that the model P(X,Y )1:n is stationary and k-wise
independent where k divides n. There exist universal pos-
itive constants c1, c2 such that for any r ↓ (0, 1] we have
that with probability at least 1↗ ϑ:

sup
f↓Fω↔rS

L2

1

rn

n∑

i=1

(1↗E)≃Wi, f⇐

↘ c2


V2q (Fε ↙ rSL2)

(
1

r
⇔
n

↖ φ2(Fε ↙ rSL2 , dL2) +

√
log(1/ϑ)

n

)

+ c1(q
≃e)2/pLk↑W↑!p

↖


1

rn
φω(Fε ↙ rSL2 , dL2) +

rω↑1

n
log(1/ϑ)


. (15)

In the sequel, we will see that the first term on the right of
(15) is typically dominant.

2.2. The Quadratic Process

A slight modification of the argument leading to Theo-
rem 2.2 combined with a truncation argument detailed in
Lemma D.1 also yields control of the quadratic process.
Theorem 2.2 (Lower Uniform Law). Fix a failure proba-
bility ϑ ↓ (0, 1), a tolerance ϱ > 0, a localization radius
r ↓ (0, 1], and two Hölder conjugates q and q≃. Suppose
that Fε ↗ Fε is (L, ε)-!p. Suppose further that the model
P(X,Y )1:n is stationary and k-wise independent where k
divides n. There exist a universal positive constant c such
that uniformly for all f ↓ Fε \ {rBL2} we have that with
probability at least 1↗ ϑ:

1

n

n∑

i=1

↑f(Xi)↑
2
∈ r2(1↗ ϱ2)

↗ c


n↑1/2

⇔

kL1+3/4rω

log


42/pL

ϱr

1/p

↖

(
φ 2+6ε

4
(Fε ↙ rSL2 , dL2) + r

1+3ε
4


log(1/ϑ)

)

+ n↑1(q≃)1/pkrω

log


42/pL

ϱr

1/p

L2

↖ (φω(Fε ↙ rSL2 , dL2) + rω log(1/ϑ))


. (16)

2.3. ω-Mixing Processes

We extend the empirical process results of the preceding
two sections to ω-mixing processes in Appendix E.2. We
do so by a simple blocking argument that we review in
Appendix E.1, and for which we have already set the stage
by establishing our results for k-wise independent processes.
Here, we state the definition of dependence we rely on in
the sequel.
Definition 2.3. Let Z1:n be a stochastic process. The ω-
mixing coefficients of Z, denoted ωZ(i), are for i ↓ [n]:

ωZ(i) ↭ sup
t↓[n]:t+i⇑n

E↑PZi+t
(· | Z1:t)↗ PZi+t

(·)↑TV.

(17)

3. The Main Result

Before we state our main result, we will need to establish
one more preliminary matter. Let us define the burn-in
times nquad, nmult, kmix which together dictate the minimial
sample size necessary for our result to be sharp. The first
of these, nquad, is required for the population L2 error to
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be dominated by the empirical L2 error: i.e., the quadratic
process Qn(f) is nonpositive on our class of interest. The
second of these, nmult, is required for the multiplier process,
Mn(f), to have a dominant variance term (informally—
when the CLT-like rate becomes accurate). Finally, kmix

is the minimal block-size it takes for the ω-mixing model
P(X,Y )1:n to be well-approximated by a corresponding k-
wise independent model. These are given as follows below:

nquad(r) = inf


n ↓ N



[
n↑1/2

⇔

kL1+3/4rω

↖


log


42/p+1/2L

r

1/p

↖

(
φ 2+6ε

4
(Fε ↙ rSL2 , dL2) + r

1+3ε
4


log(1/ϑ)

)

+ n↑1L2(q≃)1/pkrω

log


42/p+1/2L

r

1/p

↖ (φω(Fε ↙ rSL2 , dL2) + rω log(1/ϑ))


↘ r2


,

nmult(r) = inf

n ↓ N

(q≃e)2/pLk↑W↑!p

↖


1

rn
φω(Fε ↙ rSL2 , dL2) +

rω↑1

n
log(1/ϑ)


↘ r


,

kmix = inf{k ↓ [n]|kω↑1
X,Y (k) ∈ nϑ↑1

}.
(18)

The first two of these are calculated by requiring the re-
mainder terms in Proposition E.2 and Proposition E.3 to
be of negligible order. The last term is obtained by re-
quiring that failure term, ϑ, dominates the mixing term,
n
kωX,Y (k), in the failure probability of these propositions.
At this point, as a practical example, it is worth to point
out that if the process (X,Y )1:n is geometrically ergodic—
ωX,Y (k) ↫ exp(↗k/↽mix) for some ↽mix ↓ R+—this re-
quirement is satisfied by k ↫ (1 ′ ↽mix) log(n/ϑ). With
these burn-in times in place, we are now ready to state the
main result of our paper.
Theorem 3.1. Fix a failure probability ϑ ↓ (0, 1), two
Hölder conjugates q and q≃, and a class F that is either (1)
convex or (2) realizable. Suppose that Fε↗Fε is (L, ε)-!p.
Suppose further that the model P(X,Y )1:n is stationary and
that k divides n/2. There exist universal positive constants
c1, c2, c3 such that the following holds. If rε solves

r ∈ c1


V2q (Fε ↙ rSL2)↖

1

r
⇔
n
φ2(Fε ↙ rSL2 , dL2),

(19)
we have that with probability 1↗ 4ϑ that:

↑f̂ ↗ fε↑
2
L2 ↘ c2


r2ε +V2q (Fε ↙ rεSL2)

log(1/ϑ)

n



(20)
as long as n ∈ c3 max {nquad(rε), nmult(rε)} and k ∈

kmix (given in (18)).

Theorem 3.1 informs us that past a burn-in, the rate of con-
vergence of empirical risk minimization is dictated by the
critical radius rε given in (19). This radius depends on
local complexity of the class F measured in L2 distance
as per the φ2-functional and through the weak variance
V2q(Fε ↙ rεSL2). We point out that we may choose q = 1
if p = ↔, so that the variance term in (22) is the actual vari-
ance V2. As indicated at the discussion following (14), this
variance term cannot be improved in general. Otherwise we
can typically let q approach 1 as the sample size becomes
sufficiently large. Moreover, unless the class exhibits large
nonparametric behavior, the dependency on the complex-
ity is also the best possible even in the iid case (Lecué &
Mendelson, 2013).

We now turn to parsing Theorem 3.1 by specializing it to
parametric classes. First, in Corollary 3.1 we show that
for parametric classes the complexity term dictated by the
critical radius rε in (19) becomes a variance(-proxy)-scaled
dimensional factor and that the burn-in requirement (18)
amounts to a polynomial in problem data and log(1/ϑ).
Second, we simplify matters further and study bounded and
realizable linear regression in Corollary 3.2. In this case,
we will see that the variance term V2q (Fε ↙ rεSL2) in
(22) simply reduces to 2-variance of the noise variable W .
Moreover, the first two burn-in requirements nquad and nmult

are in this case satisfied as soon as n/k ↬ d+ log(1/ϑ).

Corollary 3.1 (Parametric Classes). Fix a failure proba-
bility ϑ ↓ (0, 1), two Hölder conjugates q, q≃, and a class
F that is either (1) convex or (2) realizable. Suppose that
Fε ↗ Fε is (L, ε)-!p. Suppose further that the model
P(X,Y )1:n is stationary and that k divides n/2.

There exists a universal positive constant c and a polynomial
function ⇀ω such that the following holds true. Suppose that
there exists dF ↓ R+ such that for s > 0:

logNL2(Fε, s) ↘ dF log


1

s


(21)

We have with probability 1↗ 4ϑ that:

↑f̂ ↗ fε↑
2
L2 ↘ cV2q

(
Fε ↙

√
dFk↑W↑

2
L2

n
SL2

)

↖


dF + log(1/ϑ)

n


(22)

as long as kω↑1(k) ∈ nϑ↑1 and

n ∈ ⇀ω

(
dF , k, ↑W↑!p

, L, q, q≃,

V↑1

(
Fε ↙

√
dFk↑W↑

2
L2

n
SL2

)
, log(1/ϑ)

)
. (23)
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Consequently, after a polynomial burn-in and up to a uni-
versal positive constant, we are able to recover the optimal
parametric rate n↑1


dF +log(1/ϑ)


scaled by the appropri-

ate noise term. Stated in its most general form, the burn-in
term (18) can be somewhat hard to parse. The next corollary
shows that in the case ε = 1 our burn-in coincides with the
familiar requirement that the (effective) sample size exceeds
the number of degrees of freedom. To simplify matters
further we now specialize our result to realizable bounded
linear regression. Here, one can think of this burn-in as
requiring the empirical covariance matrix of the X-process
to be invertible with high probability.4

Corollary 3.2 (Realizable Linear Regression). Fix a failure
probability ϑ ↓ (0, 1), a covariate bound BX ↓ (0,↔) and
a noise bound BW ↓ (0,↔) and let X = Rd and Y = R.
Suppose that k divides n/2 and that the model P(X,Y )1:n
is stationary and satisfies Yi = ≃ωε, Xi⇐ +Wi for i ↓ [n].
Suppose further that:

1. X1:n is bounded |≃v,Xi⇐| ↘ BX , ∝i ↓ [n] and v ↓ Rd

with ↑v↑ = 1; and

2. W1:n is a bounded martingale difference sequence—
E[Wi|X1:i] = 0 and |Wi| ↘ BW , ∝i ↓ [n].

There exist universal positive constants c1 and c2 such that
if

n

k
∈ c1


BX/


ςmin(EXXT)

3+1/2  kB2
W

V(W )



↖ (d+ log(1/ϑ)) and kω↑1(k) ∈ nϑ↑1 (24)

we have that:

↑f̂ ↗ fε↑
2
L2 ↘ c2V(W )


d+ log(1/ϑ)

n


. (25)

3.1. Further Comparison to Related Work

In terms of technical development, this work is most closely
related to the work on iid learning in sub-Gaussian classes
by Lecué & Mendelson (2013) and the result for misspeci-
fied (agnostic) dependent linear regression by Ziemann et al.
(2023b)—which we generalize to more general function
classes at the cost of more stringent moment assumptions.
Returning to Lecué & Mendelson (2013), and beside the fact
that they work with independent data, the biggest difference
is in how we deal with the multiplier process. We employ
chaining with a mixed tail (Dirksen, 2015), instead of a sin-
gle tail. On a practical level, the advantage of the mixed tail
result is that it allows us to push the dependence on, mixing,

4A small caveat to this remark is that the factor kB2
W

V(W ) in (24)
arises from the multiplier process: it is the cost of having V(W )
appear in (25) instead of kB2

W .

L (the norm equivalence parameter in Theorem 3.1) and any
higher order norms into the burn-in. Crucially, we make
the observation that chaining with a mixed tail allows us to
work with weaker norm relations (ε < 1 in Definition 2.1).
We do not require equivalence of norms but rather a weaker
notion of topological equivalence. Such equivalences hold
in significantly wider generality than the sub-Gaussian class
assumption as we show in Section 4 below. In particular
we are able to handle smoothness classes in Proposition 4.1,
which cannot be covered in the baseline sub-Gaussian class
framework. Another advantage of this approach is that it
allows to relegate the parameter L to a higher order term,
which appears multiplicatively instead of additively in the
bound by Lecué & Mendelson (2013). This is important
in order to achieve the correct scaling with temporal de-
pendency as there are typically no obvious bounds on this
parameter other than in terms of the block-length k. Hence,
if our dependence on L were multiplicative instead of addi-
tive it would thereby re-introduce the sample-size deflation
we sought to sidestep. Again, it is the invocation of the
mixed-tail chaining result of Dirksen (2015) that allows for
this.

Another closely related line of work studies parameter iden-
tification in auto-regressive models (for an overview, see
Tsiamis et al., 2023; Ziemann et al., 2023a). When the
noise model is strictly realizable—the variables W1:n form
a martingale difference sequence with respect to the filtra-
tion generated by X1:n—parameter identification is possible
at the iid rate even in the absence of mixing (Simchowitz
et al., 2018; Faradonbeh et al., 2018; Sarkar & Rakhlin,
2019; Kowshik et al., 2021). Our results do not cover the
mixing-free regime as we consider the agnostic setting in
which self-normalized martingale arguments (Peña et al.,
2009; Abbasi-Yadkori et al., 2011) are not available. We
consider providing a unified analysis of the martingale and
mixing situations an interesting future direction.

More generally, several authors have considered learning un-
der various weak dependency notions. Kuznetsov & Mohri
(2017) give generalization bounds in a more general setting
using the same blocking technique—due to Yu (1994)—
used here. Statements similar in spirit can also be found in
e.g., Steinwart & Christmann (2009), Duchi et al. (2012)
and most recently Roy et al. (2021). However, they all suffer
the dependency deflation discussed above and in our intro-
duction (Section 1). We also note that Ziemann & Tu (2022)
and Maurer (2023) obtain rates—similar to ours here—that
relegate mixing times into additive burn-in factors. On the
one hand, the work of Ziemann & Tu (2022) operates at
a similar level of generality when it comes to hypothesis
classes and also relies on the square loss function but re-
quires a stringent realizability assumption to be applicable.
Moreover, both our noise term and our complexity parame-
ter are sharper than theirs. On the other hand, the work of
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Maurer (2023) operates at a higher level of generality than
us, but does not seem to be able to reproduce sharp rates
when specialized to our situation.

4. Examples of Weakly sub-Gaussian Classes

We conclude by collecting a few examples of weakly sub-
Gaussian classes (Definition 2.1). Arguably the most com-
pelling example identified in the present manuscript are
smoothness classes, which are not covered even in the iid
setting by Lecué & Mendelson (2013).
Proposition 4.1 (Smoothness Classes). Let X be a mea-
surable, open, connected and bounded subset of Rd with
Lipschitz boundary and let F be a set of uniformly bounded
functions f : X ⇒ R. Fix an integer s ↓ N and suppose that
there exists a constant CF such that

∑
|ϖ|⇑s ↑D

ϖf↑L→ ↘

CF .5 Suppose further that the distribution of the covariates
PX has density µX with respect to the Lebesque measure
and that there exists µ, µ ↓ R+ such that µ ↘ µX ↘ µ.
Under the above hypotheses there exists a positive constant
c only depending on X, d and s such that F is (L, ε)-!⇐

with L = cµµ↑
2s

2s+dC
d

2s+d

F
and ε = 2s

2s+d .

Proof. The result for PX equal to the (normalized)
Lebesque measure is immediate by the main result of (Niren-
berg, 1959) instantiated to the correct smoothness class. The
general case follows by our hypothesis that PX is equivalent
to the Lebesque measure. ≿

We stress that the quantities L and ε only appear in the
burn-in of Theorem 3.1. In other words, Theorem 3.1 pro-
vides sharp rates almost universally, or at least as long as
the hypothesis class is sufficiently smooth and bounded (al-
though the latter can be relaxed). However, one important
caveat is that this burn-in can be exponentially large (curse
of dimensionality) unless the class is sufficently smooth: s
is proportional to d above.

Our next example relies on smoothness in parameter space
instead of smoothness in terms of inputs.
Proposition 4.2. Fix an open parameter set M → RdF

equipped with the Euclidean norm ↑ · ↑. Consider a
function ⇀ : X ↖ M ⇒ R that generates a paramet-
ric class of functions F = {⇀(·; ⇁) ⇁ ↓ M}. Define
Mε ↭ argminς↓M E(⇀(X, ⇁)↗ Y )2 to be the set of popu-
lation risk minimizers. Suppose that:

(i) for a, b ↓ R+, the estimation error functional of
the model F is (a, b)-sharp, that is: ∝⇁ ↓ M
there exists ⇁ε ↓ Mε such that ab↑1

↑⇁ ↗ ⇁ε↑ ↘
E(⇀(X, ⇁)↗ ⇀(X, ⇁ε))2

b;

5Summation over Dω uses multi-index notation—the sum is
over all partial derivative operators of order less than or equal to s.

(ii) the partial gradient ▽ς⇀(x, ⇁) exists and is uniformly
norm-bounded by C > 0 for all (x, ⇁) ↓ X↖M.

Then F ↗ {fε} is (Cba↑1, 2b)-!⇐.

The sharpness condition (i) in Proposition 4.2 is standard in
optimization (see e.g Roulet & d’Aspremont, 2017). This
condition holds somewhat generically (!ojasiewicz, 1993),
but the exact constants a and b are typically difficult to
obtain. Fortunately, downstream use of Proposition 4.2 only
relies on these constants in the burn-in.

Proof. By the mean value form of Taylor’s Theorem and
Cauchy-Schwarz we write for fixed x ↓ X:

|⇀(x; ⇁)↗ ⇀(x; ⇁ε)| = |≃▽ς⇀(x, ⇁̃), ⇁ ↗ ⇁ε⇐|

↘ ↑▽ς⇀(x, ⇁̃)↑↑⇁ ↗ ⇁ε↑ ↘ C↑⇁ ↗ ⇁ε↑ (26)

for some ⇁̃ ↓ [⇁, ⇁ε]. Consequently by our sharpness hy-
pothesis and by optimizing over the left hand side of (26)
we have that for some ⇁ε ↓ Mε and every ⇁ ↓ M:

sup
x↓X

↑⇀(x, ⇁)↗⇀(x, ⇁ε)↑ ↘
Cb

a


E(⇀(X, ⇁)↗ ⇀(X, ⇁ε))

2
b

(27)
Equivalently, ↑f↑L→ ↘ Cba↑1

↑f↑2bL2 for every f ↓ F ↗

{fε} as per requirement. ≿

There is also a more direct argument that easily covers linear
functionals on Rd.
Proposition 4.3. Let X be a sub-Gaussian random vari-
able taking values in Rd and let F be the class of linear
functionals on Rd. Suppose that ςmin


EXXT


> 0. Then

F is (L, 1)-!2 with L = supv↓Rd:↘v↘=1
↘⇓v,X⇔↘!2
↘⇓v,X⇔↘

L2
.

Proof. The only observation we need to make is that it
suffices to prove the result for ↑v↑ = 1 by homogeneity.
The result is then immediate by construction. ≿

Analogously, finite hypothesis classes are also covered.
Proposition 4.4. Let F be a finite subset of L!2 . Then F

is (L, 1)-!2 with L = maxf↓F

↘f↘!2
↘f↘

L2
.

Proof. The result is immediate since the maximum in the
quantity L above is achieved since |F | < ↔. ≿
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A. Summary

In this work, we obtain instance-optimal convergence rates for learning with the square loss function and dependent data.
We overcome the typical deflation, by the mixing time, of the sample size. The main technical step to arrive at this result is a
refined analysis of the multiplier process (8) via mixed tail generic chaining that is suitable for dependent, ω-mixing, random
variables. Indeed, the leading order term of our main result, Theorem 3.1, does not directly depend on any mixing-time type
quantities. It mimics the correct asymptotic rate and scales solely in terms of the statistics of order 2q of the process at hand
(where typically q = 1 + o(1)). Finally, our result also allows us to evaluate said multiplier process for a wider range of
hypothesis classes. Typically, sharp closed form expressions for this process are only available for linear functionals, covered
in the iid setting by Lecué & Mendelson (2013) and Oliveira (2016), and extended to the ω-mixing setting by Ziemann et al.
(2023b). By contrast, since our result relies on a weaker notion of topological equivalence, it is applicable to more general
classes, such as smoothness classes (Proposition 4.1) and parametric classes with sufficiently regular parameterization
(Proposition 4.2).

B. Properties of !p- and Lp
-Norms

We begin with an elementary property.

Lemma B.1. For every two random variables Z,Z ≃
↓ L!p

we have that:

↑≃Z,Z ≃
⇐↑!p/2

↘ 22/p↑Z↑!p
↑Z ≃

↑!p
. (28)

Proof. We compute:

↑≃Z,Z ≃
⇐↑!p/2

= sup
m→1

↑≃Z,Z ≃
⇐↑Lm

m2/p

= sup
m→1

(E|≃Z,Z ≃
⇐|
m)1/m

m2/p

↘ sup
m→1

(E↑Z↑
m
↑Z ≃

↑
m)1/m

m2/p
(≃·, ·⇐-Cauchy-Schwarz)

↘ sup
m→1

(E↑Z↑
2mE↑Z ≃

↑
2m)1/2m

m2/p
(L2-Cauchy-Schwarz)

↘ 22/p sup
m→1

(E↑Z↑
2m)1/2m

(2m)1/p
sup
m→1

(E↑Z ≃
↑
2m)1/2m

(2m)1/p

↘ 22/p↑Z↑!p
↑Z ≃

↑!p
, ({m ∈ 1} → {2m ∈ 1})

(29)

as was required. ≿

B.1. Proof of Lemma 2.1

Lemma 2.1 (!p-Bernstein MGF Bound). Fix a random variable Z and p ↓ [1,↔] such that EZ ↘ 0 and ↑Z↑!p
< ↔.

Let q and q≃ be Hölder conjugates and suppose that ς ↓ [0, 1/(q≃e)1/p↑Z↑!p
]. We have that:

E exp (ςZ) ↘ exp

(
ϱ2

2


E(Z)2q

1/q

1↗ ς(q≃e)1/p↑Z↑!p

)
. (10)

Proof. The idea of the proof is very much the same as that of the standard Bernstein MGF bound but with the modification
made in Maurer & Pontil (2021) by which the L⇐ norm is replaced by a !p-norm. We begin by expanding the exponential
function:

13
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E exp(ςZ) = E

[
⇐∑

m=0

(ςZ)m

m!



↘ 1 +
⇐∑

m=0

E

(ςZ)2(ςZ)m



(m+ 2)!
(EZ ↘ 0)

↘ 1 + ς2

E(Z)2q

1/q ⇐∑

m=0

(
E
[
|ςZ|

mq↑
)1/q↑

(m+ 2)!
. (Hölder’s Ineq.)

(30)

We next have: (
E
[
|Z|

mq↑
)1/q↑

= ↑Z↑
m
Lmq↑

↘ (mq≃)m/p
↑Z↑

m
!p

(df. of !p)

↘ (m!)1/p(q≃e)m/p
↑Z↑

m
!p

. (Stirling’s Approximation)

(31)

Upon combining (30) with (31) we arrive at

E exp(ςZ)

↘ 1 + ς2

E(Z)2q

1/q ⇐∑

m=0

(m!)1/pςm(q≃e)m/p
↑Z↑

m
!p

(m+ 2)!

↘ 1 +
ς2


E(Z)2q

1/q

2

⇐∑

m=0

(
ς(q≃e)1/p↑Z↑!p

)m

p ↓ [1,↔],m ↓ N ̸

(m!)1/p

(m+ 2)!
↘

1

2



= 1 +
ϱ2

2


E(Z)2q

1/q

1↗ ς(q≃e)1/p↑Z↑!p

(
x ↓ [0, 1) ̸

⇐∑

m=0

xm =
1

1↗ x

)

↘ exp

(
ϱ2

2


E(Z)2q

1/q

1↗ ς(q≃e)1/p↑Z↑!p

)
, (x ↓ R ̸ 1 + x ↘ ex)

(32)

as per requirement. ≿

C. Controlling the Multiplier Process

Lemma 2.2 (Pointwise Control). Fix two Hölder conjugates q and q≃. Suppose that the model P(X,Y )1:n is stationary and
k-wise independent where k divides n. For every g, g≃ ↓ L!p

and u ↓ (0,↔) we have that:

P

(
n∑

i=1

(1↗E)≃Wi, g(Xi)↗ g≃(Xi)⇐

>

4n↑g ↗ g≃↑2L2V2q ({g}↗ {g≃})u

+ 4(q≃e)2/pk↑W↑!p
↑g ↗ g≃↑!p

u

)
↘ 2e↑u. (13)

Proof. First, note that we may assume throughout the proof that ↑g ↗ g≃↑L2 > 0, for otherwise the result is trivial. We now
begin by applying Lemma 2.1:

E exp

(
ς

k∑

i=1

(1↗E)≃Wi, g(Xi)↗ g≃(Xi)⇐

)

↘ exp




ς2k↑g ↗ g≃↑2L2V2q

(
1

↗

k↘g↑g↑↘
L2

∑k
i=1≃Wi, g(Xi)↗ g≃(Xi)⇐

)

2
(
1↗ ς(q≃e)2/p↑

∑k
i=1(1↗E)≃Wi, g(Xi)↗ g≃(Xi)⇐↑!p/2

)




(33)

14



Sharp Rates in Dependent Learning Theory

as long as ς <
(
(q≃e)2/p↑

∑k
i=1(1↗E)≃Wi, g(Xi)↗ g≃(Xi)⇐↑!p/2

)↑1
. Now, by triangle inequality and Lemma B.1,

ς(q≃e)2/p

∥∥∥∥∥

k∑

i=1

(1↗E)≃Wi, g(Xi)↗ g≃(Xi)⇐

∥∥∥∥∥
!p/2

↘ ς(2q≃e)2/pk↑W↑!p
↑g(Xi)↗ g≃(Xi)↑!p

. (34)

Consequently:

E exp

(
ς

k∑

i=1

(1↗E)≃Wi, g(Xi)↗ g≃(Xi)⇐

)

↘ exp

(
ς2k↑g ↗ g≃↑2L2V2q ({g}↗ {g≃})

2

1↗ ς(2q≃e)2/pk↑W↑!p

↑g ↗ g≃↑!p


)
.

(35)

Since the process is k-wise independent and mean zero we thus have that:

E exp

(
ς

n∑

i=1

(1↗E)≃Wi, g(Xi)↗ g≃(Xi)⇐

)

↘ exp

(
ς2n↑g ↗ g≃↑2L2V2q ({g}↗ {g≃})

2

1↗ ς(2q≃e)2/pk↑W↑!p

↑g ↗ g≃↑!p


)
.

(36)

Hence for every ς ↓

[
0,

2(2q≃e)2/pk↑W↑!p

↑g ↗ g≃↑!p

↑1
)
↭ # we have:

E exp

(
ς

n∑

i=1

(1↗E)≃Wi, g(Xi)↗ g≃(Xi)⇐

)

↘ exp

ς2n↑g ↗ g≃↑2L2V2q ({g}↗ {g≃})


.

(37)

Taking the above exponential inequality as a starting point, for a fixed u ↓ (0,↔), a Chernoff argument now yields:

P

(
n∑

i=1

(1↗E)≃Wi, g(Xi)↗ g≃(Xi)⇐ > u

)

↘ inf
ϱ>0

E exp

(
↗uς+ ς

n∑

i=1

(1↗E)≃Wi, g(Xi)↗ g≃(Xi)⇐

)

↘ inf
ϱ↓”

(
↗ςu+

ς2n↑g ↗ g≃↑2L2V2q ({g}↗ {g≃})

2

1↗ ς(2q≃e)2/pk↑W↑!p

↑g ↗ g≃↑!p


)

↘






exp


↑u2

4n(↘g↑g↑↘2
L2V2q({g}↑{g↑}))


u ↘

(n↘g↑g↑
↘
2
L2V2q({g}↑{g↑

}))
2(2q↑e)2/pk↘W↘!p

↘g↑g↑↘!p

,

exp
(

↑u
4(2q↑e)2/pk↘W↘!p

↘g↑g↑↘!p

)
otherwise.

(38)

Rescaling and summing the failure probabilities in either case yields:

P

(
n∑

i=1

(1↗E)≃Wi, g(Xi)↗ g≃(Xi)⇐

>

4n↑g ↗ g≃↑2L2V2q ({g}↗ {g≃})u

+ 4(2q≃e)2/pk↑W↑!p
↑g ↗ g≃↑!p

u

)
↘ 2e↑u, (39)

as was required. ≿

15



Sharp Rates in Dependent Learning Theory

Let us turn to making Lemma 2.2 uniform. By instantiating Theorem 3.5 of (Dirksen, 2015) combined with the pointwise
control of Lemma 2.2, we immediately have the following result.
Lemma C.1 (Corollary of Theorem 3.5 in (Dirksen, 2015)). Fix ϑ ↓ (0, 1), r > 0 and consider the space Fε ↙ rSL2

endowed with the metrics
d1(g, g

≃) = 4(q≃e)2/pk↑W↑!p
↑g ↗ g≃↑!p

,

d2(g, g
≃) =


4n (V2q (Fε ↙ rSL2))↑g ↗ g≃↑L2 ,

(40)

and denote the corresponding diameters by ”i(Fε ↙ rSL2) ↭ supg,g↑↓Fω↔rS
L2

di(g, g≃), i ↓ [2]. There exist universal
positive constants c1 and c2 such that with probability at least 1↗ ϑ:

sup
f↓Fω↔rS

L2

n∑

i=1

(1↗E)≃Wi, f⇐ ↘ c1 (φ2(Fε ↙ rSL2 , d2) + φ1(Fε ↙ rSL2 , d1))

+ c2
(
”2(Fε ↙ rSL2)


log(1/ϑ) +”1(Fε ↙ rSL2) log(1/ϑ)

)
. (41)

We now restate and prove the result for the multiplier process.
Theorem 2.1. Fix a failure probability ϑ ↓ (0, 1), a positive scalar r ↓ (0,↔), two Hölder conjugates q and q≃, and a class
F . Suppose that Fε ↗ Fε is (L, ε)-!p. Suppose further that the model P(X,Y )1:n is stationary and k-wise independent
where k divides n. There exist universal positive constants c1, c2 such that for any r ↓ (0, 1] we have that with probability
at least 1↗ ϑ:

sup
f↓Fω↔rS

L2

1

rn

n∑

i=1

(1↗E)≃Wi, f⇐

↘ c2


V2q (Fε ↙ rSL2)

(
1

r
⇔
n

↖ φ2(Fε ↙ rSL2 , dL2) +

√
log(1/ϑ)

n

)

+ c1(q
≃e)2/pLk↑W↑!p

↖


1

rn
φω(Fε ↙ rSL2 , dL2) +

rω↑1

n
log(1/ϑ)


. (15)

Proof. We need to translate the metrics (appearing in Lemma C.1) d1, d2 and their diameters into the standard L2-metric
using that the class is (L, ε)-!p. We begin with d2, which is just a dilated L2-metric:

φ2(Fε ↙ rSL2 , d2) = inf
{Fm}

sup
f↓Fω↔rS

L2

⇐∑

m=0

2m/2d2(f, Fm)

=

4n (V2q (Fε ↙ rSL2))φ2(Fε ↙ rSL2 , dL2),

(42)

and
”2(Fε ↙ rSL2) ↘ r


4n (V2q (Fε ↙ rSL2)). (43)

Turning to the d1, we have:

φ1(Fε ↙ rSL2 , d1) = inf
{Fm}

sup
f↓Fω↔rS

L2

⇐∑

m=0

2md1(f, Fm)

= inf
{Fm}

sup
f↓Fω↔rS

L2

⇐∑

m=0

2m2(q≃e)2/pk↑W↑!p
d!p

(f, Fm)

↘ 2(q≃e)2/pLk↑W↑!p
φ1(Fε ↙ rSL2 , dωL2)

↘ 2(q≃e)2/pLk↑W↑!p
φω(Fε ↙ rSL2 , dL2),

16
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where the first inequality uses that G is (L, ε)-!p and the last inequality uses that φ1(Fε↙rSL2 , dωL2) ↘ φω(Fε↙rSL2 , dL2)
as long as r ↘ 1. Similarly:

”1(Fε ↙ rSL2) ↘ 2(q≃e)2/pLk↑W↑!p
rω. (44)

The result follows by substituting the above expressions into the result of (Dirksen, 2015) captured as Lemma C.1. ≿

D. Controlling the Quadratic Process

Lemma D.1 (Truncation Accuracy). Fix ϱ, r > 0, let G be (L, ε)-!p, and let g ↓ G be such that ↑g↑L2 = r. For ↽ ↓ R+,
define gφ ↭ g1↘g↘⇑φ . There exists a truncation level ↽ and a universal positive constant c > 0 such that:

↑g↑2L2 ↗ ↑gφ↑
2
L2 ↘ r2ϱ (45)

and

↽ ↘ Lrω

c↑1 log


42/pL1/2r2ω

ϱr4

1/p

. (46)

Proof. Fix a level ↽ > 0 to be determined later. For any such level we have that:

↑g↑2L2 ↗ ↑gφ↑
2
L2 ↘ E[↑g↑21↘g↘>φ ] ↘


E↑g↑4P(↑g↑ > ↽) ↘


E↑g↑4 exp

(
↗c↽p/↑g↑p!p

)
. (47)

Hence if we choose ↽p = c↑1
↑g↑p!p

log

 ⇔
E↘g↘4

↼r2E↘g↘2


we have:

↑g↑2L2 ↗ ↑gφ↑
2
L2 ↘ ϱ2. (48)

It remains to derive an upper bound on ↽ . Since G is (L, ε)-!p and ↑g↑L2 = r we have that

↑g↑!p
↘ L↑g↑ω2 = Lrω, and

E↑g↑4 ↘ 44/p↑g↑4!p
↘ 44/pLr4ω.

(49)

Hence our choice of ↽ satisfies:

↽ ↘ Lrω

c↑1 log


42/pL1/2r2ω

ϱr4

1/p

(50)

and so the result has been established. ≿
Theorem 2.2 (Lower Uniform Law). Fix a failure probability ϑ ↓ (0, 1), a tolerance ϱ > 0, a localization radius r ↓ (0, 1],
and two Hölder conjugates q and q≃. Suppose that Fε ↗ Fε is (L, ε)-!p. Suppose further that the model P(X,Y )1:n is
stationary and k-wise independent where k divides n. There exist a universal positive constant c such that uniformly for all
f ↓ Fε \ {rBL2} we have that with probability at least 1↗ ϑ:

1

n

n∑

i=1

↑f(Xi)↑
2
∈ r2(1↗ ϱ2)

↗ c


n↑1/2

⇔

kL1+3/4rω

log


42/pL

ϱr

1/p

↖

(
φ 2+6ε

4
(Fε ↙ rSL2 , dL2) + r

1+3ε
4


log(1/ϑ)

)

+ n↑1(q≃)1/pkrω

log


42/pL

ϱr

1/p

L2

↖ (φω(Fε ↙ rSL2 , dL2) + rω log(1/ϑ))


. (16)
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Proof. By star-shapedness, we may assume without loss of generality that f ↓ Fε ↙ rSL2 . Fix ↽ such that for all such f

↑f↑2L2 ↗ ↑fφ↑
2
L2 ↘ ϱ2, (51)

and note that the existence of such a level is guaranteed by Lemma D.1.

It is then clear that:

1

n

n∑

i=1

↑f(Xi)↑
2
∈ r2(1↗ ϱ2)↗ sup

f↓Fω↔rB
L2


1

n

n∑

i=1

↑fφ (Xi)↑
2
↗ ↑fφ↑

2
L2


(52)

and, for well-chosen ϱ, r, it therefore suffices to control the supremum of empirical process to the right of (52) and we will
use Dirksen’s theorem again to do so (Dirksen, 2015, Theorem 3.5). A preliminary estimate using k-wise independence,
stationarity and Lemma 2.1 gives that for every f, g and admissible ς:

E exp

(
ς

[
n∑

i=1

↑fφ (Xi)↑
2
↗ ↑fφ↑

2
L2 ↗ ↑gφ (Xi)↑

2 + ↑gφ↑
2
L2

)

↘ exp




ς2nV4

(
1

↗

k

∑k
i=1 ↑fφ (Xi)↑2 ↗ ↑fφ↑2L2 ↗ ↑gφ (Xi)↑2 + ↑gφ↑2L2

)

2
(
1↗ ς(q≃e)1/pk

∥∥↑fφ (Xi)↑2 ↗ ↑fφ↑2L2 ↗ ↑gφ (Xi)↑2 + ↑gφ↑2L2

∥∥
!p/2

)



 . (53)

This is almost the exponential inequality we need, but we will want increment conditions for the above empirical process in
terms !p and L2.

The increment condition in !p is simple. We observe that for any two f, g and any x in their domain:

↑fφ (x)↑
2
↗ ↑gφ (x)↑

2 = ≃(fφ + gφ )(x), (fφ + gφ )(x)⇐. (54)

Consequently by Lemma B.1 and ↽ -truncation:

↑↑fφ (X)↑2 ↗ ↑gφ (X)↑2↑!p/2
↘ 22/p↑fφ + gφ↑!p

↑fφ ↗ gφ↑!p
↘ 21+2/p↽↑f ↗ g↑!p

. (55)

A centering argument thus gives:

↑↑fφ (X)↑2 ↗ ↑fφ↑
2
L2 ↗ ↑gφ (X)↑2 + ↑gφ↑

2
L2↑!p/2

↘ 22+2/p↽↑f ↗ g↑!p
(56)

wherefore we set
d1(f, g) ↭ (q≃e)1/pk22+2/p↽↑f ↗ g↑!p

. (57)

Let us next address the variance term:

V4

(
1
⇔
k

k∑

i=1

↑fφ (Xi)↑
2
↗ ↑gφ (Xi)↑

2

)

= V4

(
1
⇔
k

k∑

i=1

≃fφ (Xi) + gφ (Xi), fφ (Xi)↗ gφ (Xi)⇐

)
(use (54))

↘

√√√√E

(
1
⇔
k

k∑

i=1

≃fφ (Xi) + gφ (Xi), fφ (Xi)↗ gφ (Xi)⇐

)4

(V4[·] ↘

E[| · |4])

↘ k

E (≃fφ (X) + gφ (X), fφ (X)↗ gφ (X)⇐)4 (Cauchy-Schwarz)

↘ 4k↽2↑f ↗ g↑2L4 ↭ d22(f, g). (↽ -boundedness and Cauchy-Schwarz)

(58)

With d1, d2 as in (57) and (58), we can now estimate (53) as:

E exp

(
ς

[
n∑

i=1

↑fφ (Xi)↑
2
↗ ↑fφ↑

2
L2 ↗ ↑gφ (Xi)↑

2 + ↑gφ↑
2
L2

)
↘ exp


ς2nd22(f, g)

2 (1↗ ςd1(f, g))


. (59)

18



Sharp Rates in Dependent Learning Theory

We thus obtain the probability estimate (u > 0):

P

(
1

n

n∑

i=1

↑fφ (Xi)↑
2
↗ ↑fφ↑

2
L2 ↗ ↑gφ (Xi)↑

2 + ↑gφ↑
2
L2 > c≃


u/nd2(f, g) + c(u/n)d1(f, g)

)
↘ 2e↑u (60)

for two universal positive constants c, c≃. After defining (normalizing) for some universal positive constants c1, c2:

d̃1(f, g) ↭ cn↑1d1(f, g) = c1n
↑1(q≃e)1/pk22+2/p↽↑f ↗ g↑!p

, (61)

d̃2(f, g) ↭ c≃n↑1/2d2(f, g) = c2n
↑1/2


k↽2↑f ↗ g↑2L4


, (62)

we notice that (60) is consistent with the mixed tail generic chaining condition in Dirksen (2015, Equation 12) for metrics
d̃1, d̃2. Consequently, by Theorem 3.5 in (Dirksen, 2015) we have that:

sup
f↓Fω↔rB

L2


1

n

n∑

i=1

↑fφ (Xi)↑
2
↗ ↑fφ↑

2
L2


↘ c3(φ2(Fε ↙ rBL2 , d̃2) +

⇔
u”d̃2

(Fε ↙ rBL2))

+ c4(φ1(Fε ↙ rBL2 , d̃1) + u”d̃1
(Fε ↙ rBL2)) (63)

for two universal positive constants c3, c4.

To finish the proof, we turn to relating the quantities φ and ” in terms of problem data. We have (recalling (61)):

”d̃1
(Fε ↙ rBL2) = cn↑1(q≃e)1/pk22+2/p↽”!p

(Fε ↙ rBL2) ↘ cn↑1(q≃e)1/pk22+2/p↽Lrω (64)

and also (recalling (62)):

”d̃2
(Fε ↙ rBL2) ↘ c≃n↑1/22

⇔

k↽”d
L2 (Fε ↙ rBL4)

↘ c≃n↑1/22
⇔

k↽L3/4r
1+3ε

4 ,
(65)

where we used Cauchy-Schwarz and the class assumption in the last step to control the L4 norm by the L2 norm.

As for φ-functionals, we have:

φ1(Fε ↙ rSL2 , d̃1) ↘ cn↑1(q≃e)1/pk22+2/p↽Lφω(Fε ↙ rSL2 , dL2) (66)

and
φ2(Fε ↙ rSL2 , d̃2) ↘ c≃n↑1/22

⇔

k↽L3/4φ 2+6ε
4

(Fε ↙ rSL2 , dL2). (67)

Putting everything together we thus obtain that:

sup
f↓Fω↔rB

L2


1

n

n∑

i=1

↑fφ (Xi)↑
2
↗ ↑fφ↑

2
L2



↘ CL3/4n↑1/2
⇔

k↽
(
φ 2+6ε

4
(Fε ↙ rSL2 , dL2) + r

1+3ε
4


log(1/ϑ)

)

+ C ≃2C
↑↑/pn↑1(q≃)1/pk↽L (φω(Fε ↙ rSL2 , dL2) + rω log(1/ϑ))

= Cn↑1/2
⇔

kL1+3/4rω

c↑1 log


42/pL

ϱr

1/p (
φ 2+6ε

4
(Fε ↙ rSL2 , dL2) + r

1+3ε
4


log(1/ϑ)

)

+ C ≃2C
↑↑/pn↑1(q≃)1/pkrω


c↑1 log


42/pL

ϱr

1/p

L2 (φω(Fε ↙ rSL2 , dL2) + rω log(1/ϑ)) ,

for universal positive constants C,C ≃, C ≃≃. Since p ∈ 1 we may replace all the terms containing upper-case universal
constants by a single universal constant as in the theorem statement. ≿
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E. Results for Mixing Empirical Processes

E.1. Blocking

Recall that we partition [n] into 2m consecutive intervals, denoted aj for j ↓ [2m], so that
∑2m

j=1 |aj | = n. Denote further
by O (resp. by E) the union of the oddly (resp. evenly) indexed subsets of [n]. We further abuse notation by writing
ωZ(ai) = ωZ(|ai|) in the sequel.

We split the process Z1:n as:

Zo
1:|O|

↭ (Za1 , . . . , Za2m↓1), Ze
1:|E|

↭ (Za2 , . . . , Za2m). (68)

Let Z̃o
1:|O|

and Z̃e
1:|E|

be blockwise decoupled versions of (68). That is we posit that Z̃o
1:|O|

⇑ PZ̃o

1:|O|
and Z̃e

1:|E|
⇑ PZ̃e

1:|E|
,

where:

PZ̃o

1:|O|
↭ PZa1

⊗ PZa3
⊗ · · ·⊗ PZa2m↓1

and PZ̃e

1:|E|
↭ PZa2

⊗ PZa4
⊗ · · ·⊗ PZa2m

. (69)

The process Z̃1:n with the same marginals as Z̃o
1:|O|

and Z̃e
1:|E|

is said to be the decoupled version of Z1:n. To be clear:
PZ̃1:n

↭ PZa1
⊗ PZa2

⊗ · · ·⊗ PZa2m
, so that Z̃o

1:|O|
and Z̃e

1:|E|
are alternatingly embedded in Z̃1:n. The following result is

key—by skipping every other block, Z̃1:n may be used in place of Z1:n for evaluating bounded scalar functionals, such as
probabilities of measurable events, at the cost of an additive mixing-related term.

Proposition E.1 (Lemma 2.6 in (Yu, 1994); Proposition 1 in (Kuznetsov & Mohri, 2017)). Fix a ω-mixing process Z1:n and
let Z̃1:n be its decoupled version. For any measurable function f of Zo

1:|O|
(resp. g of Ze

1:|E|
) with joint range [0, 1] we have

that:

|E(f(Zo
1:|O|

))↗E(f(Z̃o
1:|O|

))| ↘
∑

i↓E\{2m}

ωZ(ai),

|E(g(Ze
1:|E|

))↗E(g(Z̃e
1:|E|

))| ↘
∑

i↓O\{1}

ωZ(ai).
(70)

E.2. Controlling Empirical Processes for ω-Mixing Data

Applying Proposition E.1 to Theorem 2.1 and Theorem 2.2 yields the desired control of the multiplier and quadratic
processes also for ω-mixing data.

Proposition E.2. Fix a failure probability ϑ ↓ (0, 1), a positive scalar r ↓ (0,↔), two Hölder conjugates q and q≃, and a
class F . Suppose that Fε ↗ Fε is (L, ε)-!p. Suppose further that the model P(X,Y )1:n is stationary and ω-mixing and
suppose further that k ↓ N divides n/2. There exist universal positive constants c1, c2 such that for any r ↓ (0, 1] we have
that with probability at least 1↗ ϑ ↗ n

kω(k):

sup
f↓Fω↔rS

L2

1

rn

n∑

i=1

(1↗E)≃Wi, f⇐

↘ c2


V2q (Fε ↙ rSL2)

(
1

r
⇔
n
φ2(Fε ↙ rSL2 , dL2) +

√
log(1/ϑ)

n

)

+ c1(q
≃e)2/pLk↑W↑!p


1

rn
φω(Fε ↙ rSL2 , dL2) +

rω↑1

n
log(1/ϑ)


(71)

Proposition E.3. Fix a failure probability ϑ ↓ (0, 1), a tolerance ϱ > 0, a localization radius r ↓ (0, 1], and two Hölder
conjugates q and q≃. Suppose that Fε ↗ Fε is (L, ε)-!p. Suppose further that the model P(X,Y )1:n is stationary and
ω-mixing and suppose further that k ↓ N divides n/2. There exists a universal positive constant c such that uniformly for
all f ↓ Fε ↙ rSL2 we have that with probability at least 1↗ ϑ ↗ n

kω(k):
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1

n

n∑

i=1

↑f(Xi)↑
2
∈ r2(1↗ ϱ2)

↗ c


n↑1/2

⇔

kL1+3/4rω

log


42/pL

ϱr

1/p (
φ 2+6ε

4
(Fε ↙ rSL2 , dL2) + r

1+3ε
4


log(1/ϑ)

)

+ n↑1(q≃)1/pkrω

log


42/pL

ϱr

1/p

L2 (φω(Fε ↙ rSL2 , dL2) + rω log(1/ϑ))


. (72)

F. Finishing the Proof of Theorem 3.1

Before we finish the proof of the main result, let us first make formal the justification for the introduction of quadratic and
multiplier processes in Section 1.1. The following lemma bounds the excess risk of empirical risk minimizer in terms of
these.

Lemma F.1 (Localized Basic Inequality). Suppose that either (1) F is convex or (2) F is realizable. For every r > 0 we
have that:

↑f̂ ↗ fε↑
2
L2 ↘ r2 +

1

r2

(
sup

g↓Fω↔rS
L2

Mn(g)

)2

+ sup
g↓Fω

Qn(g). (73)

Proof. We begin by observing that the optimality of f̂ to (2) yields the basic inequality:

1

n

n∑

i=1

↑f̂(Xi)↗ fε(Xi)↑
2
↘

2

n

n∑

i=1

≃Wi, (f̂ ↗ fε)(Xi)⇐. (74)

If F is convex, we have that E≃Wi, (f ↗ fε)(Xi)⇐ ↘ 0 for every f (by optimality of fε to the population objective). If
instead F is realizable the same holds true but with equality. Hence, in either case:

1

n

n∑

i=1

↑f̂(Xi)↗ fε(Xi)↑
2
↘

2

n

n∑

i=1

(1↗E≃)≃Wi, (f̂ ↗ fε)(Xi)⇐ (75)

where E≃ denotes expectation with respect to a fresh copy of randomness (independent of the data used to construct f̂).

Consequently we also have that:

↑f̂ ↗ fε↑
2
L2 =

(1 + ϱ)

n

n∑

i=1

↑f̂(Xi)↗ fε(Xi)↑
2 + ↑f̂ ↗ fε↑

2
L2 ↗

(1 + ϱ))

n

n∑

i=1

↑f̂(Xi)↗ fε(Xi)↑
2

↘
2(1 + ϱ)

n

n∑

i=1

(1↗E≃)≃Wi, (f̂ ↗ fε)(Xi)⇐+ ↑f̂ ↗ fε↑
2
L2 ↗

(1 + ϱ))

n

n∑

i=1

↑f̂(Xi)↗ fε(Xi)↑
2 (76)

Fix now a radius r and set g = r
↘f̂↑fω↘L2

(f̂ ↗ fε). If ↑f̂ ↗ fε↑L2 ∈ r, dividing both sides above by ↑f̂ ↗ fε↑L2 yields for
the first term above in (76):

2(1 + ϱ)

n↑f̂ ↗ fε↑L2

n∑

i=1

(1↗E≃)≃Wi, (f̂ ↗ fε)(Xi)⇐

=
1

n

n∑

i=1

{
2(1 + ϱ)(1↗E≃)≃Wi, r

↑1g(Xi)⇐
}

(df. of g and divide)

↘ r↑1 sup
g↓Fω↔rS

L2

Mn(g).

(77)
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Either the above inequality holds or ↑f̂ ↗ fε↑L2 ↘ r. For every r > 0 it is thus true that:

↑f̂ ↗ fε↑
2
L2 ↘ r2 +

(
r↑1 sup

g↓Fω↔rS
L2

Mn(g)

)2

+ sup
g↓Fω

Qn(g) (78)

This proves the claim. ≿

Finishing the proof of Theorem 3.1. We apply Lemma F.1 with r = rε, ϱ = 1/2 and note that n ∈

c3 max {nquad(rε), nmult(rε)} implies: (1) in combination with Proposition E.3 that supg↓Fω
Qn(g) ↫ r2ε; and (2) in

combination with Proposition E.2 that
(
supg↓Fω↔rωSL2

Mn(g)
)2

scales at most like the RHS of (22). The result follows
by a union bound over the failure events of Proposition E.2 and Proposition E.3, all the while taking into account the fact
that we posit k ∈ kmix. ≿

G. Proof of the Corollaries to Theorem 3.1

G.1. Proof of Corollary 3.1

Corollary 3.1 (Parametric Classes). Fix a failure probability ϑ ↓ (0, 1), two Hölder conjugates q, q≃, and a class F that
is either (1) convex or (2) realizable. Suppose that Fε ↗ Fε is (L, ε)-!p. Suppose further that the model P(X,Y )1:n is
stationary and that k divides n/2.

There exists a universal positive constant c and a polynomial function ⇀ω such that the following holds true. Suppose that
there exists dF ↓ R+ such that for s > 0:

logNL2(Fε, s) ↘ dF log


1

s


(21)

We have with probability 1↗ 4ϑ that:

↑f̂ ↗ fε↑
2
L2 ↘ cV2q

(
Fε ↙

√
dFk↑W↑

2
L2

n
SL2

)

↖


dF + log(1/ϑ)

n


(22)

as long as kω↑1(k) ∈ nϑ↑1 and

n ∈ ⇀ω

(
dF , k, ↑W↑!p

, L, q, q≃,

V↑1

(
Fε ↙

√
dFk↑W↑

2
L2

n
SL2

)
, log(1/ϑ)

)
. (23)

Proof. Let us begin by observing that for some constant cω only depending on ε we have that:

φω(Fε ↙ rSL2 , dL2) ↘ cω

∫ r

0


dF log


1

s

1/ω

ds

= cωd
1/ω
F

r

∫ 1

0

(
log

(r
s

))1/ω
ds

↘ cωd
1/ω
F

r$(1/ε + 1).

(79)

Hence for some universal positive constant c:

V (Fε ↙ rSL2)↖

1

r
⇔
n
φ2(Fε ↙ rSL2 , dL2) ↘ c


V (Fε ↙ rSL2)↖

1
⇔
n
d1/2

F
. (80)
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A few applications of the Cauchy-Schwarz inequality now yields for any r:

V (Fε ↙ rSL2) ↘ k↑W↑
2
L2 . (81)

A candidate choice is therefore rε =

√√√√dFV



Fω↔

√
dF k↔W↔2

L2
n

S
L2





n . A straighforward but tedious calculation now reveals
that the inequality n ∈ max {nquad(rε), nmult(rε)} has a solution depending polynomially on problem data as long as
ε > 1/4. ≿

G.2. Proof of Corollary 3.2

Corollary 3.2 (Realizable Linear Regression). Fix a failure probability ϑ ↓ (0, 1), a covariate bound BX ↓ (0,↔) and
a noise bound BW ↓ (0,↔) and let X = Rd and Y = R. Suppose that k divides n/2 and that the model P(X,Y )1:n is
stationary and satisfies Yi = ≃ωε, Xi⇐+Wi for i ↓ [n]. Suppose further that:

1. X1:n is bounded |≃v,Xi⇐| ↘ BX , ∝i ↓ [n] and v ↓ Rd with ↑v↑ = 1; and

2. W1:n is a bounded martingale difference sequence—E[Wi|X1:i] = 0 and |Wi| ↘ BW , ∝i ↓ [n].

There exist universal positive constants c1 and c2 such that if

n

k
∈ c1


BX/


ςmin(EXXT)

3+1/2  kB2
W

V(W )



↖ (d+ log(1/ϑ)) and kω↑1(k) ∈ nϑ↑1 (24)

we have that:
↑f̂ ↗ fε↑

2
L2 ↘ c2V(W )


d+ log(1/ϑ)

n


. (25)

Proof. We apply Theorem 3.1 with p = ↔, q = 1 and ε = 1. As in the proof of the preceding corollary (see (79)), notice
that

φ1(Fε ↙ rSL2 , dL2) ↘ cdr, and

φ2(Fε ↙ rSL2 , dL2) ↘ c
⇔

dr.
(82)

Moreover, since W1:n is a martingale difference sequence we have V(Fε ↙ rSL2) = 1
n

∑n
i=1 V(Wi). Consequently, the

critical radius inequality (19) becomes

r ∈ c↖

√√√√ 1

n

n∑

i=1

V(Wi)↖
d

n

so that (using stationarity) we may choose rε ∀


V(W )↖ d

n .

Let us now turn to evaluating (18) for this model. nquad reads:

nquad(rε) = inf


n ↓ N



[
n↑1/2

⇔

kL1+3/4rε ↖
(
rε
⇔

d+ rε

log(1/ϑ)

)

+ n↑1L2krε (rεd+ rε log(1/ϑ))


↘ r2ε



↘ inf


n ↓ N



[
n↑1/2

⇔

kL1+3/4
↖

(⇔
d+


log(1/ϑ)

)
↘ 1



+ inf


n ↓ N



[
n↑1L2k (d+ log(1/ϑ))


↘ 1



↘ 2k(L ′ 1)3+1/2 (d+ log(1/ϑ)) .
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Next, we turn to nmult:

nmult(rε) = inf

n ↓ N

LkBW


d+ log(1/ϑ)

n


↘


V(W )d/n


↘ L2k2

B2
W

V(W )
(d+ log(1/ϑ)) .

Moreover, it is easy to see that may choose L = BX/


ςmin(EXXT) ∈ 1. Hence the desired result follows under the
burn-in requirement that:

n

k
∈ c


BX/


ςmin(EXXT)

3+1/2  kB2
W

V(W )


(d+ log(1/ϑ))

as we sought to prove. ≿
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