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Abstract

Data Shapley provides a principled approach to
data valuation and plays a crucial role in data-
centric machine learning (ML) research. Data
selection is considered a standard application of
Data Shapley. However, its data selection perfor-
mance has shown to be inconsistent across set-
tings in the literature. This study aims to deepen
our understanding of this phenomenon. We in-
troduce a hypothesis testing framework and show
that Data Shapley’s performance can be no better
than random selection without specific constraints
on utility functions. We identify a class of util-
ity functions, monotonically transformed modular
functions, within which Data Shapley optimally
selects data. Based on this insight, we propose
a heuristic for predicting Data Shapley’s effec-
tiveness in data selection tasks. Our experiments
corroborate these findings, adding new insights
into when Data Shapley may or may not succeed.

1. Introduction

Data valuation and Data Shapley. Data is the backbone of
machine learning (ML) models, but not all data is created
equally. In real-world scenarios, data often carries noise
and bias, sourced from diverse origins and labeling pro-
cesses (Northcutt et al., 2021). Against this backdrop, data
valuation emerges as a growing research field, aiming to
quantify the contribution of individual data sources for ML
model training. Drawing on cooperative game theory, the
use of the Shapley value for data valuation was pioneered
by (Ghorbani & Zou, 2019; Jia et al., 2019b). The Shapley
value is a renowned solution concept in game theory for
fair profit attribution (Shapley, 1953). In the context of data
valuation, individual data points or sources are regarded as
“players” in a cooperative game, and Data Shapley refers
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to the data valuation techniques that use the Shapley value
as the contribution measure for each data owner. As the
unique value notion that satisfies a set of axioms (Shapley,
1953), Data Shapley has rapidly gained popularity since its
introduction in 2019 and is increasingly being recognized
as a standard tool for evaluating data quality, particularly
in critical domains like healthcare (Tang et al., 2021; Pandl
et al., 2021; Bloch et al., 2021; Zheng et al., 2023).

Data selection: a standard application of Data Shapley.
Data selection is a natural and important application of Data
Shapley that is frequently mentioned in the literature. Data
selection involves choosing the optimal training set from
available data sources to maximize final model performance.
Given that Data Shapley is a principled measure of data
quality, a natural approach is to prioritize data sources with
the highest Data Shapley scores. Consequently, a common
practice in the literature is choosing the subsets of data
points with top Shapley value scores.

Motivation. Empirical evidence regarding Data Shapley’s
effectiveness in data selection, however, has been inconsis-
tent. Some studies report that Data Shapley significantly
outperforms random selection baselines (Tang et al., 2021;
Jiang et al., 2023), while others find its performance is no
better than the random baseline (Kwon & Zou, 2022; 2023).
Such a phenomenon is also reproduced in our experiments
(e.g., Figure 1 in Section 6), where Data Shapley’s perfor-
mance varies over different kinds of training data. Such
inconsistency is not only a confusing phenomenon but also
poses practical challenges. In critical sectors where data-
driven decisions are crucial, relying on Data Shapley for
data selection could lead to flawed decision-making. The ex-
isting data valuation literature, while rich in application and
theory, reveals a notable missing aspect in understanding
the efficacy of Data Shapley for data selection. There is an
absence of theory to clarify and explain under what circum-
stances Data Shapley might mislead or benefit data selection.
Our study aims to fill in this missing aspect, providing in-
sights that could significantly influence the understanding
of data valuation and its practical applications.

Our contributions are summarized as follows:

A theoretical explanation for Data Shapley’s limitations
in data selection. We introduce a novel hypothesis test-
ing framework tailored to analyze Data Shapley’s efficacy
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in data selection. Our findings reveal that in the absence
of specific structural assumptions about utility functions,
Data Shapley’s performance in data selection tasks can be
no better than that of random guessing. This stems from
the non-injective nature of the Shapley value transforma-
tion; distinct utility functions can result in identical Shapley
values. Hence, there’s a significant challenge for reliably
comparing dataset utilities based solely on Data Shapley
scores in an information-theoretic sense.

When does Data Shapley work well for data selection?
Our analysis demonstrates that Data Shapley excels in sce-
narios where utility functions adhere to specific structures
shaped by the inherent characteristics of datasets or learn-
ing algorithms. One such example is the utility functions
for any reasonable learning algorithm trained on heteroge-
neous datasets comprising a mix of high-quality and low-
quality data. We characterize a broad class of utility func-
tions, termed monotonically transformed modular functions
(MTM), within which Data Shapley proves to be optimal
for data selection. This class comprises the utility functions
of widely used learning algorithms, such as kernel methods.

A heuristic for predicting Data Shapley’s optimality for
data selection. Based on the insights from the scenarios
where Data Shapley works well, we propose a heuristic for
predicting the effectiveness of Data Shapley in data selec-
tion tasks. This approach approximates the original utility
function with a MTM function, and the fitting quality is
used as an indicator of Data Shapley’s potential efficacy.
We uncover a connection between the optimal MTM ap-
proximation quality and consistency index, a concept that
measures the correlation between the utilities of different
datasets. This suggests that when the utilities of two similar
datasets are highly correlated, the utility function can be
approximated by a MTM with decent fitting quality. Our
experimental results reveal a strong correlation between the
effectiveness of Data Shapley in data selection and the fit-
ting residual of the MTM approximation. This correlation is
further tied to the consistency index of the utility functions,
providing a deeper understanding of the factors influencing
Data Shapley’s performance.

Overall, this work offers comprehensive theoretical and
practical insights into Data Shapley’s effectiveness in data
selection, which marks a step towards understanding the
optimal usage of data valuation techniques.

2. Background

Set-up of data valuation. Let N = {1,...,n} denotes
a training set of size n. The objective of data valuation is
to assign a score to each training data point in a way that
reflects their contribution or quality towards downstream
ML tasks. These scores are called data values.

Utility functions. The cornerstone of Data Shapley and
other game theory-based data valuation methods lies in
the concept of the utility function. It is a set function v :
2N — R that maps any subset of the training set N to
a score indicating the usefulness of the data subset. 2%V
represents the power set of [V, i.e., the set of all subsets of
N, including the empty set and N itself. For classification
tasks, a common choice for v is the validation accuracy of
a model trained on the input subset. Formally, v(S) :=
ValAcc(A(S)), where A is a learning algorithm that takes
a dataset S as input and returns a model, and ValAcc is
a metric function used to assess the model’s performance,
e.g., the accuracy of a model on a hold-out validation set.

Notations & assumptions. We sometimes denote S U i :=
SU{i}and S\ i:= S\ {i} for singleton {i}, where i € N
is a single data point from N. We denote the data value of ¢
computed from v as ¢;(v), and ¢(v) := (¢1(v), ..., dn(v))
the vector of data values for each i € N. We use S ~
Unif(N) to denote sampling a subset S from 2% uniformly
at random. When the context is clear, we write Eg or Varg
for expectation and variance taken over the randomness of
S, while omitting the sampling distribution. Without loss of
generality, throughout the paper, we assume v(S) € [0, 1]
and v(2) = 0. We note that sometimes it is convenient to
view v as a vector with 2” — 1 entries, where each entry
corresponds to v(,S) for a non-empty S.

Data Shapley. The Shapley value is arguably the most
widely studied scheme for data valuation. At a high level, it
appraises each point based on the (weighted) average utility
change caused by adding the point into different subsets.

Definition 1 (Shapley (1953)). Given a training set N and
a utility function v, the Shapley value of a data point 1 € N
is defined as

w2

1 SCN\{i}.|8|=k~1

[v(SUi)—v(9)]

The popularity of the Shapley value is attributable to the
fact that it is the unique data value notion satisfying four
axioms that are usually desirable (Shapley, 1953).

Data Selection. Data selection for ML is commonly formu-
lated as an optimization problem, where the objective is to
maximize the utility of the ML model based on the choice
of training data. Specifically, for a given utility function v,
the task of size-k data selection over training set N is to

identify the subset S,% that optimizes:

Slgkg = argmax v(S) €))
SCN,|S|=k

However, solving Equation (1) presents significant chal-
lenges. The utility function v, particularly for complex
deep learning algorithms, often lacks a tractable closed-form
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expression for analytical optimization. A naive approach
that simply evaluates the utility of all possible subsets v(S)
would necessitate training (Z) different models, which is
certainly computationally prohibitive in practical settings.

Data Selection via Data Shapley. Data selection is gener-
ally considered a standard downstream application of Data
Shapley (Jiang et al., 2023), where the relevant experiments
can be traced back to the original Data Shapley paper (Ghor-
bani & Zou, 2019). The use of Data Shapley values for data
selection posits that the sum ¢(v)[S] := >, ¢ ¢i(v) is a
reliable indicator of a dataset S’s utility, implying a posi-
tive correlation with v(S). Consequently, a data selection
strategy based on Data Shapley scores aims to maximize
¢(v)[S] as a proxy for optimizing v(.S):

argmax ¢(v)[5]

KON
¢ T GCNL IS |2k

)=
Sir}ce d(v)[S] = Yics q'ﬁi, §g§3§ consists of top-k da.ta
points that achieve the highest Shapley values. That is,

when using Data Shapley for size-k data selection, the top-k
data points with the highest Shapley values are chosen.!

3. Why Might Data Shapley Fail in Data
Selection Tasks?

The effectiveness of Data Shapley has shown mixed results.
Notably, several studies (Wang et al., 2023; Kwon & Zou,
2023; Jiang et al., 2023) have documented that for specific
datasets, model performance metrics, and selection budgets,
its effectiveness can be close to random selection. This
section will present a theoretical framework designed to
provide insights into this puzzling phenomenon.

3.1. A Hypothesis Testing Framework for Comparing
Dataset Utilities

Both the optimal data selection problem, outlined in Eqn.
(1), and practical data quality management tasks fundamen-
tally involve comparing the utility of various datasets. For
example, in the context of data acquisition, the focus is on
determining which data source, A or B, should be chosen
to augment an existing dataset Sy. This requires comparing
the utility values v(So U A) and v(Sy U B). Similarly, in the
case of data pruning, the goal is to identify which data points
should be removed from a dataset .S, essentially comparing
the utility of v(S\{:}) for each element i in S. Hence, we
investigate the efficacy of Data Shapley in facilitating the
utility comparison for different datasets.

Inspired by Bilodeau et al. (2024), we formulate the perfor-
mance on utility comparison as a hypothesis testing problem.

"We do not consider tied utilities here for simplicity, but we
note that the derived results can be easily adapted to the case where
multiple subsets achieve the optimal utility.

Given two subsets of training data .S;, So C N, we would
like to compare their utility v(S1), v(S2) without directly
evaluating v on them. The null and alternative hypotheses
are formulated as follows:

H(O) : ’U(Sl) 2 U(SQ)

2
H(a) : ’U(Sl) < U(Sz) @

Shapley value-based hypothesis test. Consider a scenario
where the only available information is the Shapley vector
¢(v) € R™. A Shapley value-based hypothesis test is an
arbitrary algorithm for the practitioners to draw their con-
clusion of the hypothesis test solely based on the Shapley
vector ¢. Formally, this is a function

h:R" — [0,1]

where the output of h(¢) represents the probability that
the practitioner rejects H gy (based on some external ran-
domness). An example of such a test algorithm is h(¢) =
1 [¢[S1] < ¢[S2]] which is implicitly being used in Shapley
value-based data selection.

Remark 1. In practical applications, computing Data Shap-
ley often becomes computationally unfeasible and requires
estimation through Monte Carlo methods, such as permu-
tation sampling (Castro et al., 2009). To keep the analysis
clean, our study does not take the approximation error of
Data Shapley into account, focusing instead on the efficacy
of exact Data Shapley in data selection tasks.

Remark 2 (All the information available to h is ¢(v)). It
might be presumed that computing Data Shapley necessi-
tates evaluating v(S) for all or a significant subset of Sss.
However; this is not always the case. For instance, the exact
Data Shapley values for K nearest neighbors can be effi-
ciently calculated without the need to evaluate v(S) for any
subset S C N (Jia et al., 2019a; Wang & Jia, 2023b; Wang
et al., 2024). Here, we assume all the information available
Sfor the hypothesis tests is the Shapley vector ¢(v) to keep
the analysis clean and align with the common usage of Data
Shapley for data selection.

3.2. Analysis

The goal of our work is to see whether Data Shapley scores
¢(v) can reliably be used to conduct the hypothesis tests of
comparing the utility of two data subsets described above.

Metric for evaluating hypothesis tests. We adopt the
classical approach of assessing hypothesis test efficacy by
examining the balance between True Positive (sensitivity)
and True Negative (specificity) rates, as established in the
literature (Yerushalmy, 1947). For two datasets of interest,
S and S5, we define ]:é?),sg = {v e R¥"~1 : 9(S)) >
v(S2)} the set of all utility functions v satisfying the null
hypothesis, and .7-';‘352 = {v e R 1 :0(8)) < v(S2)}
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the set of all utility functions v satisfying the alternative
hypothesis. For any Shapley value-based hypothesis test h,
the metrics are defined as:

TrueNeg(h) = inf

ue}'é? Sy

TruePos(h) = inf

(a)
Uefsl,sz

[1 = h(¢(v))]
h(¢(v))

These metrics evaluate the test’s effectiveness across all
possible utility functions, with the practitioner’s goal being
to maximize both True Positive and True Negative rates in
terms of the hypothesis test function h. It is noteworthy that
a random guessing approach, which predicts a hypothesis
irrespective of Shapley values (e.g., h(¢) = 0.5), achieves
a combined metric of TrueNeg(h) + TruePos(h) = 1.

Data Shapley can work no better than random guessing.
Our analysis reveals a crucial limitation in using Shapley
values for comparing dataset utilities: without specific struc-
tural assumptions about the utility functions, such tests can
be no more effective than random guessing.

Theorem 2. For the utility comparison hypothesis testing
problem formulated in (2), any Shapley value-based hypoth-
esis test h is constrained to:

TrueNeg(h) + TruePos(h) < 1

This theorem underscores that the maximum achievable
balance between True Positive and True Negative using a
Shapley value-based hypothesis test is no better than what
one would expect from random guesswork. Without ad-
ditional information about the underlying utility function,
practitioners cannot reliably predict the utility comparison
between two datasets. In particular, the predictive accuracy
may not surpass that of basic random guessing.

Underlying reasoning of Theorem 2. The computation
of Shapley values transforms the utility function v (which
can be viewed as a vector in R?" ~1) into the Shapley vector
¢ € R™. This transformation is not injective, allowing for
the possibility that different utility functions could yield
identical Shapley vectors. Consequently, when conducting
hypothesis test based on the Shapley vector ¢(v), if there
exists another utility function v’ (e.g., defined on a different
hold-out validation set) that maps to the same Shapley vector
(@(v) = ¢(v') while v € F§'g and v/ € Fy'g | it
becomes impossible to reliably infer the utility comparison
between S; and S; based solely on the Shapley vector ¢.
Hence, Theorem 2 immediately follows from the following:

Theorem 3. Given any score vector s € R™, for any dataset
pair (S1, S2), there exists two utility functions v and v’ s.t.
v E -7:59?)752 and v' € fé‘;?&, and both yield the same
Shapley vector: s = ¢p(v) = p(v').

s o {1} {2 3% {12} {1,3} {23} {1,2,3}
v 0 13 13 13 23 23 23 1
o0 23 23 13 23 1 1 1

Table 1: An example of two utility functions v, v’ such that
¢i(v) = ¢;(v') = 1/3 forall i € {1,2,3}.

The proof of the above result exploits the high-dimensional
nature of the null space of the Shapley value transformation,
a property that is well-known in game theory but to the best
of our knowledge, never has been discussed in data valuation
literature. Detailed derivation is deferred to Appendix B.

Remark 3 (Example of utility functions with identical Shap-
ley values). Table 2 presents a simple example where two
different utility functions, v and v', result in identical Data
Shapley scores. Such a situation is likely to happen in prac-
tice, where we give an analog in federated learning contexts.
Imagine a validation set that is balanced and comprises
data from three distinct sources { A, B, C'}, and there are
three clients {1,2,3}. In the first world, each client 1,2,3
owns training data exclusively from one of A, B, C, leading
to the utility function v(S) = |S|/3. In the second world,
clients 1,2 both hold data from A and B, and client 3 holds
data from C. Since clients 1 and 2 holds the same train-
ing data, we have v'(1) = v'(2) = v'(1,2) = 2/3, and
v'(1,3) = v'(2,3) = 1.2 Despite these differences, v and
v’ yield the same Shapley values, ¢p(v) = ¢(v'). Suppose we
are interested in comparing the utility between {1,2} and
{1, 3}. In the first world, they have the same utilities, while
in the second world v' (1, 2) < v'(1, 3), which is impossible
to distinguish from the Shapley values.

Remark 4. While we state Theorem 2 and 3 for Data Shap-
ley, in Appendix B.1 we show that the result can be extended
to all semivalues that satisfy the “inverse Pascal triangle
condition” (Dragan, 2002). This includes other popular
data valuation techniques such as leave-one-out error (Koh
& Liang, 2017) and Data Banzhaf (Wang & Jia, 2023a).

4. When does Data Shapley Select Good
Datasets?

The preceding section shows that Data Shapley can work
arbitrarily bad for data selection tasks when there are no
restrictions on utility functions. However, this section will
show that when the utility functions are confined to certain
structures shaped by the intrinsic properties of the under-
lying datasets or learning algorithms, Data Shapley can be
notably effective in selecting high-quality datasets.

2We assume the data are sufficient and the model would not
overfit to any of A, B,C, and v'({1,2,3}) = 1.
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4.1. Illustrating Example: Heterogeneous-Quality
Datasets

We provide a simple example where Data Shapley excels: a
dataset containing both high-quality and low-quality data. In
particular, we consider a dataset N = S¢jean U Spaa cOmpris-
ing a mix of bad data, denoted as Sp,g (such as mislabeled
data or data with significant feature noise), and the remain-
der being high-quality, clean data, Sciean := N \ Shag. In this
setting, Data Shapley can effectively prioritize all clean data
points over the problematic ones. Specifically, for any pair
of data points where ¢ € Spyg and j € S¢jean, and for utility
functions v defined by any reasonable learning algorithms,
it is generally true that v(S U4) < v(S U j) for any subset
S C N\ {i,j}. This is also being empirically justified in
the previous literature (Figure 2 in Kwon & Zou (2022)).
That is, substituting any problematic data point with a clean
one will not degrade machine learning model performance.

Theorem 4. Suppose that the dataset N can be divided into
N = Sbad U Sclean where Sbud N Sclean =g, Sclean| =k If
the utility function v fulfills the condition: ¥j € Scjean, Vi €
Skad, VS C N\ {i,5}, v(SU4) < v(S U j) then Data
Shapley is optimal for size-k data selection problem.

The proof uses an induction argument to show that S¢jean
is the optimal dataset for v. This theorem provides insight
into why Data Shapley is particularly useful for tasks such
as mislabeled or noisy data detection as reported in the
literature (Jiang et al., 2023).

4.2. A Class of “Shapley-effective’ Utility Functions

While Theorem 4 presents an intuitive scenario in which
Data Shapley is effective in data selection, it is data-
dependent and falls short of providing more insights into
the structural properties of the utility functions that make
them “Shapley-effective”. In this section, we delve deeper
into identifying and describing the specific types of utility
functions for which Data Shapley demonstrates effective-
ness in data selection tasks. Specifically, our goal is to
characterize “Shapley-effective subspace”, the set of utility
functions within which Data Shapley consistently identifies
the optimal subset for size-k data selection problems for
all k = 1,...,n — 1. It is important to note that the con-
dition outlined in Theorem 4 only assures Data Shapley’s
optimality for a specific value of k.

Ideally, we seek to comprehensively characterize utility
functions v such that Sikg =3 (kz) holds true for every k =
1,...,n — 1. However, developing tractable conditions that
are both necessary and sufficient for the “Shapley-effective
subspace” seems highly challenging due to the nature of
the Shapley value as a weighted average across the utilities
of all possible subsets. This inherent complexity limits our
ability to extract any succinct conditions. Consequently, we

shift our focus towards identifying sufficient conditions that
can guarantee the effectiveness of Data Shapley.

A simple yet insightful observation is that a linear function
of the form v(S) = wo + ), g w; naturally aligns with the
“Shapley-effective” criteria.> Building on this, we consider a
generalized form of linear function class, extend it through
a monotonic transformation, and demonstrate that it retains
the “Shapley-effective” property.

Definition 5 (Monotonically Transformed Modular Func-
tion (MTM)). A set function v : 2V — R is a mono-
tonically transformed modular function if it is of the form
v(S) = flwo + D ;cqwi), where f : R — R is a mono-
tonic function, wy € R, and w; € R is the weight assigned
to eacht € N.

While the function f in the definition can be either mono-
tonically increasing or decreasing, this paper focuses ex-
clusively on the former case. Henceforth, any reference to
MTM from now on means monotonically increasing trans-
formed modular function.

Remark 5. We note that a monotonically transformed mod-
ular function satisfies the condition in Theorem 4 if for all
i € Spag and j € Sciean, we have w; < wj.

Theorem 6. For any utility functions v that is monotonically
transformed modular, Data Shapley is optimal for size-k
data selection tasks forany k =1,...,n — 1.

MTM functions are capable of capturing the utility func-
tions of popular learning algorithms, such as kernel meth-
ods and threshold nearest neighbor classifiers. For in-
stance, consider a binary classification task with a train-
ing set {(z;,y;)}_,, where the label space y; € {£1}.
When we use kernel method with kernel &(-,-), the pre-
diction § on a validation point z(**) is given by § =
sign(d_,cq vik(zi, (D)), A natural utility function for
this scenario is the correctness of the prediction on the vali-
dation point (z("*) 4(va)) where we can show that v(S) =
Ly = 7] = 1[(Zies vy Vk(zi, 20)) > 0]. In
this case, the utility function is a MTM function where
w; = yiy"k(z;, 202D) and f(t) = 1[t > 0].

5. A Heuristic for Predicting Data Shapley’s
Optimality for General Utility Functions

MTM represents only a specific subclass of utility functions.
Given the diversity of utility functions encountered in prac-
tice, a natural question arises: how can we assess whether, or
to what extent, a given utility function is Shapley-effective?
We draw inspiration from Theorem 6 and propose a heuris-
tic aimed at predicting Data Shapley’s effectiveness in data
selection tasks for general utility functions. The heuristic

3The linear utility function is being called Linear Datamodel
in Ilyas et al. (2022).
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involves approximating the original utility function v with a
MTM function v that minimizes the discrepancy between v
and v. The fitting quality of this approximation serves as a
proxy for assessing the potential efficacy of Data Shapley
in data selection tasks.

To find the best approximation to v, we approach it as
a supervised learning problem, where v is parameterized
for optimization. The “training data” consists of pairs of
data subsets and their corresponding utility values, i.e.,
Sirain = {(S1,v(51)), -+, (Sm,v(Sm))}. The training ob-
jective for v is to minimize the prediction error across
these pairs: v = argming Z;“:l(v(sj) —0(55))%. Af-
ter successfully fitting v, we assess its fitting residual
Ry(0) = Egunit(n) [(’U(S) - 5(5))2] To account for
the varying scales of different utility functions, we use nor-
malized fitting residual R, (V) := WEUN))(U(S)) which
adjusts the fitting residual relative to the variance of the util-
ity function, providing a more standardized measure of fit.
In practice, R, () can be approximated using a “validation
set” consisting of unseen data-utility pairs. A lower value
of R, () implies that v is closely approximated by a MTM,
hinting at Data Shapley’s potential effectiveness.

Remark 6 (Computational efficiency considerations). It
may initially appear that the acquisition of a training set
for v is computationally intensive. However, it is impor-
tant to recognize that Data Shapley, frequently utilized for
assessing data quality, often relies on approximation algo-
rithms based on Monte Carlo (MC) sampling. In practical
scenarios where Data Shapley scores are estimated for eval-
uating data quality, a substantial amount of utility samples
{(S,v(S))} are already being generated. These samples,
collected during Data Shapley’s estimation process, can
be effectively repurposed for fitting v without necessitating
additional computational overhead.*

Remark 7 (High Fitting Residuals and Data Shapley’s Ef-
fectiveness). Theorem 6 suggests that being a MTM func-
tion is a sufficient, but not a necessary condition, for v to
be Shapley-effective. Consequently, in the cases with high
fitting residuals, Data Shapley may still be effective in data
selection tasks. Indeed, our experiments in Section 6.2 show
that when R., is large, data selection performance tends to
exhibit significant variance, making its predictability chal-
lenging. However, we observe that a moderate fitting resid-
ual still correlates strongly with data selection performance,
indicating that within certain thresholds, the residual can
be a reliable indicator of Data Shapley’s potential efficacy.

“The Monte Carlo estimator for Data Shapley may have a
different sampling distribution for Ss, but we found it does not
affect the fitting residual significantly.

5.1. When MTM function is a good approximation?

The utility function v, being a set function determined by
multiple factors such as the training set, learning algorithm,
and performance metric, might be perceived as inherently
complex. Therefore, it is interesting to understand the con-
ditions under which v can be well-approximated by some
MTM functions. Specifically, we explore the connection
between optimal fitting residuals and the consistency index
of v, an intrinsic property of utility functions. We first define
the concept of p-correlated dataset pairs.

Definition 7 (p-correlation (O’Donnell, 2014)). We say a
pair of random variables S, S’ are p-correlated if they are
sampled as follows: S is sampled from N uniformly at
random (S ~ Unif(N)), and for alli € S, i ¢ S" wp.
(1—p)/2 andforalli ¢ S, i€ S wp. (1—p)/2. We use
p-corr(N) to denote the distribution of p-correlated subset
pairs sampled from N.

Intuitively, commonly used learning algorithms are expected
to demonstrate consistency in model behavior when trained
on datasets that are similar or correlated. For example, if
we have two datasets S and S’ that are closely related (as
defined by the p-correlation), the performance of models
trained on these datasets should not diverge significantly
as the size of the training samples increases. This expecta-
tion leads to the anticipation of a high correlation between
v(S) and v(S") for utility functions that are related to test
accuracy or loss. We refer to the correlation coefficient be-
tween v(S) and v(S’) for a pair of p-correlated (S, S’) as
the p-consistency index of a utility function, and we show
that the high p-consistency index of a utility function, which
suggests that minor perturbations in the training set do not
lead to significant changes, serves as a positive signal for
the existence of a reasonable MTM function approximation.

Theorem 8. Let M denote the space of all MTM functions.
For any utility functions v, we have

. s~ 1
TEM Ro(®) < 1—p2 (1= cor,(v))
where
]E S S/ _]E ~Uni S 2
L (S,S8")~p-corr(N) [U( )U( )] S~Unif(N) [U( )]
cor,(v) =

Vargunie(v) (v(S))

is the correlation coefficient between v(S) and v(S”), which
we referred to as the p-consistency index of v.’

The result implies that when the values between v(.S) and
v(S") have a stronger correlation when S and S’ are p-
correlated, the utility function v can be better approximated
by MTM, which is intuitive as the mapping rules between

5As discussed in Saunshi et al. (2022), S and S’ have the same
marginal distribution if S ~ Unif (V).
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Figure 1: Validation accuracy curves as a function of the top p% most valuable data points added. The higher, the better.
‘Random (average)’ and ‘Random (maximum)’ mean sample different size-k subsets uniformly at random and evaluate their
average and maximum utility, respectively. Data Shapley’s error bar indicates the standard deviation across 5 independent
runs where the randomness is from the permutation sampling of Data Shapley scores.

S and v(S) is more tractable. The above theorem extends
the classic result from harmonic analysis for the bound on
the quality of the best linear approximation to a pseudo-
boolean function in terms of its noise stability (O’Donnell,
2014). When we fix the monotonic function f as the identity
function f(t) = ¢, it reduces to Theorem 3.1 in Saunshi et al.
(2022) after some rephrasing.

6. Experiments

Our experiments aim to demonstrate the following asser-
tions: (1) Data Shapley works well when the utility func-
tions are being defined on heterogeneous datasets, (2) Data
Shapley’s effectiveness is strongly correlated with the fitting
quality of MTM functions to the utility functions, and (3)
The utility functions’ approximability by MTM functions is
further correlated with their p-consistency index (deferred
to Appendix C.4). In this section, to estimate Data Shapley,
we use the most widely used permutation sampling estima-
tor (Mitchell et al., 2022), where for each experiment the
sampling budget is as high as 40,000 to reduce the instability
in Shapley value estimation. Following Ghorbani & Zou
(2019); Kwon & Zou (2022), we use logistic regression as
the learning algorithm here in the main paper. Additional re-
sults with neural networks and detailed experiment settings
are deferred to Appendix C.

6.1. When does Data Shapley work well/bad for data
selection?

To corroborate the reasonings in Section 3 and 4.1, we
compare the efficacy of Data Shapley for data selection for
datasets with different levels of varying data quality. To
fairly evaluate the performance, we focus on Data Shapley’s
relative performance compared with the random selection
baseline. Specifically, for each cardinality k, we sample
50,000 subsets, evaluate their utility scores, and take the
average. We also show the maximum utility score among
all sampled subsets. We use 40,000 utility samples for
approximating Data Shapley.

For each dataset, we create its noisy variants by randomly
picking a certain proportion of the data points to flip their
labels. Since mislabeled data usually negatively affect the
model performance, its marginal contribution will likely
be worse than any clean data points, mirroring the utility
function structure described in Theorem 4. As depicted in
Figure 1, we observe that for clean datasets (i.e., Flip Ra-
tio=0%), the performance of subsets selected by Data Shap-
ley marginally surpasses or worse than that of randomly
chosen subsets, and significantly underperforms the subset
with the maximum utility found by random selection. Con-
versely, in scenarios where datasets comprise data points
of greater varied quality, the selection effectiveness of Data
Shapley significantly improves. When the label-flipping
ratio is high, Data Shapley closely matches or surpasses the
highest utility found by random selection.®

8To better align with our discussion in Section 3 and 4, here
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Figure 2: We investigate the correlation between data selection performance (measured by the normalized utility difference)
and the normalized fitting residual of MTM function. For each dataset, we look at size-k data selection performance with
k € {0.1n,0.3n,0.5n,0.7n}. Each point represents the results on a dataset (with different noise-flipping ratios).

6.2. MTM Fitting Residual vs Data Selection
Performance

We evaluate the effectiveness of the heuristic we proposed
in Section 5 by assessing the correlation between MTM
functions’ fitting residuals and Data Shapley’s performance
in data selection.

Metric for Data Selection: normalized utility difference.
Our metric for data selection performance is the normal-
ized utility difference: the utility of the dataset selected by
Data Shapley, §¢(>]8; , compared to the optimal dataset, Sifcv),
normalized by the utility difference between the optimal
o(S0 ) —v(stk)

v(S10) ~Es.is1—k[v(S)]
practice, we approximate U(Sikg ) and Eg.| g/ [v(S)] using
the maximum and average utility of a batch of randomly
sampled data subsets (same setting as in Section 6.1).

dataset and random datasets, i.e., In

Neural network implementation of MTM function. We
use a neural network-based parameterization for MTM. For
afunction v(S) = f(wo+)_;cgw;i), we encode the dataset
S as a binary vector x, where x; = 1if i € S,and x; = 0
otherwise. The linear combination wg + Z;’Zl w;x; 1S im-
plemented via a linear layer in the neural network. The
monotonic function f is implemented by a neural network
with non-negative weight constraints. While such an ap-
proach may not guarantee finding the optimal v, we empiri-
cally find that the fitting residual is fairly small (the mean

the data selection performance is evaluated on the same validation
set for computing Data Shapley.

squared error in most cases is < 107%).

Results. For each dataset, we generate 200 noisy variants,
where for each of the variants we randomly flip the label
of a certain portion of data points where the noise rate is
uniformly sampled between 0 and 50%. We then evaluate
Data Shapley’s performance in size-k data selection tasks
across these datasets. Meanwhile, for each of the variants,
a MTM function is trained to approximate its utility func-
tion and evaluate the fitting residual R,. We reuse the
40,000 utility samples initially collected for Data Shapley
estimation to train the MTM model. In the scatter plot
in Figure 2, each dot corresponds to one of the dataset’s
variants. We present the result for data selection ratios of
k/n € {10%, 30%, 50%, 70%}. We can see a clear correla-
tion between Data Shapley’s performance on size-k data se-
lection task and the normalized fitting residual of the MTM
function. Notably, a lower R, consistently corresponds
with Data Shapley’s capability to identify datasets of higher
utility. When R, is large, data selection performance indeed
tends to exhibit significant variance, making its predictabil-
ity challenging. This is expected as being a MTM function
is only a sufficient condition for being Shapley-effective.

7. Conclusion & Limitations

This work advances the understanding of the application of
Data Shapley for data selection tasks. We show that Data
Shapley’s performance can be no better than basic random
selection in general settings, and we discuss the conditions
under which Data Shapley excels.
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Limitations. In our experiment, we demonstrate that our
heuristic is highly effective when comparing Data Shapley’s
effectiveness among utility functions for datasets from the
same domain but of different qualities. However, its appli-
cability is less certain when comparing utility functions for
datasets from different domains. This is expected as the
huge differences in the function nature make their approx-
imability or learnability not directly comparable. Despite
this limitation, the heuristic remains valuable in many prac-
tical scenarios where we are dealing with datasets from the
same domain but with differing qualities. In such cases, the
heuristic can be used in predicting the usefulness of Data
Shapley for data selection within each source.

Future works. Building on the insights from this study,
future research could explore the sufficient and necessary
conditions for which Data Shapley is optimal for data se-
lection. Additionally, a deeper exploration into the ethical
implications and fairness aspects of the downstream appli-
cations of Data Shapley could be an interesting future work.
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A. Extended Related Works
A.1. Data Shapley and Friends

Data Shapley is one of the first principled approaches to data valuation being proposed (Ghorbani & Zou, 2019; Jia et al.,
2019b). Data Shapley is based on the Shapley value, a famous solution concept from game theory literature which is almost
always being justified as the unique value notion satisfying the following four axioms:

1. Null player: if v(S U {z;}) = v(S) forall S C D\ {z;}, then ¢, (v) = 0.
2. Symmetry: if v(S U {2;}) = v(S U {z;}) forall S C D\ {2, z; }, then ¢, (v) = ¢, (v).
3. Linearity: For utility functions vy, v3 and any a1, as € R, ¢, (@101 + agve) = a1, (v1) + @z, (va).

4. Efficiency: forevery v, . . ¢s,(v) = v(D).

Since its introduction, Data Shapley has rapidly gained popularity as a principled solution for data valuation. However, as
argued in (Kwon & Zou, 2022), the efficiency axiom is not necessary for the machine learning context, and the framework
of semivalue is obtained by relaxing the efficiency axiom. Moreover, (Lin et al., 2022) provide an alternative justification for
semivalue based on causal inference and randomized experiments. Based on the framework of semivalue, (Kwon & Zou,
2022) propose Beta Shapley, which is a collection of semivalues that enjoy certain mathematical convenience. (Wang & Jia,
2023a) propose Data Banzhaf, and show that the Banzhaf value, another famous solution concept from cooperative game
theory, is the most reproducible against arbitrary perturbation to the submodels. Furthermore, the leave-one-out error is
also a semivalue, where the influence function (Koh & Liang, 2017) is generally considered as its approximation. Another
line of works focuses on improving the computational efficiency of Data Shapley by considering KNN as the surrogate
learning algorithm for the original, potentially complicated deep learning models (Jia et al., 2019a; Wang et al., 2023;
2024). (Ghorbani et al., 2020; Kwon et al., 2021) consider Distributional Shapley, a generalization of Data Shapley to data
distribution.

A.2. Alternative Data Valuation Methods

There have also been approaches for data valuation that do not belong to the aforementioned types. For a detailed survey,
we direct readers to (Sim et al., 2022). Notably, several studies have focused on tracking the impact of individual training
examples on test loss throughout the training process (Pruthi et al., 2020; Hammoudeh & Lowd, 2021; Paul et al., 2021;
Yeh et al., 2022; Das et al., 2022; Guu et al., 2023). Another avenue of research employs the representer theorem to
decompose neural network predictions into linear combinations of training data activations (Yeh & Lien, 2009; Sui et al.,
2021). However, (Sggaard et al., 2021) revealed the empirical instability of techniques such as TracIn (Pruthi et al., 2020)
and the Representer Point method (Yeh et al., 2018).

Further, (Sim et al., 2020) introduced a valuation metric based on the reduction in model parameter uncertainty provided
by the data. Several fraining-free and task-agnostic data valuation methods have also been proposed. For instance, (Xu
et al., 2021) proposed a diversity measure known as robust volume (RV) for appraising data sources. (Tay et al., 2022)
devised a valuation method leveraging the maximum mean discrepancy (MMD) between the data source and the actual data
distribution. (Nohyun et al., 2022) introduced a complexity-gap score for evaluating data value without training, specifically
in the context of overparameterized neural networks. (Wu et al., 2022) applied a domain-aware generalization bound
based on neural tangent kernel (NTK) theory for data valuation. (Amiri et al., 2022) assessed data value by measuring
statistical differences between the source data and a baseline dataset. (Just et al., 2022) utilized a specialized Wasserstein
distance between training and validation sets as the utility function, alongside an efficient approximation of the LOO error.
Lastly, (Kwon & Zou, 2023) utilized random forests as proxy models to propose an efficient, validation-free data valuation
algorithm.
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B. Deferred Proofs

Theorem 9 (Restate of Theorem 2). Given any two subsets of training data S1,S2 C N such that Sy # Ss and S; # @
and S; # N for i € {1,2}, the null and alternative hypothesis is formed as follows:

H(O) : ’U(Sl) Z U(Sg)

3
H(a) : 'U(Sl) < ’U(SQ) )

Any Shapley value-based hypothesis test h for the above problem is constrained to:

TrueNeg(h) + TruePos(h) < 1

Proof. This result immediately follows from Theorem 3, since no matter what value score s € R™ is available to h, there
always exists v € ]—'é?) s, and v’ € F é‘f) s, that yields the same Shapley vector s = ¢(v) = ¢(v’), where h(s) cannot

)

distinguish between v and v’ based on s. O
Theorem 10 (Restate of Theorem 3). Given any score vector s € R™ and any two subsets of training data S1,S3 C N
such that Sy # Ss and S; # & and S; # N fori € {1,2}, there exists two utility functions v and v’ s.t. v € ]-'gl)))sz and
DS .ng?&, and both yield the same Shapley vector: s = ¢(v) = ¢(v').

Proof. If we view the computation of the Shapley value ¢ as a function from the utility function v, and if we view the utility
function as a size-(2" — 1) vector’ , then the Shapley value can be viewed as a linear mapping from R?"~! to R™. That is,
¢ = Av for some matrix A € R"*(2" =1 This can be easily inferred from the Shapley value’s formula in Definition 1. For
a given data subset 7' C N, we define a simple game %7 with the utility function as follows:

_ 1 |SAT|=1
S =
wr () { 0 Otherwise

Such a game is referred as commander’s game in the literature (Yokote et al., 2016), where one can show that ¢(ur) =
At = 0, and the set of {@p : T C N, |T| > 1} forms a basis for R2" ~1. By (Yokote et al., 2016), for any utility function
v with the Shapley value s = ¢(v), we can decompose it as

v(S) = Zsz + Z arur(9)

i€s TCN,|T|>2

Now, as long as we can show that there always exists {7 }rc v, |7|>2 that can form a utility function v s.t. v(S1) > v(S52),

we can construct v € F, é?) s, required by the theorem statement.

u(S1) —v(S) =D si+ Y. arup(S) | = [ D si+ Y. arurp(S)

€5, TCN,|T|>2 €S, TCN,|T|>2
= E 8; — E si + E ar (ur(S1) — ur(Ss))
1€51\S2 1€52\ 51 TCN,|T|>2

Since any of ar can be set to be arbitrarily large to force v(S1) — v(S2) > 0, all we need is having {7 : |T'| > 2,|T' A S1| =
1,|T A Sa| # 1} is non-empty so that there exists at least one of T s.t. 4y (S1) — ur(S2) > 0. This is clearly true when
S1 # Sy and S; # @ and S; # N fori € {1,2}.

The construction of v’ can be done similarly. O

"Recall that we assume v(@) = 0.
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Theorem 11 (Restate of Theorem 6). For any utility functions v that is monotonically transformed modular, Data Shapley
is optimal for size-k data selection tasks forany k =1,...,n — 1.

Proof. Without loss of generality, let w; > ... > w,. Since f is a monotonic function, it is clear that the optimal size-k
subset Sikv) = {1,...,k}. We now show that for such a utility function v, ¢;(v) > ¢;(v) for any ¢ > j. This immediately
follows from the fact that for any S C N\ {4, j} we have v(SU1) = f(wo + e g we +wi) > fwo+ e gwe+w;) =
v(SUj) as w; > wj in the assumption. Since ¢; — ¢, can be written as a positively weighted sum of v(S U i) — v(S U j)
across S C N\ {i,j}, we have ¢y > ¢ > ... > ¢, and S,Ekv) consists of data points with top-k Data Shapley scores.

O
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Theorem 12 (Restate of Theorem 8). Denote the subclass of monotonically transformed modular (MTM) function defined
on N as M, i.e., M := {v : Gmonotonic f,3w € R" 5.t.. VS C N : f(wo + > ,cqw;) = v(S)}. ® Forall p € [0,1) we
have

_ 1
min R, (v) <
veEM 1—p

2 (1 —cory(v))
where

E v(S)v(5)] — Egotni (S
o (S,S/)Np»corr(N)[ ( ) ( )] S~U f(N)[ ( )]

Corp(v) = VarsNUnif(N)(v(S))

is the correlation coefficient between v(S) and v(S’), which we referred to as the p-consistency index of v.’

maxe SO in, f'(t) > 0}. Denote the subclass of M as

Proof. Denote the monotonic function class F, = {f : {7 oy =

My ={v:0(S) = flwo + X eswi), f € Fy}.

First, the space of function class M., will be remain the same if we further restrict that f(0) = 0, as for any v(S) =
f(wo + 3,5 wi) with f(0) # 0, it can be equivalently expressed as v(S) = fo (wo — f71(0) + 3, c 5 wi) with fo(t) =
f(t+ f71(0)). Note that f~1(0) always exists due to the condition that f’(¢) > L for some constant L > 0.

Now, we fix a monotonic function f € F, s.t. f(0) = 0, and we denote U := max; f’(t), L := min, f'(t),i.e.,v = U/L.
Denote g(S) = f~*(v(S)). From Theorem 3.1 in Saunshi et al. (2022), we know that

minEg
w

(9(5) = wo = Zwi)Q] - 1_1 <Es [9(5)°] -

2
i€S P

[g(S)g(S’)])

E
(S,8")~p-corr(N)

Denote w* = argmin,, Es [((S) — wo — Y_;c 5 wi)?].
Since f'(t) € [L, U], we have

v(S)—f <wo + ZW)

i€S

- |f(f1(v(5))) —f <w + Zwi) |

€S

<UfHv(S)) —wo — Zw,
i€s
and since the derivative of inverse function (f~1)" € [1/U,1/L], we have
918) = 17H0(8) = 1 0ls) - 1 € |2, 1)

€S

E
(S,5")~p-corr(N)
1
- — v
U2 (S,8")~p-corr(N)

<5 i . (Es [9(5)?] -
(

— 2 (s [v(sY) -

8Recall that in this paper, ‘monotonic’ means monotonically increasing.
°As discussed in Saunshi et al. (2022), S and S’ have the same marginal distribution if S ~ Unif (V).

E [v
(S,8")~p-corr(N)

16



Rethinking Data Shapley for Data Selection Tasks: Misleads and Merits

Therefore, we have

min Eg [(’U(S) - 5(5’))2} < minEg (v(S) —f (wo + sz>>

vEM,

i€s
1
< 2 2 _ !
< s (VB - B BSE])
_ # 2 2\ ’
= (2 (Vers wlS) + EsBSIE) - B p(S)(s)])
Note that v > 1. Clearly, the upper bound is minimized when v = 1. Hence, we have
. o~ 2 < 2 _ /
;QA%JES (v(S) —0(S)) } ST Varg (v(5)) + Es [v(5)] (s.,squ.cm(w) [v(S)v(S")]

Dividing both sides by Varg(v(S)) gives the inequality in the statement.

17
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Theorem 13 (Restate of Theorem 4). Suppose that the dataset N can be divided into N = SpuqU S ciean where Spaa M Sciean =
D, |Setean| = k- If the utility function v fulfills the condition: ¥j € Sijean, Vi € Spaa, VS C N\ {i, 5}, v(SU) <v(SUJ)
then Data Shapley is optimal for size-k data selection problem.

Proof. We show the following two statements: (1) Scjean consists of the data points of top-k£ Shapley values among N and
(2) U(Sclean) = argmaXS:SgNJs‘:k U(S)

For (1), S¢ean consists of the data points of top-k Shapley values among N since for any j € Sciean and ¢ € Spag, We have
¢; > ¢; which immediately follows from the condition of V.S C N \ {7, j}, v(SU1%) < v(S U j). For (2), we prove the
following argument for any ¢ > 0 with induction: for any S C N of size k s.t. |\S'\ Sciean| = |Sclean \ S| = ¢, we have
v(S) < v(Sciean)- The base case when ¢ = 0 trivially holds. Now, suppose that the statement holds true for all ¢ < L — 1.
Now, consider an .S where | S\ Sciean| = L. Consider an alternative S” C N and |S’| = k where S \ S = {;j} for some
j € Sclean and S\ S" = {i} for some ¢ € Sp,g. That is, S’ is constructed by removing an i € Spyq by an j € Sgjean- Let
S = 5US". We have v(S’) = v(S" U j) > v(S" Ui) = v(S). Moreover, since |S’ \ Seiean| = L = 1, by induction
hypothesis we have v(S”") < v(Scjean ), Which implies that v(S) < v(Sciean)- O

18



Rethinking Data Shapley for Data Selection Tasks: Misleads and Merits

B.1. Extension of Theorem 3 to Semivalue

Semivalue (Dubey et al., 1981) is originally studied in cooperative game theory. It has recently been proposed as a unified
framework for data value notions (Kwon & Zou, 2022; Lin et al., 2022) which comprises many existing data value notions
such as LOO (Koh & Liang, 2017), Data Shapley (Ghorbani & Zou, 2019), Beta Shapley (Kwon & Zou, 2022), and Data
Banzhaf (Wang & Jia, 2023a). The popularity of semivalues is attributable to the fact that they are the collection of all
possible data value notions that satisfy three important axioms: dummy player, symmetry, and linearity. The specific
definition of the three axioms can be found in Appendix A.

Definition 14 (Semivalues). We say a data value notion is a semivalue if and only if it satisfies the linearity, dummy player,
and symmetry axioms.

The following theorem shows that every semivalue of a data point ¢ can be expressed as a weighted average of marginal
contributions v(S U 4) — v(S) across different subsets S C N \ i.

Theorem 15 (Representation of Semivalue (Dubey et al., 1981)). A value function ¢ is a semivalue, if and only if, there

exists a set of weights {a,(cn), k=1,...,n} suchthaty ,_, (Zj)a,(cn) = 1 and the value function ¢ can be expressed as
follows:
1 .
01 (v):= =Y ol DT (w(SUQ) —w(S))
k=1 SCN\i,
|S|=k—1
For example, when aé") = %(Zj) ! it reduces to the Shapley value. When Oé§€n) = 5:tr, it reduces to the Banzhaf value.

When a,(cn) = 1[k = n], it reduces to the LOO error.

Definition 16 (inverse Pascal triangle condition (Dragan, 2002)). We say a semivalue ¢ with weights coefficients oz,(:)

satisfies the “inverse Pascal triangle condition” if

Vi=1,2,... ke {1,2,---,t—1}: oV =al’ +al],

We can easily verify that this condition is satisfied for all of LOO, the Shapley value, and the Banzhaf value.

Theorem 17. Given a semivalue ¢ with weights coefficients oz,(cn), if it satisfies the “inverse Pascal triangle condition”, then
for any score vector s € R™ and any two subsets of training data S1,S2 C N such that S1 # S and S; # @ and S; = N

fori € {1,2}, there exists two utility functions v and v’ s.t. v € .7-";?)752 andv' € fé‘:?&, and both yield the same semivalue
vector: s = ¢(v) = ¢(v').

Proof. Similar to the proof for Theorem 3, we exploit the null space of semivalue.

For a given data subset 7' C NN, we define a utility function wr as follows:

IS|=1T

c S —|T C
S (B et s 27
wT(S): c=0
1/ai£l S=T
0 SCT

By (Dragan, 2002), for any semivalue ¢ that satisfies the inverse Pascal triangle condition, {wr : T'C N, T # (} is a basis
for the space of utility functions, and for any utility function v with the semivalue s = ¢(v), we can decompose it as

v(S) = Z Brwr(S) + BN (wN(S) + ZwN\i(S)> - ZSin\i(S)

|T|<n—2 ieN ieN

Moreover, by (Dragan, 2002), the set {w7(S) : 1 < [T'| <n — 2} U {wy + >,y wn\;} is a basis for the null space of
semivalue ¢, i.e., ¢(w) = 0 for all utility functions w from this set.
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Now, as long as we can show that there always exists { 37 }rcn that can form a utility function v s.t. v(S1) > v(S2), we
can construct v € F. é?) s, required by the theorem statement.

v(S1) —v(S2) = Z Br(wr(S1) — wr(S2))

|T|<IN|-2
+ By <wN(S1) —wn (S2) + Y [wani(S1) — wN\z‘(SM)
ieN

- Z si - (wa\i(S1) — wni(S2))

ieN
Since Sr(v) can set to be arbitrarily large to make v(.S1) — v(S2) > 0, all we need is having at least one wy (S1) # wr(S2),
which is clearly true when S; # S5 and none of Sy or S equals N or & .

The construction of v’ can be done similarly using previous techniques.
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C. Additional Settings & Experiments
C.1. Datasets & Architectures

Datasets. An overview of the dataset information we used in Section 6 can be found in Table 2. These are commonly used
datasets in the existing literature in data valuation (Ghorbani & Zou, 2019; Kwon & Zou, 2022; Jia et al., 2019b; Wang &
Jia, 2023a; Kwon & Zou, 2023; Wang et al., 2024). Following Kwon & Zou (2022), for the datasets that have multi-class,
we binarize the label by considering 1[y = 1]. Given the large amount of model retraining required in our experiment, for
each of the dataset we take a size-200 subset as the training set, and a size-2000 subset as the validation set. This is the same
as prior studies in Data Shapley (Kwon & Zou, 2022; Wang & Jia, 2023a).

Dataset Source
Wind https://www.openml.org/d/847
CPU https://www.openml.org/d/761
Fraud (Dal Pozzolo et al., 2015)
2DPlanes https://www.openml.org/d/727
Vehicle (Duarte & Hu, 2004)
Apsfail  https://www.openml.org/d/41138
Pol https://www.openml.org/d/722

Table 2: A summary of datasets used in Section 6’s experiments.

Architectures. In the experiments in the main paper, we use logistic regression as the learning algorithm. Here in
Appendix, we also show the results when using a two-layer MLP model as the learning algorithm, where there are 100
neurons in the hidden layer, activation function ReLU, batch size 128, (initial) learning rate 10~2 and Adam optimizer for
training.

Architecture for training MTM function. In Section 6.2 and Appendix C.4, we use a neural network-based parameteri-
zation for MTM. For a function v(S) = f(wo + ), g w;), we encode the dataset S as a binary vector z, where z; = 1
ifi € S, and z; = 0 otherwise. The linear combination wo + .-, w;x; is implemented via a linear layer in the neural
network. The monotonic function f is implemented by a neural network with non-negative weight constraints. While such
an approach may not guarantee finding the optimal v, we find that the fitting residual is fairly small (the mean squared
error in most cases is < 10~%). We use an MLP with 2 hidden layers to implement the monotonic function f, where each
layer has 100 neurons. We add an attention layer between the first and the second hidden layer. We reuse the 40,000 utility
samples collected from Shapley value estimation for the training and testing of MTM, where we split the utility samples
into 32,000 for training and 8,000 for evaluation. We use batch size 32, (initial) learning rate 1073, and Adam optimizer for
training 10 epochs.

C.2. Additional Experiments for Section 6.1

In Figure 3, we show the data selection results for additional datasets when using logistic regression classifiers. In Figure 4,
we show the data selection results when using MLP classifiers. We note that in this case, because there is randomness during
model training, the maximum utility found by random selection baseline can be higher than other approaches when trained
on full datasets. The results are similar to what is observed from the maintext: for clean datasets, Data Shapley’s performance
is much worse than that of their noisy variants, which corroborates the insights that without additional constraints on the
underlying utility function’s characteristics (such as the quality of particular data points), the performance of Data Shapley
can be no better than random guessing.
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Figure 3: Additional results when using logistic regression classifiers. Validation accuracy curves as a function of the most
valuable data points added. The higher, the better. ‘Random (average)’ and ‘Random (maximum)’ means sample different
size-k subsets uniformly and random and evaluate their average and maximum utility, respectively. Data Shapley’s error bar
indicates the standard deviation across 5 independent runs where the randomness is from the permutation sampling of Data

Shapley scores.

22



Rethinking Data Shapley for Data Selection Tasks: Misleads and Merits

Dataset=wind, Flip Ratio=0%

K 85% ——
>

o

< 82%

=

Q

Q

< 80%

g —— Data Shapley

% 789 { —— Random (average)
= —— Random (maximum)
s

|
25 50 75 100

Pct. Selected Data (%)

Dataset=cpu, Flip Ratio=0%

9 R ————
2 90%

®

—

2 88%

5]

<

g 85%1 —— Data Shapley

= o Random (average)
= 82%| — Random (maximum)
<

|
25 50 75 100

Pct. Selected Data (%)

Dataset=fraud, Flip Ratio=0%

95% —

90%

—— Data Shapley
—— Random (average)
—— Random (maximum)

85%

Validation Accuracy (%)

|
25 50 75 100
Pct. Selected Data (%)

Validation Accuracy (%) Validation Accuracy (%)

Validation Accuracy (%)

Dataset=2dplanes, Flip Ratio=0%

—— Random (maximum)

S 90%

= //—
3 80%

=

Q

Q

< 70%

g —— Data Shapley

g 60%| —— Random (average)
S

]
25 50 75 100

Pct. Selected Data (%)

Validation Accuracy (%)

Dataset=wind, Flip Ratio=10%

8% ___—————————
80%
75%{ —— Data Shapley

—— Random (average)
—— Random (maximum)

|
25 50 75 100
Pct. Selected Data (%)

70%

Dataset=cpu, Flip Ratio=10%
W

90%

85%

—— Data Shapley
——— Random (average)
—— Random (maximum)

80%

0,
75% 25 50 75

Pct. Selected Data (%)

|
100

Dataset=fraud, Flip Ratio=10%
95%
/——~/\

90%

85%
—— Data Shapley

—— Random (average)
—— Random (maximum)

80%

J
100

25 50 75
Pct. Selected Data (%)

_ . 0109
gg))oztaset 2dplanes, Flip Ratio=10%

P——

—— Data Shapley
—— Random (average)
—— Random (maximum)

80%

70%

60%

|
25 50 75 100

Pct. Selected Data (%)

Dataset=wind, Flip Ratio=20%

80%

70%{ —— Data Shapley
—— Random (average)

—— Random (maximum)

|
25 50 75 100
Pct. Selected Data (%)

Validation Accuracy (%)

Dataset=cpu, Flip Ratio=20%
90% —

©
S
X

—— Data Shapley
——— Random (average)
—— Random (maximum)

N
S
X

Validation Accuracy (%)

|
25 50 75 100

Pct. Selected Data (%)

Dataset=fraud, Flip Ratio=20%
—_—

90%

©
S
X

—— Data Shapley
—— Random (average)

—— Random (maximum)

70% |
25 50 75 100

Pct. Selected Data (%)

Validation Accuracy (%)

—

p———

—— Data Shapley
—— Random (average)
—— Random (maximum)

80%

N
S
X

=
2
=

Validation Accuracy (%

|
25 50 75 100

Pct. Selected Data (%)

Dataset=2dplanes, Flip Ratio=209

Dataset=wind, Flip Ratio=30%
S ——

©
S
X

70%
—— Data Shapley

—— Random (average)
—— Random (maximum)

|
25 50 75 100
Pct. Selected Data (%)

60%

Validation Accuracy (%)

Dataset=cpu, Flip Ratio=30%
90%{ —m———————————

©
S
X

—— Data Shapley
——— Random (average)
—— Random (maximum)

Validation Accuracy (%)
3
X

60%

|
25 50 75 100

Pct. Selected Data (%)

Dataset=fraud, Flip Ratio=30%

9 ——
= 90%

z

©

~

2 80%

Q

<

g 70%] —— Data Shapley

E- —— Random (average)
E —— Random (maximum)
g 60% |

25 50 75
Pct. Selected Data (%)

100

o Dataset=2dplanes, Flip Ratio=30%

S

> 80%

o

©

=~

=4

3 70%

<

g —— Data Shapley

< 60%{ —— Random (average)
E —— Random (maximum)
K

|
25 50 75 100

Pct. Selected Data (%)

Figure 4: Additional results when using MLP classifiers. The figure shows the validation accuracy curves as a function of
the most valuable data points added. The higher, the better. ‘Random (average)’ and ‘Random (maximum)’ means sample
different size-k subsets uniformly and random and evaluate their average and maximum utility, respectively. Data Shapley’s
error bar indicates the standard deviation across 5 independent runs where the randomness is from the permutation sampling

of Data Shapley scores.
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C.3. Additional Experiments for Section 6.2

In Figure 5, we show the results for comparing Data Shapley’s data selection performance and R, on additional datasets,
and in Figure 6 we show additional results on MLP classifiers. Similar to the results in the maintext, the fitting residual of
MTM function and Data Shapley’s performance exhibit a strong correlation, which further validates the effectiveness of the
heuristic proposed in Section 5.
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Figure 5: Results on additional datasets for the correlation between R, and data selection performance. We investigate the
correlation between data selection performance and the normalized fitting residual of MTM function. For each dataset, we

look at size-k data selection performance with k& € {0.1n,0.3n,0.5n,0.7n}. Each point represents the results on a dataset
(with different noise-flipping ratios).
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Figure 6: Results for the correlation between R, and data selection performance when using MLP classifier. We investigate
the correlation between data selection performance and the normalized fitting residual of MTM function. For each dataset,
we look at size-k data selection performance with k& € {0.1n,0.3n,0.5n,0.7n}. Each point represents the results on a
dataset (with different noise-flipping ratios).
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C.4. MTM Fitting Residual vs p-Consistency Index

In this experiment, we investigate the correlation between the fitting residual of MTM function and p-consistency index
cor,(v) defined in Theorem 8. The setting in this experiment is the same as the one in Section 6.2, and we additionally
compute the p-consistency index for each noisy variant. Following the theorem’s guidance, our focus is on scenarios with
relatively low noise rates (p € {0,0.1,0.2,0.3}). For each specified value of p, we generate 5000 pairs of p-correlated
datasets S, S” and estimate p-consistency index cor,(v).

Figure 7 and 8 show the results on logistic and MLP classifier, respectively. As we can see, there is a strong correlation
between p-consistency index and the fitting residual R, (v). This observation lends empirical support to the theoretical
assertions made in Theorem 8, suggesting that p-consistency index is indeed a significant factor in determining the fitting
quality of MTM functions to utility functions. Since MTM’s fitting residual is correlated to the Data Shapley’s data selection
performance as we have shown earlier, cor,(v) is also highly correlated with Data Shapley’s data selection performance,
as validated in Figure 9 and 10. This is because for noisy datasets, since two correlated subsets are likely to both contain
similar amounts of bad data, their utilities have a stronger correlation compared with clean datasets where data points are of
similar quality.
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Figure 7: We investigate the correlation between the normalized fitting residual of MTM and the p-consistency index of the
utility functions. The results for other values of ps are deferred to Appendix C. We vary different p € {0,0.1,0.2,0.3} and
estimate the p-consistency index.
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Figure 8: We investigate the correlation between the normalized fitting residual of MTM and the p-consistency index of the
utility functions. The results for other values of ps are deferred to Appendix C. We vary different p € {0,0.1} and estimate
the p-consistency index.
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Figure 9: We investigate the correlation between the normalized fitting residual of MTM and the p-consistency index of the
utility functions. The results for other values of ps are deferred to Appendix C. We vary different p € {0,0.1,0.2,0.3} and
estimate the p-consistency index.
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Figure 10: We investigate the correlation between the normalized fitting residual of MTM and the p-consistency index of the

utility functions. The results for other values of ps are deferred to Appendix C. We vary different p € {0,0.1} and estimate
the p-consistency index.
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